
mathematics

Article

Some New Extensions of Multivalued Contractions in a
b-metric Space and Its Applications

Reny George 1,2,* and Hemanth Kumar Pathak 3

����������
�������

Citation: George, R.; Pathak, H.K.

Some New Extensions of Multivalued

Contractions in a b-metric Space and

Its Applications. Mathematics 2021, 9,

12. https://dx.doi.org/10.3390/math

9010012

Received: 25 November 2020

Accepted: 18 December 2020

Published: 23 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: c© 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin
Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2 Department of Mathematics and Computer Science, St. Thomas College, Bhilai 490009, India
3 SOS in Mathematics, Pt. Ravishankar Shukla University, Raipur 492010, India; hkpathak05@gmail.com
* Correspondence: r.kunnelchacko@psau.edu.sa or renygeorge02@yahoo.com

Abstract: The Hβ-Hausdorff–Pompeiu b-metric for β ∈ [0, 1] is introduced as a new variant of the
Hausdorff–Pompeiu b-metric H. Various types of multi-valued Hβ-contractions are introduced
and fixed point theorems are proved for such contractions in a b-metric space. The multi-valued
Nadler contraction, Czervik contraction, q-quasi contraction, Hardy Rogers contraction, weak quasi
contraction and Ciric contraction existing in literature are all one or the other type of multi-valued
Hβ-contraction but the converse is not necessarily true. Proper examples are given in support of our
claim. As applications of our results, we have proved the existence of a unique multi-valued fractal
of an iterated multifunction system defined on a b-metric space and an existence theorem of Filippov
type for an integral inclusion problem by introducing a generalized norm on the space of selections
of the multifunction.
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1. Introduction

Romanian mathematician D. Pompeiu in [1] initiated the study of distance between
two sets and introduced the Pompeiu metric. Hausdorff [2] further studied this concept
and thereby introduced the Hausdorff–Pompeiu metric H induced by the metric d of a
metric space (X, d), as follows:

For any two subsets A and B of X, the function H given by H(A, B) = max{supx∈A
d(x, B), supx∈B d(x, A)} is a metric for the set of compact subsets of X. Note that

H(A, B) = max{β sup
x∈A

d(x, B) + (1− β) sup
x∈B

d(x, A), β sup
x∈B

d(x, A)

+ (1− β) sup
x∈A

d(x, B)} for β = 0 or 1. (1)

Nadler [3] extending the Banach contraction principle introduced multi-valued con-
traction principle in a metric space using the Hausdorff–Pompieu metric H. Thereafter
many extensions and generalizations of multi-valued contraction appeared (see [4–7]).
In 1998, Czerwik [8] introduced the Hausdorff–Pompeiu b-metric Hb as a generalization of
Hausdorff–Pompeiu metric H and proved the b-metric space version of Nadler contrac-
tion principle. Czervik’s result drew attention of many researchers who further obtained
many generalized multi-valued contractions, named q-quasi contraction [9], Hardy Rogers
contraction [10], weak quasi contraction [11], Ciric contraction [12], etc. and proved the
existence theorem for such contraction mappings in a b-metric space. The aim of this work
is to introduce new variants of the Hausdorff–Pompeiu b-metric and thereby introduce
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various types of multi-valued Hβ-contraction and prove fixed point theorems for such
types of contractions in a b-metric space. It is shown that for any b-metric space (X, ds)
and β ∈ [0, 1], the function given in (1) defines a b-metric for the set of closed and bounded
subsets of X. We call this metric Hβ-Hausdorff–Pompeiu b-metric induced by the b-metric
ds. Thereafter, using this Hβ-Hausdorff–Pompeiu b-metric, we have introduced various
types of multi-valued Hβ-contraction and proved fixed point theorems for such types of
contractions in a b-metric space. The multi-valued Nadler contraction [3], Czervik con-
traction [8], q-quasi contraction [9], Hardy Rogers contraction [10], Ciric contraction [12],
weak quasi contraction [11] existing in literature are all one or the other type of multi-
valued Hβ-contraction; however, it is shown with proper examples that the converse is
not necessarily true. Finally to demonstrate the applications of our results, we prove the
existence of a unique multi-valued fractal of an iterated multifunction system defined on
a b-metric space and also an existence theorem of Filippov type for an integral inclusion
problem by introducing a generalized norm on the space of selections of the multifunction.

2. Preliminaries

Bakhtin [13] introduced b-metric space as follows:

Definition 1 ([13]). Let X be a nonempty set and ds : X× X → [0, ∞) satisfies:

1. ds(x, y) = 0 if and only if x = y for all x, y ∈ X;
2. ds(x, y) = d(y, x) for all x, y ∈ X;
3. there exist a real number s ≥ 1 such that d(x, y) ≤ s[ds(x, z) + ds(z, y)] for all x, y, z ∈ X.

Then, ds is called a b-metric on X and (X, ds) is called a b-metric space with coefficient s.

Example 1. Let X = R and d : X×X → [0, ∞) be given by d(x, y) = |x− y|2, for all x, y ∈ X.
Then (X, d) is a b-metric space with coefficient s = 2.

Definition 2 ([13]). Let (X, ds) is a b-metric space with coefficient s.

(i) A sequence {xn} in X, converges to x ∈ X, if limn→∞ds(xn, x) = 0.
(ii) A sequence {xn} in X is a Cauchy sequence if for all ε > 0, there exist a positive integer n(ε)

such that ds(xn, xm) < ε for all n, m ≥ n(ε).
(iii) (X, ds) is complete if every Cauchy sequence in X is convergent.

For some recent fixed point results of single valued and multi-valued mappings in a
b-metric space, see [9,14–18]. Throughout this paper, (X, ds) will denote a complete b-metric
space with coefficient s and CBds(X) the collection of all nonempty closed and bounded
subsets of X with respect to ds.

For A, B ∈ CBds(X), define ds(x, A) = inf{ds(x, a) : a ∈ A}, δds(A, B) = supa∈A ds(a, B)
and Hds(A, B) = max

{
δds(A, B), δds(B, A)

}
. Czerwik [8] has shown that Hds is a b-metric

in the set CBds(X) and is called the Hausdorff–Pompeiu b-metric induced by ds.

Motivated by the fact that a b-metric is not necessarily continuous (as
1
s2 ds(x, y) ≤

limn→∞ds(xn, yn) ≤ limn→∞ds(xn, yn) ≤ s2ds(x, y) and
1
s

ds(x, y) ≤ limn→∞ds(xn, y) ≤
limn→∞ds(xn, y) ≤ sds(x, y) see [19–21]), Miculescu and Mihail [12] introduced the follow-
ing concept of ∗-continuity.

Definition 3 ([12]). The b-metric ds is called ∗-continuous if for every A ∈ CBds(X), every x ∈ X
and every sequence {xn} of elements from X with limn→∞xn = x, we have limn→∞ds(xn, A) =
ds(x, A).

Proposition 1 ([17]). For any A ⊆ X,

a ∈ Ā⇐⇒ ds(a, A) = 0.
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Lemma 1 ([12]). Let {xn} be a sequence in (X, ds). If there exists λ ∈ [0, 1) such that ds(xn, xn+1) ≤
λds(xn−1, xn) for all n ∈ N, then {xn} is a Cauchy sequence.

The following lemma can also be proved using the same technique of proof of the
above Lemma.

Lemma 2. Let {xn} be a sequence in (X, ds). If there exists λ, ε ∈ [0, 1), with λ < ε such that
ds(xn, xn+1) ≤ λds(xn−1, xn) + εn for all n ∈ N, then {xn} is a Cauchy sequence.

Czerwik [8] introduced multi-valued contraction in a b-metric space and proved that
every multi-valued contraction mapping in a b-metric space has a fixed point.

Definition 4 ([8]). A mapping T : X → CBds(X) is a multi-valued contraction if there exists

α ∈ (0,
1
s
), such that gı, g ∈ X implies Hds(Tgı, Tg) ≤ α ds(gı, g).

Theorem 1 ([8]). Every multi-valued contraction mapping defined on (X, ds) has a fixed point.

Thereafter using Hausdorff–Pompieu b-metric Hds , many authors introduced sev-
eral generalized multi-valued contractions in a b-metric space (see Definitions 5 to
8 below) and proved the existence of fixed points for such generalized multi-valued
contraction mappings.

Definition 5 ([9]). A mapping T : X → CBds(X) is a q-multi-valued quasi contraction if there

exists q ∈ (0,
1
s
), such that gı, g ∈ X implies

Hds(Tgı, Tg) ≤ q max{ds(gı, g), ds(gı, Tgı), ds(g, Tg), ds(gı, Tg), ds(g, Tgı)}.

Definition 6 ([12]). A mapping T : X → CBds(X) is a q-multi-valued Ciric contraction if there
exists q, c, d ∈ (0, 1), such that gı, g ∈ X implies

Hds(Tgı, Tg) ≤ q max{ds(gı, g), c ds(gı, Tgı), c ds(g, Tg),
d
2
(ds(gı, Tg) + ds(g, Tgı))}.

Definition 7 ([10]). A mapping T : X → CBds(X) is a multi-valued Hardy–Roger’s contraction
if there exists a, b, c, e, f ∈ (0, 1), a + b + c + 2(e + f ) < 1, such that gı, g ∈ X implies
Hds(Tgı, Tg) ≤ a ds(gı, g) + b ds(gı, Tgı) + c ds(g, Tg) + e ds(gı, Tg) + f ds(g, Tgı).

Definition 8 ([11]). A mapping T : X → CBds(X) is a multi-valued weak quasi contrac-
tion if there exists q ∈ (0, 1) and L ≥ 0 such that gı, g ∈ X implies Hds(Tgı, Tg) ≤
q max{ds(gı, g), ds(gı, Tgı), ds(g, Tg)}+ L ds(gı, Tg).

3. Main Results

3.1. The Hβ Hausdorff–Pompieu b-metric

Definition 9. For U, V ∈ CBds(X), β ∈ [0, 1], we define

Rβ(U, V) = βδds(U, V) + (1− β)δds(V, U)

and
Hβ(U, V) = max

{
Rβ(U, V), Rβ(V, U)

}
.

Proposition 2. Let U, V, W ∈ CBds(X), we have

(i) Hβ(U, V) = 0 if and only if U = V.
(ii) Hβ(U, V) = Hβ(V, U).
(iii) Hβ(U, V) ≤ s[Hβ(U, W) + Hβ(W, V)].
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Proof. (i) By definition, Hβ(U, V) = 0 implies max
{

βδds(U, V) + (1− β)δds(V, U), (1−
β)δds(U, V) + βδds(V, U)

}
= 0. This gives δds(U, V) = 0 and δds(V, U) = 0. Now,

δds(U, V) = 0 implies ds(u, V) = 0 for all u ∈ U. By Proposition 1, we have u ∈ V̄ = V
for all u ∈ U and so U ⊆ V. Similarly, δds(V, U) = 0 will imply V ⊆ U and so U = V.
The reverse implication is clear from the definition.

(ii) Follows from the definition of Hβ(U, V).
(iii) Let u, v, w be arbitrary elements of U, V, W, respectively. Then we have

ds(u, V) ≤ s[ds(u, w) + ds(w, V)].

Since w is arbitrary, we get

ds(u, V) ≤ s[ds(u, w) + δds(W, V)] ≤ s[ds(u, W) + δds(W, V)].

Again, since u is arbitrary, we get

δds(U, V) ≤ s[δds(U, W) + δds(W, V)].

Similarly, we have

δds(V, U) ≤ s[δds(V, W) + δds(W, U)].

Therefore,

Rβ(U, V) = βδds(U, V) + (1− β)δds(V, U)

≤ βs[δds(U, W) + δds(W, V)] + (1− β)s[δds(V, W) + δds(W, U)]

= s[βδds(U, W) + (1− β)δds(W, U)] + s[βδds(W, V) + (1− β)δds(V, W)]

= s[Rβ(U, W) + Rβ(W, V)].

Similarly

Rβ(V, U) ≤ s[Rβ(V, W) + Rβ(W, U)].

Then, we have

Hβ(U, V) = max
{

Rβ(U, V), Rβ(V, U)
}

≤ max
{

s[Rβ(U, W) + Rβ(W, V)], s[Rβ(V, W) + Rβ(W, U)]
}

≤ max
{

sRβ(U, W), sRβ(W, U)
}
+ max

{
sRβ(W, V), sRβ(V, W)

}
= s[Hβ(U, W) + Hβ(W, V)].

Remark 1. In view of Proposition 2, the function Hβ : CBds(X)× CBds(X) → [0,+∞), is a
b-metric in CBds(X) and we call it the Hβ-Hausdorff–Pompeiu b-metric induced by ds.

Remark 2. For β ∈ [0, 1] Hβ(A, B) ≤ Hds(A, B) and for β = 0∨ 1 Hβ(A, B) = Hds(A, B).

Remark 3. The Hausdorff–Pompeiu b-metric Hβ is equivalent to the Hausdorff–Pompeiu b-
metric Hds in the sense that for any two sets A and B, Hβ(A, B) ≤ Hds(A, B) ≤ 2Hβ(A, B).
However, the examples and applications provided in this paper illustrates the advantages of using
Hβ-Hausdorff–Pompeiu b-metric in fixed point theory and its applications.

Theorem 2. For all u, v ∈ X, U, V ∈ CBds(X) and β ∈ [0, 1], the following relations holds:

(1) ds(u, v) = Hβ({u}, {v}),
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(2) U ⊂ S(V, r1), V ⊂ S(U, r2) ⇒ Hβ(U, V) ≤ r where r = max
{

β r1 + (1− β)r2, β r2 +
(1− β)r1

}
,

(3) Hβ(U, V) < r ⇒ ∃r1, r2 > 0 such that r = max
{

β r1 + (1− β)r2, β r2 + (1− β)r1
}

and
U ⊂ S(V, r1), V ⊂ S(U, r2).

Proof. (1) This is immediate from the definition of Hβ.
(2) Since U ⊂ S(V, r1), V ⊂ S(U, r2), we have that

∀u ∈ U, ∃vu ∈ V satisfying ds(u, vu) ≤ r1

and
∀v ∈ V, ∃uv ∈ U satisfying ds(uv, v) ≤ r2

⇒ inf
v∈V

ds(u, v) ≤ r1 for every u ∈ U and inf
u∈U

ds(u, v) ≤ r2 for every v ∈ V.

⇒ sup
u∈U

(
inf
v∈V

ds(u, v)
)
≤ r1 and sup

v∈V

(
inf

u∈U
ds(u, v)

)
≤ r2.

Then, Hβ(U, V) ≤ r where r = max
{

β r1 + (1− β)r2, β r2 + (1− β)r1
}

.
(3) Let Hβ(U, V) = k < r. Then, there is some k1, k2 > 0 satisfying

k = max
{

β k1 + (1− β)k2, β k2 + (1− β)k1
}

,

δ(U, V) = sup
u∈U

( inf
v∈V

ds(u, v)) = k1, δ(V, U) = sup
v∈V

( inf
u∈U

ds(u, v)) = k2.

Since 0 < k < r, we can find r1, r2 > 0 such that k1 < r1, k2 < r2 and r = max
{

β r1+
(1− β)r2, β r2 + (1− β)r1

}
. Thus,

inf
v∈V

ds(u, v) ≤ k1 < r1 for every u ∈ U and inf
u∈U

ds(u, v)) ≤ k2 < r2 for every v ∈ V.

Then, for any u ∈ U there is some vu ∈ V satisfying

ds(u, vu) < inf
v∈V

ds(u, v) + r1 − k1 ≤ r1.

and, for any v ∈ V there is some uv ∈ U satisfying

ds(uv, v) < inf
u∈U

ds(u, v) + r2 − k2 ≤ r2.

Thus, for any u ∈ U and v ∈ V we have

u ∈
⋃

v∈V
S(v; r1) and v ∈

⋃
u∈U

S(u; r2),

which implies
U ⊂ S(V, r1) and V ⊂ S(U, r2).

Remark 4. From Theorem 2 (2) and (3), it follows that the following statements also hold:
(2′) U ⊂ S(V, r1), V ⊂ S(U, r2) ⇒ Hβ(U, V) ≤ r where r = max

{
β r1 + (1 −

β)r2, β r2 + (1− β)r1
}

and
(3′) Hβ(A, B) < r ⇒ ∃r1, r2 > 0 such that r = max

{
β r1 + (1 − β)r2, β r2 + (1 −

β)r1
}

and U ⊂ S(V, r1), V ⊂ S(U, r2).

Theorem 3. Let U, V ∈ CBds(X) and β ∈ [0, 1]. Then the following equalities holds:
(4) Hβ(U, V) = inf{r > 0 : U ⊂ S(V, r1), V ⊂ S(U, r2)};
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(5) Hβ(U, V) = inf{r > 0 : U ⊂ S(V, r1), U ⊂ S(V, r2)},
where r = max

{
β r1 + (1− β)r2, β r2 + (1− β)r1

}
.

Proof. By (2′), we have

Hβ(U, V) ≤ inf{r > 0 : U ⊂ S(V, r1), U ⊂ S(V, r2)}, r = max
{

β r1 + (1− β)r2, β r2 + (1− β)r1
}

. (2)

Now let Hβ(U, V) = k, and let t > 0. Then Hβ(U, V) < k + t. By Condition (3) of
Theorem 2 we can find t1, t2 > 0 with max

{
β t1 + (1− β)t2, β t2 + (1− β)t1

}
= t such that

U ⊂ S(V; k + t1) and V ⊂ S(U; k + t2). Thus,

{r > 0 : U ⊂ S(V, r1), B ⊂ S(U, r2)} ⊃ {k + t : t > 0, U ⊂ S(V, k + t1), V ⊂ S(U, k + t2)}.

This implies that

inf{r > 0 : U ⊂ S(V, r1), V ⊂ S(U, r2)} ≤ inf{k + t : t > 0} = k = Hβ(U, V).

To conclude,

Hβ(U, V) = inf{r > 0 : U ⊂ S(V, r1), V ⊂ S(U, r2)}, r = max
{

β r1 + (1− β)r2, β r2 + (1− β)r1
}

. (3)

Theorem 4. If (X, ds) is a complete b-metric space, then (CBds(X), Hβ) for any β ∈ [0, 1] is also
complete. Moreover, C(X) is a closed subspace of (CBds(X), Hβ).

Proof. Suppose (X, ds) is complete and the sequence {An}n∈N in CBds(X) is a Cauchy
sequence. Let B = {x ∈ X : ∀ε > 0, m ∈ N, ∃ n ≥ m for which S(x, ε) ∩ An 6= ∅}.

Let ε > 0. By definition of Cauchy sequence, we can find m(ε) ∈ N for which,
n ≥ m(ε) implies Hβ(An, Am(ε)) < ε. By Theorem 3 (4), ∃ ε1, ε2 > 0 with ε = max

{
β ε1 +

(1− β)ε2, β ε2 + (1− β)ε1
}

and m(ε1), m(ε2) ∈ N such that min{m(ε1), m(ε2)} ≥ m(ε),
An ⊂ S(Am(ε1)

, ε1) for n ≥ m(ε1) and Am(ε2)
⊂ S(An, ε2) n ≥ m(ε2). Then we have

B ⊂ S(Am(ε1)
, ε1), and so

(i) B ⊂ S(Am(ε1)
, 4ε1) holds.

Now set εk =
ε1

2k , k ∈ N, and choose nk = m(εk) ∈ N such that sequence {nk}k∈N is

strictly increasing and
Hβ(An, Ank ) < εk, ∀n ≥ nk.

For some p ∈ An0 = Am(ε1)
, consider the sequence {pnk}k∈N with pn0 = p, pnk ∈ Ank

and ds(pnk , pnk−1) <
ε1

2k−2 . It follows that the sequence {pnk}k∈N is a Cauchy sequence in

the complete b-metric space (X, ds) and so converges to some point l ∈ X.

Additionally, ds(pnk , pn0) < 4 ε1 implies ds(l, p) ≤ 4 ε1 and so in f
y∈B

ds(p, y) ≤ 4 ε1, that

is, p ∈ S(B, 4ε1), from which we get

(ii) An0 ⊂ S(B, 4ε1).

Now, relations (i), (ii) from above and Theorem 2 (2) yields Hβ(An0 , B) ≤ 4 ε1. Since
Hβ is a b-metric on CBds(X), we have

Hβ(An, B) ≤ s[Hβ(An, An0) + Hβ(An0 , B)] < 5s ε1,

for any n ≥ m(ε1) = n0. Hence, sequence {An}n∈N is convergent and (CBds(X), Hβ) is
complete.
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For the second part, consider the Cauchy sequence {An}n∈N in C(X) and consequently
in CBds(X) and converging to some A ∈ CBds(X). Thus, if ε > 0 is chosen, we can find
m(ε) ∈ N for which

Hβ(An, A) <
ε

2
∀n ≥ m(ε), n ∈ N.

Using (4) of Theorem 3, we get ∃ ε1, ε2 > 0 with ε = max
{

β ε1 + (1− β)ε2, β ε2 + (1−
β)ε1

}
and m(ε1), m(ε2) ∈ N such that min{m(ε1), m(ε2)} ≥ m(ε), An ⊂ S(A,

ε1

2
) for

n ≥ m(ε1) and A ⊂ S(An,
ε2

2
) for n ≥ m(ε2).

For any fixed n0 ≥ m(ε2), we have, A ⊂ S(An0 ,
ε2

2
) and the compactness of An0 in X

(due to which it is also totally bounded) gives us xε2
i , i ∈ 1, p such that An0 ⊂

p⋃
i=1

S(xε2
i ,

ε2

2
),

whence A ⊂
p⋃

i=1
S(xε2

i , ε2). Therefore, A ∈ C(X).

3.2. Applications to Fixed Point Theory

We begin this section by introducing various classes of multi-valued Hβ-contractions
in a b-metric space:

Definition 10. T : X → CBds(X) is a multi-valued Hβ-contraction if we can find β ∈ [0, 1] and
k ∈ (0, 1), such that

Hβ(Tgı, Tg) ≤ k · ds(gı, g) for all gı, g ∈ X. (4)

Definition 11. T : X → CBds(X) is a multi-valued Hβ-Ciric contraction if we can find β ∈ [0, 1]

and k ∈ (0,
1
s
), such that for all gı, g ∈ X,

Hβ(Tgı, Tg) ≤ k ·max{ds(gı, g), ds(gı, Tgı), ds(g, Tg),
ds(gı, Tg) + ds(g, Tgı)

2s
}. (5)

Definition 12. T : X → CBds(X) is a multi-valued Hβ-Hardy–Rogers contraction if we can find
β ∈ [0, 1] and a, b, c, e, f ∈ (0, 1) with a + b + s(c + e) + f < 1, min{s(a + e), s(b + c)} < 1
such that for all gı, g ∈ X,

Hβ(Tgı, Tg) ≤ a · ds(gı, Tgı) + b · ds(g, Tg) + c · ds(gı, Tg) + e · ds(g, Tgı) + f · ds(gı, g). (6)

Definition 13. We say that T : X → CBds(X) is a multi-valued Hβ-quasi contraction if we can

find β ∈ [0, 1] and k ∈ (0,
1
s
), such that for all gı, g ∈ X,

Hβ(Tgı, Tg) ≤ k ·max{ds(gı, g), ds(gı, Tgı), ds(g, Tg), ds(gı, Tg), ds(g, Tgı)}. (7)

Definition 14. We say that T : X → CBds(X) is a multi-valued Hβ-weak quasi contraction if we

can find β ∈ [0, 1], k ∈ (0,
1
s
) and L ≥ 0, such that for all gı, g ∈ X,

Hβ(Tgı, Tg) ≤ k ·max{ds(gı, g), ds(gı, Tgı), ds(g, Tg)}+ Lds(gı, Tg). (8)

Example 2. Let X = [0,
7
9
]
⋃{1} and ds(gı, g) = |gı − g|2 for all gı, g ∈ X.

Then {X, ds} is a b-metric space. Define the mapping T : X → CBds(X) by
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T(gı) =


{ gı

4
}, for gı ∈ [0,

7
9
]

{0,
1
3

,
5

12
}

, for gı = 1.

Then T is a multi-valued Hβ-contraction with β =
3
4

and
217
256
≤ k < 1 as shown below.

We will consider the following different cases for the elements of X.

(i) gı, g ∈ [0,
7
9
].

By Theorem 2(1), we have H
3
4 (Tgı, Tg) = ds(

gı

4
,

g

4
) ≤ k ds(gı, g), k ≥ 1

16
.

(ii) gı ∈ [0,
7
9
], g = 1.

We have the following sub cases:

(ii)(a) gı ∈ [0,
2
3
], g = 1. Then Tgı = { gı

4
} and 0 ≤ gı

4
≤ 1

6
. Therefore, we have

δds(Tgı, T1) = δds({
gı

4
}, {0,

1
3

,
5
12
}) and δds(T1, Tgı) = δds({0,

1
3

,
5
12
}, { gı

4
}). Note

that for 0 ≤ gı

4
≤ 1

6
,

gı

4
is nearest to 0 and farthest from

5
12

. Therefore, δds(Tgı, T1) =

| g
ı

4
− 0|2 =

gı2

16
and δds(T1, Tgı) = | 5

12
− gı

4
|2 =

9gı2 − 30gı + 25
144

Therefore,

H
3
4 (Tgı, T1) = max

{3
4

δds(Tgı, T1) +
1
4

δds(T1, Tgı),
3
4

δds(T1, Tgı) +
1
4

δds(Tgı, T1)
}

= max
{ 25

576
− 10gı

192
+

4gı2

64
,

75
576
− 30gı

192
+

4gı2

64
}

=
75

576
− 30gı

192
+

4gı2

64
≤ k ds(gı, 1), k ≥ 279

576
.

(
279
576

is the maximum value of k which satisfies the above inequality for different values of

gı in [0,
2
3
].)

(ii)(b) gı ∈ (
2
3

,
7
9
], g = 1.

Then Tgı = { gı

4
} and

6
36

<
gı

4
≤ 7

36
.

Therefore, we have δds(Tgı, T1) = δds({
gı

4
}, {0,

1
3

,
5
12
}) and δds(T1, Tgı) = δds({0,

1
3

,
5
12
},

{ gı

4
}). Note that for

6
36

<
gı

4
≤ 7

36
,

gı

4
is nearest to

1
3

and farthest from
5

12
. Therefore,

δds(Tgı, T1) = | g
ı

4
− 1

3
|2 =

gı2

16
− 2gı

12
+

1
9

and δds(T1, Tgı) = | g
ı

4
− 5

12
|2 =

gı2

16
− 10gı

48
+

25
144

.
Then, we have

H
3
4 (Tgı, T1) = max

{3
4

δds(Tgı, T1) +
1
4

δds(T1, Tgı),
3
4

δds(T1, Tgı) +
1
4

δds(Tgı, T1)
}

= max
{ 73

576
− 34gı

192
+

4gı2

64
,

91
576
− 38gı

192
+

4gı2

64
}

=
91

576
− 38gı

192
+

4gı2

64
≤ k ds(gı, 1), k ≥ 217

256
.
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However, we see that for gı =
7
9

, g = 1,

H(T(
7
9
), T(1)) =

4
81

= ds(
7
9

, 1)

and hence T does not satisfy the contraction Condition of Nadler [3] and Czervic [8].

Example 3. Let X = {0,
1
4

, 1}, ds(gı, g) = |gı − g|2 for all gı, g ∈ X and T : X → CB(X)

be as follows: T(gı) =

{
{0}, for gı ∈ {0,

1
4
}

{0, 1}, for gı = 1,

We will show that T is a multi-valued Hβ-contraction mapping with β ∈ (
7

16
,

9
16

). If gı, g ∈

{0,
1
4
}, then the result is clear. Suppose gı ∈ {0,

1
4
} and g = 1. Then δds(Tgı, T1) = 0 and

δds(T1, Tgı) = 1 so that Hβ(Tgı, T1) = max{β, 1− β}. In addition, we have ds(gı, 1) = 1

or
9

16
. If β ∈ (

7
16

,
1
2
], then Hβ(Tgı, T1) = 1 − β. Now 1 − β ∈ [

8
16

,
9

16
). Therefore,

1− β =
16
9
(1− β)

9
16

and 1− β <
16
9
(1− β)1, that is 1− β ≤ 16

9
(1− β)ds(gı, 1). Thus, we

have Hβ(Tgı, T1) = 1− β ≤ kds(gı, 1), where k =
16
9
(1− β) < 1. Similarly if β ∈ [

1
2

,
9

16
), we

get Hβ(Tgı, T1) = β ≤ kds(gı, 1) where k =
16
9

β < 1. Thus, T is a multi-valued Hβ-contraction.

However T is not a multi-valued quasi contraction mapping. Indeed, for gı =
1
4

and g = 1,
we have

Hds(T(
1
4
), T(1)) = max{δds(T(

1
4
), T1), δds(T1, T(

1
4
))} = 1

> k ·max{ds(
1
4

, 1), ds(
1
4

, T(
1
4
), ds(1, T1), ds(

1
4

, T1), ds(1, T(
1
4
))}

for any k ∈ (0, 1). Therefore, T does not satisfy the contraction conditions given in Definitions 4–7.

Now we will present our main results in which we establish the existence of fixed
points of generalized multi-valued contraction mappings using Hβ Hausdorff–Pompeiu
b-metric. Hereafter, F{T} will denote the fixed point set of T.

Theorem 5. Suppose ds is ∗-continuous and T : X → CBds(X) is a multi-valued mapping
satisfying the following conditions:

(i) There exists β ∈ [0, 1], a, b, c, e, f , h, j ≥ 0, a + b + s(c + e +
h
2
) + f + j < 1 and min{s(a +

e +
h
2
), s(b + c +

h
2
)} < 1 such that for all gı, g ∈ X,

Hβ(Tgı, Tg) ≤ a · ds(gı, Tgı) + b · ds(g, Tg) + c · ds(gı, Tg) + e · ds(g, Tgı)

+ h · ds(gı, Tg) + ds(g, Tgı)

2
+ j · ds(gı, Tgı)ds(g, Tg)

1 + ds(gı, g)
+ f · ds(gı, g). (9)

(ii) For every gı in X, g in T(gı) and ε > 0, there exists g in T(g) satisfying

ds(g, g) ≤ Hβ(Tgı, Tg) + ε. (10)

Then F{T} 6= φ.

Proof. For some arbitrary gı
0 ∈ X, if gı

0 ∈ Tgı
0 then gı

0 ∈ F{T}. Suppose gı
0 /∈ Tgı

0. Let
gı

1 ∈ Tgı
0. Again, if gı

1 ∈ Tgı
1 then gı

1 ∈ F{T}. Suppose gı
1 /∈ Tgı

1. By (10), we can find
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gı
2 ∈ Tgı

1 such that
ds(gı

1, gı
2) ≤ Hβ(Tgı

0, Tgı
1) + ε.

If gı
2 ∈ Tgı

2 then gı
2 ∈ F{T}. Suppose gı

2 /∈ Tgı
2. By (10), we can find gı

3 ∈ Tgı
2 such that

ds(gı
2, gı

3) ≤ Hβ(Tgı
1, Tgı

2) + ε2.

In this way we construct the sequence {gı
n} such that gı

n /∈ Tgı
n, gı

n+1 ∈ Tgı
n and

ds(gı
n, gı

n+1) ≤ Hβ(Tgı
n−1, Tgı

n) + εn.

Then, using (9), we have

ds(gı
n, gı

n+1) ≤ Hβ(Tgı
n−1, Tgı

n) + εn

≤ a · ds(gı
n−1, Tgı

n−1) + b · ds(gı
n, Tgı

n) + c · ds(gı
n−1, Tgı

n) + e · ds(gı
n, Tgı

n−1)

+ h ·
ds(gı

n−1, Tgı
n) + ds(gı

n, Tgı
n−1)

2
+ j ·

ds(gı
n−1, Tgı

n−1)ds(gı
n, Tgı

n)

1 + ds(gı
n−1, gı

n)
+ f · ds(gı

n−1, gı
n) + εn,

that is,

(1− b− sc− j) · ds(gı
n, gı

n+1) ≤ (a + sc +
sh
2

+ f ) · ds(gı
n−1, gı

n) + εn. (11)

Using symmetry of Hβ, we also have

(1− a− se− j) · ds(gı
n, gı

n+1) ≤ (b + se +
sh
2

+ f ) · ds(gı
n−1, gı

n) + εn. (12)

Adding (11) and (12), we get

ds(gı
n, gı

n+1) ≤ (a + b + s(c + e +
h
2
) + f + j) · ds(gı

n−1, gı
n) + εn.

By Lemma 2, the sequence {gı
n} is a Cauchy sequence. Completeness of (X, ds) gives

limn→+∞ ds(gı
n, gı∗) = 0 for some gı∗ ∈ X. We now show that gı∗ ∈ Tgı∗. Suppose, on the

contrary, that gı∗ /∈ Tgı∗. Then,

β · δds(Tgı
n, Tgı∗) + (1− β) · δds(Tgı∗, Tgı

n) ≤ Hβ(Tgı
n, Tgı∗)

≤ a · ds(gı
n, Tgı

n) + b · ds(gı∗, Tgı∗) + c · ds(gı
n, Tgı∗) + e · ds(gı∗, Tgı

n)

+h · ds(gı
n, Tgı∗) + ds(gı∗, Tgı

n)

2
+ j · ds(gı

n, Tgı
n)ds(gı∗, Tgı∗)

1 + ds(gı
n, gı∗)

+ f · ds(gı
n, gı∗)

≤ a · ds(gı
n, gı

n+1) + b · ds(gı∗, Tgı∗) + c · ds(gı
n, Tgı∗) + e · ds(gı∗, gı

n+1)

+h ·
ds(gı

n, Tgı∗) + ds(gı∗, gı
n+1)

2
+

ds(gı
n, gı

n+1)ds(gı∗, Tgı∗)

1 + ds(gı
n, gı∗)

+ f · ds(gı
n, gı∗).

and using the *-continuity of ds, we get

lim inf
n→∞

β · δds(Tgı
n, Tgı∗) + (1− β) · δds(Tgı∗, Tgı

n) ≤ (b + c +
h
2
) · ds(gı∗, Tgı∗).

Similarly,

lim inf
n→∞

β · δds(Tgı∗, Tgı
n) + (1− β) · δds(Tgı

n, Tgı∗) ≤ (a + e +
h
2
) · ds(gı∗, Tgı∗).
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It follows that

ds(gı∗, Tgı∗) = β · ds(gı∗, Tgı∗) + (1− β) · ds(Tgı∗, gı∗) ≤ s[β · δds(Tgı
n, Tgı∗)

+(1− β) · δds(Tgı∗, Tgı
n)] + s.ds(gı

n+1, gı∗)

that is,

ds(gı∗, Tgı∗) ≤ s[lim inf
n→∞

[β δds(Tgı
n, Tgı∗) + (1− β)δds(Tgı∗, Tgı

n)]] + s[lim inf
n→∞

ds(gı
n+1, gı∗)]

≤ s(b + c +
h
2
)ds(x∗, Tgı∗)

and

ds(Tgı∗, gı∗) = β · ds(Tgı∗, gı∗) + (1− β) · ds(gı∗, Tgı∗) ≤ s[β · δds(Tgı∗, Tgı
n)

+(1− β) · δds(Tgı
n, Tgı∗)] + s · ds(gı∗, gı

n+1)

that is,

ds(Tgı∗, gı∗) ≤ s[lim inf
n→∞

[β · δds(Tgı∗, Tgı
n) + (1− β) · δds(Tgı

n, Tgı∗)]] + s[lim inf
n→∞

ds(gı∗, gı
n+1)]

≤ s(a + e +
h
2
) · ds(Tgı∗, x∗).

Since min{s(a+ e+
h
2
), s(c+ e+

h
2
} < 1, we get ds(gı∗, Tgı∗) = 0 which from Proposition 1

implies that gı∗ ∈ Tgı∗ and since Tgı∗ is closed it follows that gı∗ ∈ Tgı∗.

Remark 5. Theorem 5 is true even if we replace (9) by any of the following conditions:

For some 0 ≤ k <
1
s

,

Hβ(Tgı, Tg) ≤ k ·max{ds(gı, g), ds(gı, Tgı), ds(g, Tg),
ds(gı, Tg) + ds(g, Tgı)

2s
,

ds(gı, Tgı)ds(g, Tg)

1 + ds(gı, g)
}, (13)

Hβ(Tgı, Tg) ≤ k ·max{ds(gı, g), ds(gı, Tgı), ds(g, Tg), ds(gı, Tg),

ds(g, Tgı),
ds(gı, Tgı)ds(g, Tg)

1 + ds(gı, g)
}} (14)

The following result is a consequence of Theorem 5 and Remark 5:

Corollary 1. Suppose ds is ∗-continuous and T : X → CBds(X) satisfy Condition (10) and any
of the following conditions:

(i) T is a multi-valued Hβ-Ciric contraction.
(ii) T is a multi-valued Hβ-Hardy–Roger’s contraction.
(iii) T is a multi-valued Hβ-quasi contraction.
(iv) T is a multi-valued Hβ-weak quasi contraction.
(v) T is a multi-valued Hβ-contraction.

Then F{T} 6= φ.

Taking T : X → X in Corollary 1 (ii) and using Theorem 2 (i), we have the follow-
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ing corollary.

Corollary 2. Suppose ds is ∗-continuous and T : X → X. If there exists non-negative real
numbers a, b, c, e, f such that a + b + s(c + e) + f < 1, min{s(a + e), s(b + c)} < 1 and

ds(Tgı, T ) ≤ a · ds(gı, g) + b · ds(gı, Tgı) + c · ds(g, T ) + e · ds(gı, T ) + f · ds(g, Tgı), for all gı, g ∈ X, (15)

then F (T) 6= φ.

Remark 6. For β = 1, Condition (10) is obviously satisfied and hence, (Theorem 5 [3]), (Theo-
rem 2.1 [8]), (Theorem 2.2 [9]), (Theorem 2.11 [10]), (Theorem 3.1 [12]) and (Theorem 3.1 [11]) are
all particular cases of Corollary 1. However, the examples which follow illustrate that the converse is
not necessarily true.

We now furnish the following examples to validate our results.

Example 4. Let X, ds and T be as in Example 2. Then, as shown above, T belongs to the class of

multi-valued Hβ-contraction with β ∈ (
7

16
,

9
16

) and consequently T satisfies all the contraction
conditions given in Definitions 11–14. We will show that T satisfies (10):

For gı ∈ [0,
7
9
], Tgı is singleton and so the result is obvious. Now for gı = 1, if g = 0 ∈ Tgı

then g = 0 ∈ Tg will satisfy (10). If g =
1
3
∈ Tgı, then g =

1
12
∈ Tg and if g =

5
12
∈ Tgı

then g =
5

48
∈ T  will satisfy (10). Thus, T satisfies conditions of Theorem 5 and Corollary 1 and

0, 1 ∈ F (T).
However, as shown in Example 2, T does not satisfy the contraction condition of Nadler [3]

and Czervic [8].

Example 5. Let X, ds and T be as in Example 3. Then as shown above, T belongs to the class of

multi-valued Hβ-contraction with β ∈ (
7

16
,

9
16

) and consequently T satisfies all the contraction
conditions given in Definitions 11–14.

We will show that T satisfies (10):

For gı ∈ {0,
1
4
}, Tgı is singleton and so the result is obvious. Now for gı = 1, if g = 0 ∈ Tgı

then g = 0 ∈ Tg will satisfy (10). If g = 1 ∈ Tgı then g = 1 ∈ Tg will satisfy (10).
Thus, Theorem 5 and Corollary 1 are applicable and 0, 1 ∈ F (T). However, we see that T does not
satisfy the conditions of (Theorem 2.2 [9]), (Theorem 2.11 [10]) and (Theorem 3.1 [12]).

Example 6. Let X = {0,
1
12

,
1
3

,
5

12
,

34
48

, 1}, ds(gı, g) = |gı− g| for all gı, g ∈ X and T : X →
CBds(X) be as follows:

T(0) = T(
1
12

) = {0}, T(
1
3
) = T(

5
12

) = T(
34
48

) =
{ 1

12

}
, T(1) =

{
0,

1
3

,
34
48

, 1
}

.

Then, T is a multi-valued Hβ-quasi contraction for β =
3
4

with
34
44
≤ k < 1 as shown

below:

(1) If gı =
34
48

and g = 1, then δds(T(
34
48

), T1) = δds({
1
12
}, {0,

1
3

,
34
48

, 1}) =
1

12
and

δds(T1, T(
34
48

)) = δds({0,
1
3

,
34
48

, 1}, { 1
12
}) = 11

12
.
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H
3
4 (T(

34
48

), T1) = max{3
4

δds(T(
34
48

), T1) +
1
4

δds(T1, T(
34
48

),
3
4

δds(T1, T(
34
48

)) +
1
4

δds(T(
34
48

), T1)}

= max{3
4

.
1

12
+

1
4

.
11
12

,
3
4

.
11
12

+
1
4

.
1

12
} = 34

48

≤ k
44
48

, for any k ≥ 34
44

= kds(1, T(
34
48

))

≤ k max{ds(
34
48

, 1), ds(
34
48

, T(
34
48

), ds(1, T1), ds(
34
48

, T1), ds(1, T(
34
48

))}.

(2) If gı =
1
12

and g = 1. δds(T(
1

12
), T1) = δds({0, {0,

1
3

,
34
48

, 1}) = 0. δds(T1, T(
1
12

)) =

δds({0,
1
3

,
34
48

, 1}, 0}) = 1.

H
3
4 (T(

1
12

), T1) = max{3
4

δds(T(
1

12
), T1) +

1
4

δds(T1, T(
1
12

),
3
4

δds(T1, T(
1
12

)) +
1
4

δds(T(
1
12

), T1)} = 3
4

≤ k.1, for any k ≥ 3
4

= k · ds(1, T(
1
12

))

≤ k ·max{ds(
1

12
, 1), ds(

1
12

, T(
1
12

), ds(1, T1), ds(
1

12
, T1), ds(1, T(

1
12

))}.

(3) If gı =
1

12
and g =

1
3

, then δds(T(
1
12

), T(
1
3
)) = δds({0, { 1

12
}) =

1
12

and

δds(
1
3

, T(
1
12

)) = δds({
1

12
}, 0}) = 1

12
.

H
3
4 (T(

1
12

), T(
1
3
)) = max{3

4
δds(T(

1
12

), T(
1
3
)) +

1
4

δds(T(
1
3
), T(

1
12

),
3
4

δds(T(
1
3
), T(

1
12

) +
1
4

δds(T(
1

12
), T(

1
3
))}

=
1

12
≤ k.

4
12

, for any k ≥ 1
4

= k · ds(
1
3

, T(
1

12
)

≤ k ·max{ds(
1

12
,

1
3
), ds(

1
12

, T(
1

12
), ds(

1
3

, T(
1
3
)), ds(

1
12

, T(
1
3
)), ds(

1
3

, T(
1

12
))}.

For all other values of gı and g, a similar argument as above follows. Thus, T is a multi-

valued Hβ-quasi contraction. We will show that T satisfies (10): For gı ∈ {0,
1

12
,

1
3

,
5

12
,

34
48
},

Tgı is singleton and so the result is obvious. Now, for gı = 1, if g = 0 ∈ Tgı then

g = 0 ∈ Tg will satisfy (10). If g =
1
3

or
34
48
∈ Tgı then, g =

1
12
∈ Tg will satisfy (10).

Thus, Theorem 5 and Corollary 1 are applicable and 0, 1 ∈ F (T). However, we see

that H(T(
34
48

), T(1)) =
11
12

, where d(
34
48

, 1) =
14
48

, d(
34
48

, T(
34
48

)) =
30
48

, d(1, T(1)) = 0,

d(
34
48

, T(1) = 0 and d(1, T(
34
48

))
}
=

11
12

and so T does not satisfy the conditions of (Theorem
2.2 [9]), (Theorem 2.11 [10]), (Theorem 3.1 [12]) and (Theorem 3.1 [11]).

Proposition 3. Let T1, T2 : X → CBds(X), satisfy the following:
(3.1) For all q, r ∈ {1, 2}, every gı in X, g in Tq(gı) and ε > 0, there exists g in Tr(g) satisfying

ds(g, g) ≤ Hβ(Tqgı, Trg) + ε.
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(3.2) Any of the following conditions holds:

(i) T1 and T2 is a multi-valued Hβ-Ciric contraction;
(ii) T1 and T2 is a multi-valued Hβ-quasi contraction;
(iii) T1 and T2 is a multi-valued Hβ-weak quasi contraction;

Then, for any u ∈ F{Tq}, there exist w ∈ F{Tr} (q 6= r) such that

ds(u, w) ≤ s
1− k

sup
x∈X

Hβ(Tqx, Trx),

where k is the Lipschitz’s constant.

Proof. Let gı
0 ∈ F{T1}. By (3.1) we can find gı

1 ∈ T2gı
0 such that

ds(gı
0, gı

1) ≤ Hβ(T1gı
0, T2gı

1) + ε.

By (3.1), choose gı
2 ∈ T2gı

1 such that

ds(gı
1, gı

2) ≤ Hβ(T2gı
0, T2gı

1).

Inductively, we define sequence {gı
n} such that gı

n+1 ∈ T2(gı
n) and

ds(gı
n, gı

n+1) ≤ Hβ(T2gı
n−1, T2gı

n) + ε. (16)

Now, following the same technique as in the proof of Theorem 5, we see that the sequence
{gı

n} converges to some gı
∗ in X and gı

∗ ∈ F{T2}. Since ε is arbitrary, taking ε→ 0 in (16)
we get

ds(gı
n, gı

n+1) ≤ Hβ(T2gı
n−1, T2gı

n).

Then, using (Section 3.2), we get

ds(gı
n, gı

n+1) ≤ knds(gı
0, gı

1).

Then, we have d(gı
0, gı
∗) ≤ ∑∞

n=0 sn+1ds(gı
n+1, gı

n) ≤ s(1 + sk + (sk)2 + · · · )ds(gı
1, gı

0) ≤
s

1− sk
(Hβ(T2gı

0, T1gı
0) + ε). Interchanging the roles of T1 and T2 and proceeding as above,

it gives that for each g
0 ∈ F{T2} there exist g

1 ∈ T1g
0 and g` ∈ F(T1) such that

d(g
0, g`) ≤ s

1− sk
(Hβ(T1g

0, T2g
0) + ε).

Now the result follows as ε > 0 is arbitrary.

3.3. Application to Multi-Valued Fractals

Inspiring from some recent works in [18,22,23], we provide an application of our result
to multi-valued fractals. Let Pi : X → CBds(X), i = 1, 2, · · · n be upper semi continuous
mappings. Then, P = (P1, P2, · · · Pn) is an iterated multifunction system (in short IMS)
defined on the b-metric space (X, ds). The operator TP : CB(X) → CB(X) defined by
TP(Y) =

⋃n
i=1 Pi(Y) is called the extended multifractal operator generated by the IMS

P = (P1, P2, · · · Pn). Any non empty compact subset of X which is a fixed point of TP is
called a multi-valued fractal of the iterated multifunction system P = (P1, P2, · · · Pn).

Theorem 6. Let Pi : X → CB(X), i = 1, 2, · · · n be upper semi continuous mappings such that
for each i = 1, 2, · · · n the following conditions hold:
We can find β ∈ [0, 1] and a, e ∈ (0, 1), a + 2se < 1, such that for all x, y ∈ X, i = 1, 2 · · · n

Hβ(Pix, Piy) ≤ a ds(x, y) + e[ds(x, Piy) + ds(y, Pix)]. (17)
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Then,

(i) For all U1, U2 ∈ CB(X), Hβ(TP(U1), TP(U2)) ≤ a Hβ(U1, U2) + e[Hβ(U1, TP(U2)) +

Hβ(U2, TP(U1))].
(ii) A unique multi-valued fractal U∗ exists for the iterated multifunction system

P = (P1, P2, · · · Pn).

Proof. Suppose condition (17) holds. Then, for U1, U2 ∈ CB(X), we have

Rβ(Pi(U1), Pi(U2)) = βδ(Pi(U1), Pi(U2)) + (1− β)δ(Pi(U2), Pi(U1))

= β sup
x∈U1

( inf
y∈U2

Hβ(Pi(x), Pi(y)) +

(1− β) sup
y∈U2

( inf
x∈U1

Hβ(Pi(x), Pi(y))

≤ β sup
x∈U1

( inf
y∈U2

{
a ds(x, y) + e[ds(x, Piy) + ds(y, Pix)]

}
+(1− β) sup

y∈U2

( inf
x∈U1

{
a ds(x, y) + e[ds(x, Piy) + ds(y, Pix)]

}
= a Hβ(U1, U2) + e[Hβ(U1, Pi(U2) + Hβ(U2, Pi(U1))].

Similarly, we get

Rβ(Pi(U2), Pi(U1)) ≤ a Hβ(U2, U1) + e[Hβ(U2, Pi(U1) + Hβ(U1, Pi(U2))].

Thus, we have, for i = 1, 2, · · · n,

Hβ(Pi(U1), Pi(U2)) ≤ a Hβ(U1, U2) + e[Hβ(U2, Pi(U1) + Hβ(U1, Pi(U2))].

Note that

Hβ(
n⋃

i=1

Pi(U1),
n⋃

i=1

Pi(U2)) ≤ max{Hβ(P1(U1), P1(U2)), Hβ(P2(U1), P2(U2)), · · ·Hβ(Pn(U1), Pn(U2))}

and so

Hβ(TP(U1), TP(U2)) ≤ a Hβ(U1, U2) + e[Hβ(U1, TP(U2)) + Hβ(U2, TP(U1))].

Thus, TP : CB(X) → CB(X) satisfies the conditions of Corollary 2 in the metric space
{CB(X), Hβ}, with b = c = 0 and e = f and hence has a fixed point U∗ in CB(X),
which in turn is the unique multi-valued fractal of the iterated multifunction system
P = (P1, P2, · · · Pn).

Remark 7. Since Hβ(A, B) ≤ H(A, B), Theorem 6 is a proper improvement and generalization
of (Theorem 3.4 [18]), (Theorem3.1 [22]) and (Theorem 3.8 [23]).

3.4. Application to Nonconvex Integral Inclusions

We will begin this section by introducing the following generalized norm on a vec-
tor space:

Definition 15. Let V be a vector space over the field K. For some ρ > 0 and γ ≥ 1, a real valued
function ‖.‖ρ

γ : V → R is a generalized (ρ, γ)-norm if for all x, y ∈ V and λ ∈ K

(1) ‖x‖ρ
γ ≥ 0 and ‖x‖ρ

γ = 0 if and only if x = 0.
(2) ‖λ x‖ρ

γ ≤ |λ|ρ‖x‖
ρ
γ.

(3) ‖x + y‖ρ
γ ≤ γ[‖x‖ρ

γ + ‖y‖ρ
γ].
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We say that (V, ‖.‖ρ
γ is a generalized (ρ, γ)-normed linear space.

Remark 8. The following are immediate consequences of the above definition:

(i) Every norm is a generalized (ρ, γ)-norm with ρ = 1 and γ = 1.
(ii) Every generalized (ρ, γ)-norm induces a b-metric with coefficient γ, given by dγ(x, y) =

‖x− y‖ρ
γ.

Example 7. Every norm defined on a vector space is a generalized (ρ, γ)-norm.

Example 8. Let V = R. Define ‖x‖ρ
γ = |x|2. Then ‖.‖ρ

γ is a generalized (2, 2)-norm.

Example 9. Let V = Rn. Define ‖x‖ρ
γ = ∑k |xk|p, 1 ≤ p < ∞. Then ‖.‖ρ

γ is a generalized
(p, 2p−1)-norm.

The convergence, Cauchy sequence and completeness in a generalized (ρ, γ)-normed
linear space is defined in the same way as that in a normed linear space.

Throughout this section we will use the following notations and functions:

(i) A = [0, τ], τ > 0.
(ii) L(A): is the σ-algebra of all Lebesgue measurable subsets of A.
(iii) Z: is a real separable Banach space with the generalized (ρ, γ)-norm ‖.‖ρ

γ, for some
ρ > 0 and γ ≥ 1.

(iv) P(Z): is the family of all nonempty closed subsets of Z.
(v) dγ is the b-metric induced by the generalized (ρ, γ)-norm ‖.‖ρ

γ and Hβ is the Hβ-
Hausdorff–Pompeiu b-metric on P(Z), induced by the b-metriv dγ.

(vi) B(Z): is the collection of all Borel subsets of Z.
(vii) C(A, Z): is the Banach space of all continuous functions g(.) : A → Z with norm

‖g(.)‖∗ = supt∈A ‖g(t)‖
ρ
γ.

(viii) λ`(.) : A→ Z.
(ix) p(., .) : A× Z → Z.
(x) Q(., .) : A× Z → P(Z).
(xi) q(., ., .) : A× A× Z → Z.
(xii) V : C(A, Z)→ C(A, Z).
(xiii) α1, α2 : A× A→ (−∞,+∞).
(xiv) Lλ`,σ(t) = Q(t, V(xσ,λ`)(t)), x ∈ Z, λ` ∈ C(A, Z), σ ∈ L1(A, Z).
(xv) Sλ`(σ) = {ψ(.) ∈ L1(A, Z) : ψ(t) ∈ Lλ`,σ(t)}.
(xvi) L1(A, Z) : is the Banach space of all integrable functions u: A → Z, endowed with

the norm

‖u(.)‖1 =
∫ T

0
e−α(M4 M2+M5 M1)M3m(t)‖u(t)‖ρ

γ dt,

where m(t) =
∫ t

0 k(s) ds, t ∈ A, M1, M2, M3, M4, M5 are positive real constants.

It is well known (see [24]) that Lλ`,σ(t) is measurable and S`
λ(σ) is nonempty with

closed values.
We consider the following integral inclusion

x`(t) = λ`(t) +
∫ t

0
[α1(t, s) p(t, u(s)) + α2(t, s) q(t, s, u(s))], ds (18)

u(t) ∈ Q(t, V(x`)(t)) a.e. t ∈ A. (19)

We will analyze the above problem (18) and (19) under the following assumptions:
(AS1) Q(·, ·) is L(I)⊗B(X) measurable.
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(AS2(i)) There exists k(·) ∈ L1(A, R+) such that, for almost all t ∈ A, Q(t, ·) satisfies

Hβ(Q(t, x), Q(t, y)) ≤ k(t) ‖x− y‖ρ
γ

for all x, y in Z.

(AS2(ii)) For all x, y ∈ Z, ε > 0, if w1 ∈ Q(t, x) then there exists w2 ∈ Q(t, y) such that

‖w1(t)− w2(t)‖
ρ
γ ≤ Hβ(Q(t, x), Q(t, y)) + ε.

(AS2(iii)) For any σ ∈ L1(A, Z), ε > 0 and σ1 ∈ Sλ`(σ), there exists σ2 ∈ Sλ`(σ1) such that

‖σ1 − σ2‖1 ≤ Hβ(Sλ`(σ), Sλ`(σ1)) + ε.

(AS3) The mappings f : A× A× Z → Z, g : A× Z → Z are continuous, V : C(A, Z)→
C(A, Z)

and there exist the constants M1, M2, M3, M4 > 0 such that (AS3(i)) and either
(AS3(ii)(a))

or (AS3(ii)(b)) holds ∀t, s ∈ A, u1, u2 ∈ L1(A, Z), x1, x2 ∈ C(A, Z).

(AS3(i))‖V(x1)(t)−V(x2)(t)‖
ρ
γ ≤ M3‖x1(t)− x2(t)‖

ρ
γ.

(AS3(ii)(a)) ‖q(t, s, u1(s))− q(t, s, u2(s))‖
ρ
γ ≤ M1 N(u1, u2),

‖p(s, u1(s))− p(s, u2(s))‖
ρ
γ ≤ M2 N(u1, u2).

(AS3(ii)(b)) ‖q(t, s, u1(s))− q(t, s, u2(s))‖
ρ
γ ≤ M1 n(u1, u2),

‖p(s, u1(s))− p(s, u2(s))‖
ρ
γ ≤ M2 n(u1, u2),

where

N(u1, u2) = max {‖u1(s)− u2(s)‖
ρ
γ, ‖u1(s)− Sλ`(u1)‖

ρ
γ, ‖u2(s)− Sλ`(u2)‖

ρ
γ, ‖u1(s)− Sλ`(u2)‖

ρ
γ, ‖u2(s)− Sλ`(u1)‖

ρ
γ},

n(u1, u2) = max {‖u1(s)− u2(s)‖
ρ
γ, ‖u1(s)− Sλ`(u1)‖

ρ
γ, ‖u2(s)− Sλ`(u2)‖

ρ
γ}+ K ‖u1(s)− Sλ`(u2)‖

ρ
γ

and
‖u(s)− S`

λ(v)‖
ρ
γ = inf

w∈S
λ`
(v)
‖u(s)− w(s)‖ρ

γ.

(AS4) α1, α2 are continuous, |α1(t, s)|ρ ≤ M4 and |α2(t, s)|ρ ≤ M5.

Theorem 7. Suppose assumptions (AS1) to (AS4) hold and let λ`(·), µ`(·) ∈ C(A, Z), v(·) ∈
L1(A, Z) be such that d(v(t), Q(t, V(y`)(t)) ≤ l(t) a.e. t ∈ A, where l(·) ∈ L1(A, R+) and
y`(t) = µ`(t, u(t))+Φ(u)(t), ∀ t ∈ A with Φ(u)(t) =

∫ t
0 [α1(t, τ)p(τ, u(τ))+ α2q(t, τ, u(τ))]

dτ, t ∈ A. Then, for every η > γ and ε > 0, we can find a solution x`(·) of the problem (18) and (
19) such that for every t ∈ A

‖x`(t)− y`(t)‖ ≤ ‖λ` − µ`‖∗
[
1 +

γ eη(M4 M2+M5 M1)M3m(T)

η − γ

]

+
γη

η − γ
(M4M2 + M5M1)eη(M4 M2+M1)M3m(T)

∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt.
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Proof. For λ` ∈ C(A, Z) and u ∈ L1(A, Z), define

x`u,λ`(t) = λ`(t) +
∫ t

0
[α1(t, s) p(t, u(s)) + α2(t, s)q(t, s, u(s))] ds.

Let σ1, σ2 ∈ L1(A, Z), w1 ∈ Sλ`(σ1) and

H(t) := Lλ`,σ2(t) ∩
{

z ∈ Z : ‖w1(t)− z‖ ≤ (M4M2 + M5M1)M3k(t)
∫ t

0
N(σ1, σ2) ds + δ

}
.

By assumption (AS2(ii)), we have

dγ(w1(t), Lλ`,σ2
) ≤ Hβ

(
Q(t, V(xσ1,λ`)(t)), Q(t, V(xσ2,λ`)(t))

)
+ ε

≤ k(t)‖V(xσ1,λ`)(t))−V(xσ2,λ`)(t))‖ρ
γ + ε

≤ M3k(t)‖xσ1,λ`(t)− xσ2,λ`(t)‖ρ
γ + ε

≤ M3k(t)
[ ∫ t

0
|α1(t, s)|ρ‖p(t, σ1(s))− p(t, σ2(s))‖

ρ
γds

+
∫ t

0
|α2(t, s)|ρ‖q(t, s, σ1(s))− q(t, s, σ2(s))‖

ρ
γds
]
+ ε

≤ M3k(t)
[
(M4M2 + M5M1)

∫ t

0
N(σ1, σ2)ds

]
+ ε.

Since ε is arbitrary, we conclude thatH(·) is nonempty, closed, bounded and measur-
able.

Let w2(·) be a measurable selector of H(·). Then, w2 ∈ Sλ`(σ2). If assumption
AS3(ii)(a) is assumed, then we have

‖w1 − w2‖1 =
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)‖w1(t)− w2(t)‖

ρ
γdt

≤
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)M3k(t)

[
(M4M2 + M5M1)

∫ t

0
N(σ1, σ2)ds

]
dt

+δ
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)dt

≤ 1
η

N1(σ1, σ2) + δ
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)dt,

where N1(σ1, σ2) = max {‖σ1−σ2‖1, ‖σ1−Sλ`(σ1)‖1, ‖σ2−S`
λ(σ2)‖1, ‖σ1−Sλ`(σ2)‖1, ‖σ2−

Sλ`(σ1)‖1}. Since δ is arbitrary, we have

dγ(w1, Sλ`(σ2) = inf
w2∈S

λ`
(σ2)
‖w1 − w2‖1 ≤

1
η

N1(σ1, σ2).

Therefore,

δγ(Sλ`(σ1), Sλ`(σ2) = sup
w1∈S

λ`
(σ1)

dγ(w1, Sλ`(σ2) ≤
1
η

N1(σ1, σ2). (20)

Similarly, we also get

δγ(Sλ`(σ2), Sλ`(σ1) = sup
w1∈S

λ`
(σ1)

dγ(w1, Sλ`(σ2) ≤
1
η

N1(σ1, σ2). (21)

Multiplying (20) by β and (21) by 1− β and adding, we get
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Hβ(Sλ`(σ1), Sλ`(σ2)) ≤
1
η

N1(σ1, σ2).

Thus, Sλ`(·) is a Hβ-quasi contraction on L1(A, Z).
Now let

Q̃(t, x) := Q(t, x) + l(t),

M̃λ`,σ(t) := Q̃(t, V(xσ,λ`)(t)), t ∈ I,

S̃µ`(σ) := {ψ(·) ∈ L1(A, Z); ψ(t) ∈ L̃µ`,σ(t).

It is obvious that Q̃(·, ·) satisfies Hypothesis 5.1.
Let φ ∈ Sλ`(σ), δ > 0 and define

H̃(t) := L̃λ`,σ(t) ∩
{

z ∈ Z : ‖φ(t)− z‖ ≤ M3k(t)‖λ` − µ`‖∗ + l(t) + δ
}

.

Proceeding in the same way as in the case ofH(·) above, we see that H̃(·) is measur-
able, nonempty and has closed values.

Let ω(·) ∈ Sµ`(σ). Then

‖φ−ω‖1 ≤
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)‖φ(t)−ω(t)‖ρ

γdt

≤
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)[M3k(t)‖λ` − µ`‖∗ + l(t) + δ]dt

= ‖λ` − µ`‖∗
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)M3k(t)dt

+
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt + δ

∫ T

0
e−η(M4 M2+M5 M1)M3m(t)dt

≤ 1
η(M4M2 + M5M1)

‖λ` − µ`‖∗

+
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt + δ

∫ T

0
e−η(M4 M2+M5 M1)M3m(t)dt.

As δ→ 0 we get

Hβ(Sλ`(σ), S̃µ`(σ)) ≤
1

η(M4M2 + M5M1)
‖λ` − µ`‖∗

+
∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt.

(22)

Since Sλ`(., .) and S̃`
µ(., .) are Hβ-quasi contractions with Lipschitz constant

1
η

and since

v(·) ∈ F{S̃µ`} by Proposition 3 there exists u(·) ∈ F{Sλ`} such that

‖v− u‖1 ≤
γη

η − γ
sup
x∈X

Hβ(S̃µ`x, Sλ`x).

Using (22), we have

‖v− u‖1 ≤
γ

(η − γ)(M4M2 + M5M1)
‖λ` − µ`‖∗

+
γη

η − γ

∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt.

(23)
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Now let

x`(t) = λ`(t) +
∫ t

0
[α1(t, s) p(t, u(s)) + α2(t, s)q(t, s, u(s))] ds.

Then, we have

‖x`(t)− y(t)‖ ≤ ‖λ`(t)− µ`(t)‖+ (M4M2 + M5M1)
∫ t

0
‖u(s)− v(s)‖ds

≤ ‖λ` − µ`‖∗ + (M4M2 + M5M1)eη(M4 M2+M5 M1)M3m(T)‖u− v‖1.

Using (23) we get

‖x`(t)− y`(t)‖ ≤ ‖λ` − µ`‖∗
[
1 +

γ eη(M4 M2+M5 M1)M3m(T)

η − γ

]

+
γη

η − γ
(M4M2 + M5M1)eη(M4 M2+M1)M3m(T)

∫ T

0
e−η(M4 M2+M5 M1)M3m(t)l(t)dt.

This completes the proof.

Remark 9. Since Hβ(A, B) ≤ H(A, B) and the class of generalized (ρ, γ)-norms includes the
usual norm ‖.‖, we note that the hypothesis conditions AS2(i) and AS3(i), (ii) are much weaker
than the corresponding hypothesis conditions (Hypothesis 2.1 (ii) and (iii)) of [24]).

3.5. Conclusions

The Hβ-Hausdorff–Pompeiu b-metric is introduced as a new tool in metric fixed
point theory and new variants of Nadler, Ciric, Hardy–Rogers contraction principles for
multi-valued mappings are established in a b-metric space. The examples and applications
provided illustrates the advantages of using Hβ-Hausdorff–Pompeiu b-metric in fixed
point theory and its applications. The new tool of Hβ-Hausdorff–Pompeiu b-metric can
be utilized by young researchers in extending and generalizing many of the fixed point
results for multi-valued mappings existing in literature and investigate how the new tool
would enhance, extend and generalize the applications of the fixed-point theory to linear
differential and integro-differential equations, nonlinear phenomena, algebraic geometry,
game theory, non-zero-sum game theory and the Nash equilibrium in economics.
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