Article

Ulam Type Stability of \mathcal{A}-Quadratic Mappings in Fuzzy Modular *-Algebras

Hark-Mahn Kim ${ }^{+(1)}$ and Hwan-Yong Shin *, ${ }^{\text {(© }}$
Department of Mathematics, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, Korea; hmkim@cnu.ac.kr
* Correspondence: hyshin31@cnu.ac.kr
† These authors contributed equally to this work.

Received: 28 August 2020; Accepted: 17 September 2020; Published: 21 September 2020

Abstract

In this paper, we find the solution of the following quadratic functional equation $n \sum_{1 \leq i<j \leq n} Q\left(x_{i}-x_{j}\right)=\sum_{i=1}^{n} Q\left(\sum_{j \neq i} x_{j}-(n-1) x_{i}\right)$, which is derived from the gravity of the n distinct vectors x_{1}, \cdots, x_{n} in an inner product space, and prove that the stability results of the \mathcal{A}-quadratic mappings in μ-complete convex fuzzy modular $*$-algebras without using lower semicontinuity and β-homogeneous property.

Keywords: fuzzy modular $*$-algebras; modular $*$-algebras; \mathcal{A}-quadratic derivation; Δ_{2}-condition; β-homogeneous property

1. Introduction

A concept of stability in the case of homomorphisms between groups was formulated by S.M. Ulam [1] in 1940 in a talk at the University of Wisconsin. Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{2}, \diamond, d\right)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta(\epsilon)>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(h(x * y), h(x) \diamond h(y))<\delta
$$

for all $x, y \in G_{1}$, then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\epsilon
$$

for all $x \in G_{1}$?
The first affirmative answer to the question of Ulam was given by Hyers [2,3] for the Cauchy functional equation in Banach spaces as follows: Let X and Y be Banach spaces. Assume that $f: X \rightarrow Y$ satisfies

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$

for all $x, y \in X$ and for some $\varepsilon \geq 0$. Then, there exists a unique additive mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \varepsilon
$$

for all $x \in X$. A number of mathematicians were attracted to this result and stimulated to investigate the stability problems of various(functional, differential, difference, integral) equations in some spaces [4-11].

In 2007, Nourouzi [12] presented probabilistic modular spaces related to the theory of modular spaces. Fallahi and Nourouzi $[13,14]$ investigated the continuity and boundedness of linear operators
defined between probabilistic modular spaces in the probabilistic sense. After then, Shen and Chen [15] following the idea of probabilistic modular spaces and the definition of fuzzy metric spaces based on George and Veeramani's sense [16], applied fuzzy concept to the classical notions of modular spaces. Using Khamsi's fixed point theorem in modular spaces [17], Wongkum and Kumam [18] proved the stability of sextic functional equations in fuzzy modular spaces equipped necessarily with lower semicontinuity and β-homogeneous property.

In a recent paper [11], Ulam stability of the following additive functional equation

$$
\sum_{\substack{\left.1 \leq i_{1}<\cdots<i_{m} \leq n \\ 1 \leq k_{l} \neq i_{j} \forall \forall j \in\{1, \cdots, m\}\right) \leq n}} f\left(\frac{\sum_{j=1}^{m} x_{i_{j}}}{m}+\sum_{l=1}^{n-m} x_{k_{l}}\right)=\frac{n-m+1}{n}\binom{n}{m} \sum_{i=1}^{n} f\left(x_{i}\right) .
$$

was investigated in modular algebras without using the lower semicontinuity and Fatou preperty.
In the present paper, concerning the stability problem for the following functional equation

$$
n \sum_{1 \leq i<j \leq n} f\left(x_{i}-x_{j}\right)=\sum_{i=1}^{n} f\left(\sum_{j \neq i} x_{j}-(n-1) x_{i}\right)
$$

which is derived from the gravity of the n-distinct vectors in an inner product space, we investigate the stability problem for \mathcal{A}-quadratic mappings in μ-complete convex fuzzy modular $*$-algebras of the following functional equation without using lower semicontinuity and β-homogeneous property.

2. Preliminaries

Proposition 1. Let $X_{1}, X_{2}, \cdots, X_{n}(n \geq 3)$ be distinct vectors in a finite n-dimensional Euclidean space E. Putting $G:=\frac{\sum_{i=1}^{n} X_{i}}{n}$, the gravity of the n distinct vectors, then we get the following identity

$$
\sum_{1 \leq i<j \leq n}\left\|\vec{X}_{i}\right\|_{j}^{2}=n \sum_{i=1}^{n}\left\|\overrightarrow{X_{i} G}\right\|^{2}
$$

which is equivalent to the equation

$$
\begin{equation*}
n \sum_{1 \leq i<j \leq n}\left\|X_{i}-X_{j}\right\|^{2}=\sum_{i=1}^{n}\left\|\sum_{j \neq i} X_{j}-(n-1) X_{i}\right\|^{2} \tag{1}
\end{equation*}
$$

for any distinct vectors $X_{1}, X_{2}, \cdots, X_{n}$.
Employing the above equality (1), we introduce the new functional equation:

$$
\begin{equation*}
n \sum_{1 \leq i<j \leq n} Q\left(x_{i}-x_{j}\right)=\sum_{i=1}^{n} Q\left(\sum_{j \neq i} x_{j}-(n-1) x_{i}\right) \tag{2}
\end{equation*}
$$

for a mapping $Q: U \rightarrow V$ and for all vectors $x_{1}, \cdots, x_{n} \in U$, where U and V are linear spaces and $n \geq 3$ is a positive integer.

From now on, we introduce some basic definitions of fuzzy modular $*$-algebras.
Definition 1. [18] A triangular norm (briefly, t-norm) is a function $\circ:[0,1] \times[0,1] \rightarrow[0,1]$ satisfies the following conditions:
(1) \circ is commutative, associative;
(2) $a \circ 1=a$;
(3) $a \circ b \leq c \circ d$, whenever $a, b, c, d \in[0,1]$ with $a \leq b, c \leq d$.

Three common examples of the t-norm are (1) $a \circ_{M} b=\min \{a, b\}$; (2) $a \circ_{p} b=a \cdot b$; (3) $a \circ_{L} b=$ $\max \{a+b-1,0\}$. For more example, we refer to [19]. Throughout this paper, we denote that

$$
\prod_{i=1}^{n} x_{i}:=x_{1} \circ \cdots \circ x_{n}
$$

for all $x_{1}, \cdots, x_{n} \in[0,1]$.
Definition 2. [18] Let X be a complex vector space and \circ a t-norm, and $\mu: X \times(0, \infty) \rightarrow[0,1]$ be a function.
(a) The triple (X, μ, \circ) is said to be a fuzzy modular space if, for each $x, y \in X$ and $s, t>0$ and $\alpha, \beta \in[0, \infty)$ with $\alpha+\beta=1$,
(FM1) $\mu(x, t)>0$;
(FM2) $\mu(x, t)=1$ for all $t>0$ if and only if $x=\theta$;
(FM3) $\mu(x, t)=\mu(-x, t)$;
(FM4) $\mu(\alpha x+\beta y, s+t) \geq \mu(x, s) \circ \mu(y, t)$;
(FM5) the mapping $t \rightarrow \mu(x, t)$ is continuous at each fixed $x \in X$;
(b) alternatively, if (FM-4) is replaced by
(FM4-1) $\mu(\alpha x+\beta y, s+t) \geq \mu\left(x, \frac{s}{\alpha}\right) \circ \mu\left(y, \frac{t}{\beta}\right),($ where $\alpha, \beta \neq 0)$;
then we say that (X, μ, \circ) is a convex fuzzy modular.
Now, we extend the properties (FM4) and (FM4-1) in real fields to complex scalar field acting on the space X, as follows:
(FM4)' $\mu(\alpha x+\beta y, s+t) \geq \mu(x, s) \circ \mu(y, t)$; for $\alpha, \beta \in \mathbb{C}$ with $|\alpha|+|\beta|=1$,
(FM4-1)' $\mu(\alpha x+\beta y, s+t) \geq \mu\left(x, \frac{s}{\alpha}\right) \circ \mu\left(y, \frac{t}{\beta}\right)$ for $\alpha, \beta \in \mathbb{C}$ with $|\alpha|+|\beta|=1$.
Next, we introduce the concept of fuzzy modular algebras based on the deifnition of fuzzy normed algebras [20,21]. If X is algebra with fuzzy modular μ subject to $\mu(x y, s t) \geq \mu(x, s) \circ \mu(y, t)$ for all $x, y \in X$ and $s, t \in(0, \infty)$, then we say (X, μ, \circ) is called a fuzzy modular algebra. In addition, a fuzzy modular algebra X is a fuzzy modular $*$-algebra if the fuzzy modular μ satisfies $\mu\left(z^{*}, t\right)=\mu(z, t)$ for all $z \in X, t>0$.

Example 1. Let (X, ρ) be a modular $*$-algebra ([22]) and \circ defined by $a \circ b:=a \circ_{M} b$. For every $t \in(0, \infty)$, define $\mu(x, t)=\frac{t}{t+\rho(x)}$ for all $x \in X$. Then, (X, μ, \circ) is a (convex) fuzzy modular $*$-algebra.

Definition 3. (1). We say that (X, μ, \circ) is β-homogeneous if, for every $x \in X, t>0$ and $\lambda \in \mathbb{R} \backslash\{0\}$,

$$
\mu(\lambda x, t)=\mu\left(x, \frac{t}{|\lambda|^{\beta}}\right), \quad \text { where } \beta \in(0,1] .
$$

(2). Let $n \in \mathbb{N}$. We say that (X, μ, \circ) satisfies Δ_{n}-condition if there exist $\kappa_{n} \geq n$ such that

$$
\mu(n x, t) \geq \mu\left(x, \frac{t}{\kappa_{n}}\right), \quad \forall x \in X .
$$

Remark 1. Let (X, μ, \circ) be β-homogeneous for some fixed $\beta \in(0,1]$. Then, we observe that

$$
\mu(2 x, t)=\mu\left(x, \frac{t}{2^{\beta}}\right) \geq \mu\left(x, \frac{t}{\kappa_{2}}\right)
$$

for all $x \in X$ and all $\kappa_{2} \geq 2 \geq|2|^{\beta}$. Thus, β-homogeneous property implies Δ_{2}-condition.

Example 2. Let $\rho: \mathbb{R} \rightarrow \mathbb{R}, \mu: \mathbb{R} \times(0, \infty) \rightarrow(0,1]$ be defined by $\rho(x)=x^{2}$ and $\mu(x, t)=\frac{t}{t+\rho(x)}$. Then, we can check that $\left(\mu, \circ_{M}\right)$ is a convex fuzzy modular on \mathbb{R} but $\left(\mathbb{R}, \mu, \circ_{M}\right)$ does not satisfy β-homogeneous property. Let $\kappa_{2} \geq 4$. Then,

$$
\mu(2 x, t)=\frac{t}{t+\rho(2 x)}=\mu\left(x, \frac{t}{4}\right) \geq \mu\left(x, \frac{t}{\kappa_{2}}\right)
$$

for all $x \in \mathbb{R}$. Thus, (\mathbb{R}, μ, \circ) satisfies Δ_{2}-condition with $\kappa_{2} \geq 4$ but is not β-homogeneous.
Definition 4. Let (X, μ, \circ) be a fuzzy modular space and $\left\{x_{n}\right\}$ be a sequence in X_{ρ}.
(1). $\left\{x_{n}\right\}$ is said to be μ-convergent to a point $x \in X$ if for any $t>0$,

$$
\mu\left(x-x_{n}, t\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
(2). $\left\{x_{n}\right\}$ is called μ-Cauchy if for each $\varepsilon>0$ and each $t>0$, there exists n_{1} such that, for all $n \geq n_{1}$ and all $p>0$, we have $\mu\left(x_{n+p}-x_{n}\right)>1-\varepsilon$.
(3). If each Cauchy sequence is convergent, then the fuzzy modular space is said to be complete.

3. Fuzzy Modular Stability for \mathcal{A}-Quadratic Mappings

First of all, we find out the general solution of (1.3) in the class of mappings between vector spaces.
Theorem 1. Let U and V be vector spaces. A mapping $Q: U \rightarrow V$ satisfies the functional Equation (2) for each positive integer $n>2$ if and only if there exists a symmetric biadditive mapping $B: U \times U \rightarrow V$ such that $Q(x)=B(x, x)$ for all $x \in U$.

Proof. Let Q satisfy Equation (2). One finds that $Q(0)=0$ and $Q(a x)=a^{2} Q(x)$ by changing (x, y) to $(0,0)$ and $(x, 0)$ in (3), respectively, where $a:=n-1$ is a positive integer with $a \geq 2$. Putting $x_{1}:=x$, $x_{2}:=y$ and $x_{i}:=0$ for all $i=3, \cdots, n$ in (2), we get

$$
\begin{align*}
& Q(x-a y)+Q(a x-y)+(a-1) Q(x+y) \tag{3}\\
& \quad=(a+1) Q(x-y)+\left(a^{2}-1\right)[Q(x)+Q(y)]
\end{align*}
$$

for all $x, y \in U$. Using [23] [Theorem 1], we obtain that Q is a generalized polynomial map of degree at most 4. Therefore,

$$
Q(x)=A_{0}+A_{1}(x)+A_{2}(x, x)+A_{3}(x, x,)+A_{4}(x, x, x, x)
$$

for all $x \in U$, where $A_{k}: U^{k} \rightarrow V$ is a k-additive symmetric map $(k=1, \cdots, 4)$ and $A_{0} \in V$. Since a is an integer, we get

$$
\left(a^{2}-1\right) A_{0}+\left(a^{2}-a\right) A_{1}(x)+\left(a^{2}-a^{3}\right) A_{3}(x, x, x)+\left(a^{2}-a^{4}\right) A_{4}(x, x, x, x)=0
$$

for all $x \in U$ by $Q(a x)=a^{2} Q(x)$. This yields that $Q(x)=A_{2}(x, x)$ for all $x \in U$.
Let \mathcal{A} be a complex $*$-algebra with unit and let M be a left \mathcal{A}-module. We call a mapping $Q: M \rightarrow \mathcal{A}$ an \mathcal{A}-quadratic mapping if both relations $Q(a x)=a Q(x) a^{*}$ and $Q(x+y)+Q(x-y)=$ $2 Q(x)+2 Q(y)$ are fulfilled for all $a \in \mathcal{A}, x, y \in M$ [24]. For the sake of convenience, we define the following:

$$
\begin{aligned}
\mathcal{D}_{u} f\left(x_{1}, \cdots, x_{n}\right) & :=n \sum_{1 \leq i<j \leq n} f\left(u x_{i}-u x_{j}\right)-\sum_{i=1}^{n} u f\left(\sum_{j \neq i} x_{j}-(n-1) x_{i}\right) u^{*}, \\
\varepsilon_{i}(x) & :=\varepsilon(0, \cdots, 0, \underbrace{x}_{i-t h}, 0, \cdots, 0), \\
\mathcal{J} & := \begin{cases}\{1, \cdots, n-1\} \times\{1, \cdots, n\}, & \text { if } n>3, \\
\{2\} \times\{1,2,3\} & \text { if } n=3 .\end{cases}
\end{aligned}
$$

In addition, let \circ be defined by minimum t-norm and \mathcal{A}^{M} be the set of all mapping from M to \mathcal{A}, $Q_{\mathcal{A}}(M, \mathcal{A})$ be the set of all \mathcal{A}-quadratic mappings from M to \mathcal{A}.

Now, we present a stability of the \mathcal{A}-quadratic mapping concerning Equation (2) in μ-complete convex fuzzy modular $*$-algebras without using β-homogeneous properties.

Theorem 2. Let $(\mathcal{A}, \mu, \circ)$ be μ-complete convex fuzzy modular $*$-algebra with norm $\|\cdot\|$ and M be a left \mathcal{A}-module, $\left(X, \mu^{\prime}, \circ\right)$ fuzzy modular space, $\mathcal{U}(\mathcal{A})$ the unitary group of \mathcal{A}. Assume that there exist two mappings $f \in \mathcal{A}^{M}$ and $\varepsilon \in X^{M^{n}}$ such that

$$
\begin{align*}
\mu\left(\mathcal{D}_{u} f\left(x_{1}, \cdots, x_{n}\right), t\right) & \geq \mu^{\prime}\left(\varepsilon\left(x_{1}, \cdots, x_{n}\right), t\right) \tag{4}\\
\mu^{\prime}\left(\varepsilon\left((n-1) x_{1}, \cdots,(n-1) x_{n}\right), t\right) & \geq \mu^{\prime}\left(\varepsilon\left(x_{1}, \cdots, x_{n}\right), \frac{t}{\beta}\right)
\end{align*}
$$

for all $\left(x_{1}, \cdots, x_{n}\right) \in X^{n}, u \in \mathcal{U}(\mathcal{A})$, where $2 \leq 2 \beta<(n-1)^{2}$, and either f is measurable or $f(t x)$ is continuous in $t \in R$ for each fixed $x \in M$. Then, there exists a unique mapping $Q \in Q_{\mathcal{A}}(M, \mathcal{A})$ that satisfies Equation (2) and the inequality

$$
\begin{equation*}
\mu\left(f(x)+\frac{(n-1) f(0)}{2}-Q(x), t\right) \geq \Phi\left(x, \frac{(n-1)^{2} t}{2 \beta}\right) \tag{5}
\end{equation*}
$$

for all $x \in M$ and $t>0$, where

$$
\begin{gathered}
\Phi(x, t):=\max _{(i, j) \in \mathcal{J}}\left\{\mu^{\prime}\left(\varepsilon_{j}(-x), \frac{(n-1)^{2} t}{6}\right) \circ \mu^{\prime}\left(\varepsilon_{i}(x), \frac{(n-1)^{2} n t}{6\left(n^{2}-(i+1) n+1\right)}\right)\right. \\
\left.\circ \mu^{\prime}\left(\varepsilon_{i+1}(x), \frac{(n-1)^{2} n t}{6\left(n^{2}-(i+1) n+1\right)}\right)\right\} .
\end{gathered}
$$

Proof. Define a mapping $g: M \rightarrow \mathcal{A}$ by $g(x):=f(x)+\frac{(n-1) f(0)}{2}$ for all $x \in M$. Then, for each $x \in M$, the following equation is obtained:

$$
\begin{equation*}
g((n-1) x)-(n-1)^{2} g(x)=\mathcal{D}_{u} f_{j}(-x)+\left(\frac{n^{2}-(i+1) n+1}{n}\right)\left[\mathcal{D}_{1} f_{i}(x)-\mathcal{D}_{1} f_{i+1}(x)\right] \tag{6}
\end{equation*}
$$

for all $i=1, \cdots, n-1$ and for all $j=1, \cdots, n$, where

$$
\mathcal{D}_{1} f_{i}(x)=\mathcal{D}_{1} f(0, \cdots, 0, \underbrace{x}_{i-t h}, 0, \cdots, 0) .
$$

For each fixed $(i, j) \in \mathcal{J}$, one obtains from $\sum_{k=1}^{m} \frac{1+2\left(\frac{n^{2}-(i+1) n+1}{n}\right)}{(n-1)^{2 k}} \leq 1$ that

$$
\begin{aligned}
& \mu\left(g(x)-\frac{g\left((n-1)^{m} x\right)}{(n-1)^{2 m}}, t\right) \geq \mu\left(\sum_{k=1}^{m} \frac{(n-1)^{2} g\left((n-1)^{k-1} x\right)-g\left((n-1)^{k} x\right)}{(n-1)^{2 k}}, \sum_{k=1}^{m} \frac{t}{2^{k}}\right) \\
& \geq \prod_{k=1}^{m}\left(\mu^{\prime}\left(\varepsilon_{j}(-x), \frac{(n-1)^{2 k} t}{3 \cdot 2^{k} \beta^{k-1}}\right)\right. \\
& \circ \mu^{\prime}\left(\varepsilon_{i}(x), \frac{(n-1)^{2 k} n t}{3 \cdot 2^{k} \beta^{k-1}\left(n^{2}-(i+1) n+1\right)}\right) \\
&\left.\circ \mu^{\prime}\left(\varepsilon_{i+1}(x), \frac{(n-1)^{2 k} n t}{3 \cdot 2^{k} \beta^{k-1}\left(n^{2}-(i+1) n+1\right)}\right)\right) \\
&= \mu^{\prime}\left(\varepsilon_{j}(-x), \frac{(n-1)^{2} t}{6}\right) \circ \mu^{\prime}\left(\varepsilon_{i}(x), \frac{(n-1)^{2} n t}{6\left(n^{2}-(i+1) n+1\right)}\right) \\
& \quad \circ \mu^{\prime}\left(\varepsilon_{i+1}(x), \frac{(n-1)^{2} n t}{6\left(n^{2}-(i+1) n+1\right)}\right)
\end{aligned}
$$

for all $t>0$ and $x \in M, m \in \mathbb{N}$. Then, it follows from the above inequality that

$$
\mu\left(g(x)-\frac{g\left((n-1)^{m} x\right)}{(n-1)^{2 m}}, t\right) \geq \Phi(x, t)
$$

for all $x \in M$ and $t>0$. Therefore, we prove from this relation that, for any integers m, p,

$$
\begin{aligned}
\mu\left(\frac{g\left((n-1)^{m} x\right)}{(n-1)^{2 m}}-\frac{g\left((n-1)^{m+p} x\right)}{(n-1)^{2(m+p)}}, t\right) & \geq \mu\left(g\left((n-1)^{m} x\right)-\frac{g\left((n-1)^{p} \cdot(n-1)^{m} x\right)}{(n-1)^{p}},(n-1)^{2 m} t\right) \\
& \geq \Phi\left((n-1)^{m} x,(n-1)^{2 m} t\right) \geq \Phi\left(x,\left(\frac{(n-1)^{2}}{\beta}\right)^{m} t\right)
\end{aligned}
$$

for all $t>0, x \in M$. Since the right-hand side of the above inequality tends to 1 as $m \rightarrow \infty$, the sequence $\left\{\frac{g\left((n-1)^{m} x\right)}{(n-1)^{2 m}}\right\}$ is μ-Cauchy and thus converges in \mathcal{A}. Hence, we may define a mapping $Q: M \rightarrow \mathcal{A}$ as

$$
Q(x):=\mu-\lim _{m \rightarrow \infty} \frac{g\left((n-1)^{m} x\right)}{(n-1)^{2 m}}\left(\Leftrightarrow \lim _{m \rightarrow \infty} \mu\left(Q(x)-\frac{g\left((n-1)^{m} x\right)}{(n-1)^{2 m}}, t\right)=1\right)
$$

for all $x \in M$ and $t>0$. In addition, we claim that the mapping Q satisfies (2). For this purpose, we calculate the following inequality:

$$
\begin{aligned}
\mu\left(\frac{\mathcal{D}_{u} Q\left(x_{1}, \cdots, x\right)}{L}, t\right) \geq & \prod_{1 \leq i<j \leq n}\left(\mu\left(Q\left(u x_{i}-u x_{j}\right)-\frac{g\left((n-1)^{m}\left(u x_{i}-u x_{j}\right)\right)}{(n-1)^{2 m}}, \frac{L t}{2^{i+j}}\right)\right. \\
& \left.\circ \mu\left(u Q\left(\sum_{j=1}^{n} x_{j}-n x_{i}\right) u^{*}-\frac{u g\left((n-1)^{m}\left(\sum_{j=1}^{n} x_{j}-n x_{i}\right)\right) u^{*}}{(n-1)^{2 m}}, \frac{L t}{2^{i+j}}\right)\right) \\
& \circ \mu^{\prime}\left(\varepsilon\left(x_{1}, \cdots, x_{n}\right),\left(\frac{(n-1)^{2}}{\beta}\right)^{m} \cdot \frac{L t}{2^{i+j}}\right)
\end{aligned}
$$

for all $x \in M, u \in \mathcal{U}(\mathcal{A}), m \in \mathbb{N}, t>0$, where $L:=\frac{n^{3}-n^{2}+2 n+2}{2}$. This means that $\mathcal{D}_{u} Q\left(x_{1}, \cdots, x_{n}\right)=0$ for all $x_{1}, \cdots x_{n} \in M, u \in \mathcal{U}(\mathcal{A})$. Hence, the mapping Q satisfies (2) and so $Q((n-1) x)=(n-1)^{2} Q(x)$ for all $x \in M$. It follows that

$$
\begin{aligned}
\mu(Q(x)-g(x), t) \geq & \mu\left(\frac{Q((n-1) x)}{(n-1)^{2}}-\frac{g\left((n-1)^{m+1} x\right)}{(n-1)^{2 m+2}}\right. \\
& \left.+\sum_{k=1}^{m} \frac{(n-1)^{2} g\left((n-1)^{k-1} x\right)-g\left((n-1)^{k} x\right)}{(n-1)^{2 k}}, t\right) \\
\geq & \Phi\left((n-1) x, \frac{(n-1)^{2} t}{2}\right) \circ \prod_{k=1}^{m} \Phi\left(x, \frac{(n-1)^{2 k} t}{2 \beta^{k-1}}\right) \\
\geq & \Phi\left(x, \frac{(n-1)^{2}}{2 \beta} t\right)
\end{aligned}
$$

for all $x \in M, t>0$.
To prove the uniqueness, let Q^{\prime} be another mapping satisfying (2) and

$$
\mu\left(g(x)-Q^{\prime}(x), t\right) \geq \Phi\left(x, \frac{(n-1)^{2}}{2 \beta} t\right)
$$

for all $x \in M$. Thus, we have

$$
\begin{aligned}
\mu\left(\frac{1}{2}\left(Q(x)-Q^{\prime}(x)\right), t\right) \geq & \mu\left(\frac{Q\left((n-1)^{m} x\right)-g\left((n-1)^{m} x\right)}{(n-1)^{2 m}}, t\right) \\
& \circ \mu\left(\frac{g\left((n-1)^{m} x\right)-Q^{\prime}\left((n-1)^{m} x\right)}{(n-1)^{2 m}}, t\right) \\
\geq & \Phi\left(x, \frac{(n-1)^{2 m}}{2 \beta} t\right)
\end{aligned}
$$

for all $x \in M, t>0$. Taking the limit as $m \rightarrow \infty$, then we conclude that $Q(x)=Q^{\prime}(x)$ for all $x \in M$.
Under the assumption that either f is measurable or $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in M$, the quadratic mapping Q satisfies $Q(t x)=t^{2} Q(x)$ for all $x \in M$ and for all $t \in \mathbb{R}$ by the same reasoning as the proof of [25]. That is, Q is \mathbb{R}-quadratic. Let $P:=\frac{n^{4}-2 n^{3}+3 n^{2}-3 n+14}{4}$. Putting $x_{1}:=-(n-1)^{k} x$ and $x_{i}:=0$ for all $i=2, \cdots, n$ in (4) and dividing the resulting inequality by $(n-1)^{2 k}$, we have

$$
\begin{aligned}
& \mu\left(\frac{1}{P}\left(n(n-1) Q(-u x)-u Q((n-1) x) u^{*}-(n-1) u Q(-x) u^{*}\right), 4 t\right) \\
& \geq \mu\left(Q(-u x)-\frac{g\left(-u(n-1)^{k} x\right)}{(n-1)^{2 k}}, \frac{P t}{n(n-1)}\right) \\
& \quad \circ \mu\left(u Q(-(n-1) x) u^{*}-u \frac{g\left(-\lambda \cdot(n-1)^{k} x\right)}{(n-1)^{2 k}} u^{*}, P t\right) \\
& \quad \circ \mu\left(u Q(x) u^{*}-u \frac{g\left((n-1)^{k} x\right)}{(n-1)^{2 k}} u^{*}, \frac{P t}{n(n-1)}\right) \\
& \quad \circ \mu\left(\mathcal{D}_{u} f\left(-(n-1)^{k} x, 0, \cdots, 0\right),(n-1)^{2 k} P t\right) \\
& \quad \circ \mu\left(f(0), \frac{4(n-1)^{2 k} P t}{(n-2)(n-1) n(n+1)}\right)
\end{aligned}
$$

for all $x \in M, u \in \mathcal{U}(\mathcal{A}), t>0$. Taking $k \rightarrow \infty$ and using the evenness of Q, we obtain that $Q(u x)=$ $u Q(x) u^{*}$ for all $x \in M$ and for each $u \in \mathcal{U}(\mathcal{A})$. The last relation is also true for $u=0$.

Now, let a be a nonzero element in \mathcal{A} and K a positive integer greater than $4\|a\|$. Then, we have $\frac{\|a\|}{K}<\frac{1}{4}<1-\frac{2}{3}$. By [26] [Theorem 1], there exist three elements $u_{1}, u_{2}, u_{3} \in \mathcal{U}(\mathcal{A})$ such that $3 \frac{a}{K}=$ $u_{1}+u_{2}+u_{3}$. Thus, we calculate in conjunction with [27] [Lemma 2.1] that

$$
\begin{aligned}
Q(a x) & =Q\left(\frac{K}{3} 3 \frac{a}{K} x\right)=\left(\frac{K}{3}\right)^{2} Q\left(u_{1} x+u_{2} x+u_{3} x\right) \\
& =\left(\frac{K}{3}\right)^{2} B\left(u_{1} x+u_{2} x+u_{3} x, u_{1} x+u_{2} x+u_{3} x\right) \\
& =\left(\frac{K}{3}\right)^{2}\left(u_{1}+u_{2}+u_{3}\right) B(x, x)\left(u_{1}^{*}+u_{2}^{*}+u_{3}^{*}\right) \\
& =\left(\frac{K}{3}\right)^{2} 3 \frac{a}{K} Q(x) 3 \frac{a^{*}}{K}=a Q(x) a^{*}
\end{aligned}
$$

for all $a \in \mathcal{A}(a \neq 0)$ and for all $x \in M$. Thus, the unique \mathbb{R}-quadratic mapping Q is also \mathcal{A}-quadratic, as desired. This completes the proof.

Corollary 1. Let (\mathcal{A}, ρ) be a ρ-complete convex modular $*$-algebra with norm $\|\cdot\|$ and M be a left \mathcal{A}-module, $\mathcal{U}(\mathcal{A})$ the unitary group of \mathcal{A}. Assume that there exist two mappings $f \in \mathcal{A}^{M}$ and $\varepsilon \in \mathbb{R}^{M^{n}}$ such that

$$
\begin{align*}
\rho\left(\mathcal{D}_{u} f\left(x_{1}, \cdots, x_{n}\right)\right) & \leq \varepsilon\left(x_{1}, \cdots, x_{n}\right) \tag{7}\\
\varepsilon\left((n-1) x_{1}, \cdots,(n-1) x_{n}\right) & \leq \beta \varepsilon\left(x_{1}, \cdots, x_{n}\right)
\end{align*}
$$

for all $\left(x_{1}, \cdots, x_{n}\right) \in X^{n}, u \in \mathcal{U}(\mathcal{A})$, where $2 \leq 2 \beta<(n-1)^{2}$, and either f is measurable or $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in M$. Then, there exists a unique mapping $Q \in Q_{\mathcal{A}}(M, \mathcal{A})$ which satisfies Equation (2) and the inequality

$$
\begin{array}{r}
\rho\left(f(x)+\frac{(n-1) f(0)}{2}-Q(x)\right) \leq \frac{12 \beta}{(n-1)^{4}} \min _{(i, j) \in \mathcal{J}}\left\{\operatorname { m a x } \left\{\varepsilon_{j}(-x), \frac{\left(n^{2}-(i+1) n+1\right)}{n} \varepsilon_{i}(x)\right.\right. \\
\left.\left., \frac{\left(n^{2}-(i+1) n+1\right)}{n} \varepsilon_{i+1}(x)\right\}\right\} \tag{8}
\end{array}
$$

for all $x \in M$.
Proof. Let $X=\mathbb{R}$ with the fuzzy modular $\mu^{\prime}: X \times(0, \infty) \rightarrow \mathbb{R}$ as

$$
\mu^{\prime}(z, t)=\frac{t}{t+|z|}
$$

for all $z \in \mathbb{R}, t>0$. In addition, define the following convex fuzzy modular μ as

$$
\mu(y, t)=\frac{t}{t+\rho(y)}
$$

for all $y \in M, t>0$. As noted in Example $1,\left(\mathcal{A}, \mu, \circ_{M}\right)$ is a μ-complete convex fuzzy modular $*$-algebra and $\left(\mathbb{R}, \mu^{\prime} . \circ_{M}\right)$ is a fuzzy modular space. The result follows from the fact that (4) and (5) are equivalent to (7) and (8), respectively.

Corollary 2. Let $(\mathcal{A},\|\cdot\|)$ be a Banach $*$-algebra and M be a left \mathcal{A}-module and $\theta>0, p \in\left(0,2-\log _{\lambda} 2\right)$. Assume that there exists a mapping $f \in \mathcal{A}^{M}$ such that

$$
\left\|\mathcal{D}_{u} f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \theta\left(\left\|x_{1}\right\|^{p}+\cdots+\left\|x_{n}\right\|^{p}\right)
$$

for all $\left(x_{1}, \cdots, x_{n}\right) \in X^{n}, u \in \mathcal{U}(\mathcal{A})$, and either f is measurable or $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in M$. Then, there exists a unique quadratic mapping $Q \in Q_{\mathcal{A}}(M, \mathcal{A})$ which satisfies Equation (2) and the inequality

$$
\left\|f(x)+\frac{(n-1) f(0)}{2}-Q(x)\right\| \leq \frac{12}{(n-1)^{4-p}} \varepsilon \theta\|x\|^{p}
$$

for all $x \in M$, where ε is a real number defined by

$$
\varepsilon:= \begin{cases}\min \left\{\left.\frac{n^{2}-(i+1) n+1}{n} \geq 1 \right\rvert\, i=1, \cdots, n-1\right\}, & \text { if } n>3 \\ 1, & \text { if } n=3\end{cases}
$$

Proof. Letting $\varepsilon\left(x_{1}, \cdots, x_{n}\right):=\theta\left(\left\|x_{1}\right\|^{p}+\cdots+\left\|x_{n}\right\|^{p}\right), \beta:=(n-1)^{p}$ and applying Corollary 1, we obtain the desired result, as claimed.

Next, we provide an alternative stability theorem of Theorem 2 equipped with Δ_{n-1}-condition in μ-complete convex fuzzy modular $*$-algebras.

Theorem 3. Let $(\mathcal{A}, \mu, \circ)$ be a μ-complete convex fuzzy modular $*$-algebra with Δ_{n-1}-condition and norm $\|\cdot\|$ and M be a \mathcal{A}-left module, $\left(X, \mu^{\prime}, \circ\right)$ fuzzy modular space. Assume that there exist two mappings $f \in \mathcal{A}^{M}$ and $\varepsilon \in X^{M^{n}}$ such that

$$
\begin{align*}
\mu\left(\mathcal{D}_{u} f\left(x_{1}, \cdots, x_{n}\right), t\right) & \geq \mu^{\prime}\left(\varepsilon\left(x_{1}, \cdots, x_{n}\right), t\right), \tag{9}\\
\mu^{\prime}\left(\varepsilon\left(\frac{x_{1}}{n-1}, \cdots, \frac{x_{n}}{n-1}\right), t\right) & \geq \mu^{\prime}\left(\varepsilon\left(x_{1}, \cdots, x_{n}\right), \gamma t\right)
\end{align*}
$$

for all $\left(x_{1}, \cdots, x_{n}\right) \in X^{n}, u \in \mathcal{U}(\mathcal{A})$, where $(n-1)^{2} \gamma>2 \kappa_{n-1}^{4}$, and either f is measurable or $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in M$. Then, there exists a unique mapping $Q \in Q_{\mathcal{A}}(M, \mathcal{A})$ which satisfies Equation (2) and the inequality

$$
\begin{equation*}
\mu(f(x)-Q(x), t) \geq \Psi\left(x, \frac{(n-1) t}{2 \kappa_{n-1}}\right) \tag{10}
\end{equation*}
$$

for all $x \in M, t>0$, where

$$
\begin{gathered}
\Psi(x, t)=\max _{(i, j) \in \mathcal{J}}\left\{\mu^{\prime}\left(\varepsilon_{j}(-x), \frac{\gamma(n-1)^{2} t}{6 \kappa_{n-1}^{2}}\right) \circ \mu^{\prime}\left(\varepsilon_{i}(x), \frac{\gamma(n-1)^{2} n t}{6 \kappa_{n-1}^{2}\left(n^{2}-(i+1) n+1\right)}\right)\right. \\
\left.\circ \mu^{\prime}\left(\varepsilon_{i+1}(x), \frac{\gamma(n-1)^{2} n t}{6 \kappa_{n-1}^{2}\left(n^{2}-(i+1) n+1\right)}\right)\right\} .
\end{gathered}
$$

Proof. Letting $\left(x_{1}, \cdots, x_{n}\right):=(0, \cdots, 0)$ in (9) and using it, we get

$$
\mu^{\prime}(\varepsilon(0, \cdots, 0), t) \geq \mu^{\prime}\left(\varepsilon(0, \cdots, 0), \gamma^{m} t\right)
$$

for all $t>0, m \in \mathbb{N}$. Thus, $\varepsilon(0, \cdots, 0)=0$ and

$$
\mu\left(\frac{n(n-1)^{2}}{2} f(0), t\right)=\mu\left(\mathcal{D}_{u} \delta(0, \cdots, 0), t\right) \geq \mu^{\prime}(\varepsilon(0, \cdots, 0), t)=1
$$

for all $t>0$, which implies $f(0)=0$. From Equation (6), we get the following equality

$$
\begin{align*}
& f(x)-(n-1)^{2} f\left(\frac{x}{n-1}\right) \tag{11}\\
& =\mathcal{D}_{1} f_{j}\left(-\frac{x}{n-1}\right)+\left(\frac{n^{2}-(i+1) n+1}{n}\right)\left[\mathcal{D}_{1} f_{i}\left(\frac{x}{n-1}\right)-\mathcal{D}_{1} f_{i+1}\left(\frac{x}{n-1}\right)\right]
\end{align*}
$$

for all $(i, j) \in \mathcal{J}$. Using (11) and Δ_{n-1}-condition of μ, one gets

$$
\begin{aligned}
& \mu\left(f(x)-(n-1)^{2 m} f\left(\frac{x}{(n-1)^{m}}\right), t\right) \\
& \geq \mu\left(\sum_{k=1}^{m} \frac{(n-1)^{4 k-2}}{(n-1)^{2 k}}\left(f\left(\frac{x}{(n-1)^{k}}\right)-(n-1)^{2} f\left(\frac{x}{(n-1)^{k}}\right)\right), \sum_{k=1}^{m} \frac{t}{2^{k}}\right) \\
& \geq \prod_{k=1}^{m}\left(\mu^{\prime}\left(\varepsilon_{j}(-x),\left(\frac{\gamma(n-1)^{2}}{2 \kappa_{n-1}^{4}}\right)^{k} \cdot \frac{\kappa_{n-1}^{2} t}{3}\right)\right. \\
& \circ \mu^{\prime}\left(\varepsilon_{i}(x),\left(\frac{\gamma(n-1)^{2}}{2 \kappa_{n-1}^{4}}\right)^{k} \cdot \frac{\kappa_{n-1}^{2} n t}{3\left(n^{2}-(i+1) n+1\right)}\right) \\
&\left.\circ \mu\left(\varepsilon_{i+1}(x),\left(\frac{\gamma(n-1)^{2}}{2 \kappa_{n-1}^{4}}\right)^{k} \frac{\kappa_{n-1}^{2} n t}{3\left(n^{2}-(i+1) n+1\right)}\right)\right) \\
&= \mu^{\prime}\left(\varepsilon_{j}(-x), \frac{\gamma(n-1)^{2} t}{6 \kappa_{n-1}^{2}}\right) \circ \mu^{\prime}\left(\varepsilon_{i}(x), \frac{\gamma(n-1)^{2} n t}{6 \kappa_{n-1}^{2}\left(n^{2}-(i+1) n+1\right)}\right) \\
& \circ \mu^{\prime}\left(\varepsilon_{i+1}(x), \frac{\gamma(n-1)^{2} n t}{6 \kappa_{n-1}^{2}\left(n^{2}-(i+1) n+1\right)}\right)
\end{aligned}
$$

for all $x \in M, t>0,(i, j) \in \mathcal{J}$. This relation leads to

$$
\begin{equation*}
\mu\left(f(x)-(n-1)^{2 m} f\left(\frac{x}{(n-1)^{m}}\right), t\right) \geq \Psi(x, t) \tag{12}
\end{equation*}
$$

for all $x \in M$ and $t>0$. Now, replacing x by $\frac{x}{(n-1)^{m}}$ in (12), we have

$$
\begin{aligned}
& \mu\left((n-1)^{2 m} f\left(\frac{x}{(n-1)^{m}}\right)-(n-1)^{2 m+2 p} f\left(\frac{x}{(n-1)^{m+p}}\right), t\right) \\
& \quad \geq \mu\left(f\left(\frac{x}{(n-1)^{m}}\right)-(n-1)^{2 p} f\left(\frac{x}{(n-1)^{m+p}}\right), \frac{t}{\kappa_{n-1}^{2 m}}\right) \\
& \quad \geq \Psi\left(\frac{x}{(n-1)^{m}}, \frac{t}{\kappa_{n-1}^{2 m}}\right) \geq \Psi\left(x,\left(\frac{\gamma}{\kappa_{n-1}^{2}}\right)^{m} t\right)
\end{aligned}
$$

which converges to zero as $m \rightarrow \infty$. Thus, $\left\{(n-1)^{2 m} f\left(x /(n-1)^{m}\right)\right\}$ is μ-Cauchy for all $x \in M$, and so it is μ-convergent in \mathcal{A} since the space \mathcal{A} is μ-complete. Thus, we may define a mapping $Q: M \rightarrow \mathcal{A}$ as

$$
\begin{aligned}
& Q(x):=\mu-\lim _{m \rightarrow \infty}(n-1)^{2 m} f\left(\frac{x}{(n-1)^{m}}\right) \\
& \quad\left(\Longleftrightarrow \lim _{m \rightarrow \infty}(n-1)^{2 m} \mu\left(Q(x)-f\left(\frac{x}{(n-1)^{m}}\right), t\right)=1\right)
\end{aligned}
$$

for all $x \in M$ and all $t>0$. Using Δ_{n-1}-condition and convexity of μ, we find the following inequality

$$
\begin{aligned}
\mu(f(x)-Q(x), t) \geq & \mu\left(f(x)-(n-1)^{2 m} f\left(\frac{x}{(n-1)^{2 m}}\right), \frac{(n-1) t}{2 \kappa_{n-1}}\right) \\
& \left.\circ \mu\left((n-1)^{2 m} f\left(\frac{x}{(n-1)^{2 m}}\right)-Q(x)\right), \frac{(n-1) t}{2 \kappa_{n-1}}\right) \\
\geq & \Psi\left(x, \frac{(n-1) t}{2 \kappa_{n-1}}\right)
\end{aligned}
$$

for all $x \in M, t>0$ and for enough large $m \in \mathbb{N}$. By the similar way of the proof of Theorem 2, we get Q is \mathcal{A}-quadratic functional equation.

To prove the uniqueness, let T be another \mathcal{A}-quadratic mapping satisfying (10). Then, we get $T\left((n-1)^{m} x\right)=(n-1)^{2 m} T(x)$ for all $x \in M$ and all $m \in \mathbb{N}$. Thus, we have

$$
\begin{aligned}
\mu\left(\frac{T(x)-Q(x)}{2}, t\right) \geq & \mu\left(T\left(\frac{x}{(n-1)^{m}}\right)-f\left(\frac{x}{(n-1)^{m}}\right), \frac{t}{\kappa_{n-1}^{2 m}}\right) \\
& \circ \mu\left(f\left(\frac{x}{(n-1)^{m}}\right)-Q\left(\frac{x}{(n-1)^{m}}\right), \frac{t}{\kappa_{n-1}^{2 m}}\right) \\
\geq & \Psi\left(\frac{x}{(n-1)^{m}}, \frac{(n-1) t}{\kappa_{n-1}^{2 m+1}}\right) \geq \Psi\left(x, \frac{(n-1) \gamma^{m} t}{\kappa_{n-1}^{2 m+1}}\right)
\end{aligned}
$$

Taking the limit as $m \rightarrow \infty$, then we conclude that $T(x)=Q(x)$ for all $x \in M$. This completes the proof.

Corollary 3. Let (\mathcal{A}, ρ) be a ρ-complete convex modular $*$-algebra with Δ_{n-1}-condition and norm $\|\cdot\|$. Assume that there exist two mappings $f \in \mathcal{A}^{M}$ and $\varepsilon \in \mathbb{R}^{M^{n}}$ such that

$$
\begin{aligned}
\rho\left(\mathcal{D}_{u} f\left(x_{1}, \cdots, x_{n}\right)\right) & \leq \varepsilon\left(x_{1}, \cdots, x_{n}\right) \\
\varepsilon\left(\frac{x_{1}}{n-1}, \cdots \frac{x_{n}}{n-1}\right) & \leq \frac{1}{\gamma} \varepsilon\left(x_{1}, \cdots, x_{n}\right)
\end{aligned}
$$

for all $\left(x_{1}, \cdots, x_{n}\right) \in X^{n}, u \in \mathcal{U}(\mathcal{A})$, where $\gamma(n-1)^{2}>2 \kappa_{n-1}^{4}$ and either f is measurable or $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in M$. Then, there exists a unique mapping $Q \in Q_{\mathcal{A}}(M, \mathcal{A})$ which satisfies Equation (2) and the inequality

$$
\begin{aligned}
\rho(f(x)-Q(x)) \leq \frac{12 \kappa_{n-1}^{3}}{\gamma(n-1)^{3}} \min _{(i, j) \in \mathcal{J}}\{ & \max \left\{\varepsilon_{j}(-x), \frac{\left(n^{2}-(i+1) n+1\right)}{n} \varepsilon_{i}(x)\right. \\
& \left.\left.\frac{\left(n^{2}-(i+1) n+1\right)}{n} \varepsilon_{i+1}(x)\right\}\right\}
\end{aligned}
$$

for all $x \in M$.

4. Conclusions

We have studied a quadratic functional equation from the gravity of the n-distinct vectors and obtained the solution of the quadratic functional equation and investigated the stability results of a \mathcal{A}-quadratic mapping on μ-complete convex fuzzy modular $*$-algebras without using β-homogeneous property and lower semicontinuity. Furthermore, as corollaries, we have presented the stability results of the \mathcal{A}-quadratic mapping in ρ-complete convex modular $*$-algebras and Banach *-algebras, respectively.

Author Contributions: Conceptualization, H.-Y.S.; Data curation, H.-M.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Acknowledgments: The authors would like to thank the referees for giving useful suggestions and for the improvement of this manuscript. This research was supported by Chungnam National University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ulam, S.M. A Collection of the Mathematical Problems; Interscience Publishers: New York, NY, USA, 1960.
2. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222-224. [CrossRef] [PubMed]
3. Jun, K.-W.; Kim, H.-M. On the generalized A-quadratic mappings associated with the variance of a discrete-type distribution. Nonlinear Anal. Theory Methods Appl. 2005, 62, 975-987. [CrossRef]
4. Choi, G.; Jung, S.-M. The Approximation Property of a One-Dimensional, Time Independent Schrödinger Equation with a Hyperbolic Potential Well. Mathematics 2020, 8, 1351. [CrossRef]
5. Alanazi, A.M.; Muhiuddin, G.; Tamilvanan, K.; Alenze, E.N.; Ebaid, A.; Loganathan, K. Fuzzy Stability Results of Finite Variable Additive Functional Equation: Direct and Fixed Point Methods. Mathematics 2020, 8, 1050. [CrossRef]
6. Park, C.G.; Rassias, J.M.; Bodaghi, A.; Kim, S.O. Approximate homomorphisms from ternary semigroups to modular spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 2175-2188. [CrossRef]
7. Saha, P.; Samanta, T.K.; Mondal, P.; Choudhury, B.S.; De La Sen, M. Applying Fixed Point Techniques to Stability Problems in Intuitionistic Fuzzy Banach Spaces. Mathematics 2020, 8, 974. [CrossRef]
8. EL-Fassi, I. Solution and approximation of radical quintic functional equation related to quintic mapping in quasi- β-Banach spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 675-687. [CrossRef]
9. Liu, K.; Fečkan, M.; Wang, J. A Fixed-Point Approach to the Hyers-Ulam Stability of Caputo-Fabrizio Fractional Differential Equations. Mathematics 2020, 8, 647. [CrossRef]
10. Eskandani, G.Z.; Rassias, J.M. Stability of general A-cubic functional equations in modular spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2018, 112, 425-435. [CrossRef]
11. Kim, H.-M.; Shin, H.-Y. Approximate Lie $*$-derivations on ρ-complete convex modular algebras. J. Appl. Anal. Comput. 2019, 9, 765-776. [CrossRef]
12. Nourouzi, K. Probabilistic modular spaces. In Proceedings of the 6th International ISAAC Congress, Ankara, Turkey, 13-18 August 2007.
13. Nourouzi, K. Baire's theorem in probabilistic modular spaces. In Proceedings of the World Congress on Engineering (WCE '08), London, UK, 2-4 July 2008; Volume 2, pp. 916-917.
14. Fallahi, K.; Nourouzi, K. Probabilistic modular spaces and linear operators. Acta Appl. Math. 2009, 105, 123-140. [CrossRef]
15. Shen, Y.; Chen, W. On fuzzy modular spaces. J. Appl. Math. 2013, 2013, 576237.
16. George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 2009, 64, 395-399. [CrossRef]
17. Khamsi, M.A.; Kozłowski, W.M.; Reich, S. Fixed point theory in modular function spaces. Nonlinear Anal. Theory Methods Appl. 1990, 14, 935-953. [CrossRef]
18. Wongkum, K.; Kumam, P. The stability of sextic functional equation in fuzzy modular spaces. J. Nonlinear Sci. Appl. 2016, 9, 3555-3569. [CrossRef]
19. Klement P.; Mesiar, R. Triangular norms. Tatra Mt. Math. Publ. 1997, 13, 169-193.
20. Sadeqi, I.; Amiripour, A. Fuzzy Banach algebras. In Proceedings of the First, Joint Congress on Fuzzy and Intelligent Systems, Ferdorwski University of Mashhad, Mashhad, Iran, 29-31 August 2007.
21. Dinda, B.; Samanta, T.K.; Bera, U.K. Intuitionistic fuzzy Banach algebra. Bull. Math. Anal. Appl. 2010, 3, 273-281.
22. Kim, H.-M.; Shin, H.-Y. Approximate cubic Lie derivations on ρ-complete convex modular algebras. J. Funct. Spaces 2018, 2018, 3613178.
23. Baker, J.A. A general functional equation and its stability. Proc. Am. Math. Soc. 2005, 133, 1657-1664. [CrossRef]
24. Vukman, J. Some functional equations in Banach algebras and an application. Proc. Am. Math. Soc. 1987, 100, 133-136. [CrossRef]
25. Czerwik, S. The stability of the quadratic functional equation. In Stability of Mappings of Hyers-Ulam Type; Rassias, T.M., Tabor, J., Eds.; Hadronic Press: Palm Harbor, FL, USA, 1994; pp. 81-91.
26. Kadison, R.V.; Pedersen, G. Means and convex combinations of unitary operators. Math. Scand. 1985, 57, 249-266. [CrossRef]
27. Jun, K.W.; Kim, H.M. On the Hyers-Ulam stability of a generalized quadratic and additive functional equations. Bull. Korean Math. Soc. 2005, 42, 133-148. [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
