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Abstract: Bayesian Network is one of the famous network models, and the loop cutset is one of
the crucial structures for Bayesian Inference. In the Bayesian Network and its inference, how to
measure the relationship between nodes is very important, because the relationship between different
nodes has significant influence on the node-probability of the loop cutset. To analyse the relationship
between two nodes in a graph, we define the shared node, prove the upper and lower bounds of the
shared nodes number, and affirm that the shared node influences the node-probability of the loop
cutset according to the theorems and experiments. These results can explain the problems that we
found in studying on the statistical node-probability belonging to the loop cutset. The shared nodes
are performed not only to improve the theoretical analysis on the loop cutset, but also to the loop
cutset solving algorithms, especially the heuristic algorithms, in which the heuristic strategy can
be optimized by a shared node. Our results provide a new tool to gauge the relationship between
different nodes, a new perspective to estimate the loop cutset, and it is helpful to the loop cutset
algorithm and network analysis.
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1. Introduction

The network model is a valuable tool, and network analysis has popularly dealt with a diverse
range of social, biological, and information systems in the last few decades. Variables and their
interactions are considered as nodes and edges in the network model, one of them is Bayesian network.
A Bayesian network is an acyclic directed graph, in which the nodes represent chance variables,
and the edges represent the probabilistic influences. An edge implies that it is possible to characterize
the relationship between the connected nodes by a conditional probability matrix. Pearl defined the
loop cutset in the conditioning method in order to solve the inference problem for multi-connected
networks [1]. The complexity of the conditioning method grows exponentially with the size of the
loop cutset. However, the minimum loop cutset problem has been proven to be NP-hard [2].

For solving the loop cutset problem, researchers have made many efforts on three classes of solving
algorithms: heuristic algorithms, random algorithms, and precise algorithms [3–7]. The heuristic
algorithm selects the node with the highest degree as the first member of the loop cutset by default.
The random algorithm WRA picks nodes with probability deg (vi) / ∑u∈Vi

deg(u), where vi and u are
the nodes in graph Gi (Vi, Ei), and deg(u) is the degree of node vi.

However, the theoretical research on the characteristics of the loop cutset lacks at the same time,
and the above algorithms lack theoretical support. The results presented in reference [8] proved the
positive correlation between the node degree and the node-probability of the loop cutset, which explain
the first selection in heuristic algorithm and the picking probability in WRA. However, we still have
many questions on the loop cutset problem. Because the problem is NP-hard, is it possible to perform

Mathematics 2020, 8, 1625; doi:10.3390/math8091625 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-4917-9764
https://orcid.org/0000-0001-7881-5806
http://dx.doi.org/10.3390/math8091625
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/9/1625?type=check_update&version=2


Mathematics 2020, 8, 1625 2 of 12

some pre-analysis on the loop cutset before solving? Pre-analysis on the loop cutset can reduce
unnecessary calculations in some cases.

According to these theorems in [8], the probability of one node belonging to the loop cutset is
related to its degree. Subsequently, if a node is known to belong to the loop cutset, given another node,
will the node-probability of the loop cutset change? This question requires to gauge the relationship
between different nodes.

The researchers widely use various node centrality measures to gauge the importance of
individual nodes in a network model, which is a principal application of network theory. A number
of measures, commonly referred to as centrality measures, are proposed to quantify the relative
importance of nodes in a network [9–11]. This paper defines the shared node for two different nodes
in a network, in order to analyse the relationship between the two nodes.

Reference [8] introduced a new parameter r− deg(v) to gauge the relative degree of nodes in the
graph. And, there is a question left in reference [8] that, the statistical probability of the next-largest
degree nodes belonging to the loop cutset has dropped significantly, while the largest-degree node
probability of the loop cutset maxes. In this paper, we use shared nodes to discuss the reasons for this
phenomenon and introduce theorems to prove the rationality of this discussion.

The paper is organized, as follows. Some preliminary knowledge is provided in Section 2.
In Section 3, we define the shared node, predict the theoretical number of the shared node in any
undirected graph, regular graph, and bipartite graph, and perform some theoretical analyses of the
loop cutset. The data experiments are performed on four existing algorithms, and the results verify the
correctness of the relevant theories in Section 4. Section 5 gives the applications of shared nodes in the
loop cutset algorithms and network analysis.

2. Preliminaries

In this section, we give the content related to graph theory, the loop cutset problem,
Bayesian network, and its two characteristics—conditional independence and d-separation.

Definition 1 (Graph Concepts). A simple graph G is defined by a node-set V and a set E of two-element
subsets of V, and the ends of an edge uv are precisely the nodes u and v. A directed graph is a pair D = 〈V, E〉,
where V = {X1, . . . , Xn} is the set of nodes and E =

{(
Xi, Xj

)
|Xi, Xj ∈ V

}
is the set of edges. Given that(

Xi, Xj
)
∈ E, Xi is called a parent of Xj, and Xj is called a child of Xi. The moral graph of a directed graph D is

the undirected graph obtained by connecting the parents of all the nodes in D and removing the arrows. A loop
in a directed graph D is a subgraph, whose underlying graph is a cycle. A directed graph is acyclic if it has no
directed loops. A directed graph is singly-connected, if its underlying undirected graph has no cycles; otherwise,
it is multiply-connected [11]. A graph G is k−regular if deg(v) = k for all v ∈ V. A graph is bipartite if
its vertex set can be partitioned into two subsets X and Y, so that every edge has one end in X and one end
in Y [12].

Definition 2 (Bayesian Networks). Let X = {X1, . . . , Xn} be a set of random variables over multivalued
domains D (X1) , . . . ,D (Xn). A Bayesian Network (Pearl, 1988), also named a belief network, is a
pair < G, P >, where G is a directed acyclic graph whose nodes are the variables X, and P =

{P (Xi|pai) |i = 1, 2, . . . , n} is the set of conditional probability tables associated with each Xi. The Bayesian
Network represents a joint probability distribution having the product form:

P (x1, . . . , xn) =
n

∏
i=1

P (xi|pa (Xi))

Evidence E is an instantiated subset of variables E ⊂ X [13].

Definition 3 (Loop Cutset). A vertex v is a sink with respect to a loop L if the two edges that are adjacent to
v in L are directed into v. A vertex that is not a sink with respect to a loop L is called an allowed vertex with
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respect to L. A loop cutset of a directed graph D is a set of vertices that contains at least one allowed vertex with
respect to each loop in D [13].

The loop cutset problem, for a directed acyclic graph G = (V, E) and an integer k, is finding a set S ⊆ V,
such that |S| ≤ k and G′ is a forest, where G′ = (V, E′) , E′ = {(u, v) ∈ E, u /∈ S, v /∈ S}. The problem can be
transformed into a feedback vertex set (FVS) problem, as follows: convert the directed acyclic graph G = (V, E)
to its underlying graph. Subsequently, iteratively delete the nodes whose degrees are less than 2 and delete the
adjacent edges. Denote the obtained undirected graph as Gnew = (Vnew, Enew), and then the problem involves
finding a loop cutset S ⊆ Vnew for Gnew = (Vnew, Enew).

Definition 4 (Conditional Independence). Let V = {V1, V2, . . .} be a finite set of variables. Let P(·) be a
joint probability function over the variables in V, and let X, Y, Z stand for any three subsets of variables in V.
The set X and Y are said to be conditionally independent, given Z if

P(x|y, z) = P(x|z)

In words, learning the value of Y does not provide additional information about X, once we know Z [12].
(Metaphorically, Z “screens off” X from Y.)

Definition 5 (d-Separation). A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if
(1) p contains a chain i→ m→ j or a fork i← m← j, such that the middle node m is in Z, or (2) p contains
an inverted fork (or collider) i→ m← j such that the middle node m is not in Z and, such that no descendant
of m is in Z. A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to a node
in Y [12].

3. The Definition and Theorems of Shared Nodes

3.1. The Definition of Shared Nodes

Firstly, we define the shared node for two different nodes, in order to gauge the relativity and
analyse the relationship between two nodes.

Definition 6 (Shared Node). For an undirected graph G = (V, E), v1, v2 ∈ V, if e1, e2 ∈ E, e1 = (v1, vi),
e2 = (v2, vi), then we call vi is one of the shared nodes of v1, v2. Similarly, in a directed graph G = (V, E),
v1, v2 ∈ V, if e1, e2 ∈ E, e1 = (v1, vi) or e1 = (vi, v1), e2 = (v2, vi) or e2 = (vi, v2), then we call vi is one of
the shared nodes of v1, v2.

Figure 1 shows examples of shared nodes in directed and undirected graphs. In Figure 1a,
the nodes A and B have three shared nodes: C, D, and E. In the complete graph, the shared nodes of
any two nodes contain all the rest nodes. In Figure 1b, the nodes A and B have one adjacent edge and
one shared node C, both of which can reflect the connection of two nodes. When two nodes have no
adjacent edges and only shared nodes, such as in Figure 1b A and E, at this time, the message between
the two cannot be directly transmitted through the adjacent edge, and needs to be transmitted through
the shared node C or other longer paths. When two nodes have neither adjacent edges nor shared
nodes, the messages between the two can only travel through a larger path, so that the influence
between the two will be smaller. There is no shared node between the point with degree 0 and any
other points.
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(a) An undirected graph (b) A directed graph

Figure 1. An undirected graph and a directed graph. In (a), the nodes A and B have three share nodes:
C, D and E; in (b), node A is a shared node between B and C.

The shared nodes show the connection of two different nodes, which are closely related to the
measures of node centrality. They have practical significance in Bayesian networks: shared nodes are
related to node-probability of loop cutset, which can be proved by theorems in Section 3.5; shared nodes
are also related with two properties: conditional independent and d-separation, which are also
discussed in Section 3.3.

3.2. Discussion on Shared Node and Node Centrality

The identification of which nodes are more “central” than others, or the centrality of nodes,
has been a key issue in network analysis. Three different measures of node centrality were formalized
Freeman in 1978: degree, closeness, and betweenness. Degree is the adjacent nodes number for a focal
node, which is a straightforward index of the extent to which nodes are focus of activity. The index
of the overall partial betweenness of the node is the sum of all its partial betweenness values for all
unordered pairs of nodes. The closeness of a node, which is the sum of the number of edges in the
geodesic linking the node and all th other nodes, determines its independence. A number of attempts
have been made for generalizing the above measures. Barrat et al. extended degree to weighted
networks, and Newman and Brandes made the extensions of the closeness and betweenness centrality
measures in 2001.

Degree and path are commonly used in the measures of node centrality, such as in social networks
and brain networks, and they have achieved the expected effect in actual applications. However,
the actual application of the network model also needs to study the relationship between different
nodes, such as the dynamic development of interpersonal relationships in the social network and
the solution of the loop cutsets in Bayesian networks. More generally, thanks to the development of
computers and algorithms, when solving a certain element, the algorithm is often iterative. In the
iteration, the existing results should have a corresponding impact on the next calculation, so that the
existing resources can be fully utilized.

Shared node and node centrality measures have a naturally close relationship: they both consider
degree; both consider path; and, shared nodes and betweenness both consider the concept of a path
between two points. Shared nodes are necessary and reasonable in measuring the relationship between
two nodes.

3.3. Discussion on Shared Nodes and Conditional Independence

Shared nodes are related to conditional independence and directed separation, which are two
important concepts of Bayesian networks. In Bayesian networks, conditional independence is a concept
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from the perspective of probability theory, and directed separation is a concept from the perspective of
graph theory. Directed separation means conditional independence, according to the overall Markov
property of Bayesian networks.

For three nodes X, Y, Z in a Bayesian network, consider the four forms of Z as the shared nodes
of X and Y: X → Z → Y, X ← Z ← Y, X ← Z → Y, X → Z ← Y, as shown in Figure 2a–d separately.
For the situations in Figure 2a–c, the XZY path is blocked by the node Z. In Figure 2d, the path will
not be blocked, because the information from X will be missed at Z and it will not reach Y. If all the
paths between X and Y are blocked by Z, then the node Z separates the nodes X and Y in a direction.
If Z directed separates X and Y, when the variable in Z is observed, information cannot be transferred
between X and Y, so X and Y are independent of each other, which is, X and Y are conditionally
independent when Z is given. In these forms, the shared node plays a key role in judging whether two
nodes are conditionally independent. In a Bayesian network, if two nodes X and Y are conditionally
independent when a set C is given, then the set C contains all of the allowed shared nodes of X and Y.

(a) (b) (c) (d)

Figure 2. the four forms of the node Z as one shared node of two nodes X and Y: (a)X → Z → Y;
(b) X ← Z ← Y; (c)X ← Z → Y; (d)X → Z ← Y.

3.4. Study on the Shared Nodes Number between Different Nodes

The shared nodes reflect the relationship between two nodes and the number of shared nodes is
a quantitative indicator of the relationship. The more shared nodes between two nodes, the closest
the relationship. Below, we will study its upper and lower bounds of the shared nodes number and
propose several theorems.

Theorem 1. For an undirected graph G = (V, E), denote the node with the largest degree ∆(G) of all nodes in
the graph as v1, the node with the next-largest degree ∆−1(G) of all nodes as v2, and the number of the nodes as
n. Subsequently, for the shared nodes number ω between v1 and v2, the following inequality holds.

max
(

0, ∆−1(G) + ∆(G)− n + 1
)
≤ ω ≤ ∆−1(G)

Proof of Theorem 1. We prove it in two cases: when the two nodes have adjacent edge and when they
have no adjacent edge.

First, we degenerate the graph G to such a state: keep all of the nodes, keep all of the adjacent
edges of the maximum degree node v1, and remove all other edges. Suppose that we partition the
space of variables V into three subsets A, B,, and C. Let A include node v1 and its adjacent nodes,
except node v2, B = V\A\v2, and C = v2.

The subsets are shown in the Figure 3 and the following relations hold.

A ∪ B ∪ C = V

A∩ B = A∩C = B∩C = φ

|A| = ∆(G) + 1
|B| = n− ∆(G)− 2

|C| = 1
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Figure 3. The initial state of the graph G when the two nodes have no adjacent edge, where the set V is
partitioned into three sets.

Consider the first case, which is, the two nodes v1, v2 have no adjacent edge. Subsequently, we can
choose the ∆(−1)(G) adjacent nodes of v2 from all nodes in sets A and B. In order to maximize the
shared nodes number, we select all of the candidates from the set A, and the shared nodes number
reaches the maximum value ∆(−1)(G). We select the candidates from set B until the selection cannot
continue in order to minimize the number of shared nodes.

There are only two situations where the selection cannot be continued: no more nodes left
to choose from B and still need to select the remaining adjacent nodes of v2, i.e., |B| < ∆−1(G);
or, the selections have completed before set B is out of nodes, i.e., |B| ≥ ∆−1(G).

When |B| > ∆−1(G), the shared nodes number ω between v1 and v2 is the adjacent nodes number
minus the elements number of set B, which is:

ω = ∆−1(G)− (n− ∆(G)− 2)
ω = ∆−1(G) + ∆(G)− n + 2

where ω is an integer greater than zero. When |B| < ∆−1(G), the value of ω is 0. At this time, the value
of the expression ∆−1(G) + ∆(G)− n + 2 is an integer less than 0. Thus, when the two nodes have no
adjacent edges,

max
(

0, ∆−1(G) + ∆(G)− n + 2
)
≤ ω ≤ ∆−1(G).

Consider the second case: the two nodes v1, v2 have an adjacent edge. At this time, among the
∆−1(G) adjacent nodes of v2, one is determined to be node v1, and an edge e1 = (v1, v2) exists in the
initial graph, as shown in Figure 4. Subsequently, we can choose the

(
∆−1(G)− 1

)
adjacent nodes of

v2 from sets A and B, similar as in the first case. Finally, when the two nodes have no adjacent edges,
the number of shared nodes satisfies the inequality: max

(
0, ∆−1(G) + ∆(G)− n + 1

)
≤ ω ≤ ∆−1(G).

Figure 4. The initial state of the graph G when the two nodes have an adjacent edge, where the set V is
partitioned into three sets.
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In summary, the following inequality holds:

max
(

0, ∆−1(G) + ∆(G)− n + 1
)
≤ ω ≤ ∆−1(G)

More generally, we can obtain the upper and lower bounds of the shared nodes number between
any two nodes in a graph.

Theorem 2. For an undirected graph G = (V, E), denote the number of the nodes as n, and the degree of the
node v as deg(v). Afterwards, for v1, v2 ∈ V, the shared nodes number ω between v1 and v2 satisfies the
following inequality.

max (0, deg(v1) + deg(v2)− n + 1) ≤ ω ≤ min (deg(v1), deg(v2))

Proof of Theorem 2. The proof of Theorem 2 can use the same method of Theorem 1. We only need to
replace the largest-degree node and the next-largest degree node with any two nodes, and the other
parts still hold. Specific details will not be presented here.

Regular graphs and bipartite graphs are common network structures. A large number of regular
and bipartite Bayesian network models can be found in application fields, such as turbofan jet engine
gas path diagnosis, rocket engine sensor verification and diagnosis, computer network diagnosis,
medical diagnosis, and code error correction.

Theorem 3. For any n−vertex, k−regular graph G, if the equality k ≥ n
2 holds, then any two nodes have at

least one shared node.

Proof of Theorem 3. According to the definition of the regular graph, the degree of any node in G is k.
Because the equality k ≥ n

2 holds, then, according to Theorem 2, the number ω of shared nodes
between any two nodes satisfies the following relation.

ω ≥ ∆−1(G) + ∆(G)− n + 1 = 2k− n + 1 ≥ 1

Thus, any two nodes have at least one shared node.

Theorem 4. Let G = (X, Y, E) be an undirected bipartite graph, where X = x1, . . . , xn, Y = y1, . . . , ym are
two sets of vertices and E is the set of edges xi, yj : xi ∈ X, yj ∈ Y. For v1, v2 ∈ X, denote the degree of v1, v2 as
deg(v1), deg(v2), respectively. The shared nodes number for v1, v2 satisfies the following relationship:

max (0, deg(v1) + deg(v2)−m + 1) ≤ ω ≤ min (deg(v1), deg(v2))

Proof of Theorem 4. The theorem can be proven by the definition of bipartite graph and Theorem 1.
The proof process is similar to Theorem 1 and the details will not be given here.

3.5. The Relationship between Loop Cutset and Shared Nodes

The conclusion mentioned above, that the number of shared nodes between two nodes is related
to the probability that the two nodes belong to the cut set, is proven in this section. First, we give
Lemma 1, cited from inference [8], which proves that the node degree influences the node probability
of belonging to the loop cutset. Subsequently, Theorem 5 is proved according to Lemma 1 and
the definition of loop cutset and shared nodes, which can explain the remaining problems in the
experimental part of inference [8].
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Lemma 1. For an undirected graph G = (V, E), any node v ∈ V with deg(v2) ≥ 2, the probability that node
v belongs to the loop cutset satisfies the following relationship:

p(v ∈ S) ≥ 1−
(

1− deg v · (deg v− 1)
(nnodes − 1)(nnodes − 1)

)(nedges−deg v)

where nnodes and nedges are the numbers of nodes and edges, respectively.

Theorem 5. For an undirected graph G = (V, E) , v1, v2 ∈ V, the probability that the nodes v1, v2 belong to
the loop cutset is related to the number of the shared nodes between the two nodes. The greater the shared nodes
number, the smaller the probability.

Proof of Theorem 5. This theorem can be proven by Theorem 1 and the definition of the loop cutset.
Once a node is selected into the loop cutset in a Bayesian network, then this node will be instantiated,
in order to break as many loops in the network as possible. If two nodes are in one loop —and only one,
then these two nodes will not be selected as loop cutsets at the same time. If two different nodes have
many shared nodes, the two will be in more same loops, and the probability of both being selected in
loop cutsets will be reduced.

For the nodes v1, v2, having a shared node vi is equivalent to having a path of length 2, and vi
is the intermediate node of this path. The greater the number of shared nodes, the more the number
of paths with length 2 between the two nodes, and the closer the relationship. In fact, the number of
shared nodes also implicitly reveals the shared part of the two degrees, which corresponds exactly to
Lemma 1 and Theorem 1.

There is a question left in the experimental part of reference 2: the statistical probability of
r− deg(v) has dropped significantly between 0.9 and 1, and the reason is to be discussed. In fact,
the original motivation for defining shared nodes is to explain this phenomenon, and now Theorems 1
and 5 can explain it. First, when solving the loop cutset, the heuristic algorithms take the largest-degree
node as the first element of the loop cutset, and the r− deg(v) of the largest-degree node has a value of
1. Next, consider the node with the next-largest degree, its r− deg(v) has a value that is closer to 1 than
any other nodes. The number of shared nodes between these two nodes has a degree-related upper
and lower bound, where the lower bound is max

(
0, ∆−1(G) + ∆(G)− n + 1

)
, according to Theorem 1.

This lower bound is larger than any other two nodes in the graph. Subsequently, the probability that
the two belong to the cut set at the same time will become smaller.

4. Experiments

This section implements four existing algorithms: the greedy algorithm A1 [3,4], the improved
algorithm A2 [14] for A1, the MGA [5], and the WRA [6]. A large number of random Bayesian
Networks are randomly generated using the algorithm in reference [4], and applied with the above
algorithms. In WRA, we need to specify two constants: c and Max, and here we take the constant
c as 1, and the constant Max as 300. The constant c influences the correct probability of the results,
and the constant Max influences the solution speed. Four groups of Bayesian networks were randomly
generated, in which the number of each group is 500, the number of nodes is 25, and the numbers of
edges are 50, 100, 150, and 200, respectively. We applied the four algorithms to the networks.

We introduce the parameter r− deg(v) in order to measure the relative degree of one node in the
graph, which is defined in reference [2]. Denoting the largest node degree in Graph G as ∆(G), and the

degree of node v as deg(v), the parameter r− deg(v) is the ratio
deg(v)
∆(G)

. In Figure 5, r− deg(v) is used

as an independent variable. When r− deg(v) = 1, node v is the largest-degree node in G.
Figure 5 shows the relationship between the r− deg(v) of the node and the corresponding

statistical frequency of different r− deg(v). We obtained the trend that the statistical frequency increases
with the parameter r− deg(v) increasing, which is more obvious when the graph is more complicated.
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However, there is a significant decline in the statistical frequency near the value of 0.9 for r− deg(v) in
each graph, which verifies the conclusion of Theorem 5.

(a) nnodes = 25, nedges = 50 (b) nnodes = 25, nedges = 100

(c) nnodes = 25, nedges = 150 (d) nnodes = 25, nedges = 200

Figure 5. Statistical frequency of the r− deg(v) of nodes in the loop cutset (here, nnodes , nedges are the
numbers of the nodes and edges, respectively).

The results are consistent with the conclusion of Theorem 5. Because, in the algorithms A1, A2,
and MGA, the first choice is the node with the largest degree in the graph, and the r− deg(v) of the
largest degree node is 1. Thus, the statistical frequency at the r− deg(v) value of 1 maxes. As the
largest-degree node has been selected into the loop cutset, and the nodes in the loop cutset will be
instantiated, the messages from the largest-degree node will be spread along its neighboring nodes.
The other node receives information from the largest-degree node through shared nodes between
them. The more the shared nodes, the more information received; thus, the smaller node-probability
of the loop cutset. According to Theorem 1, the shared nodes number between the largest-degree and
next-largest degree nodes is greater than the constant max

(
0, ∆−1(G) + ∆(G)− n + 1

)
, where ∆(G) is

the largest degree, ∆−1(G) is the next-largest degree, and n is the number of the nodes in the graph.
Thus, the node-probability of the next-largest degree will be reduced, which can explain the sudden
drop in statistical frequency in Figure 5.

Next, we study the shared nodes number between two nodes in the loop cutset, to examine the
relationship between the shared nodes number and the probability of two nodes that belong to the loop
cutset. Figure 6 shows the statistical probability of two nodes belonging to the loop cutset according to
different shared nodes number, where the nodes number is 25 and the edges number is 50, 100, 150,
and 200, respectively. It can be seen that, the larger the shared nodes number, the smaller the frequency
of two nodes belonging to the cut set, which corresponds exactly to Theorem 5.

We introduce a parameter Θp,q defined in Reference [8] in order to describe the degree of
edge-saturation in the graph. Assuming that a simple graph G = (V, E), the nodes number is p,
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and the edges number is q, then p and q satisfy the relationship q ≤ 1
2 p(p− 1). The parameter Θp,q is

defined as Θp,q = 2q/p(p− 1). The value-range of Θp,q is [0, 1], and when its value is 0, G is a trivial
graph; when its value is 1, G is a complete graph. It can be seen from this definition that the parameter
Θp,q can describe the degree of edge-saturation in the graph, and measure the complexity of the graph
from the perspective of the edge-saturation.

(a) nnodes = 25, nedges = 50 (b) nnodes = 25, nedges = 100

(c) nnodes = 25, nedges = 150 (d) nnodes = 25, nedges = 200

Figure 6. Statistical probability of the shared nodes number in the loop cutset (here nnodes , nedges are
the numbers of the nodes and edges respectively).

When the nodes number is 25 and the edges number is 50, 100, 150, 200, the values of Θp,q are
1/6, 1/3, 1/2, 2/3, respectively. As can be seen from Figure 6, as the value of Θp,q keeps increasing,
the complexity of the graph is getting bigger, and the shared nodes number of the nodes in loop cutset
are getting bigger. This shows that, with the increase of edge-saturation, the node-to-node ties have
become closer.

5. Extended Applications of Shared Nodes

Because the shared node is related to the node-probability of the loop cutset, then we can use this
conclusion in the loop cutset solving algorithm. When using the greedy algorithm to solve the loop
cutset, the obtained members of the loop cutset should have an impact on the candidate nodes in the
next step. We formulate the strategy of “least shared nodes”: when looking for the next candidate node,
in addition to applying the existing maximum degree strategy and the least sample space strategy,
we also consider the least number of shared nodes with the obtained members of the loop cutset.
This strategy can be applied to the existing two classes of loop cutset algorithms: heuristic algorithms
and random algorithms.

Next, we briefly explain the improvement with the application of the "least shared nodes" strategy
in the heuristic algorithm. For the initial graph that is shown in Figure 7a, node 0 is selected as
the first element of the loop cutset. Then graph Figure 7b is obtained after the elimination of node
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0, in which node 1 and 2 has the same degree of 4. In the greedy algorithm A1 and its improved
algorithm A2 [3,4], the heuristic strategy has the following three components: firstly, only those nodes
that have one or no parents are considered; secondly, the node with the most neighbours of that remain
under consideration are selected; thirdly, select the node with the lowest number of possible values of
that remain under consideration [4]. In the graph that is shown in Figure 7b, we cannot confirm the
next candidate based on the above heuristic strategy. However, considering the “least shared nodes”
strategy, we can choose node 2 as the next element of the loop cutset, which has the less shared nodes
with node 0 and cuts more loops than node 1. The above example briefly applies the "least shared
nodes" strategy, and it also shows that the "least shared nodes" strategy can optimize the solving
algorithms of the loop cutset.

(a) The initial graph (b) The graph after the elimination of
node 0

Figure 7. For the Graph in (a), node 0 is selected as the first element of the loop cutset. Then graph
(b) is obtained after the elimination of node 0, in which node 1 and 2 has the same degree of 4.
When considering the “least shared nodes” strategy, we choose node 2 as the next element of the loop
cutset, which cuts more loops than node 1.

In the social network, the shared nodes also reveal the relation between different persons. In such
a network, if a node is used to represent a person and the edge between two nodes is used to represent
the acquaintance, then the shared nodes between two nodes means the persons that they know
together. If the social network is dynamic, when there is no direct relationship between two people,
the more people they know together, the greater the probability that they may know each other later.
Thus, the number of shared nodes indicates the intimacy of the social relationship between the two,
and it also indicates the probability of subsequent recognition.

6. Conclusions

We have provided a new tool to gauge the relationship between different nodes—shared nodes,
proven the upper and lower bounds of the shared nodes number, revealed the relationship between
the shared nodes number and the node-probability of the loop cutset. We show that the experimental
results support the correctness of the theorems in this paper. Moreover, we present an optimal to the
existing algorithms for solving the loop cutset, and discuss extended applications of shared nodes in
the social network.
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The proposal of shared node attempts to measure the relationship between two nodes, which is
necessary in many practical applications. The shared node’s measure of the relationship between two
nodes is related to the measures of the node centrality—they both contain the concepts of degree and
path, so they are reasonable. More generally, with the development of computers and algorithms,
the algorithm is often iterative to solve a certain element. In the iteration, the existing results should
have a corresponding influence on the next calculation, so that the existing resources can be fully
utilized. In this way, the relationship between the two is the answer to the question that we want to
know.

However, potential future research with the shared nodes exists based on our theoretical analyses:
the proposition that the shared nodes are related to conditional independence and graph measurement
lacks exact proof and data support; the applications of shared nodes in algorithms and network
analysis can be further implemented.
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