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Abstract: Using the wavelet transform defined in the infinite domain to process the signal defined
in finite interval, the wavelet transform coefficients at the boundary are usually very large. It will
bring severe boundary effect, which reduces the calculation accuracy. The construction of interval
wavelet is the most common method to reduce the boundary effect. By studying the properties of
Shannon-Cosine interpolation wavelet, an improved version of the wavelet function is proposed,
and the corresponding interval interpolation wavelet based on Hermite interpolation extension
and variational principle is designed, which possesses almost all of the excellent properties such as
interpolation, smoothness, compact support and normalization. Then, the multi-scale interpolation
operator is constructed, which can be applied to select the sparse feature points and reconstruct
signal based on these sparse points adaptively. To validate the effectiveness of the proposed method,
we compare the proposed method with Shannon-Cosine interpolation wavelet method, Akima
method, Bezier method and cubic spline method by taking infinitesimal derivable function cos(x)
and irregular piecewise function as an example. In the reconstruction of cos(x) and piecewise
function, the proposed method reduces the boundary effect at the endpoints. When the interpolation
points are the same, the maximum error, average absolute error, mean square error and running time
are 1.20 × 10−4, 2.52 × 10−3, 2.76 × 10−5, 1.68 × 10−2 and 4.02 × 10−3, 4.94 × 10−4, 1.11 × 10−3,
9.27 × 10−3, respectively. The four indicators mentioned above are all lower than the other three
methods. When reconstructing an infinitely derivable function, the curve reconstructed by our
method is smoother, and it satisfies C2 and G2 continuity. Therefore, the proposed method can better
realize the reconstruction of smooth curves, improve the reconstruction efficiency and provide new
ideas to the curve reconstruction method.

Keywords: parameterized Shannon-Cosine interpolation wavelet; hermite interpolation; interval
wavelet; curve reconstruction; multi-scale interpolation operator

1. Introduction

In modern industrial manufacturing technology, curve and surface modeling technol-
ogy is one of the very important technologies, and its plays an important role in numerical
fitting and approximation; computer vision; streamlined design of crafts, outline design of
aircraft, automobiles and ships; restoration of cultural relics; geological surface interpola-
tion [1]; reverse engineering [2,3]; and other fields. Besides, it is the core of computer-aided
geometric design (CAGD) [4].
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In practical applications, interpolation techniques [5,6] are often used to reconstruct
signals accurately on some interpolation points. The common interpolation methods in-
clude Bezier method [7], B-Spline method [8,9] and non-uniform rational B-Spline (NURBS)
method [10,11]. Some other methods are based on these classical methods: interpolation
basis function method [12,13], interpolation geometry iteration method [14], interpolation
subdivision method [15], etc. The subdivision method is applicable for any topology
structure, but unfortunately it is difficult to obtain the analytical expression of the curve.
Subdivision method is a subdivision iterative process from coarse to fine. This process
generates a multi-level sequence of the model, that is, the model is transformed from low
resolution to high resolution, which is similar to multi-resolution analysis [16,17]. In fact,
wavelet analysis is an important way to realize multi-resolution analysis. There have been
many studies using wavelet analysis theory [18,19] with interpolation characteristics for
approximation of different smoothness curves, which have made effective progress in
effectively suppressing the boundary effect brought by wavelet transform and further in
improving the approximation accuracy.

Shannon-Cosine wavelet [20–22] has been proposed recently, it not only has excellent
properties such as normalization, interpolation, double scale, compact support, smooth-
ness and analytical expression, but also the support interval and smoothness of wavelet
function can be controlled through iterative parameters adaptively. The excellence of
Shannon-Cosine interpolation wavelet has been verified in the solution of fractional partial
differential equations [20].

However, wavelet transform is defined on an infinite interval and the signals are
defined on a finite interval; direct use of wavelet transform will produce a large-scale
boundary effect [23,24]. Constructing interval wavelet is the most common method to
solve the boundary effect. Interval wavelet based on generalized variational principle is
constructed based on boundary extension, that is, the extension is mapped into wavelet
function by generalized variational principle. Common extension methods [25,26] in-
clude symmetric extension [27,28], zero extension [29], periodic extension and mirror
extension [30]. Each method has its applicable scope, for example, periodic extension is
only suitable for periodic functions and mirror extension is only suitable for signals with
Neumman boundary conditions.

There exist several common methods for constructing interval interpolation wavelets
on bounded intervals, such as extrapolation [31], spline interpolation [32–34], Newton
interpolation, polynomial method [35–37] and central affine change method. Lagrange
extrapolation method [38] is the most commonly used method for constructing interval
wavelets. However, when the gradient of approximation function is large, interpolation
points need to be added, and the resulting Gibbs phenomenon [39] will also cause errors.
Chebyshev-polynomial wavelets [35] require weights in their scalar products, which may
lead to difficulties in balancing the relative significance of their coefficients. Mei et al. [24]
constructed a dynamic interval wavelet based on the Newton interpolation method, which
can dynamically select the extrapolation points in the interval wavelet and limit the bound-
ary effect without increasing calculation amount. Bin and Michelle [28] constructed a
interval wavelet based on symmetry on interval [0, 1]. Wei et al. [40,41] constructed the
interval wavelet based on central affine transformation extension method. This extension
method ensures smooth and continuous at the extension boundary, and the smoothness
of the extension function in the extension interval is consistent with the original signal.
However, it does not decay to zero in the extension interval and the signal boundary may
also contain high-frequency signals, which is equivalent to moving the boundary effect
in the effective interval into the extension interval. To avoid the boundary effect from
backing to the effective interval of the signal again, the extension interval scope needs to be
increased, which leads to a large increase in calculation amount and a decrease in efficiency.
Therefore, our paper constructs an interval wavelet based on Hermite interpolation, so
that it attenuates to zero in the extension interval, and essentially reduces the influence of
boundary effects.
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The purpose of this research is to construct a novel algorithm for the reconstruction of
curves by the means of the Shannon-Cosine interpolation wavelet and Hermite interpola-
tion extension. In this scheme, the Shannon-Cosine interpolation wavelet possesses many
excellent numerical properties such as the interpolation, the compact support, symmetry,
smoothness analytical expression and so on. The Hermite interpolation extension can elim-
inate the boundary effect as it is smooth in the interval [−∞, ∞]. This paper is organized
as follows. We review the properties of Shannon-Cosine wavelet first. Then, we construct
the interval Shannon-Cosine interpolation wavelet based on Hermite interpolation and
variational principle. Third, we design a multi-scale interpolation operator based on in-
terval Shannon-Cosine interpolation wavelet and some properties are proved. Finally, we
perform some numerical examples in reconstructing curves.

2. Shannon-Cosine Interpolation Wavelet

Shannon-like wavelet possesses almost all the excellent numerical properties such
as interpolation, smoothness, continuity, orthogonality, fast calculation speed and infinite
differentiability, except the compact support domain, which limits its applications greatly.

To make use of the excellent properties of Shannon wavelet, researchers proposed
many methods to improve it. The methods are usually used to improve the compact
support by introducing windows functions [42,43], such as Meyer window [44], Nuttall
window, Blackman window [45], Gauss window [46,47], etc. Similar to windowed Fourier
transform, windowing function accelerates the delay speed of Shannon wavelet function,
but it also destroys the normalization characteristic of Shannon function. Hoffman and
Wei constructed Shannon–Gabor wavelet [48] by introducing Gauss window to Shan-
non wavelet, which is called quasi-wavelet because it does not satisfy compact support
characteristic and normalization characteristic. When approximating the signal, the orig-
inal signal will be amplified or reduced, which leads to the limited application scope of
Shannon–Gabor wavelet. Therefore, windowing is not recommended [20,21].

To satisfy the normalization condition and improve the compact support of Shannon
wavelet, we take the linear combination of the cosine functions instead of Gaussian to
improve the compact support property Shannon. The Shannon-Cosine wavelet scale
function used in this paper can be expressed as follows

Sc(x) =
sin(πx)

πx
Tm

N (x)RN(x) (1)

where
Tm

N (x) =
1

2m−1

(
cos
(πx

N

))2m
(2)

RN(x) = χ(x +
N
2
)− χ(x− N

2
) (3)

where RN(x) is a rectangular pulse function on the interval [−N
2

,
N
2
], N is a constant

related to the support interval, Sc(x) is a Shannon-Cosine wavelet function, Tm
N (x) is a

linear combination of cosine functions, an is a linear combination coefficient controlling the
smoothness of the function and χ(x) is a Heaviside function, defined as follows

χ(x) =


0, x < 0
1
2

x = 0

1, x > 0

(4)

It should be pointed out that the Shannon-Cosine wavelet function is different from one
proposed in Reference [20], in which the parameter an should be used to control the
smoothness of Sc(x). Sc(x) in Reference [20] is a continuous differentiable function in the
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interval
(
−N

2
,

N
2

)
, but it is not always continuous at the endpoints of the interval. To

satisfy the continuity at the end points x = ±N/2, let

dn

dxn Sc(x)
∣∣∣x= N

2
= 0, n = 0, 1, . . . , m + 1 (5)

Since sinc(x) is infinitely differentiable, RN(x) is just a truncated function, and Equa-
tion (5) is equivalent to the following equation

dn

dxn Tm
N (x)

∣∣∣x= N
2
= 0, n = 0, 1, . . . , m + 1 (6)

As an interpolation function, it satisfies

Sc(0) = 1 (7)

Substituting x = N/2 (or x = −N/2) and x = 0 into Equations (1) and (6), we can get
the linear algebraic equations about parameter ai(i = 0, 1, . . . , m). Mei and Gao [20] gave
the recurrence formula of an in detail

an =

(−1)n n−1
∏
i=1

i2a0 −
m
∑

k=n+1
((−1)k n−1

∏
i=1

(k2 − i2)ak)

(−1)n n−1
∏
i=1

(n2 − i2)
(8)

where a0 can be obtained by solving equation
m
∑

i=0
ai = 1, and the value of ai(i = 1, 2, . . . ) is

related to the value of m, which is given in Table 1.

Table 1. Value of ai(i = i, 2, . . . ).

m a0 a1 a2 a3 a4 a5 a6 a7

0 1
1 1/2 1/2
2 3/8 1/2 1/8
3 5/16 15/32 3/16 1/32
4 35/128 7/16 7/32 1/16 1/128
5 63/256 105/256 15/64 45/512 5/256 1/512
6 231/1024 99/256 495/2048 55/512 33/1024 3/512 1/2048
7 429/2048 3003/8192 1001/4096 1001/8192 91/2048 91/8192 7/4096 1/8192

It is obvious that the wavelet function Sc(x) is equvilent with one proposed in Refer-
ence [20] as the parameter m ≤ 3. Generally, when m = 3, the smoothness of the curve can
be guaranteed. We select m = 3 in our experiment.

Theorem 1. The Shannon-Cosine wavelet scaling function (1) (as shown in Equations (1)) is a

smooth function in the tight support interval
[
−N

2
,

N
2

]
.

Proof of Theorem 1. According to the definition of the smooth function, which refers to an
infinitely differentiable function, we only need to prove that Sc(x) is infinitely differentiable.

Let f (x) =
sin(πx)

πx
, g(x) =

1
2m−1

(
cos
(πx

N

))2m
. Obviously, f (x) and g(x) are

infinitely differentiable functions.
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In the interval
(
−N

2 , N
2

)
, RN(x) = 1. Sc(x) can be described as

Sc(x) =
sin(πx)

πx
1

2m−1

(
cos
(πx

N

))2m
(9)

According to the definition of Leibniz formula, we know that

( f (x)± g(x))(n) = f (x)(n) ± g(x)(n)

( f (x)g(x))(n) =
(n)

∑
k=0

Ck
n f (x)(n−k)g(x)(k)

(10)

where, Ck
n =

n!
k!(n− k)!

, u(0) = u, v(0) = v.

It can be proved that Sc(x) is a smooth function in the interval
(
−N

2
,

N
2

)
.

Then, we prove the continuity of the functions Sc(x) at the endpoints x = ±N/2. To
the Equation (2) proposed in this paper is obvious. To the function Sc(x) in Reference [20],
we also give its proof as follows.

It is known that when m = 3, a0 =
5
16

, a1 =
15
32

, a2 =
3

16
, a3 =

1
32

. Sc(x) can be
described as

Sc(x)=
sin(πx)

πx

(
5

16
cos 0 +

15
32

cos
2πx

N
+

3
16

cos
4πx

N
+

1
32

cos
6πx

N

)
RN(x) (11)

When x = N/2, Sc(
N
2
) = 0× 1

2
= 0.

When x → N/2−, limx→N/2−Sc(x) = 0× 1 = 0 = Sc(
N
2
).

Thus, Sc(x)is continuous at x = N/2, and similarly we can prove that Sc(x) is
continuous at x = −N/2. It can be proved that Sc(x) is a smooth function in the support

interval
[
−N

2
,

N
2

]
.

This completes the proof.

Figure 1 is a comparison between Shannon scale function and Shannon-Cosine inter-
polation wavelet scale function. We can see from the diagram that Shannon-Cosine interpo-
lation wavelet is a real compact support function, not a quasi-wavelet as Shannon–Gabor.

(a)

Figure 1. Cont.
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(b)

Figure 1. Comparison between Shannon wavelet scale function sinc(x) and Shannon-Cosine wavelet
scale function Sc(X): (a) Shannon wavelet scale function; and (b) Shannon-Cosine wavelet scale
function Sc(X), m = 3.

3. Construction of Interval Shannon-Cosine Interpolation Wavelet Based on Hermite
Interpolation Extension

The wavelet transform is defined by convolution operation and the wavelet basis
function appears as a smooth function. When the signal and the wavelet function perform
a convolution operation, if the end of the signal is not zero, then one side has a value
and the other side is zero in the support interval of the wavelet, which will produce high
frequency information and cause boundary effect. In this paper, we construct interval
interpolation wavelet based on Hermite interpolation extension and variational principle.
We assume that the first-order derivative value and function value at the left end of the
extension interval are all zero, and the first-order derivative value and the function value
at the right end of the extension interval are equal to the function value and first-order
derivative value of the signal. Then, a smooth function is obtained by using two-point cubic
piecewise Hermite interpolation, which can keep the signals in the extension interval and
the effective interval smooth and continuous at the boundary and decay to zero smoothly
in the extension interval, thus the boundary effect is reduced by wavelet transform greatly.

3.1. Extension Method Based on Hermite Interpolation

Piecewise cubic Hermite interpolation is a basic method for function fitting and
interpolation. For a series of given n + 1 at interpolation points x0 < x1 < . . . < xn, the
function value y0, y1, . . . , yn and derivative value m0, m1, . . . , m2 of the function f (x) on
these interpolation points, for any i = 0, 1, 2, . . . , n, constructing interpolation polynomials
with a degree not exceeding three times in the interval [xi, xi+1], with H(xi) = yi and
H
′
(xi) = mi. The function H(x) is the piecewise cubic Hermite interpolation function at

the interpolation points (x0, y0), (x1, y1), . . . , (xn, yn).

Theorem 2. A continuous and derivable curve H(x) is defined in the interval [a−c, a]. Given the
function value and derivative value of the curve at endpoints, there must be a section of Hermite
interpolation function H(x)

H(x) = H(a− c)
(

1 + 2
x− a + c

c

)(
x− a

c

)2
+ H(a)

(
1 + 2

x− a
−c

)(
x− a + c

c

)2

+H′(a− c)(x− a + c)
(

x− a
c

)2
+ H′(a− c)(x− a)

(
x− a + c

c

)2
(12)
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where c is the size of the extension interval, H(a) = f (a), H′(a) = f ′(a), f (a) and f ′(a) are the
function value and derivative value at the left end of the interval of the approximated function.
H(a− c) = 0, H′(a− c) = 0, because we need to ensure that the continuation function is smooth
and decays to zero in the continuation interval. According to the known conditions, Equation (12)
can be simplified as

H(x) = (−2x + 1 + 2a)
(

x− a + c
c

)2
f (a) + (x− a)

(
x− a + c

2

)2
f ′(a) (13)

The extension function at the other end can be found in the same way.
To evaluate the generality of the proposed method, we find three cases: the first-order

derivative values of the signal which are needed to be processed at the boundary are
positive, zero and negative, respectively. The blue curve represents the original signal and
the red represents the continuation function. The results are illustrated in Figure 2.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-20

-15

-10

-5

0

5

10

15

20

25

30

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10

-40

-20

0

20

40

60

80

100

(b)

-10 -8 -6 -4 -2 0 2 4 6 8 10

-40

-20

0

20

40

60

80

100

(c)

Figure 2. Extension diagram of Hermite method: (a) the first-order derivative is positive; (b) the first-order derivative is
zero; and (c) the first derivative is negative.

As illustrated in Figure 2, this extension method makes the signal smoother at the
boundary in the three conditions. Moreover, it can make the signals at both ends of the
curve smoothly decay to zero, which can effectively reduce the boundary effect.
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3.2. Multi-Scale Interpolation Wavelet

Let φ(x) be the basis function of the interpolation wavelet; the scale function sequence
can be defined as

φj,k(x) = φ(2jx− k), k = 0, 1, 2, . . . , 2j (14)

By means of the definition of the basis function, we construct the subspace sequence
of L2(0, 1) as follows

Vj = span〈φj,k, k = 0, 1, 2, . . . , 2j〉 ⊂ L2(0, 1) (15)

Because the scale function φ(x) has the interpolation property, we obtain φj,k(n2−j) =
δn,k. The interpolation operator can be defined as follows

Ij f =
2j

∑
k=0

f (xjk)φjk, xjk = k2−j (16)

By means of the definition of Vj, wavelet function space Wj ⊂ Vj+1 can be defined as

Wj = span〈ψjk, k = 0, 1, 2, . . . , 2j − 1〉 (17)

where ψjk = φj+1,2k+1.
Let yjk = xj+1,2k+1, then, we can easily obtain the expression of wavelet function ψjk

as follows
ψjk(yjn) = δkn, ψj,k(yj′n) = 0, ∀j

′
< j (18)

Obviously, Vj+1 = Vj
⊕

Wj, Vj constitutes a multi-resolution analysis.
For any function f (x) ∈ L2(0, 1), we can always find a large enough J to make f J ∈ VJ

infinitely approximating to f (x) . Assuming the coefficients of wavelet function and scale
function are αj,k and β j0,k, respectively, we obtain

f J(x) =
2j0

∑
k=0

β j0,kφj0,k(x) +
J−1

∑
j=j0

2j−1

∑
k=0

αj,kψj,k(x) (19)

where β j0,k = δj0,k f (xj0,k) = f (xj0,k), xj0,k is the feature point of wavelet on layer j0 and the
Wavelet coefficients αj,k can be expressed as

αj,k = f (yj,k)−Qj f (yj, k) (20)

where yj,k = xj+1,2k+1 and Qj represents the wavelet interpolation operator on the j layer.
According to Equation (20), we know the interpolated wavelet coefficients αj,k have

intuitive geometric meaning: it is the error between the actual value and the reconstructed
value at yj,k.

Theorem 3. The multi-scale interpolative wavelet transform matrix based on Shannon-Cosine
wavelet can be defined as

Cj,J
k,n = Rj+1,J

2k+1,n −
2j0

∑
k0=0

Rj0,J
k0,nφj0,k0(xj+1,2k+1)−

j−1

∑
j1=j0

2j1−1

∑
k1=0

Cj1,J
k1=0ψj1,k1(xj+1,2k+1) (21)

When j = j0, we have

Cj0,J
k,n = Rj0,J

2k+1,n −
2j0

∑
k0=0

Rj0,J
k0,nφj0,k0(xj0+1,2k+1) (22)
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where 0 ≤ j0 ≤ J − 1,j0 ∈ Z,4xJ =
xmax − xmin

2J , xJ,n = xmin + n

Proof of Theorem 3. Let Cj,J
k,n denote the multi-scale interpolative wavelet transform ma-

trix; the wavelet transform coefficient can be expressed as

αj,k =
2J

∑
n=0

Cj,J
k,n f (xJ,n) (23)

According to Equations (19) and (20), we obtain the calculation formula of interpola-
tion wavelet coefficient expression as follows

αj,k = f (yj,k)− [
2j0

∑
k0=0

f (xj0,k0 φj0,k0(yj,k) +
j−1

∑
j1=j0

2j1−1

∑
k1=0

αj1,k1 ψj1,k1(yj,k) (24)

To construct a uniform multi-level interpolation wavelet operator, the coefficient αj,k
of the interpolation wavelet needs to be expressed in the form of a weighted sum for the
wavelet features on the J layer, so a restriction operator [49] needs to be introduced, which
can be expressed as follows [50]

Rj,J
k,n =

{
1, xj,k = xJ,n

0, others
(25)

By means of the definition of the restricted operation, we have
f (yj,k) =

2J

∑
n=0

Rj+1,J
2k+1,n f (xJ , n)

f (yj0,k0) =
2J

∑
n=0

Rj0,J
k0,n f (xJ,n)

(26)

Substituting Equation (26) into Equation (24), we obtain

αj,k =
2J

∑
n=0

[Rj+1,J
2k+1,n−

2j0

∑
k0=0

φj0,k0 (xj+1,2k+1)] f (xJ,n)−
2J

∑
n=0

j−1

∑
j1=j0

2j1−1

∑
k1

αj1,k1
ψj1,k1

(xj+1,2k+1) (27)

where k, n ∈ 0, 1, 2, . . . , 2j, 0 ≤ j ≤ J − 1.
Substituting Equation (23) into Equation (27), we obtain

K

∑
n=0

Cj,J
k,n f (xJ,n) =

2J

∑
n=0

[Rj+1,J
2k+1,n−

2j0

∑
k0=0

φj0 ,k0 (xj+1,2k+1)] f (xJ,n)−
2J

∑
n=0

j−1

∑
j1=j0

2j1−1

∑
k1

αj1 ,k1 ψj1 ,k1 (xj+1,2k+1)

=
2j

∑
n=0

[Rj+1,J
2k+1,n −

2j0

∑
k0=0

Rj0 ,J
k0 ,nφj0 ,k0 −

j−1

∑
j1=j0

2j1−1

∑
k1=0

αj1 ,k1 ψj1 ,k1 ] f (xJ,n)

(28)

Obviously, taking off the sum operator f (xJ , n) on both sides of Equation (28), Equa-
tion (21) is obtained. This completes the proof.

Theorem 4. The multi-scale interpolative operator based on Shannon-Cosine interpolation wavelet
can be defined as

QJ =
2j0

∑
k0=0

Rj0,J
k,n φj0,k(x) +

j−1

∑
j=j0

2j−1

∑
k=0

Cj,J
k,nψj,k(x) (29)
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Proof of Theorem 4. According to Equation (20), we know that

αj,k = f (yj,k)−Qj f (yj,k) (30)

Substituting Equations (23) and (26) into Equation (19), we obtain

f J(x) =
2j

∑
n=0

[
2j0

∑
k0=0

Rj0,J
k,n φj0,k +

j−1

∑
j=j0

2j−1

∑
k=0

Cj,J
k,nψj,k] f (xJ,n) (31)

The expression of approximating function on the jth layer can be regarded as the result
of the operation of the wavelet collocation points according to the interpolation operator
on this layer. We have

f J(x) =
2j

∑
n=0

QJ(x) f (xJ,n) (32)

According to Equations (31) and (32), we have

f J(x) =
2j

∑
n=0

[
2j0

∑
k0=0

Rj0,J
k,n φj0,k +

j−1

∑
j=j0

2j−1

∑
k=0

Cj,J
k,nψj,k] f (xJ,n)

=
2j

∑
n=0

QJ(x) f (xJ,n)

(33)

Obviously, through taking off the same operator of both sides of Equation (33), we
obtain Equation (29). This completes the proof.

3.3. Construction of Interval Interpolation Wavelet

Shannon-Cosine interpolation wavelet has excellent compact support property, so we
can obtain interpolation basis functions as follows

ϕ(x) =
sin

π

∆
(x− xn)

π

∆
(x− xn)

1
2m−1

(
cos
( π

N
(x− xn)

))2m
· [χ(x− xn +

N
2
− χ((x− xn)−

N
2
))] (34)

Assuming the approximating function as f (x), the solution domain as [a, b], take R =
2j + 1(j ∈ Z) discrete points x0, x1, . . . , x2j in the given interval, and take L extension points
x−L−1, x−L, . . . , x−1 and xR, xR+1, . . . , xR+L on both sides of the boundary. We can obtain
the interpolation basis function as follows

wjk(x) =


φ(2jx− k) +

−1
∑

n=−L+1
ankφ(2jx− n), k = 0, . . . , L

φ(2jx− k), k = L + 1, . . . , 2j − L− 1

φ(2jx− k) +
n=2j+L−1

∑
n=2j+1

bnkφ(2jx− n), k = 2j − L, . . . , 2j

(35)

In Equation (35), ank is a vector composed of the approximate value of the unknown
function f (x) at discrete points x and bnk is a vector composed of the extension points on
both sides of the boundary of the function f (x). We have

ank

−1

∏
i=L−1

i 6=k

xj,n − xj,i

xj,k − xj,i
, bnk =

2j+1+L

∏
i=2j+1

i 6=k

xj,n − xj,i

xj,k − xj,i

xj,k = k
xmax − xxin

2j , k ∈ Z

(36)
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φ(x) is an auto-correlative function, and its expression is φ(x) =
∫ ∞
−∞ φ(y)φ(y −

x)dy. φ(y) is a scaling function. Therefore, the approximate function expression f (x) of
interpolation wavelet can be expressed as follows

f j(X)=
−1

∑
n=−L

HSL(xn)w(2jx− n)+
2j

∑
n=0

f j(xk)w(2jx− n)+
2j+L

∑
n=2j+1

HSR(xn)w(2jx−n) (37)

where

HSR = (1 + 2
xn − x2j

xR+L − x2j
)(

xn − xR+L
x2j − xR+L

)2 f (x2j) + (xn − x2j)(
xn − xR+L
x2j − xR+L

)2 f (x2j)
′

(38)

HSL = (1 + 2
xn − x0

x−L−1 − x0
)(

xn − x−L−1

x0 − x−L−1
)2 f (x0) + (xn − x0)(

xn − x−L−1

x0 − x−L−1
)2 f (x0)

′
(39)

The interval wavelet function schematic diagram is shown in Figure 3, in which curve
I represents the original signal, I1 represents the left extension interval wavelet function
and I2 represents the right extension interval wavelet function. It can be observed that the
interval Shannon-Cosine interpolation wavelet makes the original signal continuous and
smooth at the boundary and smoothly decay to zero.

Figure 3. Schematic diagram of segmented interval wavelet.

The error estimation formula can be expressed as follows

RL =
1
4!

f (4)(ξ)(x− x−L−1)
2(x− x0)

2, ξ ∈ (x−L−1, x0) (40)

RR =
1
4!

f (4)(ξ)(x− xR)
2(x− xR+L)

2, ξ ∈ (x−L−1, x0) (41)

where f j(xk) is the given value at the adaptive reservation point xk amd HSL(xn) and
HSR(xn) correspond to the external points on the left and right sides, respectively, which
are obtained by Hermite interpolation. According to the above formula, it can be concluded
that the error is related to the gradient at the boundary.

4. Results and Discussion

The purpose of the proposed method is to construct a novel sparse representation
method for the reconstruction of curves. Therefore, we take the infinitely differentiable
smooth function cos(x) and irregular piecewise function to evaluate the performance of the
proposed method To fully evaluate the proposed algorithm, we take subjective evaluation
methods and objective methods in this paper. Objective evaluation methods include error
analysis and smoothness analysis.

To intuitively describe the error between the reconstructed curve and the original
curve, we calculate the absolute value error, the average absolute error and the mean square
error between the reconstructed curve and the original curve at every certain step h.
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There are two different ways to evaluate the smoothness of the reconstructed curves:
one is parameter continuity [51] and the other is geometric continuity [52].

Parametric continuity means that if a curve has equal left and right derivatives up to
kth-order derivative at an interpolation point. Thus, it is kth-order parameter continuity at
this point, which is denoted as Ck continuity.

(1) C0 Continuity: The curve is continuous without breaks at the interpolation point.
(2) C1 Continuity: Two adjacent curves on both sides of the interpolation point have the

same first-order derivative at the interpolation point.
(3) C2 Continuity: Two adjacent curves on both sides of the interpolation point have the

same first-order derivative and second-order derivative at the interpolation point.

Geometric continuity means that, if a curve is proportional to the kth-order derivative
at a certain interpolation point, then it is kth-order geometrically continuous at this point,
which is recorded as Gk continuity.

(1) G0 Continuity: The curve is continuous without breakpoints at interpolation points,
which means that G0 continuity is consistent with C0 continuity.

(2) G1 Continuity: Two adjacent curves on both sides of the interpolation point have the
same unit tangent at that point.

(3) G2 Continuity: Two adjacent curves on both sides of the interpolation point have a
common unit tangent vector and a common curvature vector at the point.

The calculation of curvature is K =
| f (x)

′′ |

(1 + f (x)′2)
3
2

4.1. Selection of Interval Wavelet

If we directly use the Shannon-Cosine interpolation wavelet and the Shannon-Gabor
wavelet to reconstruct the curve with non-zero function values at the endpoints, large errors
will be generated at the endpoints and transmitted to the interval when doing interpolation
wavelet transformation, which will be transmitted to the interval, and the effect is not ideal.
All the above are illustrated in Figure 4.

(a) (b)

Figure 4. Schematic diagram of wavelet reconstruction curve: (a) Shannon-Gabor wavelet; and (b) Shannon-Cosine
interpolation wavelet.

Indeed, if we use the interval Shannon-Cosine wavelet and the interval Shannon-
Gabor wavelet to reconstruct the smooth curve, we can obtain better results, as shown in
Figure 5.

As shown in Figure 5, the effect of interval Shannon-Gabor wavelet is much better, but
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the curve is only the first-order derivative continuous and the curvature has a breakpoint
at the boundary, so it only satisfies C2 continuity. The first-order derivative and curvature
of the curve constructed by the proposed method are both continuous, and so it satisfies
C2 continuity and G2 continuity, the reconstructed curve is also smoother, indicating that
the proposed method is indeed feasible.
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0.5
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1.5

(b)

Figure 5. Schematic diagram of interval wavelet reconstruction curve: (a) interval Shannon–Gabor wavelet; and (b) interval
Shannon-Cosine wavelet.

4.2. Adaptive Selection of Extension Intervals and Interpolation Points

The size of the extension interval directly affects the accuracy and speed of curve
reconstruction. If the extension interval is too small, the boundary effect cannot be solved
well; if the extension interval is too large, the calculation amount will increase greatly and
the efficiency will decrease. Therefore, appropriate selection of the extension interval can
improve the accuracy and speed of curve reconstruction.

At different extension intervals, the multi-scale interpolation operator can automat-
ically adjust the scale according to the change of the gradient. As is known, wavelet
transform has the function of singularity detection, that is, when the wavelet transform
operation is performed on a singular function, the wavelet transform coefficients obtained
at the singular point are very large. Because wavelet has localized characteristics, it can
check the position of singularity. Wavelet adaptive sampling is automatically encrypted
configuration points near singularities and sparse configuration points at smooth areas.
The specific algorithm mainly sets the wavelet coefficient threshold ε, and the configuration
points with wavelet coefficient less than the threshold ε can be discarded.

For the convenience of description, we change Equation (19) as follows

f J(x) = f J
≥(x) + f J

<(x) (42)

where f J
≥(x) =

2j0

∑
k=0

β j0,kφj0,k(x) +
J

∑
j=j0

∑
k∈Z J

αj,kψj,k(x), |αj,k| ≥ ε; f J
<(x) =

J
∑

j=j0
∑

k∈Z J
αj,kψj,k(x), |αj,k| < ε.

Theorem 5 ([53]). For any ε, there is a positive integer C̃ that satisfies
∥∥∥ f J(x)− f J

≥(x)
∥∥∥

L2(Ω)
≤ εC̃.

Theorem 5 shows that, in approximating Equation (42), the part where the wavelet
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coefficient is less than the threshold can be omitted, that is, the wavelet whose wavelet
coefficient satisfies the following formula, the formula is as follows

|αj,k| ≥ a1/2
j ε (43)

where a represents the scale number, which is normally taken as a = 2. By omitting
wavelets whose wavelet coefficients are less than the threshold, the configuration points
corresponding to these wavelets are also omitted.

According to Theorem 5, the wavelet multi-scale interpolation operator can densely
take points in places with large gradients changes and sparsely take points in places with
small gradients changes, as illustrated in Figure 6.

As shown in Figure 6a, when the extension interval is 1, the number of adaptive
interpolation points is 64; as shown in Figure 6b, when the extension interval is 2, the
number of adaptive partition points is 34; as shown in Figure 6c, when the extension
interval is 3, the number of adaptive interpolation points is 21; and as shown in Figure
6d, when the extension interval is 4, the number of adaptive partition points is 22. We can
obtain that the wavelet multi-scale interpolation operator can construct a smooth curve
with as few points as possible, and the points are more reasonable.
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Figure 6. Selection of extension interval: (a) extension interval is 1; (b) extension interval is 2; (c) extension interval is 3; and
(d) extension interval is 4.
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4.3. Numerical Examples

To validate the effectiveness of the proposed method, we conducted two numerical
examples and compared the numerical results with three classical curve construction
methods: Akima method, Bezier method and cubic spline method under the experimental
conditions (OS: Windows; CPU: Inter(R) Core(TM) i5-1035G1 CPU@1.00 GHz 1.19 GHz,
Memory: 16 GB, MATLAB with version 9.4.0.813654 (R2018a)).

Example 1. Infinitely differentiable smooth function, f (x) = cos(x), x ∈ [0, 2π].

The reconstruction of infinitely differentiable smooth function by the general inter-
polation method usually results in serious boundary effects. In this paper, we use four
different methods for reconstruction. Visually, when the interpolation points of the four
methods are 21 and 34, respectively, the reconstructed curves are smooth and continuous
without obvious difference with origin curve. Due to the slight difference in visual effects,
it is not easy to analyze the effectiveness of the proposed method. Besides, we compare
the four methods more intuitively from the perspective of numerical error. The results are
shown in Figure 7.
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Figure 7. Comparison of reconstruction error between the proposed method and other methods: (a) the number of
interpolation points is 21; and (b) the number of interpolation points is 34.

Figure 7 shows the comparison of the errors between the four reconstruction curves
with the original curve. Figure 7a shows the comparison of the errors between the recon-
struction curve and the original curve when interpolation points is 21 and Figure 7b shows
the reconstruction curve errors when interpolation points of the other three methods are
34. When the number of interpolation points is 21, at the boundary, the proposed method
has the smallest error compared with the other three methods, which effectively reduces
the boundary effect. When interpolation points number is increased to 34, the accuracy of
the other three methods improved, but the error is still higher than that of the proposed
method at the boundary. To accurately evaluate the performance of the proposed method,
we set the step length h = 0.01 to take the points, calculate the maximum error, average
absolute error, mean square error of the reconstructed curve and the original curve, in the
interval [0, 2π], and calculate the running time. The experimental results are shown in
Tables 2 and 3.

Table 2. When interpolation points number is 21, the comparison of errors between the proposed method and other methods.

Errors Check Point The Proposed Method Akima Method Model Bezier Method Cubic Spline Method

maximum error 1.20 × 10−4 4.11 × 10−3 7.90 × 10−3 1.08 × 10−3

average absolute error 2.52 × 10−3 1.22 × 10−3 1.64 × 10−3 1.67 × 10−4

mean square error 2.76 × 10−5 1.23 × 10−3 2.00 × 10−3 3.07 × 10−4

running time/second 1.68 × 10−2 8.00 × 10−2 3.03 × 10−2 1.05 × 10−1
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Table 3. When interpolation points number of other methods is 34, the comparison of error value between the proposed
method and other methods.

Errors Check Point The Proposed Method Akima Method Model Bezier Method Cubic Spline Method

maximum error 1.20 × 10−4 4.23 × 10−4 1.75 × 10−3 1.22 × 10−4

average absolute error 2.52 × 10−3 1.04 × 10−4 5.06 × 10−5 3.22 × 10−6

mean square error 2.76 × 10−5 8.69 × 10−5 2.99 × 10−4 8.98 × 10−6

running time/second 1.68 × 10−2 8.14 × 10−2 7.64 × 10−2 1.40 × 10−1

Tables 2 and 3 show the numerical errors and running time of the four curve recon-
struction methods. When interpolation points number is 21, the maximum value, mean
absolute error and mean square error of the reconstructed curve are smaller than those
of the other methods. When the interpolation points of the other three methods are in-
creased to 34, although the precision of Akima method and Bezier method are improved,
it is still lower than that of the proposed method. The reconstruction accuracy of cubic
spline method is slightly higher than that of the proposed method. Moreover, the increase
of interpolation points leads to the increased computation and longer running time. To
evaluate the smoothness of the reconstructed curve, we compare the smoothness of the
curve reconstructed by the four methods through parameter and geometric continuity. The
results are shown in Figures 8 and 9.
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Figure 8. Comparison of reconstruction curve properties between the proposed method and other methods, when the
number of interpolation points is 21: (a) the proposed method; (b) akima method; (c) Bezier method; and (d) cubic
spline method.
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Figure 9. Comparison of reconstruction curve properties between the proposed method and other methods, when the
number of interpolation points is 34: (a) the proposed method; (b) akima method; (c) Bezier method; and (d) cubic
spline method.

As shown in Figures 8 and 9, when interpolation points number is 21, the first deriva-
tive of the curve reconstructed by the Akima method shows strong volatility, resulting
in discontinuity of the curve. Thus, it is unpractical because of the lowest smoothness of
the reconstructed curve. The first derivative of the curve reconstructed by Bezier method
is relatively smooth, but the second derivative of it is discontinuous. The Bezier method
requires inverse calculation of the control vertex to pass through the interpolation points,
which increases the amount of calculation and results in a low speed of operation. The first
and second derivatives of the curve reconstructed by cubic spline method are relatively
smooth, but the middle part of the second derivative and curvature are still not completely
smooth. When interpolation points number of the other method is increased to 34, the first
derivative of the curve reconstructed by Akima method is relatively smooth, but the second
derivative of the curve is not. The first and second derivatives of the curve reconstructed
by cubic spline method are relatively smooth, but the calculation amount increases with
the increase of interpolation points, and the running speed is reduced. Compared with
the other three methods, the first derivative, second derivative and curvature of the curve
reconstructed by the proposed method are smooth. Therefore, the reconstructed curve
satisfies C2 and G2.

In summary, compared with the other three methods, the proposed method has the
lowest error, shorter running time and meets the requirements of C2 and G2. Therefore,
the proposed method is more suitable for reconstructing infinitely differentiable smooth
functions.
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Example 2. Irregular piecewise function, f (x) =
{

x −0.5 ≤ x ≤ 0
0.125x 0 < x ≤ 0.5

.

Irregular piecewise functions are continuous but derivable, and the general method
will produce serious boundary effects at the end and rough points. In this paper, we use
four different methods for reconstruction. Visually, when the interpolation points of the
four methods are 9 and 17, respectively, there is no significant difference between the
reconstructed and original curve. Due to the slight difference in visual effects, it is not
easy to analyze the effectiveness of the proposed method. Besides, we compare the four
methods more intuitively from the perspective of numerical error. The results are shown in
Figure 10.
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Figure 10. Comparison of reconstruction error between the proposed method and other methods: (a) the number of
interpolation points is 9; and (b) the number of interpolation points is 17.

Figure 10 shows the comparison of the errors between the four reconstruction curves
and the original curve. Figure 10a shows the comparison of the errors between the re-
constructed curve and the original curve when interpolation points number is 9. Figure
10b shows the difference between the reconstructed curve and the original curve when
interpolation points number is 17. When the number of interpolation points is 9 and 17, the
error of the proposed method is less than that of the other three methods at the boundary
and rough points. To evaluate the total error of the method, we set the step length h = 0.01
to take the points, calculate the maximum error, average absolute error, mean square error
of the reconstructed curve and the original curve, in interval [−0.5, 0.5], so as to accurately
evaluate the accuracy of the proposed method. The experimental results are shown in
Tables 4 and 5.

Tables 4 and 5 show the numerical errors of the four curve reconstruction methods.
When the interpolation points number is 9, the maximum value, mean absolute error and
mean square error of the reconstructed curve are smaller than those of other methods.
When interpolation points number of other methods is increased to 17, although the errors
produced by the four methods are very close, the running time of the proposed method
is lower than the other methods.Thus, it can be seen that the proposed method has the
smaller error and shorter running time for reconstruction of irregular curves.

Table 4. When interpolation points are nine, the comparison of error value between the proposed method and other methods.

Errors Check Point The Proposed Method Akima Method Model Bezier Method Cubic Spline Method

maximum error 4.02 × 10−3 1.62 × 10−2 9.28 × 10−3 9.29 × 10−3

average absolute error 4.94 × 10−4 1.12 × 10−3 1.95 × 10−3 1.03 × 10−3

mean square error 1.11 × 10−3 3.58 × 10−3 2.74 × 10−3 3.21 × 10−3

running time/second 9.27 × 10−3 2.38 × 10−2 2.77 × 10−2 9.90 × 10−3
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Table 5. When interpolation points of other method are 17, the comparison of error value between the proposed method
and other methods.

Errors Check Point The Proposed Method Akima Method Model Bezier Method Cubic Spline Method

maximum error 4.02 × 10−3 8.09 × 10−3 4.64 × 10−3 4.56 × 10−3

average absolute error 4.94 × 10−4 2.75 × 10−4 4.88 × 10−4 4.82 × 10−3

mean square error 1.11 × 10−3 1.30 × 10−3 1.08 × 10−3 1.13 × 10−3

running time/second 9.27 × 10−3 3.01 × 10−2 2.77 × 10−2 1.39 × 10−2

In summary, compared with the other three methods, the proposed method has the
smaller error and shorter running time, so it is more suitable for reconstruction of irregular
curves.

Synthesizing Numerical Examples 1 and 2, we can see that the proposed method is
not only suitable for infinitely derivable smooth functions, but also for irregular functions.
The proposed method has less error, shorter running time and better flexibility when
reconstructing the curve.

5. Conclusions

In this paper, we propose an interval Shannon-Cosine interpolation wavelet based on
Hermite interpolation for sparse reconstruction of curve. First, we construct the interval
Shannon-Cosine interpolation wavelet based on the Hermite interpolation extension and
variational principle. Second, we construct a multi-scale interpolation operator based on
the interval wavelet to reconstruct curve accurately and sparsely. Compared with the
typical curve reconstruction methods, the proposed method can better realize the curve
reconstruction. According to numerical experiment results, we can draw the following
conclusions:

(1) Compared with Shannon-Cosine interpolation wavelet method, the interval wavelet
constructed in this paper reduces the boundary effect and avoids the phenomenon
of infinite oscillation.

(2) The wavelet multi-scale interpolation operator constructed in this paper is sensitive
to the change of the gradient. According to this character, sparse feature interpolation
points can be obtained adaptively.

(3) Numerical Experiments 1 and 2 show that the proposed method is suitable for
the reconstruction of infinitely derivable smooth and irregular functions. When
the number of interpolation points is the same, the proposed method has smaller
maximum error, absolute mean error, mean square error and running time. When
achieving close accuracy, the other methods need to add more interpolation points,
which increases the running time. The proposed method can reconstruct smooth
curve with as few points as possible, and improve the efficiency of reconstruction.

(4) The infinitely derivable smooth function reconstructed by the proposed method is
smoother and satisfies C2 and G2 continuity.
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