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Abstract: In the present paper, we consider an important problem from the point of view of
application in sciences and engineering, namely, a new class of nonlinear Love-equation with infinite
memory in the presence of source term that takes general nonlinearity form. New minimal conditions
on the relaxation function and the relationship between the weights of source term are used to show
a very general decay rate for solution by certain properties of convex functions combined with some
estimates. Investigations on the propagation of surface waves of Love-type have been made by
many authors in different models and many attempts to solve Love’s equation have been performed,
in view of its wide applicability. To our knowledge, there are no decay results for damped equations
of Love waves or Love type waves. However, the existence of solution or blow up results, with
different boundary conditions, have been extensively studied by many authors. Our interest in this
paper arose in the first place in consequence of a query for a new decay rate, which is related to those
for infinite memory v in the third section. We found that the system energy decreased according to a
very general rate that includes all previous results.

Keywords: nonlinear Love-equation; infinite memory; general decay rate

1. Introduction

The Love equation is a one-dimensional mathematical model that is used to determine a many
physical phenomenon. This theory is a continuation of the Euler–Bernoulli beam theory and it was
developed in 1888 by Love. This kind of systems appears in the models of nonlinear Love waves or
Love type waves. It is a generalization of a model introduced by [1–3].

The original Love’s equation is derived in [4,5] by the energy method. Under the assumptions
that the Kinetic energy per unit of length is

e1 =
1
2

Fρ[∂tu2 + µ2w2∂tu2
x], (1)

and the potential energy per unite of length is

e2 =
1
2

EF(u2
x), (2)

where F is an area of cross-section and w is a cross-section radius of gyration about the central line.

Mathematics 2020, 8, 1632; doi:10.3390/math8091632 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-7895-4168
http://dx.doi.org/10.3390/math8091632
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/9/1632?type=check_update&version=2


Mathematics 2020, 8, 1632 2 of 18

Using, in (2), the corrected form of tension, we have

e2 =
1
2

Fux(Eux + ρµ2w2∂ttux). (3)

Subsequently, the variational equation of motion is given by

δ
∫ t2

t1

ds
∫ L

0
(e1 − e2)dx = 0, (4)

and we then obtain the equation of extensional vibrations of rods as

∂ttu−
E
ρ

uxx − 2µ2w2∂ttuxx = 0. (5)

The parameters in (5) have the following meaning: u is the displacement, µ is a coefficient, E is
the Young modulus of the material, and ρ is the mass density.

This type of problem describes the vertical oscillations of a rod, and it was established from Euler’s
variational equation of an energy functional associated with (5). A classical solution of problem (5),
with null boundary conditions and asymptotic behavior are obtained using the Fourier method and
method of small parameter. In this article, we consider a nonlinear Love-equation in the form

∂tty−
(
yx + ∂tyx + ∂ttyx

)
x +

∫ t

−∞
v(t− s)yxx(s)ds

= F[y]−
(

F[y]
)

x
+ f (x, t), x ∈ Ω, 0 < t < T,

(6)

where Ω = [0, L], L > 0 and

F[y] = F
(

x, t, y, yx, ∂ty, ∂tyx

)
∈ C1

(
Ω×R+ ×R4

)
. (7)

The given functions v, f will be specified later. With F = F(x, t, y1, . . . , y4), we put D1F = ∂F
∂x ,

D2F = ∂F
∂t , Di+2F = ∂F

∂yi
, with i = 1, . . . , 4.

Equation (6) satisfies the homogeneous Dirichlet boundary conditions

y(0, t) = y(L, t) = 0, t > 0, (8)

and the following initial conditions

y(x,−t) = y0(x, t), ∂ty(x, 0) = y1(x). (9)

We call the Sobolev space of order 1 on Ω the space

H1(Ω) = {v ∈ L2(Ω), ∂xv ∈ L2(Ω)}.

The space H1 is endowed with the norm that is associated to the inner product

〈u, v〉1,Ω =
∫

Ω

(
uv + ∂xu∂xv

)
dx,

and we note the corresponding norm

‖v‖1,Ω =
√
〈v, v〉1,Ω =

( ∫
Ω
|v|2dx +

∫
Ω
|∂xv|2dx

)1/2
.
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We have the generalization of such spaces. Let m ∈ N. A function v ∈ L2(Ω) belongs to
the Sobolev space of order m, denoted Hm(Ω), if all of the derivatives of v up to order m, in the
distributional sense, belong to L2(Ω). By convention, we note H0(Ω) = L2(Ω).

We denote, by H1
0(Ω), the closure of D(Ω) in H1(Ω). By extension, we note Hm

0 (Ω) the closure
of D(Ω) in Hm(Ω).

In order to deal with a wave equation with infinite memory, we assume that the kernel function
v satisfies the following hypothesis:

Hypothesis 1. v ∈ C1(R+,R+) is a non-increasing function such that

1−
∫ ∞

0
v(s)ds = l > 0, v(0) > 0, (10)

and there exists an increasing strictly convex functionH ∈ C1(R+,R+), satisfying

H(0) = ∂tH(0) = 0, and lim
t→∞

∂tH(t) = ∞, (11)

such that ∫ ∞

0

v(s)
H−1(−∂tv(s))

ds + sup
s∈R+

v(s)
H−1(−∂tv(s))

< ∞, (12)

whereH−1 is the inverse ofH function.

Hypothesis 2. y0(0), y1 ∈ H1
0(Ω) ∩ H2(Ω). We need the following assumptions on source forces.

Hypothesis 3. f ∈ H1(Ω× (0, T)).

Hypothesis 4. F ∈ C1
(

Ω× [0, T]×R4
)

, such that

F(0, t, 0, y2, 0, y4) = F(1, t, 0, y2, 0, y4) = 0, ∀ t ∈ [0, T], y2, y4 ∈ R.

Hypothesis 5. There exists a constant m0 ≥ 0, such that∫
Ω
|y0x(., s)|2 dx ≤ m2

0, ∀ s > 0. (13)

Our results are very interesting from an application point of view and, as for as, we know that there
is no results for equations of Love waves or Love type waves with the presence of finite/infinite memory
term ([1–3,6–12]).

Without infinite memory term, Triet et al. in [12] considered an initial boundary value problem
for a nonlinear Love equation

utt −
∂

∂x
(
ux + λ1uxt + uxtt

)
+ λut = F

(
x, t, u, ux, ut, uxt

)
− ∂

∂x
[
G
(

x, t, u, ux, ut, uxt
)]

+ f (x, t), x ∈ Ω = (0, 1), 0 < t < T,
(14)

u(0, t) = u(1, t) = 0, (15)

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (16)

where λ, λ1 > 0 are constants and ũ0, ũ1 ∈ H1
0(Ω) ∩ H2(Ω); f , F and G are given functions. First,

under suitable conditions, the existence of a unique local weak solution has been proved and a blow-up
result for solutions with negative initial energy is also established. A sufficient condition ensuring the
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global existence and exponential decay of weak solutions is given in the last section. These results will
be improved in [11,12] to the Kirchhoff type.

The existence/nonexistence, exponential decay of solutions and blow-up results for viscoelastic
wave equations with finite history have been extensively studied and many authors have obtained
many results (see [13–21]).

Concerning problems with infinite history, we mention the work [15], in which the authors
onsidered the following semi-linear hyperbolic equation, in a bounded domain of R3,

∂ttu− K(0)∆u−
∫ ∞

0
∂tK(s)∆u(t− s)ds + g(u) = f ,

with K(0), K(∞) > 0, ∂tK ≤ 0 and they proved the existence of global attractors for the problem.
Next, in [22], the authors considered a fourth-order suspension bridge equation with nonlinear
damping term |∂tu|m−2∂tu and source term |u|p−2u. The authors found necessary and sufficient
conditions for global existence and energy decay results without considering the relation between m
and p. Moreover, when p > m, they gave a sufficient condition for finite time blow-up of solutions.
The lower bound of the blow-up time is also established.

Recently, in [23], the authors studied a three-dimensional (3D) visco-elastic wave equation with
nonlinear weak damping, supercritical sources, and prescribed past history

∂ttu− k(0)∆u−
∫ ∞

0
∂tk(s)∆u(t− s)ds + |∂tu|m−1∂tu = |u|p−1u, t ≥ 0,

where the relaxation function k is monotone decreasing with k(+∞) = 1, m ≥ 1, 1 ≤ p < 6. When the
source is stronger than the dissipation, i.e., p > max{m,

√
k(0)}, they obtained some finite time

blow-up results with positive initial energy. In particular, they obtained the existence of certain
solutions, which blow-up in finite time for initial data at an arbitrary energy level (see [24]).

The outline of our work: in the next section, the existence results in Theorems 1 and 3 are obtained
by using a new combined methods. A decay rate of energy, which is very general, is derived in the
last section: Theorem 4 extends the results that were obtained in [20], where the authors established a
general decay rate for relaxation functions satisfying

∂tv(t) ≤ −H(v(t)), t ≥ 0, H(0) = 0, (17)

for a positive functionH ∈ C1(R+) andH is linear or strictly increasing and strictly convex C2 function
on (0, r], 1 > r. This improves the conditions that were introduced by [13] on the relaxation functions:

∂tv(t) ≤ −χ(v(t)), χ(0) = ∂tχ(0) = 0, (18)

where χ is a non-negative function, strictly increasing and strictly convex on (0, k0], k0 > 0.
Furthermore, the authors required that

∫ k0

0

dx
χ(x)

= +∞,
∫ k0

0

xdx
χ(x)

< 1, lim
s→0+

inf
χ(s)/s
∂tχ(s)

>
1
2

, (19)

and proved a decay result for the energy in a bounded domain. In addition to these assumptions, if

lim
s→0+

sup
χ(s)/s
∂tχ(s)

< 1, (20)

then, in this case, an explicit decay rate is given.

2. The Existence of Solution

We define the weak solution to of (6)–(9), as follows.
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Definition 1. A function y is said to be a weak solution of (6)–(9) on [0, T] if

y, ∂ty, ∂tty ∈ L∞(0, T, H1
0(Ω) ∩ H2(Ω)),

such that y satisfies the variational equation∫
Ω

∂ttyw dx +
∫

Ω
(yx + ∂tyx + ∂ttyx)wxdx

−
∫

Ω

∫ ∞

0
v(s)yx(t− s)dswxdx

=
∫

Ω
f wdx +

∫
Ω

F[y]wdx +
∫

Ω
F[y]wxdx,

(21)

for all test function w ∈ H1
0(Ω), for almost all t ∈ (0, T).

The following famous and widely used technical Lemma will play an important role in the sequel.

Lemma 1. Ref. [25] For any v ∈ C1 (0, T, H1
0(Ω)

)
we have∫

Ω

∫ ∞

0
v(s)vxx(t− s)∂tv(t)dsdx

=
1
2

∂t

∫ ∞

0
v(s)

∫
Ω
|vx(t− s)− vx(t)|2dxds− 1

2
∂t

∫ ∞

0
v(s)ds

∫
Ω
|vx(t)|2 dx

−1
2

∫ ∞

0
∂tv(s)

∫
Ω
|vx(t− s)− vx(t)|2dxds +

1
2

v(t)
∫

Ω
|vx(t)|2 dx.

Now, we state the existence of a local solution for (6)–(9).

Theorem 1. Ref. [25] Let y0(0), y1 ∈ H1
0(Ω) ∩ H2(Ω) be given. Assume that (Hypothesis 1)–(Hypothesis 5)

hold. Subsequently, problem (6)–(9) has a unique local solution y and

y, ∂ty, ∂tty ∈ L∞(0, T∗, H1
0(Ω) ∩ H2(Ω)), (22)

for some T∗ > 0 small enough.

Let f ≡ 0. Here, and in the sequel, we consider problem (6) with the boundary conditions (8) and
the initial conditions (9) in the following form

∂tty−
(
yx + ∂tyx + ∂ttyx

)
x +

∫ t

−∞
v(t− s)yxx(s)ds

= |y|p−2y + (|yx|p−2yx)x, x ∈ Ω, 0 < t < T,
(23)

with p ≥ 2.
We introduce the energy functional E(t) that is associated to our problem (23), as follows

E(t) =
1
2

∫
Ω
|∂ty|2dx +

1
2

∫
Ω
|∂tyx|2dx + J(t), (24)

where

J(t) =
1
2

∫
Ω

(
1−

∫ ∞

0
v(s)ds

)
|yx|2dx

+
1
2

∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx (25)

+
1
p

∫
Ω
|yx|pdx− 1

p

∫
Ω
|y|pdx.
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Now, we introduce the stable set, as follows (see [26,27])

W = {y ∈ H1
0(Ω) ∩ H2(Ω) : I(t) > 0, J(t) < d} ∪ {0}, (26)

where

I(t) =
∫

Ω

(
1−

∫ ∞

0
v(s)ds

)
|yx|2dx

+
∫

Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx (27)

+
∫

Ω
|yx|pdx−

∫
Ω
|y|pdx.

We notice that the mountain passes level d, given in (26), is defined by

d = inf{ sup
y∈H1

0 (Ω)∩H2(Ω)\{0},ν≥0
J (νy)}. (28)

Additionally, by introducing the so called “Nehari manifold”

N =
{

y ∈ H1
0(Ω) ∩ H2(Ω)\ {0} : I (t) = 0

}
.

The potential depth d is also characterized by

d = inf
y∈N

J(t). (29)

This characterization of d shows that

dist (0,N ) = min
y∈N
‖y‖H1

0 (Ω)∩H2(Ω) . (30)

It is not hard to see this Lemma.

Lemma 2. Suppose that (Hypothesis 1) holds. Let y be solution of our equation. Subsequently, the energy
functional (24) is a non-increasing function, i.e., for all t ≥ 0, ν > 0,

∂tE(t) = −
∫

Ω
|∂tyx|2dx +

1
2

∫
Ω

∫ ∞

0
∂tv(s)|yx(t)− yx(t− s)|2dsdx− 1

2
v(t)

∫
Ω
|vx(t)|2 dx ≤ 0. (31)

Proof. Multiplying (23), with p ≥ 2, by ∂ty, integrating over Ω to obtain

1
2

∂t

∫
Ω
|∂ty|2dx +

1
2

∂t

∫
Ω
|yx|2dx +

1
2

∂t

∫
Ω
|∂tyx

)
dx +

∫
Ω
|∂tyx|2dx

+
∫

Ω

∫ t

−∞
v(t− s)yxx(s)∂tydsdx

=
1
p

∂t

∫
Ω
|y|pdx− 1

p
∂t

∫
Ω
|yx|pdx,

(32)

then, using Lemma 1, we obtain

1
2

∂t

[ ∫
Ω
|∂ty|2dx +

∫
Ω
|yx|2dx +

∫
Ω
|∂tyx

)
dx− 1

p
∂t

∫
Ω
|y|pdx +

1
p

∂t

∫
Ω
|yx|pdx

+
∫ ∞

0
v(s)

∫
Ω
|yx(t− s)− yx(t)|2dxds−

∫ ∞

0
v(s)ds

∫
Ω
|yx(t)|2 dx

]
= −

∫
Ω
|∂tyx|2dx− 1

2

∫ ∞

0
∂tv(s)

∫
Ω
|yx(t− s)− yx(t)|2dxds− 1

2
v(t)

∫
Ω
|vx(t)|2 dx,

which completes the proof.
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As in [25], we will prove the invariance of the set W, that is if for some t0 > 0 we have y(t0) ∈W,
then y(t) ∈W, ∀t ≥ t0. The next Lemma ensures the existence of the potential depth.

Lemma 3. Ref. [25] d is a positive constant.

Lemma 4. Ref. [25] W is a bounded neighborhood of 0 in H1
0(Ω) ∩ H2(Ω).

Now, we will show that our local solution y is global in time. For this purpose it suffices to
prove that the norm of the solution is bounded, independently of t. This is equivalent to proving the
following Theorem.

Theorem 2. Ref. [25] Suppose that (Hypothesis 1) and

Cpl(1−p)
(

2p
p− 2

E(0)
)(p−2)

< l, (33)

hold, where C is the best Poincaré’s constant. If y0(0) ∈W, y1 ∈ H1
0(Ω), then the solution y ∈W, ∀t ≥ 0.

The next Theorem shows that our local solution is global in time.

Theorem 3. Suppose that (Hypothesis 1), (Hypothesis 5), p ≥ 2 and (33) hold. If y0(0) ∈ W, y1 ∈ H1
0(Ω),

then the local solution y is global in time and such that y ∈ GT , where

GT =

{
y : y ∈ L∞ (R+; H1

0(Ω) ∩ H2(Ω)
)

,
∂ty ∈ L∞ (R+; H1

0(Ω)
) }

. (34)

Proof. It suffices to show that the following norm∫
Ω
|∂ty|2dx +

∫
Ω
|yx|2dx, (35)

is bounded independently of t.
To achieve this, we use (24), (26), and (31) to obtain

E(0) ≥ E(t) = J(t) +
1
2

∫
Ω
|∂ty|2dx +

1
2

∫
Ω
|∂tyx|2dx

≥
( p− 2

2p

)[ ∫
Ω

(
1−

∫ ∞

0
v(s)ds

)
|yx|2dx +

∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx

]
+

1
2

∫
Ω
|∂ty|2dx +

1
p

I(t)

=
( p− 2

2p

)[
l
∫

Ω
|yx|2dx +

∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx

]
+

1
2

∫
Ω
|∂ty|2dx +

1
p

I(t)

≥
( l(p− 2)

2p

) ∫
Ω
|yx|2dx +

1
2

∫
Ω
|∂ty|2dx,

since I(t) and
∫

Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx are positive. Then there exists a constant C > 0

depending only on p and l such that∫
Ω
|yx|2dx +

∫
Ω
|∂ty|2dx ≤ CE(0).

This completes the proof.
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3. General Decay Rate

Theorem 4. Suppose that (Hypothesis 1), p ≥ 2 and (33) hold. If y0(0) ∈ H1
0(Ω) ∩ H2(Ω), y1 ∈ H1

0(Ω).
Subsequently, the energy function (24) satisfies

E(t) ≤ κ1H−1
1 (κt + κ0), ∀t ≥ 0, (36)

where

H1(τ) =
∫ 1

τ
(s∂τH(κs))−1ds, κ0, κ1, κ > 0. (37)

We need to introduce a several Lemmas in order to prove the main Theorem 4. To this end, let us
introduce the functionals

ϕ(t) =
∫

Ω
y∂tydx +

1
2

∫
Ω
|yx|2dx +

∫
Ω

yx∂tyxdx, (38)

and

ξ(t) = −
∫

Ω
∂ty

∫ ∞

0
v(s)[y(t)− y(t− s)]dsdx

−
∫ t

0

∫
Ω

∂tyx

∫ ∞

0
v(s)[yx(t)− yx(t− s)]dsdxdτ (39)

−
∫ t

0

∫
Ω

∂ttyx

∫ ∞

0
v(s)[yx(t)− yx(t− s)]dsdxdτ.

Lemma 5. Assume that (Hypothesis 1), p ≥ 2 and (33) hold. Subsequently, the functional ϕ(t) introduced
in (38) satisfies, along the solution, the estimate

∂t ϕ(t) ≤
∫

Ω
∂ty2dx +

∫
Ω

∂ty2
xdx

−
[ l

2
− Cp

( 2p
(p− 2)l

E(0)
)(p−2)/2] ∫

Ω
|yx|2dx +

(1− l)
2l

∫
Ω

∫ ∞

0
v(s)|yx(t− s)− yx|2dsdx,

where C is the same constant defined in (33).

Proof.

∂t ϕ(t) =
∫

Ω
∂ty2dx +

∫
Ω

∂ty2
xdx−

∫
Ω

y2
xdx +

∫
Ω
|y|pdx−

∫
Ω
|yx|pdx

+
∫

Ω
yx

∫ ∞

0
v(s)yx(t− s)dsdx.

The last term can be treated, as follows∫
Ω

yx

∫ ∞

0
v(s)yx(t− s)dsdx ≤ 1

2

∫
Ω

y2
xdx +

1
2

∫
Ω

( ∫ ∞

0
v(s)yx(t− s)ds

)2
dx

≤ 1
2

∫
Ω

y2
xdx +

1
2

∫
Ω

( ∫ ∞

0
v(s) (|yx(t− s)− yx|+ |yx|) ds

)2
dx.
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By using Cauchy–Schwarz and Young’s inequalities, we obtain, for any ν > 0,∫
Ω

( ∫ ∞

0
v(s) (|yx(t− s)− yx|+ |yx|) ds

)2
dx

=
∫

Ω

( ∫ ∞

0
v(s)|yx(t− s)− yx|ds

)2
dx +

∫
Ω

( ∫ ∞

0
v(s)|yx|ds

)2
dx

+2
∫

Ω

( ∫ ∞

0
v(s)|yx(t− s)− yx|ds

)( ∫ ∞

0
v(s)|yx|ds

)
dx

≤
(

1 +
1
ν

) ∫
Ω

( ∫ ∞

0
v(s)|yx(t− s)− yx|ds

)2
dx

+(1 + ν)
∫

Ω

( ∫ ∞

0
v(s)|yx|ds

)2
dx

≤
(

1 +
1
ν

)
(1− l)

∫
Ω

∫ ∞

0
v(s)|yx(t− s)− yx|2dsdx + (1 + ν)(1− l)2

∫
Ω
|yx|2dx.

Subsequently,

∂t ϕ(t) ≤
∫

Ω
∂ty2dx +

∫
Ω

∂ty2
xdx +

[1
2
+

1
2
(1 + ν)(1− l)2 − 1

] ∫
Ω
|yx|2dx

+
1
2

(
1 +

1
ν

)
(1− l)

∫
Ω

∫ ∞

0
v(s)|yx(t− s)− yx|2dsdx (40)

+
∫

Ω
|y|pdx.

By the continuous embedding for p ≥ 2, we have

∫
Ω
|y|pdx ≤ Cp

( ∫
Ω
|yx|2dx

)p/2

≤ Cp
( ∫

Ω
|yx|2dx

)(p−2)/2 ∫
Ω
|yx|2dx (41)

≤ Cp
( 2p
(p− 2)l

E(0)
)(p−2)/2 ∫

Ω
|yx|2dx.

Using (33) and choosing ν = l
1−l , we obtain

∂t ϕ(t) ≤
∫

Ω
∂ty2dx +

∫
Ω

∂ty2
xdx

−
[ l

2
− Cpl1−p/2

( 2p
(p− 2)

E(0)
)(p−2)/2] ∫

Ω
|yx|2dx

+
(1− l)

2l

∫
Ω

∫ ∞

0
v(s)|yx(t− s)− yx|2dsdx.

Lemma 6. Assume that (Hypothesis 1), (Hypothesis 5), and p ≥ 2 hold. Subsequently, for ν < (1− l),
the functional introduced in (40) satisfies, along the solution, the estimate

∂tξ(t) ≤ −a
∫

Ω
|yx|2dx− ((1− l)− ν)

∫
Ω

∂ty2dx

+ b
∫

Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx

+
cv(0)

4ν

∫
Ω

∫ ∞

0
(−∂tv(s))|y(t)− y(t− s)|2dsdx,
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where

a = c(ν)
(

1 + 2(1− l)2 −
( 2p
(p− 2)l

E(0)
)(p−2)/2)

> 0,

and for all ν > 0

b =
1− l

4ν
+ (2ν +

1
4ν

)(1− l) + 2ν(1− l)p−1c
(8

l
E(0) + 2m2

0

)(p−2/2)
> 0.

Proof. We have

∂tξ(t) =
∫

Ω
yx

∫ ∞

0
v(s)[yx(t)− yx(t− s)]dsdx

−
∫

Ω

(∫ ∞

0
v(s)yx(t− s)ds

)(∫ ∞

0
v(s)[yx(t)− yx(t− s)]ds

)
dx

−
∫

Ω
|y|p−2y

∫ ∞

0
v(s)[y(t)− y(t− s)]dsdx

+
∫

Ω
|yx|p−2yx

∫ ∞

0
v(s)[yx(t)− yx(t− s)]dsdx

−
∫

Ω
∂ty

∫ ∞

0
∂tv(s)[y(t)− y(t− s)]dsdx− (1− l)

∫
Ω

∂ty2dx.

For any ν > 0, we have∫
Ω

yx

∫ ∞

0
v(s)[yx(t)− yx(t− s)]dsdx

≤ ν
∫

Ω
|yx|2dx +

1− l
4ν

∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx,

and ∫
Ω

(∫ ∞

0
v(s)yx(t− s)ds

)(∫ ∞

0
v(s)[yx(t)− yx(t− s)]ds

)
dx

≤ 2ν(1− l)2
∫

Ω
|yx|2dx + (2ν +

1
4ν

)(1− l)
∫

Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx.

Furthermore, by using (13), we have the following estimate∫
Ω
|yx(t)− yx(t− s)|2dx

≤ 2
∫

Ω
|yx(t)|2dx + 2

∫
Ω
|yx(t− s)|2dx

≤ 4 sup
s>0

∫
Ω
|yx(s)|2dx + 2 sup

τ<0

∫
Ω
|yx(τ)|2dx (42)

≤ 4 sup
s>0

∫
Ω
|yx(s)|2dx + 2 sup

τ>0

∫
Ω
|y0x(τ)|2dx

≤ 8E(0) + 2m2
0.

Now, because p ≥ 2, we have, by using (42) and the previous estimate,
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∫
Ω
|y|p−2y

∫ ∞

0
v(s)[y(t)− y(t− s)]dsdx

≤ ν
∫

Ω

∣∣∣ ∫ ∞

0
v(s)|y(t)− y(t− s)|ds

∣∣∣pdx + c(ν)
∫

Ω
|y|pdx

≤ ν(1− l)p−1
∫

Ω

∫ ∞

0
v(s)|y(t)− y(t− s)|pdsdx + c(ν)

∫
Ω
|y|pdx

≤ ν(1− l)p−1c
∫ ∞

0
v(s)

( ∫
Ω
|yx(t)− yx(t− s)|2dx

)p/2
ds + c(ν)

∫
Ω
|y|pdx

≤ ν(1− l)p−1c
(8

1
E(0) + 2m2

0

)(p−2)/2 ∫ ∞

0
v(s)

∫
Ω
|yx(t)− yx(t− s)|2dx

+c(ν)
∫

Ω
|y|pdx

≤ ν(1− l)p−1c
(8

1
E(0) + 2m2

0

)(p−2)/2 ∫ ∞

0
v(s)

∫
Ω
|yx(t)− yx(t− s)|2dx

+c(ν)
( 2p
(p− 2)l

E(0)
)(p−2)/2 ∫

Ω
|yx|2dx.

In the same way, we have∫
Ω
|yx|p−2yx

∫ ∞

0
v(s)[yx(t)− yx(t− s)]dsdx

≤ ν
∫

Ω

∣∣∣ ∫ ∞

0
v(s)|yx(t)− yx(t− s)|ds

∣∣∣pdx + c(ν)
∫

Ω
|yx|pdx

≤ ν(1− l)p−1
∫

Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|pdsdx + c(ν)

∫
Ω
|yx|pdx

≤ ν(1− l)p−1c
∫ ∞

0
v(s)

( ∫
Ω
|yx(t)− yx(t− s)|2dx

)p/2
ds + c(ν)

∫
Ω
|yx|pdx

≤ ν(1− l)p−1c
(8

1
E(0) + 2m2

0

)(p−2)/2 ∫ ∞

0
v(s)

∫
Ω
|yx(t)− yx(t− s)|2dx

+c(ν)
∫

Ω
|yx|2dx.

The last term can be estimated, as follows

−
∫

Ω
∂ty

∫ ∞

0
∂tv(s)[y(t)− y(t− s)]dsdx

≤ ν
∫

Ω
|∂ty|2dx +

cv(0)
4ν

∫
Ω

∫ ∞

0
(−∂tv(s))|y(t)− y(t− s)|2dsdx.

A combination of all estimates gives

∂tξ(t) ≤ ν
∫

Ω
|yx|2dx +

1− l
4ν

∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx

+ 2ν(1− l)2
∫

Ω
|yx|2dx + (2ν +

1
4ν

)(1− l)
∫

Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx

+ ν(1− l)p−1c
(8

1
E(0) + 2m2

0

)(p−2/2) ∫ ∞

0
v(s)

∫
Ω
|yx(t)− yx(t− s)|2dx

+c(ν)
( 2p
(p− 2)l

E(0)
)(p−2)/2 ∫

Ω
|yx|2dx

+ ν(1− l)p−1c
(8

1
E(0) + 2m2

0

)(p−2/2) ∫ ∞

0
v(s)

∫
Ω
|yx(t)− yx(t− s)|2dx

+c(ν)
∫

Ω
|yx|2dx

+ ν
∫

Ω
|∂ty|2dx +

cv(0)
4ν

∫
Ω

∫ ∞

0
(−∂tv(s))|y(t)− y(t− s)|2dsdx− (1− l)

∫
Ω

∂ty2dx.
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Afterwards, for ν < (1− l)

∂tξ(t) ≤ a
∫

Ω
|yx|2dx− ((1− l)− ν)

∫
Ω

∂ty2dx

+ b
∫

Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx

+
cv(0)

4ν

∫
Ω

∫ ∞

0
(−∂tv(s))|y(t)− y(t− s)|2dsdx,

where by (33), we have

a = c(ν)
(

1 + 2(1− l)2 −
( 2p
(p− 2)l

E(0)
)(p−2)/2)

> 0,

and for all ν > 0, we have

b =
1− l

4ν
+ (2ν +

1
4ν

)(1− l) + 2ν(1− l)p−1c
(8

l
E(0) + 2m2

0

)(p−2/2)
> 0.

Let us define the Lyapunov functional

L(t) = ε1E(t) + ϕ(t) + ε2ξ(t), ε1, ε2 > 0. (43)

We need the next Lemma, which means that there is an equivalence between the Lyapunov and
energy functions

Lemma 7. There exist positive real numbers c1 and c2, such that

L ∼ E. (44)

Proof. By (43), we have

|L(t)− ε1E(t)| ≤ |ϕ(t)|+ ε2|ξ(t)|

≤
∫

Ω
|y∂ty|dx +

1
2

∫
Ω
|yx|2dx +

∫
Ω
|yx∂tyx|dx

+ε2

∫
Ω

∣∣∣∂ty
∫ ∞

0
v(s)[y(t)− y(t− s)]ds

∣∣∣dx

+ε2

∫ t

0

∫
Ω

∣∣∣∂tyx

∫ ∞

0
v(s)[yx(t)− yx(t− s)]dsdτ

∣∣∣dx

+ε2

∫ t

0

∫
Ω

∣∣∣∂ttyx

∫ ∞

0
v(s)[yx(t)− yx(t− s)]dsdτ

∣∣∣dx.

Thanks to Hölder and Young’s inequalities, we have

∫
Ω
|y∂ty|dx ≤

(∫
Ω
|y|2dx

)1/2 (∫
Ω
|∂ty|2dx

)1/2

≤ 1
2

(∫
Ω
|y|2dx

)
+

1
2

(∫
Ω
|∂ty|2dx

)
≤ c

2

(∫
Ω
|yx|2dx

)
+

1
2

(∫
Ω
|∂ty|2dx

)
.
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Similarly, we have

∫
Ω
|yx∂tyx|dx ≤ 1

2

(∫
Ω
|yx|2dx

)
+

1
2

(∫
Ω
|∂tyx|2dx

)
,

and ∫
Ω

∣∣∣∂ty
∫ ∞

0
v(s)[y(t)− y(t− s)]ds

∣∣∣dx

≤ 1
2

(∫
Ω
|∂ty|2dx

)
+

c
2

∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx.

The two last terms can be estimated, as follows∫ t

0

∫
Ω

∣∣∣∂tyx

∫ ∞

0
v(s)[yx(t)− yx(t− s)]dsdτ

∣∣∣dx

≤ 1
2

∫ t

0

(∫
Ω
|∂tyx|2dx

)
dτ +

1
2

∫ t

0

∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdxdτ,

and ∫ t

0

∫
Ω

∣∣∣∂ttyx

∫ ∞

0
v(s)[yx(t)− yx(t− s)]dsdτ

∣∣∣dx

≤ 1
2

∫ t

0

(∫
Ω
|∂ttyx|2dx

)
dτ +

1
2

∫ t

0

∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdxdτ.

Hence, there exists a constant C > 0, such that

|L(t)− ε1E(t)| ≤ CE(t).

Therefore, we can choose ε1, so that

L(t) ∼ E(t). (45)

Lemma 8. Assume that (Hypothesis 1) hold. Susequently, there exist strictly positive constants λ and c,
such that

∂tL(t) ≤ −λE(t) + c
∫

Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx. (46)

Proof. By Lemmas 2, 5, and 6, we have

∂tL(t) = ε1∂tE(t) + ∂t ϕ(t) + ε2∂tξ(t)

≤ −[ε2[(1− l)− ν]− 1]
∫

Ω
|∂ty|2dx− (ε1 − 1)

∫
Ω
|∂tyx|2dx

−
[ l

2
−
( 2p
(p− 2)l

E(0)
)(p−2)/2

− ε2a
] ∫

Ω
|yx|2dx

+
[ (1− l)

2l
+ bε2

] ∫
Ω

∫ ∞

0
v(s)|yx(t− s)− yx|2dsdx

+
[ ε1

2
− ε2

cv(0)
4ν

] ∫
Ω

∫ ∞

0
∂tv(s)|yx(t)− yx(t− s)|2dsdx,

where, by (33), we have
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a = c(ν)
(

1 + 2(1− l)2 −
( 2p
(p− 2)l

E(0)
)(p−2)/2)

> 0,

and for all ν > 0

b =
1− l

4ν
+ (2ν +

1
4ν

)(1− l) + 2ν(1− l)p−1c
(8

l
E(0) + 2m2

0

)(p−2/2)
> 0.

Now, we choose ν and, once this constant is fixed, we can select ε1, ε2 small enough that give,
for p ≥ 2, the existence of constants c, λ > 0, such that (46) holds true.

Lemma 9. Assume that (Hypothesis 1) hold. Subsequently, there exist γ, γ0 > 0, such that for all t > 0∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx ≤ −γ∂tE(t)

∂tH(γ0E(t))
+ γγ0E(t). (47)

Proof. LetH∗ be the convex conjugate ofH in the sense of Young (see [28] pp. 61–64), then

H∗(s) = s(∂tH)−1(s)−H[(∂tH)−1(s)]

≤ s(∂tH)−1(s), s ∈ (0, ∂tH(r)), (48)

and satisfies the following Young’s inequality

AB ≤ H∗(A) +H(B), A ∈ (0, ∂tH(r)), B ∈ (0, r], (49)

for
B = H−1

(
− r2∂tv(s)

∫
Ω
|yx(t)− yx(t− s)|2dx

)
A =

r1∂tH(γ0E(t))v(s)
∫

Ω |yx(t)− yx(t− s)|2dx

H−1
(
− r2∂tv(s)

∫
Ω |yx(t)− yx(t− s)|2dx

) .

Afterwards, for r1, r2 > 0, we have∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx

=
1

r1∂tH(γ0E(t))

∫ ∞

0

{
H−1

(
− r2∂tv(s)

∫
Ω
|yx(t)− yx(t− s)|2dx

)
×

r1∂tH(γ0E(t))v(s)
∫

Ω |yx(t)− yx(t− s)|2dx

H−1
(
− r2∂tv(s)

∫
Ω |yx(t)− yx(t− s)|2dx

) }ds

≤ − r2

r1∂tH(γ0E(t))

∫
Ω

∫ ∞

0
∂tv(s)|yx(t)− yx(t− s)|2dsdx

+
1

r1∂tH(γ0E(t))

∫ ∞

0
H∗
( r1∂tH(γ0E(t))v(s)

∫
Ω |yx(t)− yx(t− s)|2dx

H−1
(
− r2∂tv(s)

∫
Ω |yx(t)− yx(t− s)|2dx

) )ds.

By (31), (48), we have∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx− ≤ 2r2

r1∂tH(γ0E(t))
∂tE(t)

+
∫ ∞

0

{ v(s)
∫

Ω |yx(t)− yx(t− s)|2dx

H−1
(
− r2∂tv(s)

∫
Ω |yx(t)− yx(t− s)|2dx

)
×∂tH−1

( r1∂tH(γ0E(t))v(s)
∫

Ω |yx(t)− yx(t− s)|2dx

H−1
(
− r2∂tv(s)

∫
Ω |yx(t)− yx(t− s)|2dx

) )}ds.
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By the fact that H−1 is concave and H−1(0) = 0, the function h(s) = s
H−1(s) , such that, for

0 ≤ s1 < s2, we have
h(s1) ≤ h(s2).

Therefore, using (43) to obtain

∂tH−1
( r1∂tH(γ0E(t))v(s)

∫
Ω |yx(t)− yx(t− s)|2dx

H−1
(
− r2∂tv(s)

∫
Ω |yx(t)− yx(t− s)|2dx

) )

= ∂tH−1
[ r1∂tH(γ0E(t))v(s)

−r2∂tv(s)
h
(
− r2∂tv(s)

∫
Ω
|yx(t)− yx(t− s)|2dx

)]
≤ ∂tH−1

[ r1∂tH(γ0E(t))v(s)
−r2∂tv(s)

h
(
− r2∂tv(s)

(8
l

E(0) + 2m2
0

))]

≤ ∂tH−1
[ r1

(
8
l E(0) + 2m2

0

)
∂tH(γ0E(t))v(s)

H−1
(
− r2∂tv(s)

(
8
l E(0) + 2m2

0

)) ].
Then, ∫

Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx

≤ − 2r2

r1∂tH(γ0E(t))
∂tE(t)

+
(8

l
E(0) + 2m2

0

) ∫ ∞

0

{ v(s)

H−1
(
− r2

(
8
l E(0) + 2m2

0

)
∂tv(s)

)
×∂tH−1

[ r1

(
8
l E(0) + 2m2

0

)
∂tH(γ0E(t))v(s)

H−1
(
− r2∂tv(s)

(
8

1−l E(0) + 2m2
0

))]}ds.

By (Hypothesis 1), we have

sup
s∈R+

v(s)

H−1
(
− ∂tv(s)

) = κ1 < ∞,

and ∫ ∞

0

v(s)

H−1
(
− ∂tv(s)

) = κ2 < ∞.

Because ∂tH−1 is nondecreasing, we choose r1, r2, such that∫
Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx

≤ − 2κ2

∂tH(γ0E(t))
∂tE(t) +

(8
l

E(0) + 2m2
0

)
∂tH−1∂tH(γ0E(t))

∫ ∞

0

v(s)

H−1
(
− ∂tv(s)

)
≤ − 2κ2

∂tH(γ0E(t))
∂tE(t) +

(8
l

E(0) + 2m2
0

)
γ0E(t).

This completes the proof.
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Proof of Theorem 4. Multiplying (46) by ∂tH(γ0E(t)) and using results in (47)

∂tH(γ0E(t))∂tL(t) ≤ −ε1∂tH(γ0E(t))E(t) + c∂tH(γ0E(t))
∫

Ω

∫ ∞

0
v(s)|yx(t)− yx(t− s)|2dsdx

≤ −[ε1 − cγγ0]∂tH(γ0E(t))E(t)− cγ∂tE(t).

We choose γ0 small enough, so that ε1 − cγγ0 > 0.
Put

g(t) = ∂tH(γ0E(t))L(t) + cγE(t) ∼ E(t),

then,
∂tg(t) ≤ −κg(t)∂tH(γ0g(t)),

which implies that ∂t(H1(g)) ≥ κ, where

H1(τ) =
∫ 1

τ

1
s∂tH(γ0s)

ds, 0 < τ < 1.

Integrating ∂t(H1(g)) ≥ κ over [0, t], we get

g(t) ≤ H−1
1 (κt + κ0),

the equivalence between E(t) and g(t) gives the result.

4. Conclusions

By imposing a new appropriate conditions (Hypothesis 1)–(Hypothesis 5), which seems not be
used in the literature, with the help of some special results, we obtained an unusual a decay rate
result while using properties of convex functions combined with some estimates, extending some
earlier results known in the existing literature. The main results in this manuscript are the following.
Theorem 3 for the global existence of solutions and Theorem 4 for the general decay rate.

A class of symmetric regularized long wave equations, which is known in abbreviation as
(SRLWEs), is given by

∂tty− yxx − ∂ttyxx = −y∂tyx − ux∂tu. (50)

Equation (50) was proposed as a model for propagation of weakly nonlinear ion acoustic and space
charge waves; it is explicitly symmetric in the x and t derivatives and is very similar to the regularized
long wave equation, which describes shallow water waves and plasma drift waves. The SRLWE
and its symmetric version also arises in many other areas of mathematical physics. We remark that
Equation (50) is special form of the equation that is discussed in (6), in which F[y] = −y∂tyx − ux∂tu.

Our research falls within the scope of the modern Time-partial differential equations interests; it is
considered among the issues that have wide applications in science and engineering that are related to
the energy systems. The importance of this research, although it is theoretical, lies in the following:
we found that viscoelastic damping term causing the decrease in energy and decreasing followed
the infinite memory, depending on initial data. It will be very interesting if one considers numerical
studies. It will be our next research project.
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