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Abstract: Symmetric varieties are normal equivarient open embeddings of symmetric homogeneous
spaces, and they are interesting examples of spherical varieties. We prove that all smooth Fano
symmetric varieties with Picard number one admit Kähler–Einstein metrics by using a combinatorial
criterion for K-stability of Fano spherical varieties obtained by Delcroix. For this purpose, we present
their algebraic moment polytopes and compute the barycenter of each moment polytope with respect
to the Duistermaat–Heckman measure.
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1. Introduction

A Kähler metric on a complex manifold is said to be Kähler–Einstein if the Riemannian
metric defined by its real part has constant Ricci curvature. The existence of Kähler–Einstein
metrics on Fano manifolds has become a central topic in complex geometry in recent years.
In contrast to Calabi–Yau and general type [1,2], Fano manifolds do not necessarily have a
Kähler–Einstein metric in general, and there are obstructions based on the (holomorphic)
automorphism group.

The first obstruction was discovered by Matsushima in [3]. He proved that the
reductivity of the automorphism group is a necessary condition for the existence of Kähler–
Einstein metrics. Later, Futaki [4] proved that the existence of Kähler–Einstein metrics
implies that the Futaki invariant, a functional on the Lie algebra of the automorphism
group, vanishes. As a generalization of this invariant on test configurations, Tian [5,6]
and Donalson [7] introduced a certain algebraic stability condition, which is called the
K-stability. The famous Yau–Tian–Donaldson conjecture predicts that the existence of a
Kähler–Einstein metric on a Fano manifold is equivalent to the K-stability. Eventually, this
conjecture was solved by Chen–Donaldson–Sun [8–10] and Tian [11].

Despite of these obstructions, each Fano homogeneous manifold admits a Kähler–
Einstein metric [12,13]. Therefore, one can expect the existence of a Kähler–Einstein metric
on a Fano manifold if it has large automorphism group. A natural candidate is the almost-
homogeneous manifold, that is, a manifold with an open dense orbit of a complex Lie group.
For the case of toric Fano manifolds, Wang and Zhu [14] proved that the existence of
a Kähler–Einstein metric is equivalent to the vanishing of the Futaki invariant. In fact,
this was based on the theorem by Mabuchi [15], which says that the Futaki invariant
vanishes if and only if the barycenter of the moment polytope is the origin. This gave us a
powerful combinatorial criterion for the existence of a Kähler–Einstein metric on a toric
Fano manifold, which is much easier to check than the K-stability condition.

An important class of almost-homogeneous varieties is spherical varieties including
toric varieties, group compactifications ([16]), and symmetric varieties. A normal variety
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is called spherical if it admits an action of a reductive group of which a Borel subgroup
acts with an open orbit on the variety. As a generalization of Wang and Zhu’s work,
Delcroix [17] extended a combinatorial criterion for K-stability of Fano spherical manifolds,
in terms of its moment polytope and spherical data. In particular, this criterion is also
applicable to smooth Fano symmetric varieties (see Corollary 5.9 of [17]).

By combining the above criterion and Ruzzi’s classification [18] of smooth Fano
symmetric varieties with Picard number one, we prove the following.

Theorem 1. All smooth Fano symmetric varieties with Picard number one admit Kähler–Einstein metrics.

For this theorem, the condition on the Picard number is crucial because a smooth
Fano symmetric variety with higher Picard number may have no Kähler–Einstein metrics.
For example, the blow-up of the wonderful compactification of Sp(4,C) along the closed
orbit does not admit any Kähler–Einstein metrics (see Example 5.4 of [16]). Moreover,
we note that Delcroix already provided the existence of Kähler–Einstein metrics on smooth
Fano embedding of SL(3,C)/ SO(3,C), and group compactifications of SL(3,C) and G2,
respectively (see Example 5.13 of [17]). The above theorem leads us to complete all re-
maining cases of smooth Fano symmetric varieties with Picard number one also admit
Kähler–Einstein metrics.

2. Criterion for Existence of Kähler–Einstein Metrics on Symmetric Varieties

Let G be a connected reductive algebraic group over C.

2.1. Spherical Varieties and Algebraic Moment Polytopes

We review general notions and results about spherical varieties. The normal equivari-
ant embeddings of a given spherical homogeneous space are classified by combinatorial
objects called colored fans, which generalize the fans appearing in the classification of toric
varieties. We refer to the works in [19–21] as references for spherical varieties.

Definition 1. A normal variety X equipped with an action of G is called spherical if a Borel
subgroup B of G acts on X with an open and dense orbit.

Let G/H be an open dense G-orbit of a spherical variety X and T a maximal torus of B.
By definition, the spherical weight latticeM of G/H is a subgroup of characters χ ∈ X(B) =
X(T) of (nonzero) B-semi-invariant functions in the function field C(G/H) = C(X), that is,

M = {χ ∈ X(T) : C(G/H)
(B)
χ 6= 0},

where C(G/H)
(B)
χ = { f ∈ C(G/H) : b · f = χ(b) f for all b ∈ B}. Note that every function

fχ in C(G/H)(B) is determined by its weight χ up to constant because C(G/H)B = C,
that is, any B-invariant rational function on X is constant. The spherical weight lattice
M is a free abelian group of finite rank. We define the rank of G/H as the rank of the
latticeM. Let N = Hom(M,Z) denote its dual lattice together with the natural pairing
〈 · , · 〉 : N ×M→ Z.

As the open B-orbit of a spherical variety X is an affine variety, its complement has
pure codimension one and is a finite union of B-stable prime divisors.

Definition 2. For a spherical variety X, B-stable but not G-stable prime divisors in X are called
colors of X. A color of X corresponds to a B-stable prime divisor in the open G-orbit G/H of X.
We denote by D = {D1, · · · , Dk} the set of colors of X (or G/H).

As a B-semi-invariant function fχ in C(G/H)
(B)
χ is unique up to constant, we define

the color map ρ : D → N by 〈ρ(D), χ〉 = νD( fχ) for χ ∈ M, where νD is the discrete
valuation associated to a divisor D, that is, νD( f ) is the vanishing order of f along D.
Unfortunately, the color map is generally not injective. In addition, every discrete Q-valued
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valuation ν of the function field C(G/H) induces a homomorphism ρ̂(ν) : M→ Q defined
by 〈ρ̂(ν), χ〉 = ν( fχ), so that we get a map ρ̂ : {discrete Q-valued valuations on G/H} →
N ⊗ Q. Luna and Vust [22] showed that the restriction of ρ̂ to the set of G-invariant
discrete valuations on G/H is injective. From now on, we will regard a G-invariant discrete
valuation on G/H as an element of N ⊗Q via the map ρ̂, and in order to simplify the
notation ρ̂(νE) will be written as ρ̂(E) for a G-stable divisor E in X.

Let L be a G-linearized ample line bundle on a spherical G-variety X. By the multiplicity-
free property of spherical varieties, the algebraic moment polytope ∆(X, L) encodes the
structure of representation of G in the spaces of multi-sections of tensor powers of L.

Definition 3. The algebraic moment polytope ∆(X, L) of L with respect to B is defined as the
closure of

⋃
k∈N ∆k/k inM⊗R, where ∆k is a finite set consisting of (dominant) weights λ such

that H0(X, L⊗k) =
⊕

λ∈∆k
VG(λ). Here, VG(λ) means the irreducible representation of G with

highest weight λ.

For a compact connected Lie group K and a compact connected Hamiltonian K-
manifold (M, ω, µ), Kirwan [23] proved that the intersection of the image of M through the
moment map µ with the positive Weyl chamber with respect to a Borel subgroup B of G is
a convex polytope, where G is the complexification of K. The algebraic moment polytope
∆(X, L) for a polarized G-variety X was introduced by Brion in [24] as a purely algebraic
version of the Kirwan polytope. This is indeed the convex hull of finitely many points in
M⊗R (see the work in [24]). Moreover, if X is smooth, then ∆(X, L) can be interpreted as
the Kirwan polytope of (X, ωL) with respect to the action of a maximal compact subgroup
K of G, where ωL is a K-invariant Kähler form in the first Chern class c1(L).

Example 1 (Equivariant compactifications of reductive groups). Any reductive group G is
spherical with respect to the action of G × G by left and right multiplication from the Bruhat
decomposition. Let us consider the wonderful compactification of a simple algebraic group G
of adjoint type constructed by De Concini and Procesi [25]. As a specific example, the wonderful
compactification P(Mat2×2(C)) ∼= P3 of the projective general linear group PGL(2,C) has the
action of PGL(2,C)× PGL(2,C) induced by the multiplication of matrices on the left and on the
right. It is known that the spherical weight latticeM of the wonderful compactification of a simple
algebraic group G of adjoint type coincides with the root lattice of G. As the anticanonical line
bundle K−1

P3 is isomorphic to OP3(4),

H0(P3, K−1
P3 ) = Sym4 C4

∼= End(VPGL(2,C)(0))⊕ End(VPGL(2,C)(2v1))⊕ End(VPGL(2,C)(4v1)),

where v1 denotes the fundamental weight of PGL(2,C). Repeating this calculation for tensor
powers (K−1

P3 )
⊗k, we obtain

1
k

∆k =

{
0,

2
k

v1,
4
k

v1, · · · ,
4k− 2

k
v1,

4k
k

v1

}
.

Therefore, the algebraic moment polytope ∆(P3, K−1
P3 ) of the wonderful compactification of

PGL(2,C) is a closed interval [0, 4v1] = [0, 2α1] inM⊗R ∼= R · α1, where α1 denotes the simple
root of PGL(2,C).

2.2. Symmetric Spaces and Symmetric Varieties

For an algebraic group involution θ of a connected reductive algebraic group G, let
Gθ = {g ∈ G : θ(g) = g} be the subgroup consisting of elements fixed by θ. If H is a
closed subgroup of G such that the identity component of H coincides with the identity
component of Gθ , then the homogeneous space G/H is called a symmetric homogeneous
space. By taking a universal cover of G, we can always assume that G is simply connected.
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When G is simply connected, by (see Section 8.1 in [26]) Gθ is connected and H is a closed
subgroup between Gθ and its normalizer NG(Gθ) in G, that is, Gθ ⊂ H ⊂ NG(Gθ).

Definition 4. A normal G-variety X together with an equivariant open embedding G/H ↪→ X of
a symmetric homogeneous space G/H is called a symmetric variety.

Vust proved that a symmetric homogeneous space G/H is spherical (see in [27],
Theorem 1 in Section 1.3). By using the Luna–Vust theory on spherical varieties, Ruzzi [18]
classified the smooth projective symmetric varieties with Picard number one from the
classification of corresponding colored fans. As a result, there are only six nonhomogeneous
smooth projective symmetric varieties with Picard number one, and their restricted root
systems (see Section 2.3 for the definition) are of either type A2 or type G2. Moreover, Ruzzi
gave geometric descriptions of them in [28].

In the case that the restricted root system is of type A2 (Theorem 3 of the work in [28]),
the symmetric varieties are the smooth equivariant completions of symmetric homogeneous
spaces SL(3,C)/ SO(3,C), (SL(3,C)× SL(3,C))/ SL(3,C), SL(6,C)/ Sp(6,C), E6/F4, and
are isomorphic to a general hyperplane section of rational homogeneous manifolds which
are in the third row of the geometric Freudenthal–Tits magic square.

R C H O
R v4(P1) P(TP2) Grω(2, 6) OP2

0
C v2(P2) P2 × P2 Gr(2, 6) OP2

H LGr(3, 6) Gr(3, 6) S6 E7/P7
O Fad

4 Ead
6 Ead

7 Ead
8

Remark 1. Though all the rational homogeneous manifolds admit Kähler–Einstein metrics, a gen-
eral hyperplane section of a rational homogeneous manifold is not necessarily the case. For example,
a general hyperplane section of the Grassmannian Gr(2, 2n + 1), called an odd symplectic Grass-
mannian of isotropic planes, does not admit Kähler–Einstein metrics by the Matsushima theorem
in [3] because the automorphism group of the odd symplectic Grassmannian is not reductive (see
Theorem 1.1 in [29]).

In the case that the restricted root system is of type G2 (Theorem 2 of [28]), the sym-
metric varieties are the smooth equivariant completions of either G2/(SL(2,C)× SL(2,C))
or (G2 × G2)/G2. The smooth equivariant completion with Picard number one of the
symmetric space G2/(SL(2,C)× SL(2,C)), called the Cayley Grassmannian, and the smooth
equivariant completion with Picard number one of the symmetric space (G2 × G2)/G2,
called the double Cayley Grassmannian, have been studied by Manivel [30,31].

Their geometric properties including the dimension, the Fano index, the restricted root
system are listed in Table 1. For the deformation rigidity properties of smooth projective
symmetric varieties with Picard number one, see in [32].

Table 1. Nonhomogeneous smooth projective symmetric varieties with Picard number one.

Xi G/Gθ dim Xi ι(Xi) Φθ Multiplicity Geometric Description

1 SL(3,C)/ SO(3,C) 5 3 A2 1 hyperplane section of LGr(3, 6)
2 (SL(3,C)× SL(3,C))/ SL(3,C) 8 5 A2 2 hyperplane section of Gr(3, 6)
3 SL(6,C)/ Sp(6,C) 14 9 A2 4 hyperplane section of S6
4 E6/F4 26 17 A2 8 hyperplane section of E7/P7
5 G2/(SL(2,C)× SL(2,C)) 8 4 G2 1 Cayley Grassmannian
6 (G2 × G2)/G2 14 7 G2 2 double Cayley Grassmannian

2.3. Existence of Kähler–Einstein Metrics on Symmetric Varieties

We recall Delcroix’s criterion for K-stability of smooth Fano symmetric varieties in [17].
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For an algebraic group involution θ of G, a torus T in G is split if θ(t) = t−1 for any
t ∈ T. A torus T is maximally split if T is a θ-stable maximal torus in G which contains a
split torus Ts of maximal dimension among split tori. Then, θ descends to an involution of
X(T) for a maximally split torus T, and the rank of a symmetric homogeneous space G/H
is equal to the dimension of a maximal split subtorus Ts of T.

Let Φ = Φ(G, T) be the root system of G with respect to a maximally split torus T.
By Lemma 1.2 of [25], we can take a set of positive roots Φ+ such that either θ(α) = α
or θ(α) is a negative root for all α ∈ Φ+; then, we denote 2ρθ = ∑α∈Φ+\Φθ α, where
Φθ = {α ∈ Φ : θ(α) = α}. The set Φθ = {α− θ(α) : α ∈ Φ\Φθ} is a (possibly non-reduced)
root system, which is called the restricted root system. Let C+θ denote the cone generated by
positive restricted roots in Φ+

θ = {α− θ(α) : α ∈ Φ+\Φθ}.

Proposition 1 (Corollary 5.9 of [17]). Let X be a smooth Fano embedding of a symmetric
homogeneous space G/H. Then X admits a Kähler–Einstein metric if and only if the barycenter of
the moment polytope ∆(X, K−1

X ) with respect to the Duistermaat–Heckman measure

∏
α∈Φ+\Φθ

κ(α, p) dp

is in the relative interior of the translated cone 2ρθ + C+θ , where κ denotes the Killing form on the
Lie algebra g of G.

In fact, this result is a direct consequence of a combinatorial criterion for the existence
of a Kähler–Ricci soliton on smooth Fano spherical varieties obtained by Delcroix (see
in [17], Theorem A). The proof consists of the existence of a special equivariant test con-
figuration with horospherical central fiber and the explicit computation of the modified
Futaki invariant on Fano horospherical varieties.

3. Moment Polytopes of Smooth Fano Symmetric Varieties and Their Barycenters

We prove in this section our main result Theorem 1. The proof combines Proposition 1
together with the following result allowing us to compute (algebraic) moment polytopes of
Fano symmetric varieties.

Proposition 2. Let X be a smooth Fano embedding of a symmetric space G/Gθ . Then, there exist
integers mi such that a Weil divisor −KX = ∑k

i=1 miDi + ∑`
j=1 Ej represents the anticanonical

line bundle K−1
X for colors Di and G-stable divisors Ej in X, and the moment polytope ∆(X, K−1

X )
is 2ρθ + Q∗X , where the polytope QX is the convex hull of the set{

ρ(Di)

mi
: i = 1, · · · , k

}
∪ {ρ̂(Ej) : j = 1, · · · , `}

inN ⊗R and its dual polytope Q∗X is defined as {m ∈ M⊗R : 〈n, m〉 ≥ −1 for every n ∈ QX}.

This statement is a specialization of a result of Gagliardi and Hofscheier ([33], Section 9)
in which they studied the anticanonical line bundle on a Gorenstein Fano spherical variety.
It is based on the works of Brion [34,35] on algebraic moment polytopes and anticanonical
divisors of Fano spherical varieties. For the convenience of the reader, we provide a sketch
of the proof.

Proof. Let us recall results about the anticanonical line bundle on a spherical variety from
Sections 4.1 and 4.2 in [35]. For a spherical G-variety X, there exists a B-semi-invariant
global section s ∈ Γ(X, K−1

X ) with div(s) = ∑k
i=1 miDi + ∑`

j=1 Ej. Furthermore, the B-
weight of this section s is the sum of α ∈ Φ such that g−α does not stabilize the open B-orbit
in X. Thus, when X is a symmetric variety associated to an involution θ of G, the weight of
s is equal to 2ρθ = ∑α∈Φ+\Φθ α.
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For a Gorenstein Fano spherical variety X, Brion obtained the relation between the
moment polytope ∆(X, K−1

X ) and a polytope ∆−KX associated to the anticanonical divisor
in Proposition 3.3 of [34]. More precisely, if X is a smooth Fano embedding of G/Gθ , then
the moment polytope ∆(X, K−1

X ) is 2ρθ + ∆−KX and a polytope ∆−KX associated to the
anticanonical (Cartier) divisor −KX is the dual polytope Q∗X .

Let Φ = Φ(G, T) be the root system of G with respect to a maximally split torus T.
Fix a set of positive roots Φ+ such that either θ(α) = α or θ(α) is a negative root for all
α ∈ Φ+. We recall that the coroot α∨ of a root α ∈ Φ is defined as the unique element in
the Lie algebra t of T such that α(x) = 2κ(x,α∨)

κ(α∨ ,α∨) for all x ∈ t. Given a set of simple roots
{α1, α2, · · · , αr} ⊂ Φ, we define the fundamental weights {v1, v2, · · · , vr} dual to the
coroots by requiring 〈α∨i , vj〉 = δi,j for i, j = 1, 2, · · · , r = dim T.

3.1. Smooth Fano Embedding of SL(3,C)/ SO(3,C) with Picard Number One

Considering the involution θ of SL(n,C) defined by sending g to the inverse of its
transpose θ(g) = (gt)−1, which is usually called of Type AI, the subgroup fixed by θ is
SO(n,C). As θ(α) = −α for α ∈ Φ = ΦSL3 , the set Φθ is empty and the restricted root
system Φθ is the double 2Φ of the root system Φ. The spherical weight lattice M =
X(T/T ∩ Gθ) is formed by 2λ for weights λ ∈ X(T). Thus, the dual lattice N is generated
by half of the coroots 1

2 α∨1 , 1
2 α∨2 from the relation 〈α∨i , vj〉 = δi,j. In general, Vust [36] proved

that when G is semisimple and simply connected, the spherical weight latticeM of the
symmetric space G/Gθ is the lattice of restricted weights determined by the restricted root
system, which implies that N is the lattice generated by restricted coroots forming a root
system dual to the restricted root system Φθ .

Let X1 be the smooth Fano embedding of SL(3,C)/ SO(3,C) with Picard number
one. Using the description in [28], we know that the two colors D1, D2 and the G-stable
divisor E in X1 have the images ρ(D1) =

1
2 α∨1 , ρ(D2) =

1
2 α∨2 and ρ̂(E) = − 1

2 v∨1 −
1
2 v∨2 =

− 1
2 α∨1 −

1
2 α∨2 inN , respectively. Recall from Theorem 6 of the work in [28] that the maximal

colored cones of its colored fan are (Cone(α∨1 ,−v∨1 − v∨2 ), {D1}) and (Cone(α∨2 ,−v∨1 −
v∨2 ), {D2}). Then, we have two relations 2D1 − D2 − E = 0 and −D1 + 2D2 − E = 0, so
that D1 = D2 = E in the Picard group Pic(X1).

Proposition 3. Let X1 be the smooth Fano embedding of SL(3,C)/ SO(3,C) with Picard number
one. The moment polytope ∆1 = ∆(X1, K−1

X1
) is the convex hull of three points 0, 6v1, 6v2 in

M⊗R.

Proof. From the colored data of SL(3,C)/ SO(3,C) and the G-orbit structure of X1, we know
the relation −KX1 = D1 + D2 + E of the anticanonical divisor. Using Proposition 2, ρ(D1),
ρ(D2), and ρ̂(E) are used as inward-pointing facet normal vectors of the moment polytope
∆(X1, K−1

X1
). First, ρ(D1) =

1
2 α∨1 gives an inequality〈

1
2

α∨1 , x · 2v1 + y · 2v2 − 2ρθ

〉
= x− 1 ≥ −1

because 2ρθ = 2α1 + 2α2 = 2v1 + 2v2. Similarly, as ρ(D2) = 1
2 α∨2 gives a domain {x ·

2v1 + y · 2v2 ∈ M⊗R : y ≥ 0}, the images of two colors D1, D2 determine the positive
Weyl chamber. Last, ρ̂(E) = − 1

2 α∨1 −
1
2 α∨2 gives a domain {x · 2v1 + y · 2v2 ∈ M⊗R :

x + y ≤ 3}. Thus the moment polytope ∆(X1, K−1
X1

) is the intersection of three half-spaces,
so that it is the convex hull of three points 0, 6v1, 6v2 inM⊗R.

Corollary 1. The smooth Fano embedding X1 of SL(3,C)/ SO(3,C) with Picard number one
admits a Kähler–Einstein metric.

Proof. Choosing a realization of the root system A2 in the Euclidean plane R2 with α1 =

(1, 0) and α2 =
(
− 1

2 ,
√

3
2

)
, for p = (x, y) we obtain its Duistermaat–Heckman measure
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∏
α∈Φ+

κ(α, p) dp = x
(
− x

2
+

√
3

2
y
)( x

2
+

√
3

2
y
)

dxdy.

From Proposition 3, we can compute the volume

VolDH(∆1) =
∫ √3

0

∫ √3y

0
x
(
− x

2
+

√
3

2
y
)( x

2
+

√
3

2
y
)

dxdy

+
∫ 2
√

3
√

3

∫ 6−
√

3y

0
x
(
− x

2
+

√
3

2
y
)( x

2
+

√
3

2
y
)

dxdy =
27
5

√
3

and the barycenter

barDH(∆1) = (x̄, ȳ) =
1

VolDH(∆1)

∫
∆1

p ∏
α∈Φ+

κ(α, p) dp =
(5

4
,

5
√

3
4

)
=

5
4
× 2ρθ

of the moment polytope ∆1 with respect to the Duistermaat–Heckman measure. Therefore,
barDH(∆1) is in the relative interior of the translated cone 2ρθ + C+θ (see Figure 1), so X1
admits a Kähler–Einstein metric by Proposition 1.

0 v1

v2

α1

α2

α1 + α2

2ρθ

6v1

6v2

barDH(∆1)

Figure 1. ∆1 = ∆(X1, K−1
X1

).

3.2. Smooth Fano Embedding of (SL(3,C)× SL(3,C))/ SL(3,C) with Picard Number One

Any reductive algebraic group L is a symmetric homogeneous space (L× L)/diag(L)
under the action of the group G = L× L for the involution θ(g1, g2) = (g2, g1), g1, g2 ∈ L.
If T is a maximal torus of L, then T × T is a maximal torus of G and we get the spherical
weight lattice

M = X((T × T)/diag(T)) = {(λ,−λ) : λ ∈ X(T)}.

Thus,M can be identified with X(T) by the projection to the first coordinate. Under
this identification, the restricted root system Φθ is identified with the root system ΦL of L
with respect to T, and the dual lattice N is generated by the coroots α∨1 , α∨2 , · · · , α∨r , where
r = dim T.

Let X2 be the smooth Fano embedding of (SL(3,C)× SL(3,C))/ SL(3,C) with Picard
number one. Using the description in [28], we know that the two colors D1, D2 and the
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G-stable divisor E in X2 have the images ρ(D1) = α∨1 , ρ(D2) = α∨2 and ρ̂(E) = −α∨1 − α∨2
in N , respectively.

Proposition 4. Let X2 be the smooth Fano symmetric embedding of (SL(3,C)× SL(3,C))/ SL(3,C)
with Picard number one. The moment polytope ∆2 = ∆(X2, K−1

X2
) is the convex hull of three points

0, 5v1, 5v2 inM⊗R.

Proof. From the colored data of (SL(3,C)× SL(3,C))/ SL(3,C) and the G-orbit structure
of X2, we know the relation −KX2 = 2D1 + 2D2 + E of the anticanonical divisor. Using
Proposition 2, 1

2 ρ(D1), 1
2 ρ(D2), and ρ̂(E) are used as inward-pointing facet normal vectors

of the moment polytope ∆(X2, K−1
X2

). First, 1
2 ρ(D1) =

1
2 α∨1 gives an inequality〈

1
2

α∨1 , x ·v1 + y ·v2 − 2ρθ

〉
=

1
2
(x− 2) ≥ −1

because 2ρθ = 2α1 + 2α2 = 2v1 + 2v2. Similarly, as 1
2 ρ(D2) = 1

2 α∨2 gives a domain
{x ·v1 + y ·v2 ∈ M⊗R : y ≥ 0}, the images of two colors D1, D2 determine the positive
Weyl chamber. Lastly, ρ̂(E) = −α∨1 − α∨2 gives a domain {x ·v1 + y ·v2 ∈ M⊗R : x + y ≤
5}. Thus, the moment polytope ∆(X2, K−1

X2
) is the intersection of three half-spaces, so that

it is the convex hull of three points 0, 5v1, 5v2 inM⊗R.

Corollary 2. The smooth Fano embedding X2 of (SL(3,C)× SL(3,C))/ SL(3,C) with Picard
number one admits a Kähler–Einstein metric.

Proof. As in the proof of Corollary 1, we choose a realization of the root system A2 in the
Euclidean plane R2 with α1 = (1, 0) and α2 =

(
− 1

2 ,
√

3
2

)
. Then, the Duistermaat–Heckman

measure on the moment polytope is given as

∏
α∈Φ+

κ(α, p) dp = ∏
β∈Φ+

SL(3,C)

κ(β, p)2 dp = x2
(
− x

2
+

√
3

2
y
)2( x

2
+

√
3

2
y
)2

dxdy.

From Proposition 4, we can compute

VolDH(∆2) =
∫ 5

6
√

3

0

∫ √3y

0
x2
(
− x

2
+

√
3

2
y
)2( x

2
+

√
3

2
y
)2

dxdy

+
∫ 5

3
√

3

5
6
√

3

∫ 5−
√

3y

0
x2
(
− x

2
+

√
3

2
y
)2( x

2
+

√
3

2
y
)2

dxdy =
78, 125
18, 432

√
3

and the barycenter

barDH(∆2) = (x̄, ȳ) =
1

VolDH(∆2)

(∫
∆2

x ∏
α∈Φ+

κ(α, p) dp,
∫

∆2

y ∏
α∈Φ+

κ(α, p) dp

)

=

(
10
9

,
10
√

3
9

)
=

10
9
× 2ρθ

of the moment polytope ∆2 with respect to the Duistermaat–Heckman measure. Therefore,
barDH(∆2) is in the relative interior of the translated cone 2ρθ + C+θ (see Figure 2), so X2
admits a Kähler–Einstein metric by Proposition 1.
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0 v1

v2

α1

α2

α1 + α2

2ρθ

5v1

5v2

barDH(∆2)

Figure 2. ∆2 = ∆(X2, K−1
X2

).

3.3. Smooth Fano Embedding of SL(6,C)/ Sp(6,C) with Picard Number One

Recall the involution of Type AII. Let θ be an involution of SL(2m,C) defined by
θ(g) = Jm(gt)−1 Jt

m, where Jm is the 2m × 2m block diagonal matrix formed by
( 0 1
−1 0

)
.

Then, Gθ = Sp(2m,C) is the group of elements that preserve a nondegenerate skew-
symmetric bilinear form ω(v, w) = vt Jmw. We can check that the restricted root system
Φθ is the root system of type A2 with multiplicity four, and the spherical weight lattice
M = X(T/T ∩ Gθ) is generated by 2λ for weights λ ∈ X(Ts), where Ts denotes a split
subtorus of dimension two in a maximal torus T ⊂ SL(6,C). In fact, if we choose the torus
of diagonal matrices as T, then the maximal split torus Ts consists of diagonal matrices
of the form diag(a1, a1, a2, a2, a3, a3) with a1, a2, a3 ∈ C∗ and a2

1a2
2a2

3 = 1. Denoting by
αk : Ts → C∗ for k = 1, 2 the characters defined by

αk(diag(a1, a1, a2, a2, a3, a3)) =
ak

ak+1
,

we have the restricted root system Φθ = {±2α1,±2α2,±(2α1 + 2α2)} of type A2. Then, the
dual lattice N is generated by the coroots 1

2 α∨1 , 1
2 α∨2 .

Let X3 be the smooth Fano embedding of SL(6,C)/ Sp(6,C) with Picard number
one. Using the description in [28], we know that the two colors D1, D2 and the G-stable
divisor E in X3 have the images ρ(D1) =

1
2 α∨1 , ρ(D2) =

1
2 α∨2 and ρ̂(E) = − 1

2 α∨1 −
1
2 α∨2 in

N , respectively.

Proposition 5. Let X3 be the smooth Fano symmetric embedding of SL(6,C)/ Sp(6,C) with
Picard number one. The moment polytope ∆3 = ∆(X3, K−1

X3
) is the convex hull of three points 0,

18v1, 18v2 inM⊗R.

Proof. From the colored data of SL(6,C)/ Sp(6,C) and the G-orbit structure of X3, we
know the relation −KX3 = 4D1 + 4D2 + E of the anticanonical divisor. Using Proposition 2,
1
4 ρ(D1), 1

4 ρ(D2) and ρ̂(E) are used as inward-pointing facet normal vectors of the moment
polytope ∆(X3, K−1

X3
). Like the previous computations, 1

4 ρ(D1) and 1
4 ρ(D2) determine the

positive restricted Weyl chamber. Indeed, 1
4 ρ(D1) =

1
8 α∨1 gives an inequality〈

1
8

α∨1 , x · 2v1 + y · 2v2 − 2ρθ

〉
=

1
8
(2x− 8) ≥ −1

because 2ρθ = 8α1 + 8α2 = 8v1 + 8v2. As ρ̂(E) = − 1
2 α∨1 −

1
2 α∨2 gives a domain {x · 2v1 +

y · 2v2 ∈ M⊗R : x + y ≤ 9}, the moment polytope ∆(X3, K−1
X3

) is the intersection of this
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half-space with the positive restricted Weyl chamber. Thus ∆(X3, K−1
X3

) is the convex hull
of three points 0, 18v1, 18v2 inM⊗R.

Corollary 3. The smooth Fano embedding X3 of SL(6,C)/ Sp(6,C) with Picard number one
admits a Kähler–Einstein metric.

Proof. As the multiplicity of each restricted root in the restricted root system Φθ is four,
the Duistermaat–Heckman measure onM⊗R is given as

∏
α∈Φ+\Φθ

κ(α, p) dp = x4
(
− x

2
+

√
3

2
y
)4( x

2
+

√
3

2
y
)4

dxdy.

Then, the barycenter

barDH(∆3) = (x̄, ȳ) =

(
21
5

,
21
√

3
5

)
=

21
20
× 2ρθ

is in the relative interior of the translated cone 2ρθ + C+θ (see Figure 3). Therefore, X3 admits
a Kähler–Einstein metric by Proposition 1.

0 v1

v2

α1

α2

α1 + α2

2ρθ

18v1

18v2

barDH(∆3)

Figure 3. ∆3 = ∆(X3, K−1
X3

).

3.4. Smooth Fano Embedding of E6/F4 with Picard Number One

Let θ be the involution on the simple algebraic group E6 of Type EIV. Then, Gθ is
isomorphic to the simple algebraic group F4, and the restricted root system Φθ is the root
system of type A2 generated by the simple restricted roots 2α1, 2α2 with multiplicity eight.
The spherical weight latticeM = X(T/T ∩ Gθ) is generated by 2λ for weights λ ∈ X(Ts),
where Ts denotes a split subtorus of dimension two in a maximal torus T ⊂ E6, so that the
dual lattice N is generated by the coroots 1

2 α∨1 , 1
2 α∨2 .

Let X4 be the smooth Fano embedding of E6/F4 with Picard number one. Using the
description in [28], we know that the two colors D1, D2 and the G-stable divisor E in X4
have the images ρ(D1) =

1
2 α∨1 , ρ(D2) =

1
2 α∨2 and ρ̂(E) = − 1

2 α∨1 −
1
2 α∨2 in N , respectively.

Proposition 6. Let X4 be the smooth Fano symmetric embedding of E6/F4 with Picard number
one. The moment polytope ∆4 = ∆(X4, K−1

X4
) is the convex hull of three points 0, 34v1, 34v2 in

M⊗R.

Proof. From the colored data of E6/F4 and the G-orbit structure of X4, we know the
relation −KX4 = 8D1 + 8D2 + E of the anticanonical divisor. Using Proposition 2, 1

8 ρ(D1),
1
8 ρ(D2) and ρ̂(E) are used as inward-pointing facet normal vectors of the moment polytope
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∆(X4, K−1
X4

). In particular, 1
8 ρ(D1) and 1

8 ρ(D2) determine the positive restricted Weyl
chamber. Indeed, 1

8 ρ(D1) =
1

16 α∨1 gives an inequality〈
1

16
α∨1 , x · 2v1 + y · 2v2 − 2ρθ

〉
=

1
16

(2x− 16) ≥ −1

because 2ρθ = 16α1 + 16α2 = 16v1 + 16v2. As ρ̂(E) = − 1
2 α∨1 −

1
2 α∨2 gives a domain

{x · 2v1 + y · 2v2 ∈ M ⊗ R : x + y ≤ 17}, the moment polytope ∆(X4, K−1
X4

) is the

intersection of this half-space with the positive restricted Weyl chamber. Thus ∆(X4, K−1
X4

)
is the convex hull of three points 0, 34v1, 34v2 inM⊗R.

Corollary 4. The smooth Fano embedding X4 of E6/F4 with Picard number one admits a Kähler–
Einstein metric.

Proof. As the multiplicity of each restricted root in the restricted root system Φθ is eight,
the Duistermaat–Heckman measure onM⊗R is given as

∏
α∈Φ+\Φθ

κ(α, p) dp = x8
(
− x

2
+

√
3

2
y
)8( x

2
+

√
3

2
y
)8

dxdy.

Then, the barycenter

barDH(∆4) = (x̄, ȳ) =

(
221
27

,
221
√

3
27

)
=

221
216
× 2ρθ

is in the relative interior of the translated cone 2ρθ + C+θ (see Figure 4). Therefore, X4 admits
a Kähler–Einstein metric by Proposition 1.

0 v1

v2

α1

α2

α1 + α2

2ρθ

34v1

34v2

barDH(∆4)

Figure 4. ∆4 = ∆(X4, K−1
X4

).

3.5. Smooth Fano Embedding of G2/(SL(2,C)× SL(2,C)) with Picard Number One

Let θ be the unique nontrivial involution on the simple algebraic group G2. Then, Gθ

is isomorphic to SL(2,C)× SL(2,C), but Φθ is empty and the restricted root system Φθ is
the root system of type G2. The spherical weight latticeM = X(T/T ∩ Gθ) is generated by
2λ for weights λ ∈ X(T) of a maximal torus T ⊂ G2, so that the dual lattice N is generated
by the coroots 1

2 α∨1 , 1
2 α∨2 .

Let X5 be the smooth Fano embedding of G2/(SL(2,C)× SL(2,C)) with Picard num-
ber one. Using the description in [28], we know that the two colors D1, D2 and the G-stable
divisor E in X5 have the images 1

2 α∨1 , 1
2 α∨2 and − 1

2 v∨2 in N , respectively. Recall that
the maximal colored cone of its colored fan is (Cone(α∨2 ,−v∨2 ), {D2}) from Theorem 6
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of [28]. Then we have two relations 2D1 − D2 = 0 and −3D1 + 2D2 − E = 0, so that
D2 = 2D1 = 2E in Pic(X5).

Choose a realization of the root system G2 in the Euclidean plane R2 with α1 = (1, 0)
and α2 =

(
− 3

2 ,
√

3
2

)
. Then, the complex Lie group G2 has six positive roots:

Φ+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}

=

{
(1, 0),

(
−3

2
,

√
3

2

)
,

(
−1

2
,

√
3

2

)
,

(
1
2

,

√
3

2

)
,

(
3
2

,

√
3

2

)
, (0,
√

3)

}
.

From the relation (α∨i , vj) = δij, the fundamental weights corresponding to the system

of simple roots are v1 =
(

1
2 ,
√

3
2

)
, v2 = (0,

√
3).

Proposition 7. Let X5 be the smooth Fano symmetric embedding of G2/(SL(2,C)× SL(2,C))
with Picard number one. The moment polytope ∆5 = ∆(X5, K−1

X5
) is the convex hull of three points

0, 8v1, 4v2 inM⊗R.

Proof. From the colored data of G2/(SL(2,C)× SL(2,C)) and the G-orbit structure of X5,
we know the relation−KX5 = D1 + D2 + E of the anticanonical divisor. Using Proposition 2,
ρ(D1), ρ(D2) and ρ̂(E) are used as inward-pointing facet normal vectors of the moment
polytope ∆(X5, K−1

X5
). As before, ρ(D1) and ρ(D2) determine the positive Weyl chamber.

Indeed, ρ(D1) =
1
2 α∨1 gives an inequality〈

1
2

α∨1 , x · 2v1 + y · 2v2 − 2ρθ

〉
=

1
2
(2x− 2) ≥ −1

because 2ρθ = 10α1 + 6α2 = 2v1 + 2v2. As ρ̂(E) = − 1
2 v∨2 =

(
0,− 1√

3

)
gives a domain

{x · 2v1 + y · 2v2 ∈ M⊗R : x+ 2y ≤ 4} from 〈v∨2 , v1〉 = 1 and 〈v∨2 , v2〉 = 2, the moment
polytope ∆(X5, K−1

X5
) is the intersection of this half-space with the positive Weyl chamber.

Thus, ∆(X5, K−1
X5

) is the convex hull of three points 0, 8v1 = (4, 4
√

3), 4v2 = (0, 4
√

3) in
M⊗R.

Corollary 5. The smooth Fano embedding X5 of G2/(SL(2,C)× SL(2,C)) with Picard number
one admits a Kähler–Einstein metric.

Proof. For p = (x, y), the Duistermaat–Heckman measure onM⊗R is given as

∏
α∈Φ+

κ(α, p) dp = x
(
− 3

2
x+
√

3
2

y
)(
− 1

2
x+
√

3
2

y
)(1

2
x+
√

3
2

y
)(3

2
x+
√

3
2

y
)
(
√

3y) dxdy.

From Proposition 7, we can compute the volume

VolDH(∆5) =
∫ 4
√

3

0

∫ y√
3

0
x
(
− 3

2
x +

√
3

2
y
)(
− 1

2
x +

√
3

2
y
)(1

2
x +

√
3

2
y
)(3

2
x +

√
3

2
y
)
(
√

3y) dxdy

= 29, 952
√

3,

and the barycenter

barDH(∆5) = (x̄, ȳ) =

(
512
273

,
32
√

3
9

)
≈ (1.875, 3.556×

√
3)
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of the moment polytope ∆5 with respect to the Duistermaat–Heckman measure. Therefore,
barDH(∆5) is in the relative interior of the translated cone 2ρθ + C+θ (see Figure 5), so X5
admits a Kähler–Einstein metric by Proposition 1.

0

v1

v2

α1

α2

3α1 + α2

α1 + α2

2ρθ

8v14v2

barDH(∆5)

Figure 5. ∆5 = ∆(X5, K−1
X5

).

3.6. Smooth Fano Embedding of (G2 × G2)/G2 with Picard Number One

As explained in Section 3.2, the simple algebraic group G2 can be considered as a
symmetric homogeneous space (G2×G2)/diag(G2) under the action of the group G2×G2
for the involution θ(g1, g2) = (g2, g1), g1, g2 ∈ G2. The spherical weight latticeM can be
identified with the character group X(T) of a maximal torus T ⊂ G2 by the projection to
the first coordinate, and the dual lattice N is generated by the coroots α∨1 , α∨2 .

Let X6 be the smooth Fano embedding of (G2 × G2)/G2 with Picard number one.
Using the description in [28], we know that the two colors D1, D2 and the G-stable divisor
E in X6 have the images ρ(D1) = α∨1 , ρ(D2) = α∨2 , and ρ̂(E) = −v∨2 in N , respectively.

Proposition 8. Let X6 be the smooth Fano symmetric embedding of (G2 × G2)/G2 with Picard
number one. The moment polytope ∆6 = ∆(X6, K−1

X6
) is the convex hull of three points 0, 7v1,

7
2 v2 inM⊗R.

Proof. From the colored data of (G2 × G2)/G2 and the G-orbit structure of X6, we know
the relation −KX6 = 2D1 + 2D2 + E of the anticanonical divisor. Using Proposition 2,
1
2 ρ(D1), 1

2 ρ(D2), and ρ̂(E) are used as inward-pointing facet normal vectors of the moment
polytope ∆(X6, K−1

X6
). As 2ρθ = 10α1 + 6α2 = 2v1 + 2v2, 1

2 ρ(D1) =
1
2 α∨1 gives an inequality〈

1
2

α∨1 , x ·v1 + y ·v2 − 2ρθ

〉
=

1
2
(x− 2) ≥ −1.

Therefore, 1
2 ρ(D1) and 1

2 ρ(D2) determine the positive Weyl chamber. In the same way,
as ρ̂(E) = −v∨2 gives a domain {x · v1 + y · v2 ∈ M⊗ R : x + 2y ≤ 7}, the moment
polytope ∆(X6, K−1

X6
) is the intersection of this half-space with the positive Weyl chamber.

Thus ∆(X6, K−1
X6

) is the convex hull of three points 0, 7v1 =
(

7
2 , 7
√

3
2

)
, 7

2 v2 =
(

0, 7
√

3
2

)
in

M⊗R.

Corollary 6. The smooth Fano embedding X6 of (G2 × G2)/G2 with Picard number one admits a
Kähler–Einstein metric.
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Proof. We can compute the barycenter of ∆6 with respect to the Duistermaat–Heckman
measure

barDH(∆6) = (x̄, ȳ) =

(
139601
79360

,
49
√

3
15

)
≈ (1.759, 3.267×

√
3)

from

VolDH(∆6) =
∫ 7

√
3

2

0

∫ y√
3

0
x2
(
− 3

2
x +

√
3

2
y
)2(
− 1

2
x +

√
3

2
y
)2(1

2
x +

√
3

2
y
)2(3

2
x +

√
3

2
y
)2

(
√

3y)2 dxdy.

As 2ρθ = (1, 3
√

3) and the cone C+θ is generated by the vectors (1, 0) and (−3,
√

3),
the barycenter barDH(∆6) is in the relative interior of the translated cone 2ρθ + C+θ (see
Figure 6). Therefore, X6 admits a Kähler–Einstein metric by Proposition 1.

0

v1

v2

α1

α2

3α1 + α2

α1 + α2

2ρθ

7v1
7
2 v2

barDH(∆6)

Figure 6. ∆6 = ∆(X6, K−1
X6

).

Finally, by Ruzzi’s classification of the smooth projective symmetric varieties with
Picard number one in [18], Corollaries 1–6 imply the following statement. Therefore,
we conclude Theorem 1.

Theorem 2. All smooth Fano symmetric varieties with Picard number one admit Kähler–Einstein metrics.
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