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Abstract: In the modeling and analysis of reliability data via the Lindley distribution, the maximum
likelihood estimator is the most commonly used for parameter estimation. However, the maximum
likelihood estimator is highly sensitive to the presence of outliers. In this paper, based on the
probability integral transform statistic, a robust and efficient estimator of the parameter of the Lindley
distribution is proposed. We investigate the relative efficiency of the new estimator compared to that
of the maximum likelihood estimator, as well as its robustness based on the breakdown point and
influence function. It is found that this new estimator provides reasonable protection against outliers
while also being simple to compute. Using a Monte Carlo simulation, we compare the performance
of the new estimator and several well-known methods, including the maximum likelihood, ordinary
least-squares and weighted least-squares methods in the absence and presence of outliers. The results
reveal that the new estimator is highly competitive with the maximum likelihood estimator in the
absence of outliers and outperforms the other methods in the presence of outliers. Finally, we conduct
a statistical analysis of four reliability data sets, the results of which support the simulation results.

Keywords: Lindley distribution; M-estimator; probability integral transform statistic; reliability;
robust estimation

1. Introduction

Reliability is defined as the ability of a system or component to perform its required functions
under stated conditions for a specified period of time [1]. In reliability theory, various aspects of
reliability, probability, statistics and stochastic modeling are studied in combination with engineering
principles in the design and scientific understanding of failure mechanisms [2]. Reliability analysis has
been utilized to analyze data from various fields, including engineering, medicine, biology, ecology,
economics, sociology and the social sciences [3–5]. In some areas, reliability data analysis is also
referred to as lifetime, failure-time, survival or event-time data analysis [3]. In the analysis of reliability
data, reliability properties are often defined using the mean time to failure, reliability function and
failure rate function.

Parametric statistical distributions are often used to model and analyze reliability data.
The advantages of applying a parametric model in the analysis of reliability data are as follows—a
parametric distribution can be described concisely based on only a few parameters rather than having to
report an entire curve and also provides smooth estimates of failure time distributions [3]. Several useful
parametric models that are often considered for reliability analysis are the exponential, Weibull, gamma
and lognormal distributions [3–5]. Due to its mathematical simplicity, the exponential distribution is
recognized as the most popular and widely used model for reliability data analysis [3,4].
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It has been argued that the Lindley distribution provides a better fitting than one based on the
exponential distribution [6]. In fact, Ghitany et al. [6] found that various statistical properties of the
Lindley distribution are more flexible than those of the exponential distribution. However, due to the
popularity of the exponential distribution in many fields, the Lindley distribution has yet to be very
well explored and has attracted little attention in the literature [6,7]. The Lindley distribution, as first
proposed by Lindley [8], is a two-component mixture comprising of an exponential and a gamma
distribution [9]. Over the last decade, research for the purpose of proposing a new model related to
the family of Lindley distributions has attracted considerable interest by several researchers [10–18].
The main objective of introducing an extension to the Lindley distribution is to offer more flexible
distribution structures for fitting data.

The presence of outliers in a dataset is common, including reliability data. Outliers are defined as
data that appear to deviate from the bulk of the observations [19]. Outliers may arise due to errors
or simply by natural deviations in a data set. In reliability modeling, the maximum likelihood (ML)
estimation method is often used to estimate the parameters of a particular parametric model. In fact,
the ML estimator is well known to be efficient for any parametric distribution. However, in the presence
of outliers, the ML estimator is not robust and experiences severe bias [20]. The biased parameter
estimates of some parametric models can result in biased estimation of reliability. Thus, when outliers
are present in the data, the use of the ML estimator should be avoided and an alternative, more robust
method, should be applied to ensure the unbiased estimation of parameters.

In the literature, several robust estimators have been proposed for estimating the parameters of
parametric models, including the exponential, Weibull, gamma and lognormal distributions [21–27].
However, to our knowledge, a robust method for estimating the parameter of the Lindley distribution
has not been proposed. In this study, we propose a new robust and efficient estimator for the parameter
of Lindley distribution that offers reasonable protection against outliers based on the probability
integral transform statistic. In probability theory, the probability integral transform is a means for
transforming any continuous random variable into one that is standard and uniform [28]. For instance,
if a random variable X has a continuous distribution function F(x), then random variable U = F(X)
has a uniform distribution on the interval (0, 1). In previous studies, this approach has been used
in developing a robust estimator for the shape parameter of Pareto [29] and inverse Pareto [30,31]
distributions. In this paper, we investigate the relative efficiency of the new estimator compared
to that of the ML estimator, as well as its robustness based on the breakdown point and influence
function. Based on a simulation study and real data applications, we show that the estimation of the
Lindley model parameter is more reliable when the new estimator is employed in comparison to some
well-known estimators both in the absence and presence of outliers in the data.

The rest of this paper is organized as follows. In Section 2, we present the Lindley model and
its reliability characteristics. In Section 3, we discuss three well-known methods for estimating the
parameter of the Lindley distribution. A brief explanation of M-estimators is provided in Section 4.
In Section 5, we propose the new estimator for the parameter of the Lindley distribution and explore its
properties. In Section 6, we compare the performance of the proposed estimator with those of several
other estimators in the absence and presence of outliers based on a simulation study. In Section 7,
three reliability data applications are applied to assess the performance of the new estimator relative to
those of some competing estimators. Finally, in Section 8, we draw our conclusions.

2. Lindley Distribution and Reliability Measures

Let X be a random variable that follows a Lindley distribution. The respective probability
density function (PDF), cumulative distribution function (CDF) and quantile function of the Lindley
distribution are given by the following:

f (x;θ) =
θ2

1 + θ
(1 + x)e−θx; x > 0, θ > 0, (1)
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F(x;θ) = 1−
(
1 +

θx
1 + θ

)
e−θx; x > 0, θ > 0, (2)

and
Q(u;θ) = −1−

1
θ
−

1
θ

W−1

( 1 + θ

e(θ+1)
(u− 1)

)
; 0 < u < 1, (3)

where θ is the parameter of Lindley distribution and W−1 denotes the negative branch of the Lambert
W function [32].

The reliability or survival function of the Lindley distribution is given by:

R(t) = 1− F(t;θ) =
(
1 +

θt
1 + θ

)
e−θt; t > 0, θ > 0. (4)

The expectation or the mean time to failure (MTTF) of the Lindley distribution can be written as:

MTTF = E[X] =
θ+ 2

θ(θ+ 1)
; θ > 0. (5)

The failure or hazard rate function of Lindley distribution is as follows:

h(t) =
f (t;θ)
R(t)

=
θ2(1 + t)
θ+ 1 + θt

; t > 0, θ > 0. (6)

3. Several Estimators of the Parameter of the Lindley Distribution

In this section, we present three well-known methods to estimate the parameter of the Lindley
distribution, including ML, ordinary least-squares (OLS) and weighted least-squares (WLS).

3.1. ML Estimator

Let X1, X2, . . . , Xn be a random sample of size n from the Lindley distribution with the PDF as
shown in Equation (1). As reported by Ghitany et al. [6], the ML estimator for the parameter θ is given
by the following:

θ̂ML =
−

(
X − 1

)
+

√(
X − 1

)2
+ 8X

2X
; X > 0, (7)

where X is the sample mean. Note that, as explained by Ghitany et al. [6], the method of moments
(MOM) estimator for the parameter θ is similar to that obtained by the ML estimator.

3.2. OLS and WLS Estimators

Suppose that X(1) ≤ X(2) ≤ . . . ≤ X(n) are the order statistics of a random sample from the Lindley
distribution with the CDF as shown in Equation (2). Recall some results for order statistics:

E[F(X(i))] =
i

n + 1
and Var[F(X(i))] =

i(n− i + 1)

(n + 1)2(n + 2)
,

for i ∈ {1, 2, . . . , n} and for all values of parameter θ.
OLS estimates for the parameter θ can be obtained by minimizing the following function with

respect to θ:

L(θ) =
n∑

i=1

[
F(x(i);θ) −

i
n + 1

]2
, (8)

where x(i) is the ordered observations for i ∈ {1, 2, . . . , n}, that is, x(1) ≤ x(2) ≤ . . . ≤ x(n).
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Taking the derivative of the function L(θ) with respect to θ and equating it to 0, we obtain

n∑
i=1

[
F(x(i);θ) −

i
n + 1

]
∆(x(i),θ) = 0, (9)

where

∆(x,θ) = [θ(1 + x) + 1]
θxe−θx

θ2 . (10)

By numerically solving the non-linear equation shown in Equation (9), the OLS estimates θ̂OLS
is obtained.

WLS estimates for parameter can be obtained by first minimizing the following function with
respect to θ:

W(θ) =
n∑

i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F(x(i);θ) −

i
n + 1

]2
. (11)

Apart from that, the WLS estimates θ̂WLS can also be obtained by solving the following
non-linear equation:

n∑
i=1

1
i(n− i + 1)

[
F(x(i);θ) −

i
n + 1

]
∆(x(i),θ) = 0. (12)

Here, the variable ∆(x,θ) is given by Equation (10).

4. M-Estimators

M-estimators are generalized ML estimators that provide tools for measuring the robustness of
ML estimator. As stated by Huber [33], an estimator δn is defined either by

δn = argmin
δ

n∑
i=1

ρ(xi, δ) (13)

or
n∑

i=1

ψ(xi, δn) = 0 (14)

is called an M-estimator. ρ is a measurable function on X × Θ and ψ(x, δ) = (∂/∂δ)ρ(x, δ) is the
derivative of the function ρwith respect to δ (when it exists). Note that if ρ(x, δ) = − log f (x; δ), then δ̂n

is the ordinary ML estimator.

4.1. Efficiency Measure: Asymptotic Relative Efficiency

The ML estimator is well known to be efficient. For this reason, the ML estimator is useful in
providing a quantitative benchmark for the measure of efficiency. Note that the ML estimator for the
parameter of the Lindley distribution θ, which is given in Equation (7), is asymptotically normal with
mean θ and variance θ2(θ+ 1)2/(n(θ2 + 4θ+ 2)), that is,

θ̂ML ∼ N

θ,
θ2(θ+ 1)2

n(θ2 + 4θ+ 2)

.

For any competing estimator of parameter θ, say, θ̂0 the asymptotic relative efficiency (ARE) is
defined as the ratio of the asymptotic variance of the ML estimator to the asymptotic variance of the
competing estimator, which can be written as follows:

ARE(θ̂0
)
= lim

n→∞

Var(θ̂ML)

Var(θ̂0)
. (15)
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In other words, the ARE measures the relative efficiency of the competing estimator θ̂0 as compared
with θ̂ML. When the ARE value gets closer to 1, the efficiency of the estimator θ̂0 becomes closer to the
efficiency of the ML estimator.

4.2. Robustness Measures: Influence Function and Breakdown Point

The breakdown point (BP), which is useful for assessing the robustness of a statistical approach,
measures the degree of sensitivity of an estimator to data contamination. The BP is defined as the
largest proportion of contamination that can be tolerated by an estimator before breaking down [20].
An estimator with a higher BP is more robust against data contamination. Note that there are two types
of BP, a lower breakdown point (LBP) and an upper breakdown point (UBP). In the present context of
θ estimation, the LBP indicates the largest proportion of lower contamination that can be tolerated by
an estimator before forcing θ̂→∞ and the UBP is the largest proportion of upper contamination that
can be tolerated by an estimator before forcing θ̂→ 0 . Note, however, that since contamination of the
upper end of the distribution is of greater interest in most typical applications, we emphasize only the
UBP in this study. As mentioned by Huber [33], an estimator that has an unbounded ψ function has a
BP equal to 0. Note that the ψ function for the ML estimator is ψ(x, θ̂ML) = 2/θ̂ML − 1/(θ̂ML + 1) − x.
For a finite sample, if a single observation xi →∞ , then

∑n
i=1 xi →∞ and consequently, θ̂ML → 0 .

This result shows that the function ψ(x, θ̂ML) is unbounded in x and consequently suggests that θ̂ML

has a UBP equal to 0. It can be observed that even an extreme value of a single contaminated data in
the upper tail of the observations would contribute to the unreliable performance of θ̂ML.

Another approach for measuring robustness is the use of an influence function (IF). An estimator is
considered to have desirable robustness if it has a bounded IF [33–35]. According to Hampel et al. [34]
(p. 101), the IF of an estimator δn that satisfies Equation (14) is defined by the following:

IF(x;ψ, F) = −
ψ(x, δ(F))∫

(∂/∂θ)[ψ(y,θ)]δ(F)dF(y)
, (16)

where δ(F) denotes the solution δn of Equation (14) with samples generated from the CDF F. For the
ML estimator, since the function ψ(x, θ̂ML) is unbounded in x, its IF is also unbounded. Therefore, it is
clear that θ̂ML is not a robust estimator of parameter θ. For the case when ρ is not differentiable, the IF
can be obtained by using the following expression [34] (p. 84):

IF(x; δ, F) = lim
t→0

δ((1− t)F + t∆x) − δ(F)
t

, (17)

where ∆x denotes the probability measure that puts mass 1 at point x.

5. New Robust M-Estimator for the Parameter of the Lindley Distribution

In this section, a new robust M-estimator is proposed based on the probability integral transform
statistic. We also discuss the ARE and robustness of this new estimator.

5.1. Probability Integral Transform Statistic Estimator

Let X1, X2, . . . , Xn be a random sample from a Lindley distribution. Since the CDF of the Lindley
distribution in Equation (2) is continuous and strictly increasing, it can be seen that the random
variables F(X1), F(X2), . . . , F(Xn) follow a standard uniform distribution, that is, F(X)~U(0, 1). The new
robust M-estimator for parameter θ, which we refer to as the probability integral transform statistic
(PITS) estimator, is defined by:

Hn,τ(θ) = n−1
n∑

i=1

[(
1 +

θXi
1 + θ

)
e−θXi

]τ
, (18)
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where τ > 0 denotes a tuning parameter that will be used later to adjust the balance between efficiency
and robustness. Notice that when τ = 1, [1 + (θXi/(1 + θ))]e−θXi = 1− F(Xi), is a random variable
which follows the standard uniform distribution. Assume that u1, u2, . . . , un is a random sample from
a standard uniform distribution. Based on the strong law of large numbers, it can be shown that
n−1∑n

i=1 uτi converges to E[uτ] = 1/(τ+ 1) as n→∞ with probability 1. Therefore, the PITS estimator
of parameter θ̂ is defined as the solution with respect to θ to the following equation:

Hn,τ(θ) = n−1
n∑

i=1

[(
1 +

θXi
1 + θ

)
e−θXi

]τ
=

1
τ+ 1

. (19)

Note that Equation (19) can be solved numerically using a method such as the Newton–Raphson,
bisection or secant method. It is clear that the PITS estimator for the parameter of the Lindley
distribution given in Equation (19) is a class of M-estimator with:

ψ(x,θ) =
[(

1 +
θx

1 + θ

)
e−θx

]τ
−

1
τ+ 1

. (20)

Lemma 1. For any fixed τ > 0, Equation (19), that is, Hn,t(θ) = 1/(τ+ 1), has exactly one solution.

Proof of Lemma 1. Note that Hn,τ(θ) is continuous on [0,∞) and that Hn,τ(0) = 1 > 1/(τ+ 1), whereas
lim
θ→∞

Hn,τ(θ) = 0 < 1/(τ+ 1). By the intermediate value theorem, we know that Hn,τ(θ) = 1/(τ+ 1)

for some θ in (0,∞). This means that Equation (19) has at least one solution. It can also be shown that

H′n,τ(θ) = −n−1
n∑

i=1

θxτ[(x + 1)θ+ x + 2][xθ/(θ+ 1) + 1]τe−θxτ

(θ+ 1)[(x + 1)θ+ 1]
< 0,

for all θ > 0.
Therefore, Hn,τ(θ) is strictly monotonic with respect to θ. Thus, it can be concluded the solution

must be unique. �

5.2. ARE of the PITS Estimator

By applying Equation (15), the ARE of the PITS estimator for parameter θ is given by:

ARE(θ̂PITS) = lim
n→∞

Var(θ̂ML)

Var(θ̂PITS)
. (21)

To compute the ARE of the PITS estimator, that is, θ̂PITS, we must find the asymptotic distribution
of θ̂PITS. One way to obtain the asymptotic distribution of θ̂PITS is by following Corollary 2.5 in
Chapter 3 of Huber [33]. However, in the present context of the PITS estimator, this corollary cannot be
applied since the function

λ(β) =

∞∫
0

ψ(x, β) f (x)dx (22)

is rather complicated to obtain. Thus, the variance of θ̂PITS cannot be determined. As an alternative
we apply the Monte Carlo simulation method to estimate the variance of θ̂PITS, that is, Var(θ̂PITS).

As mentioned above, the balance between efficiency and robustness of the PITS estimator can
be adjusted by changing the value of the tuning parameter τ. Note that as the value of τ increases,
the ARE decreases. Simply put, when the value of τ increases, the PITS estimator attains robustness
but loses its relative efficiency. By taking a τ value close to 0, the ARE of the PITS estimator can be
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made arbitrarily close to 1. Table 1 presents the AREs of the PITS estimator and the corresponding
tuning parameter values obtained from 10,000 simulation runs.

Table 1. Asymptotic relative efficiency (ARE) values of the probability integral transform statistic (PITS)
estimator and corresponding tuning parameter τ values.

τ 0.16 0.29 0.46 0.63 0.81 1.00 1.21 1.45 1.72 2.04 2.41

ARE (%) 98 95 90 85 80 75 70 65 60 55 50

5.3. BP of PITS Estimator

To obtain the UBP and LBP of the PITS estimator, we apply the argument presented in
Finkelstein et al. [29]. The UBP and LBP of the PITS estimator are presented in Theorem 1.

Theorem 1. The finite sample UBP and LBP of the PITS estimator are obtained by
⌈
nτ/(τ+ 1)

⌉
/n and⌈

n/(τ+ 1)
⌉
/n, respectively, so the respective UBP and LBP of the PITS estimator are τ/(τ+ 1) and 1/(τ+ 1).

Proof of Theorem 1. For any integer 1 ≤ k ≤ n, the estimator θ̂PITS is defined as:

n−1
k∑

i=1

[(
1 +

xiθ̂PITS

1 + θ̂PITS

)
e−xiθ̂PITS

]τ
+ n−1

n∑
i=k+1

[(
1 +

xiθ̂PITS

1 + θ̂PITS

)
e−xiθ̂PITS

]τ
=

1
τ+ 1

. (23)

For simplicity, let

h(x) =
[(

1 +
xθ̂PITS

1 + θ̂PITS

)
e−xθ̂PITS

]τ
.

It can be shown that

h′(x) = −τθ̂2
PITS

[(
1 +

xθ̂PITS

1 + θ̂PITS

)
e−xθ̂PITS

]τ−1

e−xθ̂PITS

[
1 + x

1 + θ̂PITS

]
< 0.

Therefore, h(x) is strictly decreasing with respect to x, for x > 0. It is also worth noting that h(x) > 0
and h(x) < 1 for any x > 0.

We proceed to prove for UBP first. Assume that x1, x2, . . . , xk takes on values that approach ∞.
Let xmin = min{x1, . . . , xk}. For any ε > 0, suppose

xmin >
−(1 + θ̂PITS)

τθ̂2
PITS

log
(
εn
k

)
+

1 + θ̂PITS

θ̂2
PITS

.

Then, it can be shown that

1
τ

log
(
εk
n

)
> −xminθ̂PITS +

(
1 +

xminθ̂PITS

1 + θ̂PITS

)
> −xminθ̂PITS + log

(
1 +

xminθ̂PITS

1 + θ̂PITS

)
.

The second inequality above is due to the fact that x > log(x) for any x > 0. It follows that

ε >
k
n

h
(
xmin

)
≥

∣∣∣∣∣∣∣1n
k∑

i=1

h(xi)

∣∣∣∣∣∣∣,
since h(x) is strictly decreasing with respect to x and is always positive for x > 0. Therefore, by definition,

lim
xi→∞;i=1,...,k

1
n

k∑
i=1

h(xi)

 = 0.
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From Equation (23), we can write

1
τ+ 1

=
1
n

k∑
i=1

h(xi) +
1
n

n∑
i=k+1

h(xi) < ε+
1
n

n∑
i=k+1

h(xi) < ε+
n− k

n
,

since h(x) < 1 for any x > 0. This is valid if and only if k < nε+ nτ/(τ+ 1). Thus, the finite sample
UBP is

⌈
nτ/(τ+ 1)

⌉
/n, where d·e is the ceiling function. By letting n→∞ in the finite sample UBP,

we find that UBP equals τ/(τ+ 1).
For LBP, suppose that x1, x2, . . . , xk takes on values that approach 0. Let xmax = max{x1, . . . , xk}.

For any 0 < ε < k/n, suppose

xmax < −
1

τθ̂PITS
log

(
1−

εn
k

)
.

Then, it follows that(
1−

εn
k

)1/τ
< e−xmaxθ̂PITS <

(
1 +

xmaxθ̂PITS

1 + θ̂PITS

)
e−xmaxθ̂PITS .

Since h(x) < 1 for any x > 0 and h(xmax) ≤ h(xi) for i = 1, . . . , k, then

ε >
k
n
(1− h(xmax)) ≥

1
n

k−
k∑

i=1

h(xi)

 = 1
n

∣∣∣∣∣∣∣
k∑

i=1

h(xi) − k

∣∣∣∣∣∣∣.
If ε ≥ k/n, then the above inequality is true for all xi, i = 1, . . . , k. Hence, by definition,

lim
xi→0;i=1,...,k

1
n

k∑
i=1

h(xi)

 =
k
n

.

From Equation (23), we can write

1
τ+ 1

=
1
n

k∑
i=1

h(xi) +
1
n

n∑
i=k+1

h(xi) >
k
n
− ε+

1
n

n∑
i=k+1

h(xi) >
k
n
− ε,

since h(x) > 0 for any x > 0. This is valid if and only if k < nε+ n/(τ+ 1). Therefore, the finite sample
LBP is

⌈
n/(τ+ 1)

⌉
/n and by taking n→∞ , the LBP is equal to 1/(τ+ 1). �

Based on Theorem 1, Table 2 lists the UBPs and LBPs of the PITS estimator for different ARE levels.
We can see that as the ARE level decreases, the UBP increases, which suggests that the robustness of
the PITS estimator is increasing against upper contamination. On the other hand, the LBP decreases
as the ARE level decreases, which means that the robustness of the PITS estimator decreases against
lower contamination.

Table 2. Upper breakdown points (UBPs) and lower breakdown points (LBPs) of the PITS estimator for
different ARE levels.

ARE (%) 98 95 90 85 80 75 70 65 60 55 50

UBP 0.14 0.22 0.32 0.39 0.45 0.50 0.55 0.59 0.63 0.67 0.71
LBP 0.86 0.78 0.68 0.61 0.55 0.5 0.45 0.41 0.37 0.33 0.29
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5.4. IF of PITS Estimator

According to Marona [35], the IF of an estimator is an asymptotic version of its sensitivity curve
(SC). In general, the SC measures the sensitivity of an estimator to the location of the outlier x0 for a
particular random sample. Since using Equation (16) to obtain the IF of the PITS estimator is rather
complicated, we apply its SC as an approximation of IF. The SC of the PITS estimator θ̂PITS for the
random sample x1, x2, . . . , xn is defined as a function of the location of the outlier x0, which can be
written as follows:

SC(x0) = θ̂PITS(x1, x2, . . . , xn, x0) − θ̂PITS(x1, x2, . . . , xn). (24)

where θ̂PITS(x1, x2, . . . , xn) is the PITS estimator using the samples x1, x2, . . . , xn. To obtain the SC of
the PITS estimator, we generated a random sample of size n = 50 from the Lindley distribution with
parameter θ = 0.5, 1, 2, 3. Then, a single outlier x0 is added to the sample data. The value of x0 changed
from 0 to 50 in increments of 1. Note that the 99th percentile are often used as upper boundaries for
outlier identification, where any data point that exceed the 99th percentile can be considered as a
potential outlier. For each parameter θ = 0.5, 1, 2 and 3, the 99th percentile of Lindley distribution are
12.4940, 5.9902, 2.8330 and 1.8222, respectively. Thus, the value of x0 that exceed these 99th percentiles
of Lindley distribution is large enough to be considered as a potential outlier. We obtained the SC(x0)

of the PITS estimator with several different AREs for each value of x0, as shown in Figure 1.Mathematics 2020, 8, x FOR PEER REVIEW 10 of 22 
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Figure 1. Sensitivity curve (SCs) of PITS estimators for (a) θ = 0.5, (b) θ = 1, (c) θ = 2 and (d) θ = 3 with
several AREs.

Based on Figure 1, we can see that as x0 increases, the SC of the PITS estimators with 98%,
90%, 80%, 70% and 60% AREs converge to a certain limit, which indicates that the curve is bounded.
This suggests that the PITS estimator has a bounded IF and is robust against the location of a single
outlier. As the level of ARE decreases, the limit of each curve moves closer to 0, which suggests that
the PITS estimator becomes more robust.
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6. Simulation Study

In this section, we investigate the performance of the ML, OLS, WLS and PITS (98%, 90%,
80%, 70% and 60% AREs) estimators in the absence and presence of outliers via a simulation study.
In Sections 6.1 and 6.2, we present the framework and results of the simulation study, respectively.
Then, in Section 6.3, we provide some guidelines for selecting the appropriate ARE of the PITS estimator
for practical application purposes.

6.1. Simulation Framework

The simulation procedure goes as follows:

Step 1: Generate a random variable from the Lindley distribution for two sample size settings,
that is, small (n = 30, 50, 70) and large (n = 100, 300, 500), with parameter θ = 0.5, 1, 2, 3.

Step 2: Randomly select some observations and replace them with outliers generated from the
Lindley distribution with parameter 0.05θ. Note that by multiplying the true value of
parameter θ with 0.05, the Lindley distribution will have heavier upper tail and will
produce larger values of random variables, which are interpreted as outliers. For the small
sample sizes, generate outliers for several fixed numbers, m = 0, 1, 3, 5. For the large sample
sizes, simulate outliers for several fixed proportions, ε = 0%, 1%, 5%, 10%.

Step 3: Estimate the parameter θ using the ML, OLS, WLS and PITS (98%, 90%, 80%, 70% and 60%
AREs) methods.

Step 4: Repeat steps 1–3 10,000 times.
Step 5: Calculate the performance of each estimator using the percentage relative root mean square

error (RRMSE). For a given true value of parameter θ, the RRMSE is given by the following:

RRMSE =
100
θ

√√√
1
N

N∑
i=1

(
θ̂i − θ

)2
, (25)

where θ̂i is the estimated parameter for the i-th (i = 1, 2, . . . , N) sample and N is the number
of simulated samples. A smaller RRMSE value indicates that the estimator is more accurate
and precise. Thus, any estimation method that minimizes the RRMSE provides the best
estimation of the parameter θ.

6.2. Simulation Results

Tables 3–8 list the results of the simulation study based on the obtained RRMSEs. We summarize
these results as follows:

1. In the cases of both small and large sample sizes (Tables 3–8), we found the following:

• When there are no outliers (m = 0 and ε = 0%) in the data, both the ML and PITS (98% ARE)
estimators perform similarly and slightly outperform the OLS and WLS estimators.

• In the presence of outliers, the performance of the ML estimator is much worse than that of
the other estimators. As the degree of contamination increases, the performance of the ML
estimator deteriorates significantly.

• The OLS and WLS estimators are quite robust and offer some protection against outliers.
• As the sample size increases, for all the cases considered, the performance of all the estimators

improve, with the RRMSE values becoming smaller.

2. In the case of a small sample size (Tables 3–5), we found the following:

• When the number of outliers is small (m = 1), the PITS (90% ARE) estimator performs best,
that is, slightly better than the OLS and WLS estimators.
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• When the number of outliers is moderate (m = 3), the OLS, WLS and PITS (70% and/or 60%
AREs) estimators perform almost equally well and are considered to be the best methods for
this particular case.

• When the number of outliers is large (m = 5), the PITS (60% ARE) estimator performs best,
that is, slightly better than the OLS and WLS estimators.

3. In the case of a large sample size (Tables 6–8), we found the following:

• When the proportion of outliers is small (ε = 1%), for n = 100, the PITS (90% ARE) estimator
performs best, that is, slightly better than the OLS and WLS estimators. For n = 300, 500,
the OLS, WLS and PITS (90% and 80% AREs) estimators perform almost equally well and
are considered to be the best methods for this particular case.

• When the proportion of outliers is moderate (ε= 5%), for n = 100, the OLS and PITS (70% ARE)
estimators perform very similarly, slightly outperforming the WLS estimator. For n = 300,
500, the PITS (60% ARE) estimator performs best, outperforming all the other methods.

• When the proportion of outliers is large (ε = 10%), the performance of the PITS (60% ARE)
estimator also surpasses that of other methods.

Table 3. Relative root mean square error (RRMSE) results for estimations of parameter θ with n = 30
and m = 0, 1, 3, 5.

θ m
RRMSE

ML OLS WLS PITS
98% ARE

PITS
90% ARE

PITS
80% ARE

PITS
70% ARE

PITS
60% ARE

0.5

0 14.02 15.42 14.94 14.01 14.24 14.82 15.61 16.66
1 38.97 15.51 15.08 18.71 14.48 14.55 15.18 16.14
3 64.24 17.55 17.83 46.07 24.03 19.23 17.76 17.60
5 74.95 22.53 22.81 67.20 38.26 27.91 23.87 21.70

1

0 14.56 16.17 15.62 14.56 14.91 15.64 16.60 17.89
1 39.91 16.05 15.75 19.19 15.03 15.27 16.10 17.32
3 64.71 18.25 18.59 46.66 24.66 19.85 18.42 18.40
5 75.36 23.46 23.86 67.58 39.14 28.70 24.66 22.60

2

0 15.52 17.37 16.69 15.52 16.01 16.89 18.04 19.58
1 41.21 17.47 16.83 20.13 15.97 16.37 17.37 18.82
3 65.80 19.58 19.94 47.84 25.92 21.05 19.60 19.70
5 76.22 25.00 25.49 68.11 40.61 30.08 25.99 24.06

3

0 16.27 18.26 17.50 16.26 16.78 17.76 19.07 20.82
1 42.41 18.35 17.64 20.44 16.34 16.88 18.07 19.75
3 66.83 20.03 20.31 48.52 26.36 21.37 20.10 20.23
5 76.60 25.71 26.28 68.37 41.44 30.77 26.63 24.69

The best method for each case is written in bold.

Table 4. RRMSE results for estimations of parameter θ with n = 50 and m = 0, 1, 3, 5.

θ m
RRMSE

ML OLS WLS PITS
98% ARE

PITS
90% ARE

PITS
80% ARE

PITS
70% ARE

PITS
60% ARE

0.5

0 10.63 11.66 11.30 10.63 10.81 11.24 11.82 12.60
1 29.44 11.73 11.41 12.97 10.94 11.13 11.64 12.38
3 52.62 12.76 12.94 28.73 15.72 13.37 12.80 12.90
5 64.76 15.52 15.91 45.84 23.49 17.93 15.95 15.03
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Table 4. Cont.

θ m
RRMSE

ML OLS WLS PITS
98% ARE

PITS
90% ARE

PITS
80% ARE

PITS
70% ARE

PITS
60% ARE

1

0 11.13 12.36 11.89 11.14 11.42 11.96 12.66 13.58
1 30.03 12.45 12.05 13.21 11.37 11.72 12.38 13.27
3 53.48 13.30 13.48 29.30 16.11 13.84 13.39 13.73
5 65.42 16.04 16.51 46.39 23.90 18.31 16.42 15.42

2

0 11.66 13.14 12.59 11.68 12.10 12.77 13.61 14.70
1 31.98 13.22 12.71 13.99 12.10 12.54 13.32 14.36
3 55.12 14.27 14.47 30.48 17.08 14.78 14.40 14.94
5 66.69 17.29 17.84 47.71 25.26 19.53 17.61 16.73

3

0 12.23 13.93 13.28 12.25 12.77 13.55 14.51 15.73
1 32.77 14.02 13.39 14.42 12.64 13.21 14.11 15.30
3 55.81 14.94 15.11 31.06 17.62 15.38 15.05 15.57
5 67.58 17.88 18.45 48.36 25.87 20.07 18.17 17.05

The best method for each case is written in bold.

Table 5. RRMSE results for estimations of parameter θ with n = 70 and m = 0, 1, 3, 5.

θ m
RRMSE

ML OLS WLS PITS
98% ARE

PITS
90% ARE

PITS
80% ARE

PITS
70% ARE

PITS
60% ARE

0.5

0 8.88 9.80 9.46 8.89 9.07 9.44 9.92 10.57
1 55.91 9.87 9.56 10.69 9.16 9.37 9.81 10.43
3 79.24 10.52 10.61 23.47 12.35 10.81 10.56 10.91
5 86.74 12.21 12.55 39.28 17.67 13.69 12.46 11.91

1

0 9.29 10.36 9.95 9.30 9.56 10.01 10.57 11.30
1 56.68 10.42 10.04 11.11 9.62 9.91 10.44 11.14
3 79.67 11.06 11.15 24.22 12.85 11.31 11.10 11.51
5 87.03 12.98 13.29 40.34 18.36 14.31 13.09 12.79

2

0 9.72 11.00 10.51 9.74 10.10 10.68 11.41 12.34
1 58.04 11.06 10.61 11.59 10.11 10.53 11.21 12.12
3 80.51 11.69 11.79 25.33 13.48 11.94 11.74 12.39
5 87.30 13.88 14.13 41.95 19.27 15.08 13.88 13.68

3

0 10.22 11.53 10.99 10.23 10.60 11.22 11.99 12.98
1 59.02 11.60 11.08 11.92 10.50 10.99 11.73 12.70
3 81.13 12.18 12.26 26.09 13.93 12.40 12.22 12.99
5 87.76 14.30 14.64 43.13 19.87 15.58 14.38 14.21

The best method for each case is written in bold.

Table 6. RRMSE results for estimations of parameter θ with n = 100 and ε = 0%, 1%, 5%, 10%.

θ ε (%)
RRMSE

ML OLS WLS PITS
98% ARE

PITS
90% ARE

PITS
80% ARE

PITS
70% ARE

PITS
60% ARE

0.5

0 7.34 8.15 7.86 7.35 7.51 7.85 8.28 8.84
1 18.48 8.19 7.92 8.23 7.56 7.83 8.23 8.78
5 48.82 9.63 9.89 23.91 12.64 10.38 9.66 9.75

10 65.36 13.77 14.27 45.56 22.86 16.75 14.31 13.03

1

0 7.70 8.56 8.23 7.71 7.92 8.30 8.78 9.41
1 19.23 8.60 8.28 8.57 7.95 8.25 8.70 9.32
5 49.74 10.05 10.35 24.53 13.06 10.78 10.10 10.22

10 66.05 14.52 15.12 46.34 23.63 17.41 14.95 13.60
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Table 6. Cont.

θ ε (%)
RRMSE

ML OLS WLS PITS
98% ARE

PITS
90% ARE

PITS
80% ARE

PITS
70% ARE

PITS
60% ARE

2

0 8.21 9.26 8.85 8.22 8.54 9.01 9.59 10.32
1 20.65 9.30 8.90 9.05 8.54 8.93 9.49 10.21
5 51.52 10.88 11.20 25.60 13.86 11.56 10.98 11.13

10 67.26 15.63 16.31 47.55 24.80 18.45 15.96 14.68

3

0 8.61 9.72 9.25 8.63 8.95 9.46 10.10 10.90
1 21.45 9.75 9.29 9.36 8.88 9.33 9.95 10.75
5 52.70 11.26 11.58 26.22 14.27 11.94 11.34 11.58

10 68.16 16.23 16.97 48.34 25.53 19.06 16.52 15.28

The best method for each case is written in bold.

Table 7. RRMSE results for estimations of parameter θ with n = 300 and ε = 0%, 1%, 5%, 10%.

θ ε (%)
RRMSE

ML OLS WLS PITS
98% ARE

PITS
90% ARE

PITS
80% ARE

PITS
70% ARE

PITS
60% ARE

0.5

0 4.25 4.75 4.56 4.26 4.37 4.57 4.81 5.11
1 17.25 4.81 4.71 6.09 4.70 4.69 4.86 5.13
5 49.24 7.41 7.85 23.64 11.57 8.67 7.47 7.07

10 65.80 12.63 13.18 45.57 22.60 16.06 13.23 11.58

1

0 4.40 4.86 4.67 4.40 4.51 4.72 4.98 5.33
1 18.14 4.92 4.83 6.26 4.84 4.83 5.02 5.33
5 50.26 7.77 8.28 24.27 11.97 9.00 7.82 7.38

10 66.48 13.31 13.97 46.26 23.28 16.64 13.77 12.10

2

0 4.68 5.24 5.00 4.69 4.84 5.10 5.42 5.82
1 19.58 5.34 5.22 6.73 5.26 5.26 5.49 5.84
5 52.02 8.50 9.08 25.36 12.79 9.72 8.54 8.07

10 67.74 14.49 15.27 47.57 24.59 17.77 14.82 13.10

3

0 4.83 5.45 5.18 4.84 5.02 5.30 5.64 6.08
1 20.30 5.51 5.36 6.85 5.39 5.42 5.68 6.07
5 53.22 8.76 9.39 25.93 13.13 9.99 8.80 8.34

10 68.63 14.99 15.85 48.30 25.26 18.31 15.29 13.53

The best method for each case is written in bold.

Table 8. RRMSE results for estimations of parameter θ with n = 500 and ε = 0%, 1%, 5%, 10%.

θ ε (%)
RRMSE

ML OLS WLS PITS
98% ARE

PITS
90% ARE

PITS
80% ARE

PITS
70% ARE

PITS
60% ARE

0.5

0 3.25 3.62 3.48 3.26 3.34 3.48 3.67 3.91
1 16.98 3.75 3.71 5.53 3.80 3.71 3.79 3.98
5 49.32 6.89 7.37 23.56 11.34 8.29 7.00 6.41

10 65.89 12.38 12.93 45.53 22.51 15.90 12.99 11.21

1

0 3.36 3.75 3.59 3.36 3.46 3.63 3.84 4.11
1 17.89 3.91 3.87 5.78 4.01 3.88 3.98 4.19
5 50.46 7.31 7.89 24.28 11.82 8.69 7.39 6.78

10 66.57 13.14 13.82 46.32 23.29 16.57 13.61 11.80
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Table 8. Cont.

θ ε (%)
RRMSE

ML OLS WLS PITS
98% ARE

PITS
90% ARE

PITS
80% ARE

PITS
70% ARE

PITS
60% ARE

2

0 3.55 4.02 3.82 3.57 3.70 3.90 4.14 4.45
1 19.29 4.19 4.13 6.09 4.26 4.15 4.28 4.52
5 52.23 7.88 8.54 25.28 12.49 9.24 7.90 7.27

10 67.82 14.16 14.97 47.49 24.46 17.55 14.51 12.67

3

0 3.71 4.23 4.02 3.73 3.89 4.12 4.39 4.73
1 20.11 4.40 4.33 6.32 4.49 4.35 4.52 4.79
5 53.42 8.25 8.96 25.95 12.95 9.62 8.27 7.61

10 68.70 14.81 15.68 48.30 25.25 18.21 15.10 13.20

The best method for each case is written in bold.

Overall, in the presence of outliers, the use of the ML estimator should be avoided since it is
not robust and provides no protection against outliers. It is also interesting to note that we found
the OLS and WLS estimators to be quite robust and able to offer some protection against outliers.
However, the proposed PITS estimator provides the most flexible approach as it can be applied in both
the absence and presence of outliers.

6.3. Some Guidelines for Selecting the Appropriate ARE of PITS Estimator

Based on the results of a comprehensive simulation study, here we provide some guidelines for
selecting the appropriate ARE of PITS estimator in practical application:

1. When there are no outliers in the data, the PITS (98% ARE) estimator should be applied for
estimating parameter θ.

2. For small sample size setting, that is, n < 30:

• When number of outliers m ≤ 3, the PITS (60–90% AREs) estimators are preferable for
estimating parameter θ.

• When number of outliers m ≥ 4, the PITS (50–60% AREs) estimators are preferable for
estimating parameter θ.

3. For small sample size setting, that is, 30 ≤ n ≤ 70:

• When number of outliers m ≤ 2, the PITS (80–90% AREs) estimators are recommended for
estimating parameter θ.

• When number of outliers 3 ≤ m ≤ 4, the PITS (60–80% AREs) estimators are preferable for
estimating parameter θ.

• When number of outliers m ≥ 5, the PITS (50–60% AREs) estimators are recommended for
estimating parameter θ.

4. For large sample size setting, that is, 70 < n ≤ 100:

• When number of outliers m ≤ 3, the PITS (70–90% AREs) estimators are recommended for
estimating parameter θ.

• When number of outliers 4 ≤ m ≤ 6, the PITS (60–70% AREs) estimators are recommended
for estimating parameter θ.

• When number of outliers m ≥ 7, the PITS (50–60% AREs) estimators are preferable for
estimating parameter θ.

5. For large sample size setting, that is, n > 100:
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• When proportion of outliers ε ≤ 3%, the PITS (80–90% AREs) estimators are preferable for
estimating parameter θ.

• When proportion of outliers 3% < ε ≤ 7%, the PITS (60–80% AREs) estimators are preferable
for estimating parameter θ.

• When proportion of outliers ε > 7%, the PITS (50–60% AREs) estimators are recommended
for estimating parameter θ.

7. Applications and Discussion

In this section, we report four applications of the Lindley distribution as a reliability model using
real data sets and compare the performance of the ML, OLS, WLS and PITS (with several AREs)
estimators. Note that the AREs of PITS estimator are determined based on the proportion of outliers
found in the data. The first data set (Data Set 1) consists of the time to failure of 18 electronic devices
reported by Wang [36]. The second data set (Data Set 2) represents the survival times of 44 patients
suffering from head and neck cancers (treated using radiotherapy and chemotherapy), which were
initially reported by Efron [37] (see also Reference [38]). The third data set (Data Set 3) consists of
an uncensored data set of the remission times of a random sample of 128 bladder cancer patients,
which was obtained from Lee and Wang [5]. Finally, the fourth data set (Data Set 4) represents the
length of stay of 300 patients suffering from breast cancer, which can be found in Reference [39].
All four data sets are given in Appendix A.

For all the data sets considered, to identify the presence of outliers, we applied the generalized
boxplot method [40], which is suitable for skewed and/or heavy-tailed distributions. In practical
applications, we suggest to apply this method for the purpose of outlier detection for the data that
follows the Lindley distribution. Table 9 provides descriptive statistics for all the data sets and Figure 2
shows generalized boxplots of these data sets.Mathematics 2020, 8, x FOR PEER REVIEW 16 of 22 
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Table 9. Descriptive statistics for data Sets 1, 2, 3 and 4.

Set Sample
Size (n) Mean Median Min Max Std.

Deviation Skewness No. of Outliers
(Proportion)

Set 1 18 171.50 155.00 1.00 420.00 132.27 0.28 1 (5.55%)
Set 2 44 223.48 128.50 12.20 1776.00 305.43 3.27 1 (2.27%)
Set 3 128 9.37 6.40 0.08 79.05 10.51 3.25 6 (4.69%)
Set 4 300 18.44 14.00 1.00 94.00 15.89 1.96 17 (5.67%)

To compare the performance of the considered methods in estimating the parameter of the Lindley
distribution, we applied the Kolmogorov-Smirnov (K-S) test, Akaike information criterion (AIC) and
Bayesian information criterion (BIC) to assess goodness of fit. The best method is determined by that
yielding the highest p-value of the K-S test and the smallest value of K-S statistic, AIC and BIC. Table 10
lists the estimated parameters and goodness of fits obtained for the Lindley distribution for all the data
sets. As presented in Table 10, we can observe that the PITS estimator provides a better estimation of
the Lindley parameter than the ML, OLS and WLS estimators based on its smallest K-S statistic and
highest p-value of the K-S test. On the other hand, the ML estimator is found to be the best method
for estimating the parameter θ based on its smallest value of AIC and BIC. This is because the ML
estimator maximized the likelihood function of the Lindley model and as a result the AIC and BIC
will always favor the ML estimator. Thus, in our case here, we could say that the AIC and BIC are
biased measures for goodness of fit assessment. To further support our claim regarding the AIC and
BIC, we provide another example where the data is simulated from Lindley distribution with θ = 2 for
sample size n = 100. Then, we random select 5% of the observations and replace them with outliers.
Based on this data, we compare the performances of all methods in estimating the parameter of the
Lindley distribution. The K-S test, AIC and BIC are utilized to assess goodness of fit. The result of the
comparative study is presented in Table 11.

Table 10. Parameter estimates and goodness of fits of the Lindley distributions of data Sets 1, 2, 3 and 4.

Data Method Estimated
Parameter (θ̂) K-S Statistic p-Value AIC BIC

Set 1 ML 0.01160 0.1737 0.5895 230.7422 231.6326
OLS 0.01115 0.1802 0.5434 230.7963 231.6867
WLS 0.01127 0.1786 0.5550 230.7720 231.6623

PITS (75% ARE) 0.01180 0.1707 0.6112 230.7532 231.6435
PITS (70% ARE) 0.01214 0.1655 0.6483 230.8193 231.7097
PITS (65% ARE) 0.01261 0.1641 0.6583 231.0041 231.8945
PITS (60% ARE) 0.01324 0.1866 0.4998 231.4050 232.2954

Set 2 ML 0.00891 0.2194 0.0243 581.1628 582.9470
OLS 0.01325 0.1374 0.3453 597.0666 598.8508
WLS 0.01333 0.1380 0.3404 597.5451 599.3293

PITS (95% ARE) 0.01035 0.1510 0.2425 583.2425 585.0267
PITS (90% ARE) 0.01117 0.1225 0.4864 586.0117 587.7959
PITS (85% ARE) 0.01178 0.1220 0.4916 588.7263 590.5104
PITS (80% ARE) 0.01227 0.1280 0.4306 591.2379 593.0220

Set 3 ML 0.19605 0.1164 0.0623 841.0598 843.9118
OLS 0.23028 0.0597 0.7509 847.9594 850.8115
WLS 0.22761 0.0580 0.7826 846.9738 849.8258

PITS (80% ARE) 0.22368 0.0555 0.8247 845.6468 848.4988
PITS (75% ARE) 0.22635 0.0571 0.7977 846.5308 849.3828
PITS (70% ARE) 0.22852 0.0586 0.7718 847.2994 850.1514
PITS (65% ARE) 0.23032 0.0598 0.7504 847.8874 850.7394
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Table 10. Cont.

Data Method Estimated
Parameter (θ̂) K-S Statistic p-Value AIC BIC

Set 4 ML 0.10338 0.0772 0.0558 2326.7150 2330.4190
OLS 0.10998 0.0439 0.6099 2329.0490 2332.7520
WLS 0.10922 0.0476 0.5049 2328.5550 2332.2590

PITS (75% ARE) 0.10929 0.0472 0.5152 2328.6020 2332.3060
PITS (70% ARE) 0.10973 0.0451 0.5753 2328.8820 2332.5860
PITS (65% ARE) 0.11012 0.0432 0.6306 2329.1500 2332.8540
PITS (60% ARE) 0.11039 0.0419 0.6673 2329.3420 2333.0460

The best method is written in bold.

Table 11. Parameter estimates and goodness of fits of Lindley distribution for simulated data from
Lindley distribution with θ = 2, n = 100 and 5% outliers.

Method Estimated Parameter (θ̂) K-S Statistic p-Value AIC BIC

ML 0.81958 0.4256 <0.0001 401.3450 403.9502
OLS 2.06962 0.0618 0.8383 608.0914 610.6965
WLS 2.04933 0.0610 0.8505 603.0340 605.6391

PITS (90% ARE) 1.92935 0.0658 0.7784 573.7682 576.3734
PITS (85% ARE) 1.98865 0.0581 0.8875 588.0901 590.6952
PITS (80% ARE) 2.02738 0.0600 0.8638 597.5959 600.2011
PITS (75% ARE) 2.05503 0.0612 0.8471 604.4503 607.0555
PITS (70% ARE) 2.07697 0.0621 0.8340 609.9304 612.5355
PITS (65% ARE) 2.09547 0.0629 0.8232 614.5775 617.1827

The best method is written in bold.

Based on the result from Table 11, it can be seen that the estimated parameter found based on ML
estimator (θ̂ = 0.81958) is much deviated from the true value of θ = 2. However, if the AIC and BIC
are used for determining the best model, it can be observed that the best fitted Lindley distribution is
found when the parameter θ is estimated using ML estimator. This further support our claim that AIC
and BIC will always favor the ML estimator although the outliers are present in the data. On the other
hand, K-S statistic and p-value of K-S test are able to determine the best method for estimating the
parameter θ which is PITS (85% ARE). Since the AIC and BIC would provide a biased measures for
goodness of fit assessment, thus, in this study, the best Lindley model is only determined based on the
smallest value of K-S statistic and the highest p-value of K-S test.

As we mentioned before, based on the smallest K-S statistic and highest p-value of the K-S test,
the PITS estimator is found to provide a better estimation of the Lindley parameter than the ML,
OLS and WLS estimators. This result is supported by the fitted PDF shown in Figure 3. In addition,
due to the substantial increase in the p-value of the K-S test, we note that the fittings of the Lindley
distribution for data Sets 2, 3 and 4 are significantly improved when the PITS estimator is used to
estimate parameter θ, as compared to the ML estimator. This is due to the presence of outliers far
beyond the rest of the data, as shown in Figure 3b–d. However, the OLS and WLS estimators are also
found to be quite reliable for estimating parameter θ despite the presence of outliers in the data.

Since the reliability measures based on the Lindley distribution depend on parameter θ, it is
important to employ the most suitable method for estimating parameter θ. Based on its application to
real data sets, we have shown that the proposed PITS estimator is a viable alternative for estimating
the parameter of the Lindley distribution especially when outliers are present in the data.
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8. Conclusions

In this paper, we proposed a new robust and efficient estimator of the parameter of the Lindley
distribution based on the PITS. The advantage of the PITS estimator is that it is conceptually simple
and easy to compute. An assessment of the robustness of the PITS estimator based on the BP and IF
revealed that the PITS estimator has a high BP and bounded IF, which means that this estimator offers
reasonable protection against outliers. In a simulation study, we compared the performance of the
PITS estimator with those of several well-known estimators, namely ML, OLS and WLS. The results
of the simulation indicated that the performance of the PITS estimator was similar to that of the ML
estimator in the absence of outliers and outperforms all the other methods in the presence of outliers.
We also note that the OLS and WLS estimators are quite robust and outperformed the ML estimator
in the presence of outliers. Four real data sets were applied for which the parameter of the Lindley
distribution was estimated. The results demonstrated that the PITS estimator provides a better fitting
of this model than the other methods in terms of smallest K-S statistic and highest p-value of the K-S
test. Finally, all the abbreviations are listed in Abbreviations part and the R commands for the PITS
estimator are available in Appendix B.
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Abbreviations

AIC Akaike information criterion
ARE Asymptotic relative efficiency
BIC Bayesian information criterion
BP Breakdown point
CDF Cumulative distribution function
IF Influence function
K-S Kolmogorov-Smirnov
LBP Lower breakdown point
ML Maximum likelihood
MOM Method of moments
MTTF Mean time to failure
OLS Ordinary least-squares
PDF Probability density function
PITS Probability integral transform
RRMSE Relative root mean square error
UBP Upper breakdown point
WLS Weighted least-squares

Appendix A. Real Data Sets

Data Set 1 [36] (p. 309):
5, 1, 21, 31, 46, 75, 98, 122, 145, 165, 195, 224, 245, 293, 321, 330, 350, 420.
Data Set 2 [37,38] (p. 415, p. 169):
12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 110,

112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776.
Data Set 3 [5] (p. 231):
0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09,

9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62,
3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96,
36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66,
11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26,
11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07,
3.36, 6.93, 8.65, 12.63, 22.69.

Data Set 4 [39] (p. 2045):
8, 4, 3, 30, 15, 54, 24, 7, 4, 21, 5, 7, 3, 12, 26, 2, 61, 9, 11, 26, 12, 20, 60, 4, 24, 2, 12, 9, 36, 14, 12, 37, 35, 21, 11, 7, 2,

7, 33, 13, 25, 33, 11, 26, 31, 13, 26, 12, 22, 9, 21, 4, 8, 10, 2, 48, 30, 17, 6, 7, 15, 6, 12, 19, 13, 15, 5, 10, 7, 22, 26, 15, 55, 7, 5,
9, 6, 11, 10, 26, 24, 37, 7, 3, 16, 26, 15, 9, 16, 13, 11, 7, 2, 9, 10, 10, 20, 9, 7, 17, 19, 26, 7, 2, 11, 7, 8, 15, 6, 4, 21, 5, 13, 13,
37, 2, 8, 7, 16, 11, 15, 25, 8, 3, 10, 21, 10, 11, 4, 29, 28, 13, 10, 15, 20, 60, 12, 10, 3, 51, 17, 31, 4, 5, 11, 9, 30, 17, 26, 5, 40,
74, 14, 16, 33, 23, 19, 3, 89, 14, 20, 48, 26, 13, 12, 10, 10, 15, 14, 5, 23, 36, 6, 5, 3, 28, 28, 23, 12, 3, 4, 68, 10, 4, 30, 8, 6, 23,
14, 14, 1, 1, 16, 80, 1, 14, 18, 30, 17, 26, 5, 50, 17, 14, 15, 33, 23, 17, 9, 3, 59, 40, 27, 40, 3, 14, 87, 16, 14, 14, 11, 11, 32, 24,
15, 18, 31, 2, 8, 11, 17, 7, 48, 1, 25, 25, 77, 7, 2, 6, 2, 32, 12, 17, 19, 13, 1, 23, 20, 16, 46, 10, 14, 2, 5, 35, 9, 18, 2, 50, 7, 40,
22, 46, 19, 31, 13, 15, 26, 31, 5, 26, 1, 25, 46, 94, 9, 11, 12, 27, 12, 15, 31, 10, 30, 16, 14, 14, 49, 22, 17, 22, 7, 17, 4, 17, 13, 5,
33, 27.

Appendix B. R Commands for PITS Estimator

### PITS Estimator ###
flin<-function(theta,data,tau){
n<-length(data)
fx<-(sum(((1+((theta *data)/(1+theta)))*exp(-theta*data))ˆtau)/n)-(1/(tau+1))
return(fx)
}
#solve using bisection method
# a-lower interval; b-upper interval
pits<-function(data,tau,a,b){
theta<-uniroot(flin,interval=c(a,b),data=data,tau=tau)$root
return(theta)
}
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