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Abstract: Along a transversal geodesic γ whose tangent belongs to the contact distribution D, we define
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1. Introduction

A smooth manifold M2n−1 is an almost contact manifold if its structure group of the
linear frame bundle is reducible to U(n− 1)× {1} [1]. Given an almost contact manifold,
two associated structures enrich the geometry. One is a Riemannian metric g compatible
to a given almost contact structure and we obtain a almost contact Riemannian manifold
(M; η, ξ, φ, g). The other is an almost CR structure H = {X − i JX : X ∈ Γ(D)}, that is,
each fiber Hp, p ∈ M, is of complex dimension n− 1, H ∩ H̄ = {0} and [H,H] ⊂ CD,
where J = φ|D and D = Ker of η. In addition, the almost complex structure J satisfies the
integrability condition: [H,H] ⊂ H, we call it an (integrable) CR structure. S. Webster [2]
introduced the terminology pseudo-Hermitian structure on real hypersurfaces in complex
manifolds by such an η. The notion was also studied intensively and independently by N.
Tanaka [3].

On the other hand, in Riemannian geometry the Jacobi operator Rγ = R(·, γ̇)γ̇ along
geodesics γ plays an important role, where R denotes the Riemannian curvature tensor.
In these circumstances, it is very interesting to study the behavior of Jacobi operators
on almost contact Riemannian manifolds particularly in connection with their associated
almost CR-structure.

This paper contains mainly two parts: in the first part, we give a characterization of
the Sasakian sphere by using the transversal Jacobi operator Rγ = R(·, γ̇)γ̇ along geodesics
γ whose tangent γ̇ belongs to the contact distribution D. More precisely, we prove that a
complete and simply connected K-contact manifold M is isometric to the unit sphere
if and only if the contact distribution D is invariant by the transversal Jacobi opera-
tor Rγ (Rγ(D) ⊂ D) and, at the same time, it is invariant by the covariant derivative
R′γ = (∇γ̇R)(·, γ̇)γ̇ (R′γ(D) ⊂ D) for any transversal geodesic γ (Corollary 1). In the second
part, we treat real hypersurfaces of a complex hyperbolic space, and then we prove a
complete real hypersurface M in a non-flat complex space form M̃n(c), c 6= 0 is congruent
to a complete ruled real hypersurface in complex hyperbolic space HnC if and only if the
contact ditribution D is invariant by the transversal Jacobi operator Rγ and at the same time
it is invariant by the covariant derivative R′γ for any transversal geodesic γ (Corollary 2).
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2. Preliminaries

First, we collect some basic notions and properties of almost contact Riemannian
manifolds and strictly pseudo-convex pseudo-Hermitian manifolds.

Definition 1 ([1,4]). A (2n− 1)-dimensional manifold M is said to be an almost contact manifold
if its structure group of the linear frame bundle is reducible to U(n− 1)× {1}, or equivalently,
if there exist a (1, 1)-tensor field φ, a vector field ξ and a 1-form η satisfying

η(ξ) = 1 and φ2 = −I + η ⊗ ξ, (1)

where I denotes the identity transformation. We call (η, ξ, φ) an almost contact structure and the
structure vector field ξ the Reeb vector field in particular.

Then, there is a compatible Riemannian metric g:

g(φX, φY) = g(X, Y)− η(X)η(Y) (2)

for any vector fields X and Y on M. Such a metric is called an associated metric and (M; η, ξ, φ, g)
(shortly, M) is said to be an almost contact Riemannian manifold.

For the exterior differential operator d, if M satisfies in addition dη = Φ, then M is
called a contact Riemannian manifold. Here, Φ(X, Y) = g(X, φY) for any vector fields X, Y.
On a contact Riemannian manifold, η is a contact form, i.e., η ∧ (dη)n−1 6= 0. Therefore,
every contact Riemannian manifold is orientable. From (1) and (2) it follows that

φξ = 0, η ◦ φ = 0, η(·) = g(·, ξ).

Given a contact metric manifold M, we define the structure operator h by h = 1
2Lξφ, where Lξ

denotes the Lie derivative with respect to ξ. Then, we see that h is self-adjoint and satisfies

hξ = 0 and hφ = −φh, (3)

∇Xξ = −φX− φhX, (4)

where∇ is the Levi–Civita connection on M associated with g. From (3) and (4), we see that
ξ is a geodesic vector field. Moreover, using (4) it is easy to see that ξ is a Killing vector field
if and only if h vanishes. Such a contact Riemannian manifold is called a K-contact manifold.

Now, we recall the definition of CR structure.

Definition 2 ([5]). Let M be a (2n− 1)-dimensional manifold and TM be its tangent bundle.
A CR structure on M is a complex rank (n− 1) sub-bundle H ⊂ CTM = TM⊗C satisfying
(i)H∩ H̄ = {0} and (ii) [H,H] ⊂ H (integrability), where H̄ denotes the complex conjugation
ofH.

For a CR structure H, we have a unique sub-bundle D = Re{H ⊕ H̄} and a unique
bundle map J such that J2 = −I andH = {X− i JX|X ∈ D}. If M is orientable, then there
exists a nowhere zero section η, i.e., a real one-form on M such that Ker(η) = D. For such
(η, J) the Levi form is defined by

L(X, Y) = −dη(X, JY)

for X, Y ∈ D. If the Levi form is positive (or negative) definite and hermitian, then (η, J) is
called a strictly pseudo-convex pseudo-Hermitian CR structure. In general, when the Levi-form
is non-degenerate there exists a unique globally defined nowhere zero tangent vector field
ξ such that iξ dη = 0 and η(ξ) = 1, where iX denotes the interior product with a vector
field X on M. Define the Webster metric (Definition 1.10 in [5]) on M by

gη = L + η ⊗ η,
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where iξ L = 0.
Returning to an almost contact manifold M = (M; η, ξ, φ), at each point p ∈ M we

denote Dp = {v ∈ Tp M|η(v) = 0}. Then, D : p→ Dp defines a distribution orthogonal to
ξ, which is called a contact distribution. Then, the restriction J = φ|D of φ to D defines an
almost complex structure in D. Such (η, J) is called an almost CR structure, if M satisfies

[JX, JY]− [X, Y] ∈ D (or [JX, Y] + [X, JY] ∈ D) (5)

for all X, Y ∈ D. Furthermore, when it satisfies

[J, J](X, Y) = 0, (6)

where [J, J] is the Nijenhuis torsion of J, the pair (η, J) is a pseudo-Hermitian (integrable)
CR structure associated with the almost contact structure (η, ξ, φ). On the other hand, if
the Nijenhuis torsion of φ satisfies [φ, φ] = −2dη ⊗ ξ, then M is said to be normal [6]. The
associated pseudo-Hermitian structure of a normal almost contact structure is CR-integrable.

A contact Riemannian manifold with normality is called a Sasakian manifold. Therefore,
every Sasakian manifold has an integrable CR-structure. Indeed, for a contact Riemannian
manifold (M; η, ξ, φ, g), CR-integrability is equivalent to the condition Ω = 0, where Ω is the
(1, 2)-tensor field on M defined as

Ω(X, Y) = (∇Xφ)Y− g(X + hX, Y)ξ + η(Y)(X + hX) (7)

for vector fields X, Y on M (see in [7] (Proposition 2.1)). Here, we remind that an almost
contact Riemannian manifold is Sasakian manifold if and only if it satisfies

(∇Xφ)Y = g(X, Y)ξ − η(Y)X

We also find that from (7) and (2) a Sasakian manifold is a K-contact manifold. Denote by
R the Riemannian curvature tensor defined by

R(X, Y)Z = ∇X(∇YZ)−∇Y(∇XZ)−∇[X,Y]Z

for all vector fields X, Y, Z. Then, a contact Riemanian manifold is a Sasakian manifold if
and only if it satisfies

R(X, Y)ξ = η(Y)X− η(X)Y

for all vector fields X and Y on the manifold.
Please refer to the works in [8–10] for more details about almost contact structures

and their associated (almost) CR structures.

3. A Characterization of the Unit Sphere

In this section, in order to give a characterization of the unit sphere, we first give
a definition.

Definition 3. Let (M; η, ξ, φ, g) be an almost contact Riemannian manifold. Then, a regular curve
γ(s) whose tangent γ̇(s) belongs to Dγ(s) along γ(s) is called a transversal curve on M, where s
denotes the arc-length of γ.

In particular, when M is a 3-dimensional contact manifold, γ(s) is said to be a Legendre
curve. Making a generalization of this, we defined a slant curve whose contact angle α(s) =
g(γ̇(s), ξ) is constant along γ [11].

Definition 4. Let γ(s) be a transversal geodesic on an almost contact Riemannian manifold
(M; η, ξ, φ, g). If the contact distribution D is invariant by the Jacobi operator Rγ = R(·, γ̇)γ̇,
that is, Rγ(D) ⊂ D, then we have that Rγ : D → D is a self-adjoint operator along γ. We call Rγ

the transversal Jacobi operator along γ.
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We prepare the following lemmas.

Lemma 1. Let (M; η, ξ, φ, g) be a contact Riemannian manifold. For any p ∈ M and any v ∈ Dp,
let γ(s) be a geodesic with γ̇(0) = v and γ(0) = p. Then, γ(s) is a transversal curve if and only if
M is a K-contact manifold.

Proof. Differentiating η(γ(s)) covariantly along γ(s), then we have

g(φγ̇(0) + φhγ̇(0), γ̇(0)) = 0,

which yields that g(φhv, v) = 0 for any v ∈ Dp and p ∈ M. Since φh is a self-adjoint
operator, taking a polarization, then we have g(φhv, w) = 0 for any v, w ∈ Dp and p ∈ M.
Therefore, we have φh = 0, and then h = 0. Conversely, if (M; η, ξ, φ, g) is a K-contact
manifold, we easily find that η(γ̇(s)) is constant along γ(s).

Lemma 2. Let (M; η, ξ, φ, g) be a K-contact manifold. Then, Rγ(D) ⊂ D for any transversal
geodesic γ(s) on M if and only if the associated pseudo-Hermitian structure is CR-integrable.

Proof. As (M; η, ξ, φ, g) is a K-contact manifold, we have

R(X, Y)ξ = (∇Yφ)X− (∇Xφ)Y (8)

for all vector fields X, Y in M. (We can easily get this identity from (4) and the definition of
R.) Suppose that the associated pseudo-Hermitian structure is CR-integrable. Then, we have

g((∇Uφ)V, W) = 0 (9)

for any vector fields U, V, W ∈ D. Indeed, the condition (9) is equivalent to CR-integrability
(cf. [12]). Then, from (8) and (9) we have

g(R(V, γ̇)γ̇, ξ) = −g(R(V, γ̇)ξ, γ̇)

= g((∇Vφ)γ̇− (∇γ̇φ)V.γ̇)

= 0

(10)

for any vector fields V ∈ D, where γ = γ(s) is a transversal geodesic. Therefore, we
have D is invariant by Rγ. Conversely, we assume that Rγ(D) ⊂ D for any transversal
geodesic γ. Then by using polarization we have g(R(V, U)W, ξ) + g(R(V, W)U, ξ) = 0 for
any vector fields U, V, W ∈ D. Use (8) to obtain

g((∇Uφ)V − (∇Vφ)U, W) + g((∇Wφ)V − (∇Vφ)W, U) = 0. (11)

On the other hand, from the definition of the fundamental two form Φ, it is immediate that
dΦ = 0 or, equivalently,

0 = g((∇Xφ)Y, Z) + g((∇Yφ)Z, X) + g((∇Zφ)X, Y) (12)

for all vector fields X, Y, Z on M. Using (12) in (11), then we have

g((∇Wφ)U + (∇Uφ)W, V) = 0 (13)

for any vector fields U, V, W ∈ D. As g((∇Wφ)U, V) + g((∇Uφ)V, W) + g((∇Vφ)W, U) = 0,
using (13) and g((∇Xφ)Y, Z) = −g((∇Xφ)Z, Y), then we have g((∇Wφ)U, V) = 0 for any
vector fields U, V, W ∈ D. Thus, we have proved Lemma 2.

Now, we prove the following.
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Theorem 1. Let (M; η, ξ, φ, g) be a complete and simply connected K-contact manifold. Then, M
is isometric to the unit sphere if and only if the eigenvalues of the transversal Jacobi operator Rγ are
constant and their eigenspaces are parallel along any transversal geodesic γ.

Proof. Let (M; η, ξ, φ, g) be a K-contact manifold and let γ(s) be a transversal geodesic
parametrized by the arc-length s and Rγ be the transversal Jacobi operator. Then, due to
Lemma 2, we already know that (M; η, ξ, φ, g) is CR-integrable, that is, it is a Sasakian
manifold. Suppose that the eigenvalues of the transversal Jacobi operator Rγ are constant
and their eigenspaces are parallel along any transversal geodesic γ. Then, the self-adjoint
operator Rγ : D → D is diagonalizable by parallel orthonormal frame fields along a
transversal geodesic γ. We may write

RγEi = λiEi, i = 1, 2, · · · , 2n− 2, (14)

where ∇γ̇Ei = 0, Ei(γ(0)) = ei ⊥ ξp, γ̇(λi) = 0. Differentiating (14) covariantly along γ,
then we have (∇γ̇R)(Ei, γ̇)γ̇ = 0 for any transversal geodesic γ, where i = 1, 2, · · · , 2n− 2.
From this, we get g((∇γ̇R)(U, γ̇)γ̇, W) = 0 for any vector fields U, W ∈ D, and then,
we have g((∇V R)(U, V)V, W) = 0 for any U, V, W ∈ D. Using polarization, we have
g((∇V1 R)(U, V2)V3, W) = 0 for any U, W, V1, V2, V3 ∈ D, which means that M is a locally
φ-symmetric space in the sense of Takahashi [13]. Now we compute

0 =g((∇γ̇R)(U, γ̇)γ̇, ξ)

=g(∇γ̇R(U, γ̇)γ̇− R(∇γ̇U, γ̇)γ̇, ξ)

=g(R(U, γ̇)γ̇, φγ̇)− g(R(∇γ̇U, γ̇)γ̇, ξ) (∵ Rγ(D) ⊂ D and (4))

=g(R(U, γ̇)γ̇, φγ̇) + g(R(∇γ̇U, γ̇)ξ, γ̇)

=g(R(U, γ̇)γ̇, φγ̇)− η(∇γ̇U) (∵ (2))

=g(R(U, γ̇)γ̇, φγ̇)− g(∇γ̇U, ξ)

=g(R(U, γ̇)γ̇, φγ̇) + g(U,∇γ̇ξ)

=g(R(U, γ̇)γ̇, φγ̇)− g(U, φγ̇) (∵ (4))

(15)

for any vector field U ∈ D. Assuming U = φγ̇, then we have g(R(γ̇, φγ̇)φγ̇, γ̇) = 1.
This implies g(R(V, φV)φV, V) = 1 for any unit vector field V ∈ D. We have that M
is a Sasakian space of constant φ-sectional curvature 1. Thus, we have that M is locally
isometric to the unit sphere. As M is complete and simply connected, it is (globally)
isometric to the unit sphere. In order to prove the converse, we assume that M is isometric
to a Sasakian unit sphere and that Rvei = λiei, i = 1, 2, · · · , 2n− 2, where v ∈ Dp and {ei}
is an orthonormal basis of Dp ⊂ Tp M. Let γ(s) be a geodesic with γ(0) = p, γ̇(0) = v and
let {Ei} be a parallel orthonormal frame field along γ with Ei(0) = ei, i = 1, 2, · · · , 2n− 2.
Differentiate covariantly Rγ̇Ei and λiEi, respectively, along γ, then we find that both items
are parallel along γ. In addition, as at the initial point γ(0) = p they coincide, that is,
Rvei = λiei we have that Rγ̇Ei = λiEi, i = 1, 2, · · · , 2n− 2. Therefore, we have completed
the proof.

Corollary 1. Let (M; η, ξ, φ, g) be a complete and simply connected K-contact manifold satisfying
Rγ(D) ⊂ D for any transversal geodesic γ. Then, M is the Sasakian sphere if and only if it satisfies
R′γ(D) ⊂ D for any transversal geodesic γ, where R′γ = (∇γ̇R)(·, γ̇)γ̇.

4. Real Hypersurfaces of a Non-Flat Complex Space Form

An oriented real hypersurface M of a Kähler manifold (M̃n; J̃, g̃) of complex dimension
n admits an almost contact metric structure (η, ξ, φ, g):

J̃X = φX + η(X)N, J̃N = −ξ
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for any vector field X tangent to M and the unit normal vector field N. Denote by g the
induced Riemannian metric on M. Then, (η, φ, ξ, g) satisfy (1) and (2). Recall the Gauss
and Weingarten formulas for M:

∇̃XY = ∇XY + g(AX, Y)N, ∇̃X N = −AX

for any tangent vector fields X, Y, where ∇̃ and ∇ denote the Levi–Civita connections of
(M̃n, g̃) and (M, g), respectively, and A is the shape operator field. As ∇̃J = 0, we obtain

(∇Xφ)Y = η(Y)AX− g(AX, Y)ξ, (16)

∇Xξ = φAX. (17)

If we put φ|D = J, then the associated pseudo-Hermitian structure (η, J) is CR-integrable.
Indeed, using (16) and (17), it is seen that a real hypersurface of a Kähler manifold satisfies
(5) and (6). An eigenvector corresponding to an eigenvalue of A is called a principal
(curvature) vector. From (17), it follows easily that:

Lemma 3. The Reeb vector field ξ is principal if and only if its integral curves are geodesics.

A real hypersurface of a Kähler manifold is said to be a Hopf hypersurface if the Reeb
vector ξ is a principal curvature vector.

Assume that M̃n(c), n ≥ 2, c 6= 0, is a complex space form of constant holomorphic
sectional curvature c. Then, we have the following Gauss equation for a real hypersurface
M in M̃n(c):

R(X, Y)Z =
c
4
{g(Y, Z)X− g(X, Z)Y

+ g(φY, Z)φX− g(φX, Z)φY− 2g(φX, Y)φZ}
+ g(AY, Z)AX− g(AX, Z)AY,

(18)

for any tangent vector fields X, Y, Z on M. By making use of the six types homogeneous
real hypersurfaces of PnC given in [14], and the tube construction of a Hopf hypersurface
realized in [15], M. Kimura proved the following (local) classification theorem.

Theorem 2 ([16]). Let M be a Hopf hypersurface of PnC. Then, M has constant principal
curvatures if and only if M is locally congruent to one of the following.

(A1) a geodesic hypersphere of radius r, where 0 < r < π
2 ,

(A2) a tube of radius r over a totally geodesic PlC(1 ≤ l ≤ n− 2), where 0 < r < π
2 ,

(B) a tube of radius r over a complex quadric Qn−1 and PnR, where 0 < r < π
4 ,

(C) a tube of radius r over P1C× Pn−1
2
C, where 0 < r < π

4 and n(≥ 5) is odd,
(D) a tube of radius r over a complex Grassmann G2,5C, where 0 < r < π

4 and n = 9,
(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5), where 0 < r < π

4
and n = 15.

J. Berndt proved the following theorem for the case HnC.

Theorem 3 ([17]). Let M be a Hopf hypersurface of HnC. Then, M has constant principal
curvatures if and only if M is locally congruent to one of the following.

(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane Hn−1C,
(A2) a tube over a totally geodesic HlC(1 ≤ l ≤ n− 2),
(B) a tube over a totally real hyperbolic space HnR.

We call simply type (A) for real hypersurfaces of type A1, A2 in PnC and those of type
A0, A1, or A2 in HnC.
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Ruled real hypersurfaces are foliated real hypersurfaces with totally geodesic submani-
folds of PnC as leaves of codimension 1 [18]. Let M̄ be a hypersurface in S2n+1 defined by

{(reit cos θ, reit sin θ, (1− r2)1/2z2, · · · , (1− r2)1/2zn) ∈ Cn+1 |

n

∑
j=2
|zj|2 = 1, 0 < r < 1, 0 ≤ t, θ < 2π}.

Then the Hopf image M of M̄ is a minimal ruled hypersurface in PnC. Indeed, the shape
operator is given as follows, Aξ =

√
1−r2

r U, AU =
√

1−r2

r ξ and AZ = 0 for any Z ⊥ {ξ, U},
where U ⊥ ξ is unit vector field. In analogous way, a minimal ruled real hypersurface in
HnC provided in [19]. In general, the shape operator of ruled real hypersurfaces in PnC or
HnC is written as follows,

Aξ = αξ + µU (µ 6= 0),

AU = µξ,

AZ = 0

(19)

for any Z ⊥ {ξ, U}, where U ⊥ ξ is unit vector field, α and µ are functions on M.

Theorem 4 ([18,19]). Let M be a real hypersurface in a non-flat complex space form M̃. Then M
is a ruled real hypersurface if and only if g(AX, Y) = 0 for any tangent vectors X, Y orthogonal to
ξ on M.

Recently, a new description of ruled real hypersurfaces in PnC as the image of a curve
in PnC under the polar map was given in [20]. Note that such a ruled real hypersurface
has constant φ-sectional curvature, but it is not complete. On the other hand, M. Kimura,
S. Maeda, and H. Tanabe [21] gave an explicit construction of ruled real hypersurfaces in
HnC from a real curve in the indefinite complex projective space P1

nC of index 2. Indeed,
identifying all totally geodesic complex hyperplanes Hn−1C in HnC with the indefinite
complex projective space P1

nC and making the correspondence a real 1-dimensional curve
δ in P1

nC to a ruled real hypersurface in HnC, they showed that the curve δ is a pregeodesic
in P1

nC if and only if the ruled real hypersurface M is minimal. There are three types of
minimal ruled real hypersurfaces: elliptic type, parabolic type, and axial type, which correspond
to a spacelike, lightlike, and timelike pregeodesic in P1

nC, respectively. Among them, ruled
real hypersurfaces of parabolic type and axial type are complete.

Now, we have the following.

Lemma 4. Let M be a real hypersurface in a Kähler manifold. For any p ∈ M and any v ∈ Dp,
let γ(s) be a geodesic with γ̇(0) = v and γ(0) = p. Then, γ(s) is a transversal curve if and only if
M satisfies (∗) g((φA− Aφ)X, Y) = 0 for any vector fields X, Y ⊥ ξ.

Theorem 5. Let M be a real hypersurface in a non-flat complex space form M̃n(c), c 6= 0. Suppose
that M satisfies the condition (∗). Then Rγ(D) ⊂ D for any transversal geodesic γ(s) on M if and
only if M is locally congruent to either a real hypersurface of type (A) or a ruled real hypersurface.

Proof. From Gauss equation (18), we have

Rγ(X) = R(X, γ̇)γ̇ = c
4{X− g(X, γ̇)γ̇− 3g(φX, γ̇)φγ̇}+ g(Aγ̇, γ̇)AX− g(AX, γ̇)Aγ̇ (20)

for any vector field X ⊥ ξ and for any transversal geodesic γ on M. From (20), we have
that Rγ(D) ⊂ D if and only if

g(AV, V)g(AX, ξ)− g(AX, V)g(AV, ξ) = 0 (21)
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for any vector field V ⊥ ξ on M. Suppose that M is a Hopf hypersurface and assume
that Aξ = αξ. Then, we at once see that M satisfies (21). Together with Lemma 4,
we see that M satisfies Aφ = φA. Due to Okumura’s result [22] (in the case PnC) and
Montiel and Romero’s result [23] (in the case HnC), we have that M is of type (A) real
hypersurfaces in PnC or HnC. Now, we consider the case M is non-Hopf. Then, we assume
that Aξ = αξ + µU, where µ is a function in M and U is a unit vector field orthogonal to ξ.
Plugging this into (21), then we have

g(AV, V)g(X, U) = g(AX, V)g(U, V), (22)

where µ 6= 0. If we put V = φU and X = U in (22), then we get g(AφU, φU) = 0.
However, as A and φ commute on D, we have g(AU, U) = 0. We put V = U and X = Z ∈
Span{ξ, U}⊥ in (22), then we get g(AZ, U) = 0. Thus, we find that M is locally congruent
to a ruled real hypersurface.

Assume that Rγ(D) ⊂ D. Then, Rγ : D → D is a self-adjoint operator along γ. In
a previous paper [24] (proof of Theorem 2), we had that a real hypersurface of type (A)
in PnC or HnC fails to satisfy g(R′γV, ξ) = 0 for any vector field V ⊥ ξ. As a ruled real
hypersurface in complex projective space PnC is not complete, then we have

Theorem 6. Let M be a complete real hypersurface in a non-flat complex space form. Then, M is
congruent to a complete ruled real hypersurface in complex hyperbolic space HnC if and only if the
eigenvalues of the transversal Jacobi operator Rγ are constant and their eigenspaces are parallel
along any transversal geodesic γ.

Corollary 2. Let M a complete real hypersurface in a non-flat complex space form satisfying
Rγ(D) ⊂ D for any transversal geodesic γ. Then, M is a complete ruled real hypersurface if and
only if it satisfies R′γ(D) ⊂ D for any transversal geodesic γ, where R′γ = (∇γ̇R)(·, γ̇)γ̇.
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