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Abstract: In this paper, a stability-driven optimal disturbance observer (DO) is proposed.
The proposed method does not require any plant inverse dynamics to detect introduced disturbances
or a stabilizing Q filter. It does not require additional compensators to resolve causality problems,
due to the relative degree, or filters to solve instability problems of non-minimum phase plants.
Using this method enables wideband and narrowband disturbances to be attenuated by simply
multiplying the corresponding peak filters by the baseline weight function. Furthermore, the
proposed DO guarantees the stability of closed-loop systems because the already designed outer-loop
systems are considered as a target plant to be stabilized and because of the Lyapunov stability-based
H∞ control. In the application example, it was confirmed that the proposed method is effective, and
the position error signals were improved by 20.9% in commercial hard disk drives and 36.6% in
optical image stabilization systems.

Keywords: disturbance observer (DO); H∞ control; linear matrix inequalities (LMIs); optimal
control; stability

1. Introduction

One of the main causes of tracking performance degradation in the motion control systems is a
disturbance. The disturbances act as additional input signals and generate unwanted output signals.
In the steady-state, the unwanted output signals are added to a carefully designed output signal,
resulting in distorting of the output signal. To reduce the effects of the disturbances, a disturbance
observer (DO) has been used in many industrial applications [1].

Many motor control systems have employed DOs. In permanent-magnet synchronous motors,
DOs have been used to remove generalized multiple disturbances, such as cogging torques,
load torques, friction torques, measurement error effects, dead-time effects, and parameter
perturbations [2]. To remove narrowband high-frequency disturbances, a discrete-time DO based on
an infinite-impulse-response filter was proposed and applied to a permanent-magnet synchronous
motor [3]. A robust high-order DO for the state-dependent Riccati-equation-based suboptimal
speed controller of an interior permanent-magnet synchronous motor drive was proposed [4].
Unlike a conventional DO, in that study, the proposed high-order DO guarantees fast convergence
of the estimated error. To reduce both noise and uncertainty, a modified DO was proposed,
and the method was applied to brushless DC motor drive systems [5]. To obtain design flexibility,
an algebraic-calculation-based DO was also proposed [6]. In two-axis control systems, DOs have
also been used to enhance performance. A DO was applied to a double-gimbaled variable-speed
control moment gyroscope. In the study, a DO was used to decouple the inner- and outer-gimbal
system and to reject disturbances [7]. Star tracker systems also use DOs. A star tracker system based
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on a two-axis inertially stabilized platform, which was controlled by a DO, was also proposed for
improving the stability accuracy [8]. Moreover, DOs have been utilized in flight control systems. A DO
was used for consensus control [9], and the proposed method was applied to the formation control of
unmanned aerial vehicles. The flight control of an unmanned aerial vehicle has high-order disturbances.
To achieve the desired tracking performance, the disturbance is estimated by a DO based on Simpson’s
approximation [10]. A novel second-order fixed-time sliding-mode control, based on a fixed-time
sliding-mode DO for a small-scale unmanned helicopter, was developed for hovering in the presence
of external disturbances [11]. A robust nonlinear DO was proposed for an integrated missile model
with uncertainties and disturbances to estimate the uncertainties, disturbances, and state variables,
including missile jerk [12]. DOs have also been applied to electric-circuit systems. In singularly
perturbed systems with mismatched disturbances, the DO attenuates the mismatched disturbances [13].
In an AC power converter, a frequency-domain DO-based control was used to attenuate periodic
uncertainties and disturbances [14]. In a DC–DC converter, the DO detected unmodeled effects, which
were considered as lumped disturbance, and the disturbance was attenuated [15]. Two DOs were
developed to deal with uncertainties and disturbances to improve velocity-tracking performance
and to reduce energy consumption in an electrohydraulic actuator [16]. A DO was applied to an
excavation [17]. In the study, an iterative learning control (ILC)-based DO was used to compensate
for the difference between the ILC prediction and the true disturbance. Unlike in a conventional DO,
a high-pass Q filter was used to estimate the disturbance for the electrohydraulic actuators [18].

A linear-matrix-inequality-based control has been widely utilized in different industrial
applications, because the designed closed loop system is stable and the solution is optimal.
The methodology comes from the fact that, because the intersection of the convex sets is a convex
set as well, the global minimum can be found in the intersection. Therefore, if we can express
design constraints in the form of the LMIs, we can find an optimal solution that satisfies all of those
constraints. This is the first usage of the LMI approach, and it generally shows only time responses
without frequency responses. As an another usage of the LMI approach, there is a loop shaper in
the frequency domain, such as the H∞ control, and numerous studies have been conducted using
these features. To achieve their unique goals, the researchers have suggested new cost functions to be
minimized, even suggesting modified design frameworks. With their own design concepts, so far, many
loop shaping methods based on H∞ control have been provided. In tele-micromanipulation system,
an H∞-based loop shaping method was suggested [19]. In general, this loop shaping method has been
used for motion control systems [20–32] including commercial Hard Disk Drives [33]. In addition,
for DO design, this approach was used [34–36]. Here, note that, to achieve the special objects,
the cost function, setup, must be carefully designed, and sometimes the design framework must
be redesigned because the goal may not be achievable by using existing control blocks. In addition,
because linear-matrix-inequality-based H∞ control can easily shape loop transfer functions [37–39],
this method was used to modify existing loop functions [40,41]. It was also used to add additional
stability margins to reduce a sensitivity peak [42] and to design a state space DO to maintain the
advantages of state space controllers [43]. Recently, a Q filter design method to always stabilizes a DO
was proposed [44]. However, the method still requires additional compensators because the method
maintained a structure of the conventional DO.

A conventional DO estimates introduced disturbances using a plant inverse model and subtracted
the estimated disturbance from total control effort. The conventional DO design procedure is as
follows. First, a Q filter is designed to determine the bandwidth of the DO. Second, to solve the
causality problem (strictly proper plant case), additional filters are designed. Third, if instability
problems (non-minimum phase plant case) arise, then compensators based on all-pass filters should be
designed. However, the conventional DO can only reduce the incoming disturbances at the same rate
because only the bandwidth of the DO can be adjusted. In addition, although the three complicated
design procedures were used, the stability was generally not guaranteed. A recent study [44] satisfied
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the stability to all types of models, but the method still required additional filters to solve the causality
and instability problems.

In this study, a new unified design for the DO is proposed to remove the above three-step design
procedure with guaranteed stability. For stability, the proposed design method uses a linear matrix
inequality (LMI)-based H∞ control because the LMI-based control guarantees the stability of the closed
loop systems. However, it is not simple to apply the DO design to the standard LMI framework
because the closed loop systems are mixed with a plant, a conventional controller, and a DO. To
apply the DO design to the LMI framework, in this study, the closed loop system with the DO
is reinterpreted as a parallel system that consists of a plant, a conventional controller (C) forming
outer-loop systems, and a DO (Cconv

DO ) forming inner-loop systems. Because the DO can be written by
Cconv

DO = QP−1
n /(1−Q), the closed loop system with the DO can be considered as a plant controlled

by the two parallel controllers, C and Cconv
DO . From the DO point of view, the DO controls a fictitious

plant written by a function of the plant and the outer-loop controller C, that is, f (P, C). In this study,
an f (P, C) is considered as a control target, which is a new design framework for DOs. Considering the
function of the DO, the DO must be able to estimate the incoming disturbances well and remove the
disturbance from the total control input. To reach the goal, a cost function to be minimized is defined by
z = |d− uDO|, where d and uDO are the incoming and estimated disturbances. Now, only one challenge
of how and how much to eliminate the disturbance remains. In this study, the problem is solved
by applying a weighting function that controls the capability of the disturbance rejection. With the
proposed design framework and the suggested cost function, the generalized systems are augmented
and finally the optimal DO is designed. Unlike previous studies, the type of the model needs not
be considered in the proposed method. Therefore, additional filters and compensators to solve
causality and instability problems caused by the model types are not required. The proposed method
requires only one design specification—i.e., the frequency characteristics of the disturbances to be
attenuated—and guarantees closed-loop system stability. This work makes the following contributions.

• The proposed method guarantees the stability of the closed-loop system because it provides
optimal control based on the Lyapunov stability.

• It does not require plant inverse dynamics.
• Stabilizing Q filters are not required.
• The relative degree does not need to be considered. Therefore, additional filters to compensate

for the relative degree are not necessary.
• Compensators based on all-pass filters are not required for non-minimum phase plants.
• Both wide and narrow band disturbances can be attenuated.
• Because this method provides more stability margins, it can reduce a sensitivity peak.

The rest of the paper is organized as follows. Section 2 contains the main research results.
In this section, the conventional DO is discussed, and a new framework for optimal DO design
is suggested. Section 3 includes the plant identification and controller design for stabilizing the
outer loop. In addition, illustrative examples, including time and frequency responses, are presented.
The conclusion follows.

2. Optimal Disturbance Observer Design

This section contains the main research results. The conventional DO is analyzed, and an optimal
design framework is proposed. The formulation for the suggested method is also described.

2.1. Conventional Disturbance Observer

In the presence of disturbances, DOs have been utilized intensively to reduce the disturbances.
A DO monitor introduces disturbances and subtracts the disturbances from the total control effort.
A typical DO is shown in Figure 1. In the figure, P is a plant to be controlled; Pn is a nominal
plant model; d is an external disturbance; C is a controller when there is no disturbance; Q is a low
pass filter to stabilize DO when the disturbance is introduced.
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Figure 1. Conventional DO.

If it is assumed that the output of the Q filter is not connected to the feedback loop, then the input
of the Q filter, iQ, can be calculated as

iQ = u + P · P−1
n (d− u)

= u + P · P−1
n d− P · P−1

n u.
(1)

In the equation, if P and Pn are identical, then iQ = d. The role of the Q filter including additional
compensators is to stabilize the DO, and to solve causality problems by relative degree and stability
problems of the non-minimum phase plants. Finally, the estimated disturbance d̃ is applied to subtract
d from the overall control input.

In Figure 1, the closed loop system can be rewritten by

y(s)
d(s)

=
P

1 + P
(

C + QP−1
n

1−Q

) , (2)

where QP−1
n /(1− Q) is a transfer function of the DO, Cconv

BO . Therefore, the closed loop system is a
parallel system controlled by two controllers C and Cconv

BO . From the DO point of view, the DO controls
a composite plant defined by a function of P and C, that is, f (P, C). Thus, the DO design problem
is equivalent to design the DO to f (P, C). In this study, because f (P, C) is a pre-designed fictitious
model in the absence of external disturbances, the optimal DO is designed to f (P, C), which is a new
DO design method.

2.2. Design Framework for Optimal Disturbance Observer

With a given outer-loop controller, a DO should estimate introduced disturbances and subtract
the disturbance from the control energy. To estimate the disturbance accurately, the output of the DO
should be as close to d as possible in the frequency range of interest, which can be obtained by

max
ω
|d− uDO| . (3)
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With this motivation, a new framework for optimal DO design is proposed, as shown in Figure 2.
Using the block diagram, augmented systems are derived, and a linear-matrix-inequality-based DO
is designed.

Figure 2. Proposed framework for optimal DO design.

In the block diagram, W is a weight function to control the performance of the DO; w is an
external disturbance; z is an output to be minimized; CDO is an optimal controller that minimizes
a transfer function from w to z. In addition, yDO is a measurement, which is an input of the CDO.
uDO is an output of the CDO, which is designed to be equivalent to w in the frequency range of interest.
As for disturbances, there are wideband disturbances and narrowband disturbances. To attenuate each
disturbance, we propose separated weighting functions, Wbase and Wpeak, which are used to attenuate
wideband disturbances and narrowband disturbances, respectively. Wbase for reducing wideband
disturbance is represented by

Wbase(s) =
(s/M1/n + ω∗B)

n

(s + ω∗B A1/n))n (4)

where M, A, ω∗B and n are the upper bound, the lower bound, the bandwidth, and an order of Wbase(s),
respectively [45]. Here, using Wbase, wideband disturbances can be reduced. To reduce narrowband
disturbances, a peak-filter-based weight function is used as

Wpeak(s) =
N

∏
i=1

s2 + 2ζiωis + ω2
i

s2 + 2giζiωis + ω2
i

(5)

where ζi determines the width of the peak; ωi is a peak frequency; gi is the magnitude of the
peak response; N is the number of the narrow band disturbances [46]. In Equation (5), if we would
like to reduce one narrow disturbance, then one second order filter should be designed. If we would
like to reduce N narrow band disturbances, then 2× N ordered filters should be designed. Therefore,
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the single second order filter reduces one narrow band disturbance. Finally, to reduce both wide and
narrow band disturbances, two weight functions are combined as

W(s) = WbaseWpeak, (6)

and their typical frequency responses are illustrated in Figure 3.
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Figure 3. Weight functions to reject wide and narrow band disturbances.

In the figure, the gain of W−1
baseW

−
peak1 is−14 dB at 1 Hz, which means that if an external disturbance

(w) with the 1 Hz frequency component is introduced, the designed DO generates uDO that satisfies
|w− uDO| = 10−14/20. This means that wide band disturbances that exist in the region below 10 Hz are
reduced by approximately 10−14/20. At 50 Hz, the gain of W−1

baseW
−
peak1 is −20 dB, which implies that

the introduced disturbance can be attenuated by −20 dB. In this sample weight, even though a single
narrowband disturbance is considered, multiple narrowband disturbances could be considered with
N > 1 in Equation (5). However, if excessive high-order filters are used to reduce the multiple narrow
band disturbances, the proposed design framework decreases the performance of the disturbance
rejection to maintain stability. Therefore, critical disturbances to the closed loop systems must firstly
be attenuated.

2.3. Optimal Disturbance Observer Design

To realize the proposed framework, all transfer functions should be described by state space
representation. Here, P is the identified model and can be written by state space representation.

P :
ẋP(t) = APxP(t) + BPuP(t)

yP(t) = CPxP(t)
(7)
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In addition, W and outer-loop controller C are described by state space representation, as in (8) and (9).

W :
˙xW(t) = AW xW(t) + BWuW(t)

yW(t) = CW xW(t) + DWuW(t)
(8)

C :
ẋC(t) = ACxC(t) + BCuC(t)

yC(t) = CCxC(t) + DCuC(t)
(9)

Considering (20), the system matrix of C is as follows.

AC = An − BnK− LCn,

BC = −L,

CC = −K,

DC = 0.

(10)

Using Equation (7), a state equation of P is calculated by

ẋP(t) = APxP(t) + BPw(t)

+ BP(CCxC(t) + DCCPxP(t))− BPuDO(t)

= (AP + BPDCCP)xP(t) + BPCCxC(t)

+ BPw(t)− BP(t)uDO(t).

(11)

A state equation of C is represented by

ẋC(t) = ACxC(t) + BCyDO(t)

= ACxC(t) + BCCPxP(t).
(12)

Moreover, a state equation of W can be calculated by

ẋW(t) = AW xW(t) + BW(w(t)− uDO(t))

= AW xW(t) + BWw(t)− BWuDO(t)).
(13)

z to be minimized is obtained by

z(t) = CW xW(t) + DW(w(t)− uDO(t))

= CW xW(t) + DWw(t)− DWuDO(t)).
(14)

and the input of the DO is captured as

yDO(t) = CPxP(t). (15)

Using Equations (11)–(15), the augmented systems are written as

ẋ(t) = Ax(t) + B1w(t) + B2uDO(t)

z(t) = C1x(t) + D11w(t) + D12uDO(t)

yDO(t) = C2x(t) + D21w(t) + D22uDO(t),

(16)



Mathematics 2020, 8, 1633 8 of 18

where x(t) =
[

xT
p (t) xT

C(t) xT
W(t)

]T
, and

A =

AP + BPDCCP BPCC 0
BCCP AC 0

0 0 AW

 ,

B1 =

 Bp

0
BW

 , B2 =

−Bp

0
−BW

 ,

C1 =
[
0 0 CW

]
, D11 = DW , D12 = −DW ,

C2 =
[
CP 0 0

]
, D21 = 0, D22 = 0.

In addition, a state space representation of CDO is defined by

CDO :
ẋDO(t) = AKxDO(t) + BKyDO(t)

uDO(t) = CKxDO(t) + DKyDO(t)
(17)

Then, the closed loop systems, Tzw, can be obtained by[
ẋ(t)

ẋDO(t)

]
=

[
A + B2DKC2 B2CK

BKC2 AK

] [
x(t)

xDO(t)

]
+

[
B1 + B2DKD21

BKD21

]
w(t)

z(t) =
[
C1 + D12DKC2 D12CK

] [ x(t)
xDO(t)

]
+
[

D11 + D12DKD21

]
w(t).

Theorem 1. The following two statements are equivalent.

• |Tzw|∞ < γ
• minimize γ subject to LMIs

AX + XAT + B2L + BT
2 LT A + B2RC2 + QT B1 + B2RD21 XCT

1 + LT D12

∗ YA + ATY + FC2 + CT
2 FT YB1 + FD21 CT

1 + CT
2 RT DT

12
∗ ∗ −I DT

11 + DT
21RT DT

12
∗ ∗ ∗ −γI

 < 0,

[
X I
∗ Y

]
> 0

where Q, F, L, R, X, and Y are variables. X > 0 means that X is positive definite and ∗ denotes an ellipsis
for terms induced by a symmetric matrix. Then, an optimal controller C∗DO is given by[

AK BK
CK DK

]
=

[
V−1 −V−1YB2

0 I

] [
Q−YAX F

L R

] [
U−1 0

−C2XU−1 I

]
,

where U and V are any nonsingular matrices satisfying YX + VU = I.

Proof of Theorem 1. The result immediately follows from [37,39].

Theorem 2. C∗DO stabilizes the closed loop systems.

Proof of Theorem 2. Because C∗DO is a Lyapunov-stability-based H∞ dynamic output feedback
controller, C∗DO always stabilizes the closed-loop systems [37–39].
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3. Application Example

In this section, we applied the proposed method to two motion control systems—that is, hard
disk drives (HDDs) and a pinhole camera model.

3.1. Case 1

Firstly, the proposed design method was applied to HDDs as a motion control system, as shown
in Figure 4. The dynamics of a plant model were measured by a laser Doppler vibrometer (LDV) and a
dynamic signal analyzer (DSA). The mathematical models are identified by

P(s) =
Kt

Jm
· 1

s2 + (Bd/Jm)s + Ks/Jm
· ω2

n
s2 + 2ζnωns + ω2

n
·

m

∏
i=1

s2 + 2ζziωzis + ω2
zi

s2 + 2ζpiωpis + ω2
pi
·

ω2
pi

ω2
zi

(18)

where Kt is the torque constant; Jm is the inertia; Bd is the damping coefficient, and Ks is the damping
coefficient; Ks is the spring coefficient that determines low-frequency poles. Here, ωn and ζn describe a
baseline of high-frequency characteristics, and the remaining terms represent detailed high-frequency
features over the baseline. For the high-frequency dynamics, m = 1 is chosen. The values of the
parameters are listed in Table 1.

Table 1. HDDs parameters.

Parameter Symbol Value Unit

torque constant Kt 0.0046 N ·m/A
inertia Jm 0.95× 10−7 kg ·m2

damping coefficient Bd 3.8679× 10−5 N · s/m
spring coefficient Ks 0.0437 N/m

resonance frequency ωn 2π13,000 radian
damping ratio ζn 0.1 -

resonance frequency ωzi 2π8600 radian
damping ratio ζzi 0.004 -

resonance frequency ωpi 2π8500 radian
damping ratio ζpi 0.01 -

Figure 4 shows the identified model and the nominal model.
For outer-loop design, a second-order nominal model is used. It is represented by the first two

terms of the right side of Equation (18). Its state space model is expressed as

Pn :
ẋn(t) = Anx(t) + Bnu(t)

yn(t) = Cnx(t).
(19)

In this study, an estimator-based state feedback controller is designed to stabilize the plant as follows.

C :

˙̄x(t) = An x̄(t) + Bnu(t) + L(yn(t)− Cn x̄(t))

= (An − BnK− LCn)x̄(t) + Lyn(t)

u(t) = −Kx̄(t),

(20)

where L and K are the estimator and state feedback control gains of C, respectively. To design the state
feedback controller, a pole placement method is used [47]. In the outer-loop design, 914 Hz is chosen
as the 0-dB crossover frequency, as stability margins, 12.4 dB and 52.6◦ are used. For outer-loop design,
estimator-based state feedback control was used. In the presence of disturbances, the proposed method
was applied to remove the disturbances. Because only wide band disturbances were considered in this
study, Wbase was used as a weight function. For weight function design, M = 100/20, A = 10−14/20,
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ω∗B = 2π100 and n = 1 were used. The designed weight function is represented by a red solid line
in Figure 3. The designed open-loop transfer functions are shown in Figure 5. A dash-dotted line
(blue) represents an open-loop transfer function of the inner loop, whereas a dashed line (magenta)
represents an open-loop transfer function of the outer loop. A solid line (red) represents a combined
open-loop transfer function of the inner and outer loops.
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Figure 4. Plant models: measured, identified, and nominal models.
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Figure 5. Designed open loop transfer functions.

In the magnitude plot in Figure 5, the loop gain designed by C∗DO is added to the gain of the
combined open-loop transfer function, and the additional gain results in an increasing 0-dB crossover
frequency. Although it appears that C∗DO just adds gain, C∗DO also adds phase in the phase plot.
This additional phase maintains or even increases the relative stability; in general, this advantage
cannot be obtained by simple high-gain control.

Figure 6 shows Nyquist plots of the outer loop and the combined loop.
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Figure 6. Nyquist plot and stability margins.

In the plot, C∗DO pushes the inner-loop transfer function to the right side, which indicates more
stability margins, resulting in a lower peak in the sensitivity function. The maximum peak of the
sensitivity function, S, is defined as

MS = max
ω
|S(jω)|

= max
ω
|(1 + L(jω))−1|

(21)

where L denotes an open-loop transfer function. Moreover, 1 + L(jω) indicates the distance between
(−1, 0) and L(jω). The distance is represented by the radius of the circle tangent to L(jω) and is
located at (−1, 0). Furthermore, the radius is larger in more stable systems with more stability margins.
In Figure 6, r2 > r1, which implies that C∗DO offers more stability margins to the closed loop systems.
Therefore, C∗DO decreases the peak of the sensitivity function. The compared sensitivity functions are
shown in Figure 7.
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Figure 7. Designed sensitivity functions.

In Figure 6, r1 = 0.67 and r2 = 0.825. Therefore, the corresponding sensitivity peaks are
20 log10(1/0.67) = 3.48 dB and 20 log10(1/0.825) = 1.67 dB, respectively, as shown in Figure 7. As the
sensitivity function is improved, the torque disturbance function is also is improved. The torque
disturbance function is defined by a transfer function from plant input to plant output.

With C∗DO, the peak of the torque disturbance function is reduced by 4.8 dB, as shown in Figure 8.
The weight function W can control the performance of the disturbance rejection and frequency range
of interest. The lower bound of W−1 controls the performance of the disturbance rejection, and a cutoff
frequency of W−1 determines the frequency range of interest.
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Figure 8. Designed torque transfer functions.
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To measure the entire performance in all frequency ranges, random disturbances were applied to
a zero-order hold equivalent discretized model with a sample frequency of 10.68 kHz. The measured
power spectral density and accumulated position error signal (PES) are compared in Figure 9.
With C∗DO, the performance was improved by 20.9%.
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Figure 9. Compared power spectral densities.

For readability, the detailed results of the frequency responses are summarized in Table 2.

Table 2. Summarized frequency characteristic.

without C∗
DO with C∗

DO Comment

fc 914 1377 gain crossover frequency ofopen loop function (Hz)
GM 12.4 17.2 gain margin (dB)
PM 52.6 65.3 phase margin (◦)
fs 784 1580 bandwidth of sensitivity (Hz)

MS 3.48 1.67 peak of sensitivity (dB)
MT 17.6 12.8 peak of torque function (dB)

acc. PES 0.307 0.243 accumulated PES

3.2. Case 2

As for the second example, an optical image stabilization (OIS) system was used [41]. Because
the identified model is a lightly damped system, a notch filter was firstly designed to suppress the
oscillated responses of the plant. To design the outer loop controller C, an estimator-based state
feedback controller was designed, as shown in Equation (20). In addition, a weight function was
design, as shown in Figure 10, because hand shake disturbances exist in the frequency range below
100 Hz.



Mathematics 2020, 8, 1633 14 of 18

100 101 102

Frequency (Hz)

-20

-15

-10

-5

0

5

M
a

g
n

it
u

d
e

 (
d

B
)

Figure 10. Weight function for OIS.

Using the weighting function, designed sensitivity functions were compared, as shown
in Figure 11.
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In the figure, the sensitivity peak is reduced, which implies that additional stabilities increase.
In addition, the rejection performance to the plant output disturbances is also improved in the low
frequency range. As the sensitivity function is improved, the torque disturbance function is improved,
as shown in Figure 12.
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Figure 12. Designed torque transfer functions.

In the figure, it is shown that the disturbance rejection performance is improved in the frequency
range below 100 Hz. In particular, it shows a disturbance reduction effect of−15 dB at 1 Hz. This results
from the weight function, as in Figure 10. As in the Section 3.1, in this Section 3.1, a random disturbance
experiment was conducted. Figure 13 shows the compared power spectral densities. In OIS, error is
defined by image pixel deviations because the parameter is crucial to image qualities.
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With C∗DO, an accumulated pixel deviation is improved by 36.3% in OIS.

4. Conclusions

An optimal DO was proposed in this paper. The proposed method does not require filters
to resolve instability or compensators to solve causality problems. In addition, the designed
DO always guarantees the stability of the closed-loop systems because predesigned outer-loop
systems are considered as a model to be controlled and linear-matrix-inequality-based H∞ is applied.
An application example verified that the proposed method is effective and improved the performance
by 20.9% in HDDs and 36.6% in OIS.
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