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Abstract: Multiagent incentive contracts are advanced techniques for solving decentralized decision-
making problems with asymmetric information. The principal designs contracts aiming to incentivize
non-cooperating agents to act in his or her interest. Due to the asymmetric information, the principal
must balance the efficiency loss and the security for keeping the agents. We prove both the existence
conditions for optimality and the uniqueness conditions for computational tractability. The coupled
principal-agent problems are converted to solving a Hamilton–Jacobi–Bellman equation with equilib-
rium constraints. Extending the incentive contract to a multiagent setting with history-dependent
terminal conditions opens the door to new applications in corporate finance, institutional design,
and operations research.

Keywords: Nash equilibrium; moral hazard; differential game; dynamic programming

1. Introduction

In this paper, we consider the problem of a single party, called the principal, creating
contracts to delegate a task to a group of different agents. Incentive contracts stimulate the
agents to act in the principal’s interest by compensating them for achieving two goals: (i)
they accept the offered contract (i.e., the contract is subject to the individual rational (IR)
constraint); and (ii) they exert the effort at a desired level determined by the compensation
spelled out in the contract (i.e., the contract is subject to the incentive compatible (IC)
constraint). Such incentive contracts have been used for many practical problems ranging
from corporate finance to strategic behavior in politics to institutional design [1–10].

In a dynamic setting, the goal as before is to incentivize agents to exert the desired
effort over the planning horizon. To achieve this, each contract defines a stream of payoff
amounts, which depend on the effort exerted by the corresponding agent. In the framework
we consider in this paper, the agent’s effort process is not perfectly observable, possibly
due to the cost or the difficulty of monitoring it. Instead, the principal observes a noisy
output process, which is a result of the effort exerted by the agent. This proxy results in
information asymmetry about the agent’s effort (the agent knows it, but the principal can
only infer it from a proxy). The asymmetric information can create a potential moral hazard
problem in the contract design [11]. The system efficiency is degraded as the first-best
contract is not admissible. Given all these considerations, the incentive contract must solve
the moral hazard problem and maximize the principal’s utility.

This fundamental incentive contract problem in the case of a single agent has been
explored in many settings [7,12–15]. We consider the problem as a special case of stochastic
Stackelberg differential games played between a principal and an agent. The principal
expects the agent to exert a targeted level of effort and knows ex ante that once the agent
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has accepted the contract, it has no incentive to deviate from this target level (thus by-
passing any resulting moral hazard). This incentive-compatible condition can be satisfied
if the agents’ actions form a subgame perfect Nash equilibrium. However, finding such
a globally optimal contract over the planning horizon is not trivial. The dynamic moral
hazard problem has been studied in a discrete-time setting, where the state space explodes
exponentially in the size of the planning horizon (the curse of dimensionality in dynamic
programming) [16]. Holmstrom and Milgrom [17] proposed a continuous-time model.
In this setting, the agent’s output process is represented by a stochastic differential equation
(SDE) whose drift term is controlled by the agent’s effort. As a result, the continuous-time
incentive contract problem is a limit of discrete-time dynamic games whose number of
stages becomes unbounded in any finite interval. Some extensions of their work include
Schattler and Sung [18], Sung [19], and Muller [20]. In recent years, following the ground-
breaking work of Sannikov [21], there has been a resurgence of interest in the dynamic
contract theory. The main contribution of [21] was to parameterize the incentive-compatible
constraint at each epoch using the Martingale representation theorem. As a consequence,
we can decouple the principal’s and the agent’s problems by representing the agent’s effort
as a function of a parameter. The principal’s problem can then be solved by dynamic
programming (more specifically, a Hamiltonian Jacobi–Bellman equation) for the incentive
contract [3,15,21,22].

A significant extension of the single-agent incentive contract is multiagent incentive
contracts. For example, a company hires multiple employees to collaborate on a project.
Since employees with correlated responses may have different capabilities and utility
functions, designing contracts separately for each is not viable. Koo et al. [23] presented the
first extension of multiagent incentive contracts that initiated a stream of literature for team
incentives using the Martingale approach [24–27]. In the multiagent setting, new challenges
arise due to varied interactions between agents. For example, an arbitrary agent may
compare both its effort and payoff with others; such a phenomenon is called inequity
aversion [28]. Goukasian and Wan showed that inequity aversion is present in multiagent
incentive contracts [29], and agents’ comparisons lower their exerted effort levels.

The critical condition for the existence of effective multiagent incentive contracts is
that agents’ actions at each epoch must form a Nash equilibrium. This equilibrium then
incentivizes each agent to choose the principal’s desired actions and nullifies the moral
hazard in the contract. The conditions for the existence of this equilibrium is still an
open question. Prior work [27] assumed that the existence conditions are satisfied in their
setting without verification. The agents’ optimal actions constituting a Nash equilibrium
led to a circular argument. Yet, characterizing the existence of a Nash equilibrium in
multiagent contracts is non-trivial [30–32], more so in the dynamic setting considered
in this work. The following example demonstrates the importance of investigating the
existing conditions in a static matrix game setting. A principal chooses to compensate ci
to two agents as either low (L) or high (H) payoff, i.e., ci ∈ {L, H} for i ∈ {1, 2}. Agents
putting effort into a project generate output denoted as Xi ∈ {A, B} at levels A or B.

• The principal desires to stimulate Agent 1 to exert output A and Agent 2 to exert
output B. The outcomes of signing contracts are represented by the matrices in
Table 1, where each entry is the principal’s and agent’s utility received from the
contract. If these two contracts are signed separately, the unique equilibria are {L, A}
with Agent 1 and {L, B} with Agent 2.

Table 1. Static incentive contracts with two agents.

Agent 1 Agent 2

A B A B

L 4,2 2,1 2,1 4,2

H 3,3 1,2 1,2 3,3
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• We now assume that two agents’ outputs are aggregated in a linearly additive way.
In this case, the principal’s dominant policy is [c1, c2] = [L, L]. Notice that the existence
and the number of equilibria may vary with the agents’ utility functions ui(ci, Xi, X−i).
Three possible outcomes for the contracts are below:

1. Unique Nash equilibrium: Assume that the utility of each agent is only de-
pendent on its payoff, i.e., ui(ci, Xi, X−i) = ci. The agents’ best responses are
[X1, X2] = [A, B]. With a fixed [c1, c2] = [L, L], their utility follows Table 2.

Table 2. Agents’ output with a single Nash equilibrium.

A B

A 2,1 2,2

B 1,1 1,2

2. Multiple Nash equilibria: Assuming that the principal rewards whoever delivers
B an additional unit of compensation, there exists two Nash equilibria, [X1, X2] =
[A, B] and [X1, X2] = [B, B], for which their utility follows Table 3.

Table 3. Agents’ output with multiple Nash equilibria.

A B

A 2,1 2,3

B 2,1 2,3

3. No Nash equilibrium: Assuming that the utility of each agent is affected by
the other’s action such that the principal would reward the agents when their
outputs match, i.e., ui(ci, Xi, X−i) = ci + 2 if Xi = X−i, then there is no Nash
equilibrium, as seen in Table 4.

Table 4. Agents’ output with no Nash equilibrium.

A B

A 4,3 2,2

B 1,1 3,4

Our goal in this paper is to find conditions that guarantee the existence of a unique
multiagent Nash equilibrium in incentive contracts. We see that even if the existence
problem is settled [27], the uniqueness of the multiagent Nash equilibrium must still be
tackled. Characterizing unique equilibrium has practical value as coordinating agents
to select the optimal Nash equilibrium is improbable; it also has theoretical value as the
optimal contracts with a set of equilibria is computationally intractable. Using a fixed-
point theorem (specifically, the Kakutani fixed-point theorem), we prove the existence of a
subgame perfect Nash equilibrium. The existence conditions include the assumption that
all agents are risk-averse and the interactions of all agents’ actions on other’s output follow
a concave function. With a slight strengthening of the condition on the Hessian matrix of
the interaction functions and with the use of the theorem of Gale and Nikaido [33] and
Kojima and Saigal [34], we prove that the equilibrium is unique. These results then enable
us to develop a provably convergent iterative procedure to solve for the incentive contracts.

Unlike the infinite horizon setting of [21], we consider the problem with a finite
horizon where the terminal condition may be path-dependent. Such terminal conditions
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are widely used in modeling options, mortgage defaults, and car leasing, thus enhancing
the applicability of the methodology.

The general notation used in the rest of this paper is as follows. A set of indices
[n] = {1, 2, . . . n}. Bold variables are vectors or matrices of random variables or functions.
In equilibrium analysis for the ith agent, we denote a vector as xxx = [x1, . . . , xi, . . . , xn] =
[xxx−i, xi], where xi indicates the variable associated with the ith agent. xP indicates that the
variable is associated with the principal. x̃ is a variable that deviates from x in the domain
of x. DxF is the Jacobian, and D2

xF is the Hessian of the C2 function F of x.
The remainder of this paper is organized as follows. In Section 2, we describe the

setting of multiagent incentive contracts. In Section 3, we characterize the agents’ optimal
responses and prove the existence of a unique Nash equilibrium. We then formulate
the principal’s problem as a Hamilton–Jacobi–Bellman equation. We also give an itera-
tive procedure to implement the optimal incentive contracts. In Section 5, we draw the
final conclusion.

2. Setting

There is a single principal and n agents (indexed by i ∈ [n]) entering the contracts
simultaneously at epoch t = 0. A contract signed between the principal and each agent i
specifies the payoff ci(t) that the agent will receive by outputting Xi(t), a proxy for the the
agent’s action ai(t) in working for the principal over the horizon t ∈ [0, T]. The vectors of
n agents’ actions and compensations are denoted as aaa(t) and ccc(t), respectively. Since the
principal’s goal is to incentivize n agents to collaborate on one project, these n contracts
are correlated in many ways. The principal’s decision, the payoff ci(t) for agent i, is in a
domain Ci ⊆ R; the agent i’s decision, the effort level ai(t), is in a domain Ai ⊆ R. The size
of the domains may vary for each i ∈ [n]. The Cartesian products of compensations and
efforts are denoted as C and A, respectively.

2.1. Output Processes and Terminal Conditions

In an environment of uncertainty, the principal can only observe output processes
XXX(t) = [X1(t), . . . , Xn(t)]T ∈ X , which are imperfect observations of agents’ actions.
We assume that the dynamics of Xi(t) follow an SDE that depends on n agents’ actions
aaa(t):

dXi(t) = fi(aaa(t))dt + σidBi(t), ∀i ∈ [n], (1)

which follows the following assumptions that are a general extension of the multiagent
contract in [23,24,27,35].

1. The drift term fi : A → R+ in (1) is in an L2 space such that
∫ T

0 f 2
i ds < ∞ for all

i ∈ [n].

2. fi is partially differentiable almost everywhere with respect to ai(t) for all i ∈ [n].

3. The diffusion term σi is a known constant for all i ∈ [n].

4. The Brownian motions BBB(t) = [B1(t), · · · , Bn(t)]T are correlated with the correlation
matrix E(BBB(t)BBB(t)T) = ΣΣΣ, strongly positive definite, i.e., xxxTΣΣΣxxx ≥ α‖xxx‖2 for all xxx ∈ Rn

and some constant α > 0.

For each agent i ∈ [n], there is a path-dependent terminal payoff Φi at the end of
planning horizon T < ∞. In other words, ΦΦΦ is a vector of functions of {XXX(t), ccc(t)}0≤t≤T .
Path-dependent terminal conditions strengthen the commitments in contracts. Each agent
could be charged a penalty if its cumulative outputs do not reach a specified target at
termination. Similarly, the principal may rectify the payoff if the cumulative compensations
do not reach a certain threshold. Let ZZZ(t) denote the cumulative measures along the sample
paths whose dynamics dZi for i ∈ [n] follows:

dZi(t) = µZi (XXX(t), ccc(t))dt + σσσZi dBZi (t), (2)
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where µZi , σσσZi are deterministic functions of appropriate dimension and BZi are independent
Brownian motions. Two sets of processes BBB(t) and BBBZ(t) (BBBZ(t) = (BZ1(t), · · · , BZn(t))

T) are
also independent.

An example of a path-dependent terminal condition is an Asian-options type,
i.e., ZZZ(t) ∈ Rn represents the total observed output from n-agents from zero to t:

ZZZ(t) =
∫ t

0
XXX(s)ds, (3)

and this can be derived from (2) by letting µZi (XXX, ccc) = Xi and σσσZi = 0.
The two systems of SDEs, (1) and (2), are adapted to the filtration generated by the

Brownian motions Bi and BZi for all i ∈ [n]. It is a well-known result that the vector
(XXX(t), ZZZ(t)) is a Markov process.

2.2. Solving Optimal Contracts

ui : A× Ci → R is the ith agent’s instantaneous utility, i.e., utility in [t, t + dt) and
uP : X × C → R is the principal’s instantaneous utility. Note that ui is possibly a function
of all agents’ actions.

The principal’s and the agents’ goals are to maximize the respective expected total
discounted utility over the finite horizon [0, T]. We denote the ith agent’s expected total dis-
counted utility by Ui and the principal’s expected total discounted utility from contracting
with n agents by UP as follows:

Ui = Eaaa
[

ri

∫ T

0
e−risui(aaa(s), ci(s))ds + rie−riTΦi(Zi(T))

]
, ∀i ∈ [n],

UP = Eaaa
[

rP

∫ T

0
e−rPsuP(XXX(s), ccc(s))ds− rP111ᵀ · e−rPTΦΦΦ(ZZZ(T))

]
,

where ri ∈ (0, 1) and rP ∈ (0, 1) are the discount rate of the ith agent and the prin-
cipal, respectively. The discount rates in front of the integral normalize the utility to
annuity costs [16]. In the case that the principal is risk-neutral, i.e., uP is a linear func-
tion of XXX, we can reduce the principal’s problem using the following observation. Af-
ter taking expectations on the integral of the ith agent’s output process, E[

∫
Xi(t)dt] =

E[
∫

fi(aaa(t))dt] + E[
∫

σidBi(t)] = E[
∫

fi(aaa(t))dt], using the fact that the expectation of Ito’s
integral is zero. Thus, we can write UP in terms of aaa only in this special case [24].

Optimal multiagent contracts should maximize the principal’s expected total dis-
counted utility UP subject to (a) n individual-rational (IR) constraints at t = 0 and (b) n
incentive-compatible (IC) constraints at any t ∈ [0, T]. The IR constraints guarantee that
agents would agree to enter the contracts if the expected utility exceeds certain thresholds;
the IC constraints guarantee that agents would realize the target efforts at each epoch of
the horizon. In the presence of the interactions between agents, we have one additional
constraint that the n agents’ best responses constitute a Nash equilibrium at each t ∈ [0, T].
In summary, optimal multiagent contracts can be solved as follows:

max
ccc(t),t∈[0,T]

UP (4)

s.t. Ui ≥Wi, ∀i ∈ [n] (individual-rational constraint),

a∗i (t) ∈ arg max
ai

Ui, ∀i ∈ [n], ∀t ∈ [0, T] (incentive-compatible constraint).

3. Incentive-Compatible Constraints

In this section, we characterize an individual agent’s optimum action within given
multiagent contracts.
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3.1. Parametrization of the Individual Agent’s Problem

We analyze an arbitrary ith agent’s optimum action given the other agents’ optimum
actions. Without loss of generality, we reformulate the analysis of the prior work [3,21]
under a new multiagent contracts setting.

In dynamic Stackelberg games, one commonly defines the continuation value Wi(t)
(the value function in dynamic programming) when the optimal actions aaa are taken by all
agents in [t, T], i.e., the agent i’s conditional expected optimal discounted utility received
from t to T, as follows,

Wi(t) = Eaaa
[∫ T

t
rie−ri(s−t)ui(aaa(s), ci(s))ds + rie−ri(T−t)Φi(Zi(T))|FBBB,BBBz

t

]
. (5)

where FBBB,BBBz
t is the filtration generated by the Brownian Motions BBB and BBBz.

We now describe the dynamics of Wi(t) for a single agent with a path-dependent
terminal condition as follows:

Proposition 1. There exists an FBBB,BBBz
t adapted process YYYi(t) = (Yi1(t), Yi2(t))T such that the

continuation value Wi(t) of the ith agent is represented by the process:

dWi(t) = ri

[
Wi(t)− ui(aaa(t), ci(t))

]
dt + riYi1(t)σidBi(t) + riYi2(t)σZi dBZi (t),

Conversely, a process Wi(t) satisfying the SDE is the ith agent’s continuation value.

Proof. Given fixed and optimal n-agents’ efforts {aaa(t) : t ≥ 0} and the filtration Ft =

FBBB,BBBz
t , we have:

Ui(t) = Eaaa
[∫ T

0
rie−risui(aaa(s), ci(s))ds + rie−riTΦi(Zi(T))|Ft

]
, (6)

Ui(t) is an Ft-Martingale, i.e., for any s < t, using (6) and the iterated conditional ex-
pectation, it is readily seen that Eaaa(Ui(t)|Fs) = Ui(s). From the Martingale representation
theorem [3], we obtain the existence of adapted processes Yi1(t) and Yi2(t) such that:

dUi(t) = rie−ritYi1(t)σidBi(t) + rie−ritYi2(t)σZi dBZi (t).

From (5), it is easily seen that (6) can be rewritten as:

Ui(t) =
∫ t

0
rie−risui(aaa(s), ci(s))ds + e−ritWi(t),

and using Ito’s lemma, we obtain the dynamics:

dUi(t) = rie−ritui(aaa(t), ci(t))dt + e−ritdWi(t)− rie−ritWi(t).

Equating the above two dynamics of dUi(t) gives the result.

The expansion of the state space (when compared to [21]) is needed to accommodate
the path-dependent terminal condition, requiring the vector (XXX(t), ZZZ(t))T to be a part of
the state space. Dynamic contracts between the principal and the ith agent must specify:
(a) the instantaneous compensations ci(t) and (b) two processes Yi1(t) and Yi2(t) as the
sensitivity of the agent’s continuation value Wi(t) to the output Xi(t) and terminal process
Zi(t), respectively.

Given a contract {ci(t),YYYi(t)}t∈[0,T], we use the one-shot deviation principle to de-
rive the necessary condition for the optimality of the effort {ai(t)}0≤t≤T with given
{YYYi(t)}0≤t≤T . This optimality condition is equivalent to the IC constraint in (4). Such an
optimality condition holds for an arbitrary ith agent’s ai(t) given aaa−i.
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Proposition 2. For any fixed aaa−i(t), the contracted compensation ci(t) for the agent i is imple-
mentable if and only if {ai(t)} satisfies:

ai(t) ∈ arg max
ãi(t)∈Ai

[Yi1(t) fi(aaa−i(t), ãi(t)) + ui(aaa−i(t), ãi(t), ci(t))], (7)

for all t ∈ [0, T].

Proof. Let aaa(t) be the optimal effort vector, and let the effort of the ith agent, for a fixed
t > 0, be:

ãi(s) =
{

ãi(s) if s < t
ai(s) if s ≥ t.

We denote ã̃ãa = (aaa−i, ãi). Choosing actions ãaa will change the dynamics of Xi and
Wi. To obtain the new dynamics, we apply Girsanov’s theorem with the kernel φ(t) =
fi(ãaa(t))− fi(aaa(t)). The new dynamics adapted to Brownian motions B̃i and B̃Zi on the
space (Ω,A, P̃) are given by:{

σidBi(t) = σidB̃i(t) + φ(t)dt,
σZi dBZi (t) = σZi dB̃Zi (t).

Substituting in (1) and Proposition 1 under ãaa, the dynamics of Ui(t) become:

dŨi(t) =rie−rit(ui(ãaa(t), ci(t))− ui(aaa(t), ci(t)) + Yi1(t)( fi(ãaa(t))− fi(aaa(t)))dt+

Yi1(t)σidB̃(t) + Yi2σZi dB̃Zi (t).

Since ai is optimal, the drift of this SDE must be non-positive. This completes the
proof.

These two propositions decouple the principal’s and an arbitrary ith agent’s problem.
To specify the target efforts that are not observable, the principal can incentivize the
agent by recommending a sensitivity level riYYYi(t). With n agents, the Nash equilibrium
is equivalent to finding the optimal Y(t) = [YYY1(t), . . . YYYn(t)]ᵀ jointly. The principal can
create a contract with: (a) functions for {ci(WWW(t), XXX(t), ZZZ(t))}i∈[n] for each agent i; and (b)
functions of the sensitivity {riYYYi(t)}i∈[n] that specify the target effort processes. Hence,
we create multiagent contracts that provide consistent information for all agents over the
planning horizon, which are thus implementable.

Characterizing implementable multiagent contracts require that the actions of the
agents aaa(t) form a multiagent Nash equilibrium at each epoch t ∈ [0, T]. We note that in
our formulation, there are interactions among n-agents both in the instantaneous utility
ui and drift term of output processes fi for all i ∈ [n]. The principal thus chooses a
target effort level aaa(t), which form a Nash equilibrium among agents, so that each agent
i ∈ [n] is disincentivized to deviate from the target ai(t) when the other agents do not,
i.e., implementing the targeted ai(t).

3.2. Multiagent Nash Equilibrium

We now prove the existence of a Nash equilibrium among n-agents’ best responses (7)
at a fixed epoch t. Bellman’s principle of optimality guarantees that it is sufficient to show
the existence of a Nash equilibrium within the Hamiltonian of the IC constraint to prove
the existence of a subgame perfect Nash equilibrium.

We need the following assumptions on the functions ui and fi for all i ∈ [n]:

1. ui : A× Ci → R is twice continuously differentiable, decreasing in ci, and concave
in ai.

2. fi : A → R+ is twice continuously differentiable, increasing and concave in ai.

3. For each i and aaa, ∂ fi(aaai ,0)
∂ai

6= 0 and fi(aaa)→ ∞ while ∂ f (aaa)
∂ai
→ 0 as ai → ∞.
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4. The set ∩i{(aaa, ccc) : ui(aaa, ci) ≥ 0 for all i} is nonempty and compact.

5. There exists an m > 0 such that m < supx ui(aaa−i, x, ci), and ui → −∞ as x → ∞,
for all i and aaa−i, ci.

6. ui(aaa−i, 0, ci) ≥ 0 for each aaa−i, ci.

The single-agent contract in [21] and the multiagent contracts in [24] are special cases
of the functions above with u separable in a(t) and c(t) and f (a(t)) = a(t). Assumption
4 is satisfied because an arbitrary agent can choose effort ai(t) = 0 to have zero utility.
Assumption 6 is valid because ai(t) /∈ Ai if ui < 0. With these assumptions, we can show
the following lemmas.

Lemma 1. Let αααi = (aaa−i, ci), and we define:

gαααi
i (x) =

−u′i(aaa−i(t), x, ci(t))
f ′i (aaa−i(t), x)

.

gαααi
i is continuously differentiable and monotonically increasing as a function of x in the domain

Ai. Furthermore, there exist 0 ≤ βi < γi such that for each βi < y < γi and αααi ∈ Rn, gαααi
i (x) = y

has a solution.

Proof. gαααi
i is well defined from Assumption 3 on f ′i , i.e., it is nonzero, and its monotonicity

follows from the concavity of ui and fi. We define:

ĝi(x) = infααα∈Rn gααα
i (x), βi = max{0, supααα∈Rn gααα

i (0)}.

Let θi be the ith agent’s greatest effort, i.e., θi = supAi. Define γi = ĝ(θi) and θi
sufficiently large so that [βi, γi] is nonempty. This exists as ĝi is an increasing function in
Figure 1.

Figure 1. Proof for the existence of gαααi
i (x) = y in Lemma 1.

For arbitrary y ∈ [βi, γi], we define ĝi(x̂) = y. Such an x̂ ∈ Ai exists because the
function ĝi is monotonically increasing. Now, for any αααi, the function gαααi

i (x̂) ≥ y and
gαααi

i (0) ≤ βi. The result follows from the continuity of gαααi
i and the intermediate value

theorem.

Applying Lemma 1 to all agents i ∈ [n], we define a set Y = ∏i[βi, γi]. We can now
rigorously define the multiagent Nash equilibrium as follows.
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Definition 1. The multiple agents’ effort aaa is called a Nash equilibrium if and only if an arbitrary
agent’s deviation from the stipulated effort level in aaa while the other agents follow their stipulated
actions will result in a loss to the agent, i.e., for each i ∈ [n],

ai ∈ Γi(aaa−i, ci, yi1) =
{

x̂ : x̂ = arg max
x

[yi1 fi(aaa−i, x) + ui(aaa−i, x, ci)]
}

. (8)

Note that the multiagent equilibrium is independent of Yi2. We now prove a simple
lemma to characterize the equilibrium:

Lemma 2. For all t ∈ [0, T] and each yyy(t) ∈ Y and ccc(t) ∈ C, if aaa(t) satisfying (8) exists, it lies
in the set

⋂
i{(aaa, ci) : ui(aaa, ci) ≥ 0}.

Proof. For any given contract yyy(t), ccc(t), let aaa(t) be a Nash equilibrium for each t ∈ [0, T],
and let ui(aaa(s), ci(s)) < 0 for some i ∈ [n] and s ∈ (t1, t2). Thus,

∫ t2
t1

ui(aaa−i(s), ai(s), ci(s))ds <
0. However, from Property 6, ∫ t2

t1

ui((aaa−i(s), 0, ci(s))ds ≥ 0.

Thus, aaa(t) is not a Nash equilibrium for t ∈ (t1, t2), a contradiction. The result follows
from the fact that as ui(aaa−i(t), ai(t), ci(t)) is continuous, thus it cannot be strictly negative
on a set of measure zero in [0, T].

The following corollary shows that agents continue to abide by the conditions of the
contracts until the termination epoch.

Corollary 1. A consequence of the implementation of the Nash equilibrium is that no agent has an
incentive to leave the contracts before the terminal epoch T.

Proof. As is seen in the proof of Lemma 2, when agents’ actions form a multiagent Nash
equilibrium, each agent receives a positive utility in any finite interval, thus making each
agent’s total utility an increasing function of its continuation value. Therefore, no agent is
motivated to deviate from the target action before the termination epoch T.

The theorem below establishes the existence of such an equilibrium in each given
epoch t.

Theorem 1. For each given yyy(t) ∈ Y and ccc(t) ∈ C, there exists a subgame perfect Nash equilib-
rium aaa(t) ∈ A for every t ∈ [0, T].

Proof. For a fixed agent i ∈ [n], given the concavity of the functions in Proposition 1, a nec-
essary and sufficient condition for x̂ to solve the optimization problem is that gaaa(t),ci(t)

i (x̂) =

yi1(t). We note that as defined in (8), Γi(aaa(t), ci(t), yyyi(t)) = {x : gaaa(t),ci(t)
i (x) = yi1(t)}.

We now define a point-to-set map,

Γ(aaa(t)) := Γccc(t),yyy(t)(aaa(t)) = [Γ1(aaa(t), c1(t), yyy1(t))), · · · , Γn(aaa(t), cn(t), yyyn(t)))].

Note that Γ : A → A∗, where A∗ is the set of all compact and convex subsets of A.
To see that Γ is an upper hemicontinuous point to set map, let aaak be a sequence in A that
converges to aaa. Furthermore, let xk ∈ Γ(aaak) for each k such that xxxk converges to xxx. To see

that xxx is in Γ(aaa), we note that xk
i is such that gαααk(t)

i (xk
i ) = yi1(t). From the definition of gi in

Lemma 1, it is a continuous function of ααα and x, thus yi1(t) = limk→∞ gαkαkαk(t)
i (xk) = gααα(t)

i (x)
for each i. The existence of the Nash equilibrium now follows from Lemma 2, Property 4,
in the assumptions, and the Kakutani fixed-point theorem [36].
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3.3. On the Uniqueness of the Nash Equilibrium in Multiagent Contracts

The individual incentive contract assumes that, if multiple subgame perfect Nash
equilibria exist, the principal has the power to choose her or hiss preferred one. However,
if multiple equilibria exist in the multiagent contracts, first all equilibria must be found,
and then, we look for plausible selection criteria to convince the agents to implement a spe-
cific chosen equilibrium. To avoid this computational problem at each epoch t, we impose
reasonable and mild additional conditions to guarantee a unique Nash equilibrium. We
now state these conditions:

1. ui is strictly concave in ai and u′i(aaa−i, ai, ci) := ∂ui(aaa−i ,ai ,ci)
∂ai

< 0 for each i ∈ [n] and each
aaa−i.

2. Let for each i ∈ [n], u
′′
ij := ∂2ui

∂ai∂aj
for each i, j and, similarly, f

′′
ij . The matrix D2ui

(D2 fi) is such that its ith row is strictly diagonally dominant (diagonally dominant) in
variables aaa, i.e.,

−u
′′
ii > ∑

i 6=j
|u′′ij| (− f

′′
ii ≥ ∑

i 6=j
| f ′′ij |).

Remark 1. Comments on the uniqueness conditions of the Nash equilibrium of agents:

1. Condition 1 stipulates that the optimal effort the agents exert is unique and also has a negative
effect on their instantaneous utility, i.e., the marginal utility as a function of the agent i’s
effort ai is negative.

2. Condition 2 states that agent i’s particular decision mostly affects the decrease in his or her
marginal utility. In contrast, the other agents’ efforts have a minor effect (note the strict
concavity implies that u

′′
ii is negative).

3. The signs of u′′ij are related to whether ai is a strategic complement or a strategic substitute [36].
Diagonal dominance thus assumes that the magnitude of the effect of any agent’s actions
exceeds the magnitude of the combined strategic effects of all the other agents’ actions.

We now prove a result:

Lemma 3. Let ui and fi satisfy Conditions 1 and 2 above and gαααi
i be as defined in Lemma 1, and

g(aaa) = [gααα1
1 (aaa), · · · , gαααn

n (aaa)]T . The Jacobian matrix of g, Daaag(aaa) is then a P-matrix, i.e., has all
principal minors positive.

Proof. We first show that Daaag(aaa) is a strictly row diagonally dominant Jacobian matrix.
Note that, suppressing the argument aaa, ccc, we obtain:

∂gi
∂ai

=
1
f ′i
{−u

′′
ii −
−u′i

f ′i
f
′′
ii},

∂gi
∂aj

=
1
f ′i
{−u

′′
ij −
−u′i

f ′i
f
′′
ij}.

The row dominance now follows from Condition 2 and the observation that fi > 0,

−u
′′
ii > 0, − f

′′
ii ≥ 0, and gαi

i =
−u′i

f ′i
> 0 in the domain g−1(Y) ⊂ A. Furthermore, it is

easy to see that each principal submatrix of Daaag is also strictly row diagonally dominant.
Using Gershgorin’s theorem [37], it follows that all the principal submatrices of Daaag are
nonsingular. We now let B be any such principal submatrix and let IB be the diagonal
matrix of its diagonal elements and AB the matrix of its off-diagonal elements. Define
B(t) = IB + tAB for each t ∈ [0, 1]. A(t) is strictly row diagonally dominant for each t,
and since det(B(0)) > 0, det(B(1)) is also positive. Thus, Daaag is a P-matrix.
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Theorem 2. Assume Conditions 1 and 2 above hold. Then, for each epoch t ∈ [0, T], the Nash
equilibrium is unique.

Proof. From the strict concavity of ui and (8), we see that for given yyy and ccc, aaa is a Nash
equilibrium if and only if:

g(aaa) = yyy.

Let θi be the largest effort agent i can put, as found in Lemma 1; define Â = Πi[0, θi],
and consider the set g(Â) = {yyy : g(aaa) = yyy, aaa ∈ Â}. Using the P-matrix property of Daaag,
the fact that Â is a hypercube and the Gale–Nikaido theorem [33] (or [34]), we see that g
maps Â homeomorphically onto g(Â). The uniqueness follows as Y ⊂ g(Â).

4. The Optimal Multiagent Contracts

In this section, we solve the optimal multiagent contracts given that n-agents put
effort at equilibrium in Section 3. We denote the principal’ controls as vvv(t) = (ccc(t), yyy(t)).
Define:

Uvvv
P = Evvv

[ ∫ T

0
rPe−rPs(uP(XXXvvv(t), ccc(s))ds− rPe−rPT111ᵀ ·ΦΦΦ(ZZZ(T))

]
. (9)

With the parameterized IC constraints and a well-defined set of Nash equilibria Θ(vvv)
for given {vvv(t)} for all t ∈ [0, T], the principal’s problem is as follows:

vvv∗ = argmax{vvv:aaa∈Θ(vvv)}0≤t≤T
Uvvv

P (10)

UP := Uvvv∗
p . (11)

We note here that, in general, getting all Nash equilibrium points is generally not
possible, but if it is unique, the problem (10) can be solved. Let Rvvv

P be the present value of
the conditional expectation of the continuation value of the principal at time t when the
policy vvv(ξ) is followed in ξ ∈ [t, T]. Thus:

Rvvv
P(t) = Evvv

[∫ T

t
rPe−rpξ(uP(XXX(ξ), ccc(ξ))dξ − rPe−rPT111ᵀ ·ΦΦΦ(ZZZ(T))|FBBB,BBBz

t

]
. (12)

and note that {Rvvv
P(t)} is a random process. Therefore, define:

Uvvv
P(t) = Evvv

[
Uvvv

P|F
BBB,BBBz
t

]
=
∫ t

0
rPe−rpξ(uP(xxx(ξ), ccc(ξ))dξ + Rvvv

P(t).

In case the optimal solution vvv∗ exists, then Rvvv∗
P (t) is a FBBB,BBBz

t adapted Martingale and
thus has a zero drift, and for other vvv’s, its drift is non-positive. We now make the following
assumption about the principal’s continuation value:

Assumption 1. We assume that the value Rvvv
p(t) has the following C1,2,2,2 functional form

Fvvv(t,WWW(t), XXX(t), ZZZ(t)) in variables t, the n-agents’ continuation vector WWW(t), the observed output
vector XXX(t), and the termination value descriptor vector ZZZ(t).

Ck represents the differentiability class regarding the scalar or the vector. In what
follows, for the ease of exposition, we will shorten Fvvv(t,WWW(t), XXX(t), ZZZ(t)) to Fvvv

t whenever
there is no possibility of confusion.

Remark 2. The state space includes ZZZ(t) to assure that the vector process (WWW(t), XXX(t), ZZZ(t)) is
Markov. In the special case that T → +∞ (i.e., an infinite time horizon with the transversality
condition), the state space does not contain t, as in [3].
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Then, the optimum utility received by the principal, following the optimal control vvv∗,
can also be written as:

UP(t) =
∫ t

0
rPe−rPsuP(xxx(ξ), ccc∗(ξ))dξ + Fvvv∗(t,WWW(t), XXX(t), ZZZ(t)). (13)

Note that, at epoch t, {xxx(ξ)}ξ≤t is realized, and {XXX(ξ)}ξ>t is determined by the control
vvv. Following the argument of Proposition 1, we see that UP(t), defined by (11) and (13),
is a FBBB,BBBZZZ -adapted Martingale and thus has drift zero. Applying Ito’s multidimensional
lemma and the dynamics of WWW(t), XXX(t), and ZZZ(t), we obtain the dynamics of UP(t). Thus,
we can solve for F by setting the drift of its dynamics to zero.

To obtain the drift term, we recall the dynamics of the state variables. For notational
convenience, we let σσσ = diag((σ1, · · · , σn), YYY1(t) = diag(r1σ1YYY11(t), · · · , rnσnYYY1n(t)),
YYY2(t) = diag(r1σZ1YYY12(t), · · · , r1σZnYYY2n(t)), and rrr = diag(r1, · · · , rn). Let LLL be the Cholesky
factor of ΣΣΣ (i.e., ΣΣΣ = LLLLLLT), the covariance matrix of BBB(t). There exists a process B̂BB, a vector
of n independent Brownian motions, with:

BBB(t) = LLLB̂BB(t),
µ(t,WWW(t)) = WWW(t)− uuu(aaa(yyy(t)), ccc(t)),
σσσ(yyy(t)) = YYY1(t)LLL.

Using Proposition 1, we get:

dWWW(t) = rrr[WWW(t)− uuu(aaa(yyy(t)), ccc(t))]dt + σ(yyy(t))dB̂BB(t) +YYY2(t)dBBBzzz(t), (14)

and similarly for the dynamics of ZZZ(t) using (2).
We define a differential operatorHvvv as a function of the control vector vvv = (yyy, ccc)T as

follows,

HvvvFt = rrr
(

DwwwFtµ(t, www(t))
)
+ DxxxFt f (aaa(yyy(t))) + DzzzFtµzzz(xxx(t), ccc(t)) +

1
2

trace
(

σσσ(yyy(t))ᵀD2
wwwFtσσσ(yyy(t)) +YYY2(t)D2

wwwFtYYY2(t) + LLLTσσσᵀD2
xxxFtσσσLLL + (15)

σσσ(yyy(t))D2
wwwxxxFtσσσLLL + σσσᵀ

zzz D2
zzz Ftσσσzzz

)
,

where DxxxFt and D2
xxxFt are the first and second derivative matrices of Ft with respect to xxx.

We note here that in the above, we suppressed the superscript in Ft.
Applying the multidimensional Ito’s lemma to (13), we get the drift of the dynamics

of UP(t) as:

∂

∂t
Fvvv∗

t + rPe−rPtuP(XXX(t), ccc∗(t)) +Hvvv∗Fvvv∗
t . (16)

We now prove the theorem that verifies Assumption 1 and sets up a Hamilton–Jacobi–
Bellman equation that solves the problem (9):

Theorem 3. The principal’s problem can be formulated as the Hamilton–Jacobi–Bellman equation:

∂

∂t
Ft + max

vvv=(y,cy,cy,c)

{
rPe−rPtuP(xxx(t), ccc(t)) +HvvvFt

}
= 0 (17)

s.t. F(T, www, xxx, zzz) = −rPe−rPT111ᵀ ·ΦΦΦ(zzz), ∀www, xxx, zzz,

aaa(vvv(t)) ∈ Θ(vvv(t)), ∀t ∈ [0, T].

Let its solution be G(t, www, xxx, zzz) and the control v̂vv(t, www, xxx, zzz). F = G and vvv∗ = v̂vv solve the
optimization problem (9). Thus, Assumption 1 is verified.
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Proof. For the ease of notation, we define sss = (www, xxx, zzz)T and let Gt = G(t, sss(t)) be the weak
solution of the equation (17) under control v̂vv.

Now, using an arbitrary control law vvv, such that aaa(vvv(t)) ∈ Θ(vvv(t)), ∀t ∈ [0, T] at the
arbitrary time t, with the state dynamics of SSSvvv governed by the Brownian motions BBB, BBBZZZ
and when G solves the HJB equation, we see that:

∂

∂t
Gt + rPe−rPtuP(xxxvvv(t), ccc(t)) +HvvvGt ≤ 0,

for all vvv. Thus, we have, for each time ξ ∈ [0, T],

∂

∂t
Gξ +HvvvGvvv

ξ ≤ −rPe−rPtuP(xxxvvv(ξ), ccc(ξ)). (18)

Integrating the above system from t to T, using Ito’s lemma to G(t, SSS), and integrating
(which sets the stochastic integral to zero), we see that:

Gvvv
t = Evvv

[
Gvvv

T −
∫ T

t
(

∂

∂t
Gvvv

ξ +HvvvGvvv
ξ )dξ|FBBB,BBBz

t

]
.

From the boundary condition, we also have GT = −rPe−rPT111ᵀΦΦΦ(zzzvvv). Integrating the
above expression and Inequality (18), we obtain:

Gvvv
t ≥ Evvv

[∫ T

t
rPe−rPξ uP(XXXvvv(ξ), cccvvv(ξ))dξ − rPe−rpT111ᵀΦΦΦ(ZZZvvv(T))|FBBB,BBBz

]
= Rvvv

P(t).

Since the control vvv was chosen arbitrarily, Rvvv
P as in (12), the optimal solution to the

problem (9), we have:

Gt ≥ sup
vvv

Gvvv
t ≥ sup

vvv
Rvvv

P(t) = RP(t). (19)

To see the converse, let Gt and v̂vv solve the HJB (17). Ito’s lemma gives, as in (18) an Ito
integral J: ∫ T

t
(

∂

∂t
Gξ +Hv̂vvGξ)dξ + J = GT − Gt.

Using (17) and the above with minor rearrangement and taking an expectation conditioned
on FBBB,BBBz , we get:

Gt = Ev̂vv
[ ∫ T

t
rPe−rPξ

(
uP(XXXv̂vv(ξ), ccc(ξ)

)
dξ − rPe−rPT111ᵀ ·ΦΦΦ(ZZZv̂vv(T))|FBBB,BBBZZZ

]
= Rv̂vv

P(t),

Since v̂vv is a control and since RP(t) is the optimal continuation value under the optimal
control vvv∗, RP(t) ≥ Rv̂vv

P(t). Thus, combining with (19), we get:

Gt ≥ RP(t) ≥ Rv̂vv
P(t) = Gt.

The theorem now follows since we have from the above inequalities Gt = RP(t) for
arbitrary t, and v̂vv is the optimal contract.

Iterative Algorithm for Solving Multiagent Contracts

Since adding an equilibrium constraint causes new computational issues, we pro-
pose here an iterative algorithm to obtain the optimal multiagent contracts in Theorem 3.
The main idea is to integrate a numerical method for solving the HJB (i.e., Howard’s algo-
rithm [38]) with a fixed-point algorithm (i.e., Eaves–Saigal’s algorithm [39]). For brevity, we
denote the state variable at time t by a time-generic vector sss = (www, xxx, zzz) ∈ R3n (note that the
mesh width for each type of state may vary) and the control at time t by vvv = (c, yc, yc, y) ∈ R2n.
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We discretize the sss− t plane by choosing uniform mesh widths ∆sss = (∆www, ∆xxx, ∆zzz) ∈ R3n

and a time step ∆t such that T/∆t ∈ N. We define the discrete mesh points si,j,ksi,j,ksi,j,k by:

si,j,ksi,j,ksi,j,k = (i, j, ki, j, ki, j, k)ᵀ∆sss, (i, j, ki, j, ki, j, k) = (i1, ..., in, j1, ...jn, k1, ..., kn)
ᵀ ∈ N3n,

tτ = τ∆t, τ ∈ [
T
∆t

].

Our goal is to compute an approximation Fτ
iii,jjj,kkk to the solution F(t, w, x, zw, x, zw, x, z) in (17) by

discretization and a finite difference method.
Now, define the approximation for the Hamiltonian operator HvvvFt in (15) as Hvvv F̂tτ

(we use a forward-in-time and central-in-space scheme) with the following approximations
for gradients: 

∂F̂tτ
∂t =

Fτ+1
i,j,ki,j,ki,j,k −Fτ

i,j,ki,j,ki,j,k
∆t

Dwww F̂tτ |` =
Fτ

iii+eee` ,j,kj,kj,k−Fτ
iii−eee` ,j,kj,kj,k

2∆w , ∀` ∈ [n]

Dxxx F̂tτ |` =
Fτ

iii,jjj+eee` ,kkk−Fτ
iii,jjj−eee` ,kkk

2∆x , ∀` ∈ [n]

Dzzz F̂tτ |` =
Fτ

iii,jjj,kkk+eee`
−Fτ

iii,jjj,kkk−eee`
2∆z , ∀` ∈ [n]

,

where eee` ∈ Rn is a unit vector with one in the `th entry and zero elsewhere. The `th entry
of the approximation for a Hessian (we only present the Hessian with respect to www) is:

D2
www F̂tτ |`,`′ =


Fτ

iii+eee`+eee`′ ,j,kj,kj,k − Fτ
iii+eee`−eee`′ ,j,kj,kj,k − Fτ

iii−eee`+eee`′ ,j,kj,kj,k + Fτ
iii−eee`−eee`′ ,j,kj,kj,k

4∆w2 if ` 6= `′,
Fτ

iii+eee` ,j,kj,kj,k − 2Fτ
iii,j,kj,kj,k + Fτ

iii−eee` ,j,kj,kj,k

∆w2 otherwise.

We define the function Ψvvv := rPuP +Hvvv F̂t and the principal’s value function under
optimal control at time t as F∗ := Fvvv∗(t, sss). We initialize with the boundary condition
FP(T, www, xxx, zzz) = −rPe−rPT111ᵀΦ(zzz)Φ(zzz)Φ(zzz) as the terminal conditions and the well-posed conditions
for the state space. Especially, we note that, in an n-agents’ contract, when n1-agents have
zero continuation values w, we need to first solve an (n − n1)-agents subproblem as a
boundary condition. In the mth step in the policy iteration, policy evaluation under controls

vm is conducted by solving the approximation of the PDE as
(

∂F̂tτ
∂t

)m
+ Ψvvvm

= 0.
Since the PDE under arbitrary control is well-posed, we can find a weak solution to

Ft [40]. We then (1) solve a fixed-point problem to find the agents’ unique optimal responses
aaa∗(t) ∈ Θ(vvvm) and (2) use a greedy algorithm to improve the policy as:

vvvm+1 = arg max
vvv′∈V

Ψvvv′ .

Summarizing the above, we can solve for the optimal multiagent contracts by adopting
the following backward scheme:

1. Initialize the terminal condition F(T, sss) = −111ᵀΦ(zzz)Φ(zzz)Φ(zzz).

2. While t = T − τ∆t ≥ 0, with a fixed ε > 0,

(a) For each state www, xxx, zzz, start with an arbitrary contract vvv0 = {ccc0, yyy0}.

(b) Solve a fixed point problem such that aaa∗(t) ∈ Θ(vvv0). If the conditions in
Section 3.3 are satisfied, the equilibrium is unique.

(c) Solve for the boundary conditions as a single-agent contract in [21]. Then, solve
a parabolic PDE within (17), i.e., with fixed contracts, to obtain F̃(t, sss) [39].

(d) Optimize the objective value F̃(t, sss) for each state sss = (www, xxx, zzz) by the gradient
ascent method. The gradient is ∇vvv F̃ ∈ R2n, and the step size γ can be
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determined by a line-search method. If ‖∇vvv F̃‖ ≥ ε, go back to (b) with the
new contracts vvv0 ← (ccc, yyy).

(e) Go to Step 3 if ‖∇vvv F̃‖ < ε.

3. Update the contracts {ccc(t), yyy(t)} and continuation value F(t, sss). Go to Step 2 with
τ ← τ + 1.

Lemma 4. The iterative algorithm for multiagent incentive contracts converges to the optimal
contract as m→ ∞.

Proof. The backward scheme is a generic Howard’s algorithm, which guarantees that the
sequence Fm converges to F∗ and vvvm converges to vvv∗ as m→ ∞ [38]. In addition, we need
to guarantee the following three conditions are met. First, under any implementable
contracts, the numerical method can evaluate the value F in (17). This is because the weak
solution of a linear parabolic PDE can be computed by the finite difference method [40].
Second, for any given vvvm, the Nash equilibrium of agents a∗(t) exists, Theorem 1, and the
feasible region is non-empty for each vvvm. Finally, if there are multiple Nash equilibrium,
we must consider the policy-search procedure in a vector-valued case and compare the
objective values of all Nash equilibria, which is known to be difficult if not impossible.
Imposing the uniqueness conditions in Theorem 2, searching for all multiagent Nash
equilibria is not required [39], and the convergence of the iterative algorithm follows. With
these conditions, Howard’s algorithm solves (17) to the optimum and obtains the optimal
contract by Theorem 3.

The multiagent Nash equilibrium is defined for noncooperative multiplayer concave
games where each player’s objective function is concave only in his/her own decisions and
not necessarily concave with respect to other players’ decisions. Alternative approaches
that fully exploit the structure of concave games in searching in equilibrium were reviewed
in [41]. The above procedure has been implemented to solve a multiagent incentive
contract designed for the simultaneous penetration of electric vehicles and charging stations
(with real-world data) in the transportation infrastructure [42].

5. Conclusions

Multiagent incentive contracts with broad applications are hard to solve in general.
We characterize the sufficient conditions under which the Nash equilibrium of agents
exists and additional requirements for the Nash equilibrium to be unique. We develop a
backward iterative algorithm to find optimal contracts. The implication of our result is
two-fold. First, compared to the single-agent setting, multiagent contracts can model either
team collaborations or competitions depending on the context. Second, those conditions of
existence and uniqueness contain new insights about the inertia of effective contracting in
multiagent systems.

The limitations of the multiagent incentive contracts’ model include:

1. The Martingale approach is restricted to the SDE output process, where the each
agent’s decision only affects the drift term. An extension to controlling the diffusion
of output process may cause significant technical difficulties even in the single-agent
case.

2. The coupled gradient-based and fixed-point optimization restricts the computational
efficiency of solving the contracts. In the absence of a unique multiagent Nash
equilibrium, the proposed algorithm can only compute local optimum contracts,
and thus, the verification theorem in Theorem 3 fails. Developing more efficient
algorithms for multiagent contracts and with multiple Nash equilibria is a meaningful
future direction.
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In summary, this work presents a solvable multiagent incentive contracts’ model that
opens the door to implementing dynamic contracts with a wide range of applications in
quantitative finance, economics, operations research, and decentralized controls.

Author Contributions: Authors’ individual contributions: conceptualization, Q.L. and R.S.; method-
ology, Q.L. and R.S.; formal analysis, Q.L. and R.S.; writing, original draft preparation, Q.L. and R.S.;
writing, review and editing, Q.L. and R.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
nor in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

IC incentive-compatible
IR individual-rational
PDE partial differential equation
SPNE subgame perfect Nash equilibrium
HJB Hamilton–Jacobi–Bellman equation

References
1. Aïd, R.; Possamaï, D.; Touzi, N. Optimal electricity demand response contracting with responsiveness incentives. arXiv 2018,

arXiv:1810.09063.
2. Brunnermeier, M.K.; Sannikov, Y. A macroeconomic model with a financial sector. Am. Econ. Rev. 2014, 104, 379–421. [CrossRef]
3. Cvitanic, J.; Zhang, J. Contract Theory in Continuous-Time Models; Springer Science & Business Media: Berlin, Germany, 2012.
4. DeMarzo, P.M.; Sannikov, Y. Optimal security design and dynamic capital structure in a continuous-time agency model. J. Financ.

2006, 61, 2681–2724. [CrossRef]
5. Faingold, E.; Sannikov, Y. Reputation in continuous-time games. Econometrica 2011, 79, 773–876. [CrossRef]
6. Fuchs, W. Contracting with repeated moral hazard and private evaluations. Am. Econ. Rev. 2007, 97, 1432–1448. [CrossRef]
7. Guo, L.; Ye, J.J. Necessary optimality conditions for optimal control problems with equilibrium constraints. SIAM J. Control

Optim. 2016, 54, 2710–2733. [CrossRef]
8. Luo, Q.; Saigal, R.; Chen, Z.; Yin, Y. Accelerating the adoption of automated vehicles by subsidies: A dynamic games approach.

Transp. Res. Part B Methodol. 2019, 129, 226–243. [CrossRef]
9. Mastrolia, T.; Ren, Z. Principal-Agent problem with common agency without communication. SIAM J. Financ. Math. 2018,

9, 775–799. [CrossRef]
10. Nadtochiy, S.; Zariphopoulou, T. Optimal Contract for a Fund Manager with Capital Injections and Endogenous Trading

Constraints. SIAM J. Financ. Math. 2019, 10, 698–722. [CrossRef]
11. Laffont, J.J.; Martimort, D. The Theory of Incentives: The Principal-Agent Model; Princeton University Press: Princeton, NJ, USA,

2009.
12. Piskorski, T.; Tchistyi, A. Optimal mortgage design. Rev. Financ. Stud. 2010, 23, 3098–3140. [CrossRef]
13. Williams, N. A solvable continuous time dynamic principal–agent model. J. Econom. Theory 2015, 159, 989–1015. [CrossRef]
14. Demarzo, P.M.; Sannikov, Y. Learning, termination, and payout policy in dynamic incentive contracts. Rev. Econ. Stud. 2016,

84, 182–236. [CrossRef]
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