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Abstract: The protection induced by vaccines against infectious diseases such as malaria, dengue
or hepatitis relies on a the creation of immune memory by T cells, key components of the human
immune system. The induction of a strong T cell response leading to long lasting memory can be
improved by using prime-boost (PB) vaccines, which consist in successive inoculations of appropriate
vectors carrying target antigens that can be recognized by specific T cell clones. A problem faced by
PB vaccines is the fact that T cell response is often biased towards a few clones that can identify only
a small set of antigens, out of the many that could be displayed by the pathogen. This phenomenon,
known as immunodominance, can significantly compromise the effectiveness of vaccination. In this
work we will use mathematical modeling to better understand the role of T cell population dynamics
in the onset of immunodominance in PB vaccines. In particular, we will use mathematical analysis
and simulations to compare single-dose vaccines with PB ones, both for homologous (where the
same antigen is used in every shot) and heterologous protocols (in which different antigens are used
at each step).

Keywords: T cells; immunodominance; population mechanics; prime-boost vaccines

1. Introduction

The protection induced by vaccines against certain pathogens requires the generation
of effective cell-mediated immunity [1–3]. In particular, a great research effort is currently
focused on the development of vaccines aimed at eliciting strong response in T cells
(a key component of our immune system). A number of studies have shown that the
efficiency of T cell-based vaccines can be greatly improved by using prime-boost (PB)
regimes [1,4]. The rationale of PB vaccines is to use an initial inoculation (prime) to activate
specific clones of T cells. Successive inoculations (boost) force the proliferation of these
clones and increase the number of long-lasting memory T cells that can recognize the
target antigens [5]. PB vaccines have been successfully tested against pathogens such as
malaria [4,6], leishmaniasis [7], dengue [8], AIDS [9], tuberculosis [10], hepatitis [11,12]
or influenza [13], and also as a therapeutic approach to the treatment of tumors [14–16].
Some of the vaccines against COVID-19 currently being tested require of two inoculations,
a strategy typical of PB protocolos.

The immune action of T cells relies on the recognition of specific molecules (antigens)
present on the surface of pathogens. This recognition is mediated by a membrane receptor,
the T cell receptor (TCR), that binds short peptide sequences (known as epitopes) in
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the antigens. The distribution of TCRs is clonal, meaning that each T cell only carries
one type of TCR in its membrane. On the other hand, the affinity of the TCR for an
antigen is determined by the three-dimensional structure of the receptor and the antigen
epitopes. Therefore, the ability of individual T cells to recognize a particular epitope will
be determined by the structure of its TCR.

In normal conditions, T cells circulate in the blood and the lymphatic systems in an
inactive or naïve state. The number of circulating naïve T cells remains relatively constant
and is controlled by molecular signals generically known as interleukins. In the case of an
infection, specialized innate immune cells (known as antigen presenting cells or APCs) react
to the presence of pathogens by migrating to nearby lymph nodes and displaying pathogen
antigens on their surfaces. In the lymph nodes, naïve T cells whose TCRs recognize some
of the epitopes displayed by APCs differentiate into effector T cells. These newly activated
effector T cells proliferate (a process termed clonal expansion) and migrate to the site of the
infection. Once there, they kill infected host cells that display pathogen antigens on their
surface. After controlling the infection, effector T cells undergo apoptosis and disappear
from the organism, returning the T cell population to its pre-infection levels. A few cells
survive as memory T cells and revert to an inactive state. In case of future encounters with
the same pathogen, memory T cells rapidly reactivate, providing a fast immune response.
The goal of T cell-based vaccines is precisely to create a robust T cell memory against
specific epitopes of the target pathogen.

In previous works we have introduced population mechanics, a mathematical frame-
work to model the dynamics of T cell populations [17,18]. We have also shown that this
approach could be used to improve the efficiency of PB vaccines [19]. Population me-
chanics relies on the observation that T cell populations show inertia and elasticity [17],
features that can be easily modeled in terms of simple second order differential equations.
From this viewpoint, T cell population dynamics would emerge from the balance between
different stimuli, which to keep to the mechanical analogy being used in this work, will
henceforth be denoted as forces. Intrinsic, elastic forces would bring these populations to
extinction in the absence of appropriate growth signals. These signals would act as external
cues that foster T cell proliferation. The biological origin of such external forces would be,
for instance, the interaction with antigens during infections, or with interleukins during
normal T cell homeostasis [20–23].

The antigens, and hence the epitopes, present in a single infectious agent can be very
heterogeneous. For this reason, many different T cell clones usually exhibit some degree
of affinity for the antigens of a pathogen. However, it has been observed that, even if
many clones of T cells are activated in the course of an immune response, the population
of effector T cells is usually dominated by just a few clones [24,25]. This process, known
as immunodominance, is acknowledged as a major issue in the development of effective
T cell-based vaccines [26–28]. The reasons for this are that it may bias the vaccine-induced
formation of T cell memory: Non-dominant epitopes may be excluded by dominant ones.
If a vaccine targets non-dominant epitopes of a particular pathogen, then its efficiency can
be compromised.

In this work, we will use population mechanics to analyze the effect of immunodom-
inance on the formation of T cell memory by PB vaccines. The plan of this article is as
follows. We will first model immunodominance in T cell responses during acute infec-
tions. We will then extend this model to understand the effects of immunodominance in
single-dose and PB vaccines.

2. Results

2.1. The Effect of Immunodominance in Acute Infections

The mechanisms underlying immunodominance are not fully understood as yet [29].
However, empirical evidence suggests that the dominance of a clone might be determined
by its capability to compete for antigenic stimulation with other clones [27,30]. In turn,
the competitive ability of a clone would depend on two factors: the affinity of the TCR for
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its cognate epitope [31–34] and the abundance of the clone in the pool of naïve T cells [35,36].
In this section we will use population mechanics to model the relative contribution of these
factors to the appearance of immunodominance in acute infections.

The models used in this work are an extension of those presented in Reference [19].
The logic of these models can be summarized as follows. The population of T cells is
initially composed of a naïve and a memory subsets. The dynamics of naïve T cells is
not explicitly considered in the model. As for memory T cells (denoted by M), they are
assumed to be at homeostatic equilibrium before the infection owing to its interaction
with a homeostatic interleukin H (see Reference [18] for further details on this point).
The infection by a pathogen P triggers the activation of n clones of naïve T cells and the
appearance of two new populations: Ti (effector T cells) and Mi (memory T cells). The
pathogen is assumed to grow at rate α and is eliminated by effector T cells at rate β. The
condition P < Pm, for a given threshold Pm > 0, determines the end of the infection.
Under these assumptions, the dynamics of T cell populations is driven by antigenic and
homeostatic forces as described by this system of differential equations:

T′′i = −kTi + λiTiP

M′′i = −cM′i − kMi + λi MiP + λH Mi H

M′′ = −cM′ − kM + λH MH

H′ = ϕ− µ(M + ∑n
j=1 Mj)H

P′ = αP− β ∑n
j=1 TjP

(for i = 1, · · · , n, and Ti > 0). (1)

The abundance of clone i in the naïve pool is given by the initial value of effector and
memory cells of that clone: Ti(0) > 0 and Mi(0) > 0. For the sake of simplicity, we will
assume that T′i (0) = M′i(0) = 0. The initial values of the total memory population (M(0)
and M′(0)) and the homeostatic interleukin (H) correspond to their values at equilibrium
(see Reference [18] for further details):

M′(0) = 0

M(0) =
ϕ

µ

H(0) =
kϕ

λHµ
.

(2)

The homeostatic interleukin is produced at a rate ϕ and consumed by memory T cells
at rate µ. The terms λiTiP and λi MiP are the intensities of the antigenic force perceived by
effector and memory T cells of clone i respectively. The parameter λi allows to quantify the
effect of TCR affinity on the proliferation of effector and memory T cells: clones with greater
values of this parameter proliferate faster than clones with lower values. Finally, the terms
λH Mi H and λH MH correspond to the homeostatic force acting on memory T cells of clone
i and on the pool of memory T cells existing before the infection.

Equation (1) can produce negative values for some variables, which is meaningless
in the context of cell populations. For this reason, that model must be understood as
describing a hybrid dynamical system whose variables are constrained to take on non-
negative values only [37,38]. Such variables are characterized by switching between a
collection of discrete states, with transitions among states being governed by differential
equations (Figure 1).
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Figure 1. Hybrid dynamical system described by Equation (1). Equation (1) may lead to negative
values for the populations of effector T cells (Ti). To avoid this, the condition Ti ≤ 0 determines a
discrete change in Equation (1). The variable Ti is set to zero, which is equivalent to remove the
variable from the model. In biological terms, this implies that clone i has completed clonal contraction.
The condition P < Pm means that the pathogen has been effectively neutralized. This is modeled
by another discrete transition, in this case to remove the variable P from the model. We assume
that memory T cell populations do not undergo clonal contraction and that the concentration of
the homeostatic interleukin remains always greater than zero. In order to satisfy these biological
constrains, the set of parameters must be chosen such that conditions Mi(t) > 0, M(t) > 0 and
H(t) > 0 hold for t > 0.

According to empirical evidence, clones with higher affinities for their cognate anti-
gens are dominant [31–34], whereas less affine clones exhibit a curtailed expansion [39–41].
The hybrid dynamical system described by Equation (1) reproduces these empirical ob-
servations (see Figure 2A–C). Also in agreement with experimental evidence, the model
predicts that clones with lower affinities can become immunodominant if they are more
abundant in the pool of naïve T cells [35,36] (Figure 2D).

We remark that immunodominance is not explicitly postulated in the equations of the
model, but turns out to be an emergent property of their solutions. Specifically, higher epi-
tope affinity or higher precursor frequencies suffice to account for the dominance of some
particular clones over others.

2.2. Immunodominance in Single Immunization Vaccines

Although some vaccines contain replication-competent vectors, most currently avail-
able vaccines make use of inactivated or attenuated pathogens, or even of selected pathogen
antigens [29]. Therefore, in contrast with acute infections, agents triggering an innate im-
mune response in such vaccines do not proliferate, a fact that can be modeled by assuming
that the antigen disappears at a constant rate α in Equation (1).

Under this assumption, numerical simulations of Equation (1) for two T cell clones
reveal a linear relationship between the ratios of memory formation and the ratio of TCR
affinities (see Figure 3A). The meaning of such relation can be explained as follows. Let λ1
be the affinity of a T cell clone for a vaccine antigen, and M1 the number of memory T cells
of this clone that will appear as a consequence of the vaccination. Then the number (M2)
of memory T cells of another clone with affinity λ2 can be fitted to the line of equation
M2 = Iλ1 M1λ2/λ1 for some Iλ1 as shown in Figure 3A. The particular value of Iλ1 depends
on the choice of the model parameters, that is, each combination of parameters determines
the slope of the line that defines the memory ratio as a function of the affinity ratio.
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Figure 2. Immunodominance in acute T cell immune responses. (A) The light grey curve represents clonal expansion
and contraction of a given clone in the absence of immunodominance. If the same clone is activated in the presence of a
dominant clone (dashed line) it displays a curtailed expansion (solid black line). (B) The presence of a dominant clone
(dashed line) markedly reduces the number of memory T cells of the original clone (solid black line). (C) The dominant
clone leads to a more rapid elimination of the pathogen (black line) as compared to the less dominant clone alone (light grey
line). (D) Ratio between the number of memory T cells of two clones of affinities λ1 and λ2 respectively. Values above 1
(respectively below 1) indicate dominance of clone 1 (resp. of clone 2). More affine clones dominate when the number of
naïve cells are similar (grey area in the figure), whereas less affine clones become dominant if they are present at higher
frequency in the pool of naïve T cells. Parameters used in A and B: k = 150, c = 40, λ1 = 200, λ2 = 150, α = 40, β = 0.5,
y0 = 10, µ = 1, ϕ = 106, λH = 10, TP1(0) = 10 and TP2(0) = 10 (all in suitable units).
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Figure 3. Immunodominance index. (A) Each dot represents a numerical simulation of the model of
immunodominance in single-dose vaccines. In this model, we assume that two clones of affinities λ1

and λ2 are simultaneously activated in response to the vaccine. For each set of parameter values,
the ratio between the number of memory T cells formed of these clones is linearly related with the
ratio of their affinities (correlation coefficient r2 > 0.999 in all cases). Different combinations of
parameters can be fitted to different lines passing through the origin. (B) The slope of these lines
can be used to define an immunodominance index Iλ. For a fixed value of λ, a higher slope implies
greater differences in memory formation between concurrent clones. Therefore, higher values of Iλ

correspond to greater differences in memory formation between dominant and non-dominant clones.
(C) Immunodominance index for different vaccine doses (parameter P0 in the equations) and (D)
different rates of antigen decay (parameter α in the model). These results suggest that higher antigen
doses and higher rates of antigen decay intensify the effects of immunodominance.

The constant Iλ1 can be used to define an immunodominance index (Figure 3B).
Greater values of this constant represent situations in which a given ratio of affinities λ2/λ1
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gives rise to greater differences in memory formation between two clones (i.e., higher
values of M2/M1). Therefore, higher values of Iλ1 imply that clones with affinity λ1 are
subdominant (Figure 3B).

Vaccine strategies must reduce immunodominance in order to generate broad re-
sponses to pathogen antigens [1]. In terms of our model, buffering the effects of im-
munodominance translates into reducing the immunodominance index defined above.
In particular, our model allows to simulate alternative vaccination scenarios and to analyze
their impact on this index. For instance, parameters P0 (antigen dose) and α (rate of vaccine
decay in the organism) can be modulated in the design of a vaccine. Our model could be
use to choose appropriate values for these parameters in order to reduce the impact of
immunodominance on the target epitopes. In this respect, our model suggests that lower
doses of antigen or vaccines with higher residence time in the organism might reduce the
impact of immunodominance in single-inoculation vaccines (see Figure 3C,D).

2.3. Immunodominance in Prime-Boost Vaccines

We will next analyze how PB strategies can be used to modulate the value of the
immunodominance index. To this end we will begin by defining homologous and heterolo-
gous PB vaccines. Homologous PB vaccines consist in successive inoculations of the same
antigen. In contrast, in heterologous vaccines the prime and boost agents are different.
In order to model these two types of PB vaccines we will proceed as follows.

We will begin by assuming that the goal of the vaccine is to create a robust T cell
memory against a particular epitope. For the sake of simplicity we will assume that only a
particular T cell clone recognizes such epitope and we will label as T1 and M1 the effector
and memory T cells of this clone. In the case of homologous PB vaccines, we will denote
by A the vaccine antigen and we will consider a second clone of T cells with affinity for a
different epitope in A. To model heterologous vaccines we will consider two antigens A1
and A2 as prime and boost agents respectively. Both antigens contain the target epitope.
As with homologous vaccines, clone 1 is affine for this epitope. In this case two new
clones will compete with clone 1 for access to antigenic stimulation. Clone 2 is assumed to
recognize an alternative epitope in the prime agent (A1) and clone 3 in the boost agent (A2).
In all cases we will assume that the target clone is subdominant. The models corresponding
to homologous and heterologous PB vaccines are shown in Appendix A and Appendix B
respectively.

Under such assumptions, we will simulate different vaccination scenarios to test if
they lead to differences regarding the immunodominance status of the target clone. To that
end, we will vary the relative doses of prime and boost inoculations and the timing of
boost with respect to prime. These variables are key in the design of PB vaccine protocols
since they critically determine the amount of memory T cells against the target epitopes
(see Reference [19]). In order to evaluate the efficiency of homologous and heterologous PB
vaccine protocols we will compare their ability to create memory T cells as compared to
single-dose immunizations.

Figure 4 shows the value of the immunodominance index measured for homologous
and heterologous PB vaccines as compared to inoculating all the antigens in just one dose.
According to our model, homologous PB vaccines can be used to increase or decrease the
immunodominance index of subdominant clones, depending on the total dose of antigen
and its distribution between prime and boost. In contrast, all the protocols of heterologous
PB vaccines sharply reduce the value of this index, relative to single inoculations of the
prime antigen alone or to combinations of prime and boost antigens. This result implies
that both homologous and heterologous PB vaccines can help to increase the number of
memory T cells of particular target clones, even if these are subdominant with respect other
clones that respond to other antigens present in prime and boost (see Figure 5A).
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Figure 4. Effect of homologous and heterologous prime-boost (PB) vaccines on the immunodom-
inance index. Each figure represents the ratio between the immunodominance index measured
for PB vaccines and for single-dose vaccines. Values above 1 represent situations in which the
immunodominance index is greater in the PB strategy as compared to administering all the anti-
gen in one single dose. Conversely, values below 1 indicate a reduction in the immunodominance
index as a consequence of distributing the antigen in two doses. In the case of heterologous vac-
cines comparison is made with single-dose vaccines containing only the first antigen (left), or a
combination of antigens present both in prime and boost agents (right). (A–C) correspond to
three different time intervals between prime and boost. Threshold value of 1 is shown in gray for
reference. The values of the parameters used these simulations are (in suitable units): k = 150,
c = 40, λ1 = 10, λ2 = 150, λ3 = 200, α1 = α2 = −5, µ1 = µ2 = 1, ϕ = 106, λH = 10,
T1(0) = T2(0) = T3(tboost) = M1(0) = M2(0) = M3(tboost) = 10.
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Figure 5. Effect of homologous and heterologous PB vaccines on the formation of memory T cells of non-dominant clones.
(A) The results presented here correspond to a particular choice of clone affinities for PB vaccine scenarios introduced in
Figure 4. In particular, we have set λ1 = 10, λ2 = 150, λ3 = 200 (left), and λ1 = 10, λ2 = 100, λ3 = 200 (right). All the
protocols of heterologous PB vaccines (white) give raise to more memory T cells of subdominant clone 1 than single-dose
vaccines (gray) or homologous PB vaccines (dark-gray). (B) According to the models of population mechanics, PB vaccine
strategies can be used to change the relations of immunodominance that emerge from single-dose vaccines. In particular,
the immunodominance index of a particular clone can be increased by using appropriate antigen doses in PB homologous
vaccines. In contrast, heterologous PB protocols tend to reduce the value of this index, thus broadening T cell immune
response triggered by vaccine antigens. These results suggest that T cell population dynamics can be explicitly used to
design PB vaccine protocols to modulate immunodominance. These protocols can be combined with other techniques, such
as artificial epitope modification, to further reduce immunodominance effects on specific target clones.

3. Discussion

One of the goals of cellular immunity-based vaccines is to generate a robust response
by selected T cell clones. The design of this type of vaccines relies to a great extent on
empirical, trial-and-error approaches [42,43]. The right doses of appropriate agents are
usually selected after experimentally comparing the performance of a set of alternatives.
In the case of PB vaccines, the quantity of potential protocols to be tested can be very high,
owing to the possibility of combining a number of vectors carrying different doses of target
antigens, both as prime or boost agents.

This heuristic approach has lead to increasingly effective vaccines against many
pathogens in the last decades. However, it is often difficult to understand the underlying
mechanisms that account for the comparative advantages of a particular protocol over
another. For instance, it has been empirically observed that priming and boosting with the
same antigen induces immune responses dominated by a few clone types [2,44]. In con-
trast, heterologous PB regimes give rise to broader T cell responses [45,46]. It has also
been suggested that avoiding repetitive use of the same vectors reduces immunodominant
responses to vector-specific antigens in cancer vaccines [26]. In general, empirical evidence
suggests that homologous PB yield better results for antibody-induced vaccines, while het-
erologous PB strategies induce stronger antigen-specific T cells [1,47]. However, the origin
of these differences remains largely unknown [15].

In this work we resort to mathematical modeling to analyze the role of T cell dynamics
in the performance of PB vaccines. Specifically, we assume that antigenic stimulation acts
as a force that fosters cell proliferation, which allows to formulate simple models of T cell
clonal expansion and contraction during acute infection and vaccination. Their success
to capture a number of well-known features of T cell immune response suggests that
our models can be used to simulate the performance of PB regimes in terms of antigen-
specific memory formation. We remark that the models presented in this work focus on the
dynamics of T cell populations, and do not take into account other aspects of the immune
response, such as induction of cytokine secretion by T cells or by other immune cells [48,49].
On the other hand, they are not intended to explain the mechanisms underlying the
formation of memory T cells, or the onset of clonal contraction, but to provide insight about
the effect of different vaccination strategies on the enhancement of particular types of T cells
clones. In particular, our analysis suggests that observed differences in immunodominance
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between homologous and heterologous PB vaccines might arise from their different impact
on T cell population dynamics. The analysis presented here thus hints at possible strategies
to design PB vaccines yielding biased distributions of effector and memory T cell clones
towards desired target antigens (Figure 5B).

Finally, we want to stress that we do not intend to make quantitative predictions about
the dynamics of T cells elicited by vaccines. This goal would be unrealistic considering the
difficulties to obtain accurate data about these dynamics in the organism. Humans have
tens of millions of T cell clones that may differ only slightly in the particular spatial
structure of their TCRs. Monitoring the clones that proliferate in response to a specific
antigen is beyond the reach of currently available experimental tools. Taking this into
account, parameterizing the model by using empirical data may well be impossible. In
our opinion, this does not imply that the model cannot prove useful. We believe that
population mechanics provides a valuable abstraction of the immune response, in the sense
that it captures key qualitative features of T cell dynamics (see References [17–19]). In
this regard, the choice of parameters is only constrained by the condition that they must
qualitatively reproduce the observed behavior of T cell populations during acute infections.
This condition does not impose a hard restriction on the regions of the space of parameters
that can be used in our simulations. No further claim is made in this paper about the
biological significance of those parameters.

The numerical simulations shown here are aimed at providing a proof-of-concept
argument to show that the conclusions derived are not only compatible with state-of-the art
knowledge in the field, but might also suggest particular strategies to improve upon current
vaccination protocols. We believe that a better understanding of the dynamic aspects of
T cell response could prove useful in controlling the effects of immunodominance. They are
key factors to be reckoned with when assessing the performance of vaccines. This in turn
calls for the use of mathematical models to simulate different vaccination strategies prior to
the experimental trial. Population mechanics, as described in this work, provides a method
to achieve that goal. This modeling framework has a distinct modular character, and thus
allows to deal with large numbers of different T cell populations. We therefore expect this
tool to be particularly useful in theoretical aspects of the design of vaccine strategies.
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Appendix A. Model of Homologous PB Vaccines

Inoculation of prime agent (   )

dose (        ) at time  
Inoculation of boost

Activation of clones 1 and 2

End of clonal
contraction

: :

Initial conditions

Figure A1. Hybrid automata diagram of the model of homologous PB vaccines. Simulations
start with the inoculation of antigen A. Clone 1 recognizes the target epitope with affinity λ1,
while clone 2 binds to an alternative epitope with affinity λ2 > λ1. Therefore, the target clone is
subdominant. A second inoculation of the same agent (boost inoculation) takes place at time t = tboost.
This gives rise to a discrete change in the model, consisting in an instantaneous change of antigen
A (A(tboost) = A(tboost) + ∆A, with ∆A the dose of the boost inoculation). Different values for the
prime and boost doses of A and different boost timings give rise to alternative vaccination protocols.
The condition Ti < 0 (i = 1, 2) determines the end of the clonal contraction of clone i.
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Appendix B. Model of Heterologous PB Vaccines

  agent (     ) at time  
Inoculation of boost

Activation of clone 3

Inoculation of prime agent (     )

Activation of clones 1 and 2

,
,

End of clonal
contraction

: :

Initial conditions

Figure A2. Hybrid automata diagram of the model of heterologous PB vaccines. In this case we
assume that prime consists in the inoculation of an antigen A1, whereas the boost vector contains a
different antigen A2. Both antigens contain the target epitope, which is recognized by clone 1 with
affinity λ1. A second clone recognizes a different epitope of A1 with affinity λ2 > λ1 and a third clone
binds an epitope on A2 with affinity λ3 > λ1. The target clone is therefore subdominant with respect
to clones 2 and 3. Simulations start with the activation of clones 1 and 2 in response to the presence
of antigen A1. At time t = tboost the second antigen (A2) is inoculated. This triggers a discrete change
in the equations of the model. The activation of clone 3 introduces three new equations describing
the dynamics of effector and memory T cells of clone 3 (T3 and M3) and of the second antigen A2.
The equation of effector and memory T cells of clone 1 also change owing to the appearance of a new
antigenic force A2. Finally, the presence of a new clone of memory T cells (M3) also modifies the
dynamics of the homeostatic interleukin H. These changes are marked in bold face in the figure.
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