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Abstract: In this paper, we find the solution of the following quadratic functional equation
nYi<icj<n Q (xl- — x]-) =Y':Q (Zj# Xj— (n— 1)xl-), which is derived from the gravity of the
n distinct vectors xi,---,x, in an inner product space, and prove that the stability results of
the A-quadratic mappings in p-complete convex fuzzy modular *-algebras without using lower
semicontinuity and -homogeneous property.

Keywords: fuzzy modular *-algebras; modular x-algebras; A-quadratic derivation; A;-condition;
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1. Introduction

A concept of stability in the case of homomorphisms between groups was formulated by S.M.
Ulam [1] in 1940 in a talk at the University of Wisconsin. Let (Gy, *) be a group and let (G, ¢,d) be a
metric group with the metric d(-,-). Given € > 0, does there exist a () > 0 such that if a mapping
h : G = G satisfies the inequality

d(h(x*y),h(x)oh(y)) < é
for all x, y € Gy, then there is a homomorphism H : G; — G, with
d(h(x),H(x)) <e€

forall x € G1?

The first affirmative answer to the question of Ulam was given by Hyers [2,3] for the Cauchy
functional equation in Banach spaces as follows: Let X and Y be Banach spaces. Assume that
f: X — Y satisfies

If(x+y) = f(x) = fW)l <e

for all x,y € X and for some ¢ > 0. Then, there exists a unique additive mapping T : X — Y such that

1f(x) =T < e

for all x € X. A number of mathematicians were attracted to this result and stimulated to investigate
the stability problems of various(functional, differential, difference, integral) equations in some
spaces [4-11].

In 2007, Nourouzi [12] presented probabilistic modular spaces related to the theory of modular
spaces. Fallahi and Nourouzi [13,14] investigated the continuity and boundedness of linear operators

Mathematics 2020, 8, 1630; d0i:10.3390 / math8091630 www.mdpi.com/journal/mathematics


http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-2049-8497
https://orcid.org/0000-0003-4789-0752
http://www.mdpi.com/2227-7390/8/9/1630?type=check_update&version=1
http://dx.doi.org/10.3390/math8091630
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 1630 20f 13

defined between probabilistic modular spaces in the probabilistic sense. After then, Shen and Chen [15]
following the idea of probabilistic modular spaces and the definition of fuzzy metric spaces based on
George and Veeramani’s sense [16], applied fuzzy concept to the classical notions of modular spaces.
Using Khamsi's fixed point theorem in modular spaces [17], Wongkum and Kumam [18] proved
the stability of sextic functional equations in fuzzy modular spaces equipped necessarily with lower
semicontinuity and -homogeneous property.

In a recent paper [11], Ulam stability of the following additive functional equation

1<iy <-<im<n
1<k; (#ij,VjE {1,--,m})<n

was investigated in modular algebras without using the lower semicontinuity and Fatou preperty.
In the present paper, concerning the stability problem for the following functional equation

noy f(xi—xj)—if<zx] (n—1)x )
1<i<j<n i=1  \j#i

which is derived from the gravity of the n-distinct vectors in an inner product space, we investigate
the stability problem for .A-quadratic mappings in y-complete convex fuzzy modular *-algebras of the
following functional equation without using lower semicontinuity and f-homogeneous property.

2. Preliminaries

Proposition 1 Let X1, X, , Xy (n > 3) be distinct vectors in a finite n-dimensional Euclidean space E.
Putting G := L Xi -1 i the gravity of the n distinct vectors, then we get the following identity
n
? 2 X.CI2
Y, IXiXlF =n} IXG,
1<i<j<n i=1

which is equivalent to the equation

2

n Y XXt = Z

1<i<j<n

Y. Xj—(n—1)X

i7i

M

for any distinct vectors X1, Xp, - -+, Xy

Employing the above equality (1), we introduce the new functional equation:

' £ o) =Eo(Ty-0-ns) o

1<i<j<n i=1

for a mapping Q : U — V and for all vectors x1,--- ,x;, € U, where U and V are linear spaces and
n > 3 is a positive integer.
From now on, we introduce some basic definitions of fuzzy modular *-algebras.

Definition 1. [18] A triangular norm (briefly, t-norm) is a function o : [0,1] x [0,1] — [0, 1] satisfies the
following conditions:

(1) o is commutative, associative;
(2) aol=ua;
(3) aob < cod, whenevera,b,c,d € [0,1] witha < b,c <d.
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Three common examples of the t-norm are (1) a oy b = min{a, b}; 2)aoyb=a-b;(3)ao b =
max{a + b —1,0}. For more example, we refer to [19]. Throughout this paper, we denote that

n
Hxl-::xlo-~~oxn
i=1

forall x1,---,x, € [0,1].

Definition 2. [18] Let X be a complex vector space and o a t-norm, and y : X x (0,00) — [0, 1] be a function.
(a) The triple (X, p,0) is said to be a fuzzy modular space if, for each x,y € X and s,t > 0 and
a,B€0,00)witha+p=1,

(FM1) p(x,t) > 0;

(FM2) u(x,t) =1forallt > 0ifand only if x = 6;

(FM3) u(x,t) = p(—x,1);

(FM4) p(ax + By, s +t) > pu(x,s) o u(y, t);

(FM5) the mapping t — u(x, t) is continuous at each fixed x € X;
(b) alternatively, if (FM-4) is replaced by

(FM4-1) p(ax + By, s +t) > pu(x, 2) o u(y, é), (where o, B # 0);

then we say that (X, u, o) is a convex fuzzy modular.

Now, we extend the properties (FM4) and (FM4-1) in real fields to complex scalar field acting on
the space X, as follows:

(FM4)" u(ax + By,s +t) > u(x,s) o u(y, t); fora, p € Cwith |a| + [B] =1,
(FM4-1)" p(ax + By, s+ 1) > p(x, 2) o pu(y, ﬁ) for a, B € C with |a| + |8| = 1.

Next, we introduce the concept of fuzzy modular algebras based on the deifnition of fuzzy normed
algebras [20,21]. If X is algebra with fuzzy modular p subject to p(xy,st) > pu(x,s) o u(y,t) for all
x,y € Xands,t € (0,00), then we say (X, y, o) is called a fuzzy modular algebra. In addition, a fuzzy
modular algebra X is a fuzzy modular x-algebra if the fuzzy modular y satisfies u(z*,t) = p(z,t) for
allz € X,t > 0.

Example 1. Let (X, p) be a modular x-algebra ([22]) and o defined by a o b := a opp b. For every t € (0,00),

define u(x,t) = mfor all x € X. Then, (X, j1, 0) is a (convex) fuzzy modular x-algebra.

Definition 3. (1). We say that (X, u, o) is p-homogeneous if, for every x € X,t > 0and A € R\{0},

u(Ax, t) = y(x, |/\t|ﬁ), where B € (0,1].

(2). Let n € N. We say that (X, i, o) satisfies An-condition if there exist k, > n such that

u(nx, t) > y(x,Ki), Vx € X.

n

Remark 1. Let (X, jt, 0) be B-homogeneous for some fixed p € (0,1]. Then, we observe that
u(2x,t) = ;t(x i) > y(x i)
7 7 2‘5 -_ 7 Kz

forall x € X and all ko, > 2 > |2|P. Thus, B-homogeneous property implies Ay-condition.
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Example 2. Let p : R — R,u : R x (0,00) — (0,1] be defined by p(x) = x> and u(x,t) = m
Then, we can check that (i, opr) is a convex fuzzy modular on R but (R, i, opp) does not satisfy B-homogeneous

property. Let xp > 4. Then,

t t t
= — = — > —
#(2x,1) t+ p(2x) y(x,4) - y(x, Kz)
forall x € R. Thus, (R, p, o) satisfies Ay-condition with xy > 4 but is not B-homogeneous.

Definition 4. Let (X, p, o) be a fuzzy modular space and {x, } be a sequence in X,.
(1). {x,} is said to be p-convergent to a point x € X if for any t > 0,

p(x —xy,t) =1

as n — oo.

(2). {xu} is called y-Cauchy if for each € > 0 and each t > 0, there exists ny such that, for all n > ny and all
p > 0, we have p(xn1p — xn) > 1 —e.

(3). If each Cauchy sequence is convergent, then the fuzzy modular space is said to be complete.

3. Fuzzy Modular Stability for A-Quadratic Mappings
First of all, we find out the general solution of (1.3) in the class of mappings between vector spaces.
Theorem 1. Let U and V be vector spaces. A mapping Q : U — V satisfies the functional Equation (2) for

each positive integer n > 2 if and only if there exists a symmetric biadditive mapping B : U x U — V such that
Q(x) = B(x,x) forall x € U.

Proof. Let Q satisfy Equation (2). One finds that Q(0) = 0 and Q(ax) = a?>Q(x) by changing (x, y) to
(0,0) and (x,0) in (3), respectively, where a := n — 1 is a positive integer with a > 2. Putting xq := x,
xp:=yandx;:=0foralli =3,---,nin (2), we get

Qx —ay) + Qax —y) + (@ = 1)Q(x +y) ®)
= (a+1)Q(x —y) + (a* = D[Q(x) + Q(y)]

for all x,y € U. Using [23] [Theorem 1], we obtain that Q is a generalized polynomial map of degree at
most 4. Therefore,

Qx) = Ag+ A1(x) + Ax(x, x) + As(x, x,) + Ag(x, x, x, x)

for all x € U, where A : Uk — V is a k-additive symmetricmap (k=1,---,4) and Ay € V. Since a is
an integer, we get

(a* —1)Ag + (a* — a) Ay (x) + (a® — a®) As(x, x,x) + (a® — a*) Ay(x,x,%,x) =0

for all x € U by Q(ax) = a*Q(x). This yields that Q(x) = Ay(x,x) forallx € U. O

Let A be a complex x-algebra with unit and let M be a left .A-module. We call a mapping
Q : M — A an A-quadratic mapping if both relations Q(ax) = aQ(x)a* and Q(x +y) + Q(x —y) =
2Q(x) +2Q(y) are fulfilled for all a € A,x,y € M [24]. For the sake of convenience, we define
the following:
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Duf(x1,-+ ,x0) = n Z fuxl—ux Z (Zx (n—1)x )*,

1<i<j<n i=1 j#
gi(x) = 8(0,"',0,\{/0/"'10)/
i—th
(4, n—1yx {1, ,n}, if n>3,
{{2}><{1,2,3} if n=3.

In addition, let o be defined by minimum t-norm and .AM be the set of all mapping from M to A,
Qa(M, A) be the set of all .A-quadratic mappings from M to A.

Now, we present a stability of the .4-quadratic mapping concerning Equation (2) in pi-complete
convex fuzzy modular x-algebras without using f-homogeneous properties.

Theorem 2. Let (A, u,0) be p-complete convex fuzzy modular x-algebra with norm || - || and M be a left
A-module, (X, ', o) fuzzy modular space, U(.A) the unitary group of A. Assume that there exist two mappings
fe AMand e € XM" such that

y<Duf(x1’ T ’x")’t) 2 :u/(‘c'(xlr' o /xn)/ t)/ (4)
W (en=x o =) t) = p (el x), é)

forall (x1,--+,xn) € X",u € U(A), where 2 < 2B < (n —1)?, and either f is measurable or f(tx) is
continuous in t € R for each fixed x € M. Then, there exists a unique mapping Q € Q (M, A) that satisfies
Equation (2) and the inequality

_— 12
u(re+ =0 g, ) = o (s, M) ®)
forall x € Mand t > 0, where
. , (n—1)%t , (n—1)%nt
o) = max (500 ) on (60 g )

op! <€i+1(x)r 6(n2 (_n(;i)l)nn +1) ) }

Proof. Define a mapping g: M — Aby g(x) := f(x) + M for all x € M. Then, for each x € M,
the following equation is obtained:

[D1fi(x) — Dy fiza1(x)] (6)

n? — (i n
g((n—1)x) — (n—1)%g(x) = Dyfj(—x) + ( (J;l) +1)

foralli=1,--- ,n—1andforallj=1,---,n, where

D fi(x) = Dif(0,---,0, x_0,---,0).
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. .. . m 1+2(w)
For each fixed (7,j) € J, one obtains from } ;" ; —E S <1 that

—1)m m -1 -1 k—1,\ _ -1 k m
:u(g(x)g(((:l))sz)’t) > V(k_zl(n )28 ((n (n)_lﬁ)cgk g((n )X)'k_zl;")
m , n—1 2k
> (W6 5 giget)

) (I’l _ 1)2k
°r (8i(x>’ 3.2k (n2 — (i+1)n+ 1))
n—1)%n
oy’ (€i+1(x)/ 3. 2k‘Bk—1((n2 i)(i _:1),1 + 1)))
n—1)>2 ’ n-
= ¥ (fj(—x%%) o (ei(x), 6(n?2 (— (i+1)1)rf+ 1))

p (n—1)%nt
ou (Si—i-l(x)’ 6(7’[2 — (l+ 1)Tl+1>)

forallt > 0 and x € M, m € N. Then, it follows from the above inequality that

(st - EE=EE ) = e

for all x € M and t > 0. Therefore, we prove from this relation that, for any integers m, p,

y(g((n —1)"x) — g((n— %le_' (1’”;;]— 1)mx)’ (n — 1)2mt)

gl(n—1)"x) g((n—1)"""x)
A (11— 1)20m+7) 1)

> @ ((n—1)" (n—17") > @ (x, ((” ;1)2)"3)

for all t > O x € M. Since the right-hand side of the above inequality tends to 1 as m — oo, the sequence

{g (n = 1 2m } is y-Cauchy and thus converges in A. Hence, we may define a mapping Q : M — A as

Q(x) = i — Tim g((n—l)Z’zznx)(@ lim p(Q(x )_g((n—l)’”x),t> ~1)

m—00 (n — 1) m—00 (n — ])27”

forallx € M and t > 0. In addition, we claim that the mapping Q satisfies (2). For this purpose,
we calculate the following inequality:

p(2Q ) ) s T QG -y - SV ) Ly

L e (n— 1) 27
" L ug((n =)™ (S, xj —nx;))u” Lt
o"(”Q@xf_”xi)” - (n—1)2m 5777))
]:

op’ (e(xl,. ") ((n ;31)2)’11 ' zﬁf)
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3_ 2
forall x € M,u € U(A),m € N,t > 0, where L := nmon +2n+2' This means that

DuQ(x1, -+ ,xp) = 0 forall x1,---x, € M,u € U(A). Hence, the mapping Q satisfies (2) and
s0 Q((n —1)x) = (n —1)2Q(x) for all x € M. It follows that

p(Qw) ~s,t) > p(A=DH) ST

(17 (o
o (n—1)%g((n — 1) 'x) — g((n — 1)x)
+k:21 TR ,t)
n— n—1)%
(n—1)x, <71) OH‘I)( Z‘Bkl)l t)

Y
o
—~

forall x € M,t > 0.
To prove the uniqueness, let Q" be another mapping satisfying (2) and

u(s0 - Q@) = oz 1)

for all x € M. Thus, we have

#(1<Q(x)—Q’(x)),t) > V<Q((n—1)’”X)—g((n—l)’”x)/o

2 (n—1)2m
Oy(g((n - 1)'”(3;)_—3;51(14 - 1)"’x),t)
> CID(x, (1™ _2;)2711 t)

forall x € M, t > 0. Taking the limit as m — oo, then we conclude that Q(x) = Q’(x) forall x € M.

Under the assumption that either f is measurable or f(tx) is continuous in t € R for each
fixed x € M, the quadratic mapping Q satisfies Q(tx) = t?Q(x) for all x € M and for all t € R
by the same reasoning as the proof of [25]. That is, Q is R-quadratic. Let P := ”4_2”3+34”2_3"+14.
Putting x1 := —(n — 1)fx and x; := O foralli = 2,- - - ,n in (4) and dividing the resulting inequality by
(n —1)%, we have

(5 (nn = D)Q(-10) ~ uQ((n - 1) — (0~ (") 41)

g(—u(n —1)kx) Pt
> p(Q(-ux) - (n—1)% 'n(n—l))

A (n— 1)
ou uQ(—(n—l)x)u*—ug( )(\n(—l)Zi) x)u*,Pt)

(
O.”(“Q(x)u* _ug((n—1)kx)u* Pt ))
(

(n—1)% = "nn—-1
ou(Duf(—(n—1)x,0,---,0), (n— 1)2kpt)

4(n —1)%Ppt
ou(f(0), (1=2)(n=Dn(n+ 1))

forallx € M,u € U(A),t > 0. Taking k — oo and using the evenness of Q, we obtain that Q(ux) =
uQ(x)u* for all x € M and for each u € U(.A). The last relation is also true for u = 0.
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Now, let a be a nonzero element in A and K a positive integer greater than 4/|a||. Then, we have
HLKH < % <1- % By [26] [Theorem 1], there exist three elements w1, up, u3 € U(.A) such that 3¢ =
u1 + up + uz. Thus, we calculate in conjunction with [27] [Lemma 2.1] that

2
Q(ax) Q (?3;96) = (I;) Q(u1x + upx + uzx)

K\ 2
(3) B(u1x + upx + uzx, u1x + upx + uzx)

K\ 2
(3) (w1 + up + uz)B(x, x)(u] + uy + u3)

2 *
(I;) B%Q(x)B% =aQ(x)a*

foralla € A(a # 0) and for all x € M. Thus, the unique R-quadratic mapping Q is also .A-quadratic,
as desired. This completes the proof. [

Corollary 1. Let (A, p) be a p-complete convex modular x-algebra with norm || - || and M be a left A-module,
U (A) the unitary group of A. Assume that there exist two mappings f € AM and e € RM" such that

e(x1,,xn), (7)

ﬁg(xlz‘ .. /xn)

P(Duf(x1,-++,xn))

<
e((n—1)xy, -, (n—1)x,) <

forall (x1,-++ ,xy) € X",u € U(A), where 2 < 2B < (n —1)?, and either f is measurable or f(tx) is
continuous in t € R for each fixed x € M. Then, there exists a unique mapping Q € Q 4(M, A) which satisfies
Equation (2) and the inequality

n— ) n? — (i n
p(r+ PP —a) < sy min {max (), DI
LD o)) e

forall x € M.

Proof. Let X = R with the fuzzy modular y’ : X x (0,00) — R as

t

/ —
KED = g

forall z € R,t > 0. In addition, define the following convex fuzzy modular y as

uyt) = o0y’

forally € M,t > 0. As noted in Example 1, (\A, i, o)1) is a p-complete convex fuzzy modular x-algebra
and (R, /.op) is a fuzzy modular space. The result follows from the fact that (4) and (5) are equivalent
to (7) and (8), respectively. O

Corollary 2. Let (A, || - ||) be a Banach x-algebra and M be a left A-module and 6 > 0,p € (0,2 —log), 2).
Assume that there exists a mapping f € AM such that

1Duf(x1,- - )| < OCUxall? + -+ [lxall”)
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forall (xq,---,x,) € X", u € U(A), and either f is measurable or f(tx) is continuous in t € R for each
fixed x € M. Then, there exists a unique quadratic mapping Q € Q 4(M, A) which satisfies Equation (2) and
the inequality

i)+ =B -l < el

forall x € M, where ¢ is a real number defined by

Z—(i+1)n+1
min { © (i Dn+ >1fi=1, -1}, if n>3
£ = n
1, if n=3.

Proof. Letting e(x,--- ,x,) = 0(||x1||P + - + [|xx]|7), B := (1 —1)? and applying Corollary 1,
we obtain the desired result, as claimed. O

Next, we provide an alternative stability theorem of Theorem 2 equipped with A,,_j-condition in
p-complete convex fuzzy modular x-algebras.

Theorem 3. Let (A, i, 0) be a p-complete convex fuzzy modular x-algebra with A, _1-condition and norm
|| - || and M be a A-left module, (X, ', o) fuzzy modular space. Assume that there exist two mappings f € AM
and e € XM" such that

v

We(xy, -, xn), 1), ©)
W(e(xy, -+, xn),7t)

‘Z’I(Duf(xlr' T rxn)rt)
/ X Xn
# (e(n—ll""’n—l)’t)

forall (x1,--+,xn) € X", u € U(A), where (n —1)>y > 2x*_., and either f is measurable or f(tx) is

n—1’
continuous in t € R for each fixed x € M. Then, there exists a unique mapping Q € Q (M, A) which satisfies
Equation (2) and the inequality

v

H(F) = Q1) = ¥ (5, 5220 (10)
forall x € M, t > 0, where
_ Yo y(n—1)>% o (e 7(”_1)27”
Y(xt) = (%ag;{y (s]( x)’761<%71 ) p (Sl(x)’éx,%,l(nL(i+1)n+1))

v(n —1)%nt )}

6K2 (2 —(i+1)n+1)
Proof. Letting (x1,---,x,) := (0,---,0) in (9) and using it, we get
W (e(0,---,0),8) > p'(e(0,---,0),9™F)

forallt > 0,m € N. Thus, ¢(0,--- ,0) = 0 and

nn— 2
‘u(%f(()), t) = F(Dlt5(0/' o /0)/ t) 2 y’(£(0,~ o /0)’ t) =1
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for all t > 0, which implies f(0) = 0. From Equation (6), we get the following equality

fx) = (=172 (-"5) (11

n—1

=D 59) + () () - s ()

n—1 n

forall (i,j) € J. Using (11) and A,_1-condition of y, one gets

p(f@) = =02 (=) 1)

(n
H & S ) - o)) £ )
N ,ﬁl (1 (&), (v(znxi—i)z)k . x%31f>
o' (e:(x), ( 'V(Z”K;)z)k 0 _’Zﬁiﬂt)n )
(e (), (7(2”,(;1)2 ) 50 _Kéiﬁn 1)
(o I o (), g D
o (ei41(x), 6,{51(15”__(1'1 . D)

forallx € M,t >0, (i,j) € J. This relation leads to
p(f0) = =1 (g ) ) 2 ¥ ) (12)

forall x € M and ¢t > 0. Now, replacing x by W in (12), we have

X

V((” B 1>2mf((n = 1)m) —(n— 1)2m+2pf<m>,t>
2 1( (G gm) = 0 0 (s ) )

= T(w',{g) >¥(x (,51)"7)

which converges to zero as m — co. Thus, {(n —1)?" f(x/(n —1)™)} is y-Cauchy for all x € M, and so
itis p-convergent in A since the space A is ji-complete. Thus, we may define a mapping Q : M — A as

Q(x) := p = lim (n =1 f ()

M—so00 (n — 1)'”

(= Jim =1 (Q) _f((n —x1)m)'t) =1)
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forall x € M and all t > 0. Using A,,_1-condition and convexity of y, we find the following inequality

X

(fx) - Q) t) = P‘(f(x)‘(”‘1)2mf((n_1>2m)’(Zx_n_ll)t)
oy((n—l)sz((n_xl)zm)_Q(x))r(n_l)t>

2Kn—1
= (x, (ZK_n_ll)t)

forall x € M, t > 0 and for enough large m € N. By the similar way of the proof of Theorem 2, we get
Q is A-quadratic functional equation.

To prove the uniqueness, let T be another .A-quadratic mapping satisfying (10). Then, we get
T((n —1)"x) = (n —1)>"T(x) for all x € M and all m € N. Thus, we have

P‘(M”) 2 V(T(ﬁ)*f(ﬁ) Kz%)

n—1

m(F(Grgm) ~ A oyw) Kgfw )

1

x (n—1)t (n— 1)yt
> > -
- LI[((n—l)m’ K2 ) - ‘Y(x, K2+ )

Taking the limit as m — oo, then we conclude that T(x) = Q(x) for all x € M. This completes
the proof. O

Corollary 3. Let (A, p) be a p-complete convex modular x-algebra with A, _1-condition and norm || - ||. Assume
that there exist two mappings f € AM and e € RM" such that

P(Duf(x1,-++,xn))
8(nx—1 1 nx—nl)

forall (x1,--+,x,) € X", u € U(A), where y(n —1)> > 2} _, and either f is measurable or f(tx) is
continuous in t € R for each fixed x € M. Then, there exists a unique mapping Q € Q (M, A) which satisfies
Equation (2) and the inequality

IN

8('xll et rx]’l)r

IN

1
;8(961,- e, Xn)

12%3
n—1 .
— min maxi4 &il—X),
v(n—1)3 (mej{ { =)

(712—(1':1);1“)E

o(f(x) = Q(x)) i(x)

7

(n2 — (i —17—1 1)n+ 1>ei+1(x)}}

forall x € M.

4. Conclusions

We have studied a quadratic functional equation from the gravity of the n-distinct vectors
and obtained the solution of the quadratic functional equation and investigated the stability
results of a A-quadratic mapping on p-complete convex fuzzy modular *-algebras without using
B-homogeneous property and lower semicontinuity. Furthermore, as corollaries, we have presented
the stability results of the A-quadratic mapping in p-complete convex modular *-algebras and Banach
x-algebras, respectively.
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