
mathematics

Article

A Geometric Obstruction for CR-Slant Warped
Products in a Nearly Cosymplectic Manifold

Siraj Uddin * and M. Z. Ullah

Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
malikzakas@hotmail.com
* Correspondence: sshehabaldeen@kau.edu.sa or siraj.ch@gmail.com

Received: 11 August 2020; Accepted: 14 September 2020; Published: 19 September 2020
����������
�������

Abstract: In the early 20th century, B.-Y. Chen introduced the concept of CR-warped products and
obtained several fundamental results, such as inequality for the length of second fundamental form.
In this paper, we obtain B.-Y. Chen’s inequality for CR-slant warped products in nearly cosymplectic
manifolds, which are the more general classes of manifolds. The equality case of this inequality is
also investigated. Furthermore, the inequality is discussed for some important subclasses of CR-slant
warped products.
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1. Introduction

A differentiable manifold M̃ endowed with an almost contact metric structure (φ, ξ, η, g) is said
to be nearly cosymplectic if the covariant derivative of the almost contact structure φ with respect
to the Levi-Civita connection ∇̃ is skew-symmetric, i.e., (∇̃Xφ)X = 0, for every vector field X on M̃.
These manifolds were defined on the line of nearly Kaehler manifolds and studied by Blair [1], Blair
and Showers [2]. In the subsequent literature on this topic, quite important were the papers of H.
Endo [3,4]. The best known example of a non-cosymplectic nearly cosymplectic manifold is the
5-sphere S5 as a totally geodesic hypersurface in S6.

Recently, Cappelletti-Montano and Dileo [5] proved that every nearly Sasakian manifold of
dimension 5 has an associated nearly cosymplectic structure, thereby showing the close relation
between these two notions. Furthermore, They proved that every 5-dimensional nearly cosymplectic
manifold is an Einstein manifold with positive scalar curvature. In [6], the authors proved that a
non-cosymplectic nearly cosymplectic manifold M̃ of dimension 2n+ 1 > 5 is locally isometric to one of
the Riemannian products: R× Ñ2n, M̃5× Ñ2n−4, where Ñ2n is a non-Kaehler nearly Kaehler manifold,
Ñ2n−4 is a nearly Kaehler manifold, and M̃5 is a non-cosymplectic nearly cosymplectic manifold.

On the other hand, in 1969, Bishop and O’Neill introduced the notion of a warped product
manifolds to provide a class of complete Riemannian manifolds with negative curvature [7].
This scheme was later applied to semi-Riemannian geometry and the theory of relativity.

Recently, B.-Y. Chen [8] (see also [9]) introduced the concept CR-warped product submanifolds of
Kaehler manifolds. He proved that the warped products of the form M = N⊥× f NT are trivial and the
warped products M = NT × f N⊥ exist in Kaehler manifolds, where NT and N⊥ are holomorphic and
totally real submanifolds of a Kaehler manifold M̃. Motivated by Chen’s work on warped products
many geometers studied warped product submanifolds of almost Hermitian and contact metric
manifolds (for instance, see, [10–15]). In [16], B. Sahin introduced CR-slant warped products named
skew CR-warped product submanifolds of Kaehler manifolds and he proved that CR-warped products
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and hemi-slant warped products are particular classes of CR-slant warped products. We refer Chen’s
books [17,18] for up-to-date survey on warped product manifolds and warped product submanifolds.

In this paper, we study CR-slant warped product submanifolds of nearly cosymplectic manifolds
which are the more general classes of contact metric manifolds. We prove that every CR-slant warped
product M = B× f Nθ in a nearly cosymplectic manifold satisfies the following inequality:

‖σ‖2 ≥ 2s
9

cos4 θ ‖∇⊥(ln f )‖2 + 4s(csc2 θ +
1
9

cot2 θ) ‖∇T(ln f )‖2,

where B = NT × N⊥, a contact CR-product and 2s = dim Nθ , while ∇T(ln f ) and ∇⊥(ln f ) are the
gradient components of ln f along NT and N⊥, respectively.

2. Preliminaries and Basic Results

An odd dimensional almost contact metric manifold is a smooth manifold M̃ of dimension 2n + 1,
endowed with a structure (φ, ξ, η, g), given by a (1, 1) tensor field φ, a vector field ξ, a 1-form η and a
Riemannian metric g satisfying [19]

φ2 = −I + η ⊗ ξ, η(ξ) = 1, g(φX, φY) = g(X, Y)− η(X)η(Y) (1)

for all vector fields X, Y on M̃ (see [20] for more details). From the definition it follows that
φξ = 0 and η ◦ φ = 0. Furthermore, φ is skew-symmetric with respect to g, so that the bilinear
form Φ(X, Y) := g(X, φY) defines a 2-form on M̃, called fundamental 2-form. An almost contact
metric manifold with dη = 2Φ is called a contact metric manifold. In this case, η is a contact form,
i.e., η ∧ (dη)n 6= 0 everywhere on M̃.

An almost contact metric manifold (M̃, φ, ξ, η, g) is called a cosymplectic manifold if dη = 0,
dΦ = 0 and Nφ = 0, where Nφ is the Nijenhuis tensor of φ. Equivalently, we have ∇̃φ = 0.
It is known that a cosymplectic manifold is locally a Riemannian product of the real line R and
a Kaehler manifold Ñ, which is an integral submanifold of the distribution D = Ker(η) (see [21] for
further details).

A nearly cosymplectic manifold is an almost contact metric manifold (M̃, φ, ξ, η, g) such that

(∇̃Xφ)Y + (∇̃Yφ)X = 0 (2)

for all vector fields X, Y on M̃. It is known that in a nearly cosymplectic manifold, the structure vector
field ξ is Killing and satisfies ∇̃ξξ = 0, ∇̃ξη = 0 and moreover g(∇̃Xξ, X) = 0 for any vector field X
tangent to a nearly cosymplectic manifold M̃.

Let M be a m-dimensional manifold isometrically immersed into a Riemannian manifold M̃; denote
by the same symbol g the induced metric on M. Let Γ(TM) be the Lie algebra of vector fields on M and
Γ(T⊥M), the set of all vector fields normal to M. If we denote by∇ and ∇̃, the Levi-Civita connections of
M and M̃, respectively, then the Gauss and Weingarten formulas are respectively given by

∇̃XY = ∇XY + σ(X, Y), ∇̃X N = −AN X +∇⊥X N, (3)

for any vector field X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where ∇⊥ is the normal connection in the
normal bundle, σ is the second fundamental form and AN is the shape operator (corresponding to the
normal vector field N) for the immersion of M into M̃. They are related by g(σ(X, Y), N) = g(AN X, Y).

For any X tangent to M and N normal to M, we write

φX = TX + FX, φN = tN + f N (4)
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where TX (respectively, FX) is the tangential (respectively, normal) component of φX and tN (respectively,
f N) is the tangential (respectively, normal) component of φN. Then T is an endomorphism on TM and F
is a normal valued 1-form.

For any p ∈ M and {E1, · · · , Em, · · · , E2n+1} is an orthonormal frame of Tp M̃ such that
E1, · · · , Em are tangent to M at p and Em+1, · · · , E2n+1 normal to M. Then,

‖σ‖2 =
m

∑
i,j=1

g(σ(Ei, Ej), σ(Ei, Ej)) =
2n+1

∑
r=m+1

m

∑
i,j=1

g(σ(Ei, Ej), Er)
2. (5)

There are two well-known classes of submanifolds, namely φ-invariant submanifolds and
φ-anti-invariant submanifolds due to the behaviour of the tangent bundle of a submanifold under
the action of the almost contact structure tensor φ of the ambient manifold. In the case of invariant
submanifolds, the tangent space remains invariant under the action of the almost contact structure
tensor φ whereas in case of anti-invariant submanifolds it is mapped into the normal space.

As a generalized class of invariant and anti-invariant submanifolds, B.-Y. Chen introduced slant
submanifolds of almost Hermitian manifolds. Later, A. Lotta [22] and Cabrerizo et al. [23] in separate
articles extended this study to almost contact metric manifolds.

A submanifold M tangent to the structure vector field ξ is called slant if for every non-zero tangent
vector X which is not proportional to ξp, the angle 0 ≤ θ(X) ≤ π/2 between φX and Tp M is constant
(called, slant angle), i.e., θ is independent of the choice of X ∈ Γ(TM) \ {ξ, 0} and p ∈ M. If the slant
angle is different from 0 and π/2, then it is called proper slant.

Another, generalized class of CR-submanifolds and slant submanifolds introduced as semi-slant
submanifolds by N. Papaghuic [24]. Later, these submanifolds studied by Cabrerizo et al. [25] in
almost contact metric manifolds.

A submanifold M of an almost contact metric manifold M̃ is a semi-slant submanifold if there
exist two orthogonal distribution D and Dθ on M such that:

(i) TM admits the orthogonal direct decomposition TM = D ⊕Dθ⊕ < ξ > .
(ii) The distribution D is an invariant distribution, i.e., φ(D) = D.
(iii) The distribution Dθ is slant with angle θ 6= 0.

Hemi-slant submanifolds were defined by Carriazo in [26] under the name of anti-slant
submanifolds as a particular class of bi-slant submanifolds. A submanifold M of an almost contact
metric manifold M̃ is said to be a hemi-slant submanifold if there exists a pair of orthogonal distributions
D⊥ and Dθ on M such that TM = D⊥ ⊕Dθ⊕ < ξ > with D⊥ is anti-invariant, i.e., φ(D⊥) ⊂ T⊥M
and Dθ is a proper slant distribution with angle θ.

Now, we recall the following useful characterization theorem proved in [23].

Theorem 1. Let M be a submanifold of an almost contact metric manifold M̃, such that ξ ∈ Γ(TM). Then,
M is slant if and only if there exists a constant λ ∈ [0, 1], we have

T2 = λ (−I + η ⊗ ξ) . (6)

Furthermore, if θ is the slant angle of M, then λ = cos2 θ.

The following relations are easily obtained from Theorem 1:

g(TX, TY) = cos2 θ [g(X, Y)− η(X)η(Y)] (7)

and

g(FX, FY) = sin2 θ [g(X, Y)− η(X)η(Y)] (8)
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for any X, Y ∈ Γ(TM).

3. Definitions and Lemmas on CR-Slant Warped Products

A warped product B × f F of two Riemannian manifolds (B, gB) and (F, gF) is the product
manifold B× F equipped with the warped product metric

g(X, Y) = gB(π1∗X, π1∗Y) + ( f ◦ π1)
2gF(π2∗X, π2∗Y), (9)

where f : B → (0, ∞) is a positive differentiable function on B and π1 : M → B, π2 : M → F are
projection maps given by π1(p, q) = p and π2(p, q) = q for any (p, q) ∈ B × F and ∗ denotes the
symbol for the tangent map. If function f (called, warping function) is constant, then M is simply a
Riemannian product. We know that, for any vector field X on B and a vector field Z on F, we have

∇XZ = ∇ZX = X(ln f )Z, (10)

where ∇ is the Levi-Civita connection on M. Notice that on a warped product manifold M, B is totally
geodesic and F is totally umbilical in M.

In this section, we study CR-slant warped product submanifolds of the form M = B × f Nθ

of a nearly cosymplectic manifold M̃, where B = NT × N⊥, a contact CR-product of invariant and
anti-invairant submanifolds of M̃, and Nθ is a slant submanifold. For the simplicity, throughout this
paper we denote the corresponding tangent spaces of NT , N⊥ and Nθ by D, D⊥ and Dθ , respectively.

Definition 1. A submanifold M tangent to the structure vector field ξ of an almost contact metric manifold
M̃ is called a CR-slant warped product if it is a warped product of the form M = B× f Nθ , where the fiber Nθ

is proper slant and the base B = NT × N⊥ is the Riemannian product (called, CR-product) of invariant and
anti-invariant submanifolds of M̃.

For a CR-slant warped product M = B× f Nθ of an almost contact metric manifold M̃, the tangent
space is decomposed as:

TM = D ⊕D⊥ ⊕Dθ⊕ < ξ >, (11)

where D is an invariant distribution, D⊥ is an anti-invariant distribution and Dθ is a proper slant
distribution and < ξ > is the 1-dimensional distribution spanned by the structure vector field ξ.
Clearly, we observe that if ξ along Dθ then the CR-slant warped product M = B× f Nθ is trivial as
follows: Since ξ ∈ Γ(Dθ) is killing on a nearly cosymplectic manifold, from (3) and (10), we find
X(ln f ) = 0 for all X ∈ Γ(TB), i.e., f is constant on B.

Furthermore, the normal bundle T⊥M is decomposed as

T⊥M = φD⊥ ⊕ FDθ ⊕ µ, (12)

where µ is the invariant normal subbundle of T⊥M under φ.
From now, we use the following conventions: X1, Y1 ∈ Γ(D), X2, Y2 ∈ Γ(D⊥) and X3, Y3 ∈ Γ(Dθ).

Lemma 1. Let M = B× f Nθ be a CR-slant warped product submanifold of a nearly cosymplectic manifold M̃
such that B = NT × N⊥ and ξ ∈ Γ(TB). Then, we have

(i) ξ(ln f ) = 0,
(ii) g(σ(X1, Y1), FX3) = 0,
(iii) g(σ(X1, X3), FY3) =

1
3 X1(ln f )g(TX3, Y3)− φX1(ln f )g(X3, Y3),

for any X1, Y1 tangent to NT and X3, Y3 tangent to Nθ .
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Proof. Statements (i) and (ii) were proved in [27] (see Lemma 3.2) but for (iii), by using (1), (3) and (10),
we have

g(σ(X1, X3), FY3) = g((∇̃X1 φ)X3, Y3) + g(σ(X1, Y3), FX3). (13)

Again, from (3), (4) and (10), we obtain

g(σ(X1, X3), FY3) = g((∇̃X3 φ)X1, Y3)− φX1(ln f )g(X3, Y3)− X1(ln f )g(X3, TY3). (14)

Then, with the help (2), equations (13) and (14) give

2g(σ(X1, X3), FY3) = g(σ(X1, Y3), FX3)− φX1(ln f )g(X3, Y3)− X1(ln f )g(X3, TY3). (15)

By polarization identity, we find

2g(σ(X1, Y3), FX3) = g(σ(X1, X3), FY3)− φX1(ln f )g(X3, Y3) + X1(ln f )g(X3, TY3). (16)

Thus, (iii) follows from the above two last relations.

Following relations are easily obtained by interchanging X1 with φX1; X3 with TX3 and Y3 with
TY3 with the help of (1) and (6) in Lemma 1 (iii).

g(σ(X1, TX3), FY3) = −
1
3

X1(ln f ) cos2 θg(X3, Y3)− φX1(ln f )g(TX3, Y3), (17)

g(σ(X1, X3), FTY3) =
1
3

X1(ln f ) cos2 θg(X3, Y3)− φX1(ln f )g(X3, TY3), (18)

g(σ(X1, TX3), FTY3) = −
1
3

X1(ln f ) cos2 θg(X3, TY3)− φX1(ln f ) cos2 θg(X3, Y3), (19)

g(σ(φX1, X3), FY3) =
1
3

φX1(ln f )g(TX3, Y3) + X1(ln f )g(X3, Y3), (20)

g(σ(φX1, TX3), FY3) = −
1
3

φX1(ln f ) cos2 θg(X3, Y3) + X1(ln f )g(TX3, Y3), (21)

g(σ(φX1, X3), FTY3) =
1
3

φX1(ln f ) cos2 θg(X3, Y3) + X1(ln f )g(X3, TY3) (22)

and

g(σ(φX1, TX3), FTY3) = −
1
3

φX1(ln f ) cos2 θg(X3, TY3) + X1(ln f ) cos2 θg(X3, Y3). (23)

Definition 2. A CR-slant warped product B × f Nθ of an almost contact metric manifold M̃ is called
D ⊕Dθ-mixed totally geodesic if its second fundamental form satisfies σ(D,Dθ) = {0}.

Similarly, M is D⊥ ⊕Dθ-mixed totally geodesic if σ(D⊥,Dθ) = {0}.

Lemma 2. Let M = B× f Nθ be a CR-slant warped product submanifold of a nearly cosymplectic manifold M̃
such that B = NT × N⊥ and ξ ∈ Γ(TB). Then, we have

(i) 2g(σ(X2, Y2), FX3) = g(σ(X2, X3), φY2) + g(σ(Y2, X3), φX2),
(ii) g(σ(X1, X2), FX3) =

1
2 g(σ(X1, X3), φX2),

for any X1 tangent to NT ; X2, Y2 tangent to N⊥ and X3 tangent to Nθ .
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Proof. From (3) and (4), we have

g(σ(X2, Y2), FX3) = g(∇̃X2Y2, FX3) = g((∇̃X2 φ)Y2, X3) + g(AφY2 X2, X3). (24)

Interchanging X2 and Y2, we find

g(σ(X2, Y2), FX3) = g((∇̃Y2 φ)X2, X3) + g(AφX2Y2, X3). (25)

Then, the first statements follows from (24) and (25) together with (2). For the second part, we have

g(σ(X1, X2), FX3) = g(∇̃X1 X2, FX3) = g((∇̃X1 φ)X2, X3) + g(AφX2 X1, X3)− X1(ln f )g(X2, TX3).

By orthogonality of distributions, we find

g(σ(X1, X2), FX3) = g((∇̃X1 φ)X2, X3) + g(σ(X1, X3), φX2). (26)

On the other hand, we also have

g(σ(X1, X2), FX3) = g(∇̃X2 X1, FX3) = g((∇̃X2 φ)X1, X3)− φX1(ln f )g(X2, X3)− X1(ln f )g(X2, TX3).

Again, by orthogonality of the distributions, we get

g(σ(X1, X2), FX3) = g((∇̃X2 φ)X1, X3). (27)

Hence, from (26), (27) and (2), we get the desired result.

Lemma 3. For a CR-slant warped product M = B× f Nθ in a nearly cosymplectic manifold M̃, we have

g(σ(X3, Y3), φX2) =
1
3

X2(ln f )g(X3, TY3) + g(σ(X2, X3), FY3), (28)

for any X2 tangent to N⊥ and X3, Y3 tangent to Nθ .

Proof. For any X2 ∈ Γ(D⊥) and X3, Y3 ∈ Γ(Dθ), by using (3) and (10), we find

g(σ(X2, X3), FY3) = g((∇̃X3 φ)X2, Y3) + g(AφX2 X3, Y3)− X2(ln f )g(X3, TY3). (29)

On the other hand, we also have by using (3) and (10) and orthogonality of vector fields

g(σ(X2, X3), FY3) = g((∇̃X2 φ)X3, Y3) + g(AFX3 X2, Y3). (30)

From (29) and (30) with (2), we derive

2g(σ(X2, X3), FY3) = g(σ(X3, Y3), φX2) + g(σ(X2, Y3), FX3)− X2(ln f )g(X3, TY3). (31)

By polarization identity, we obtain

2g(σ(X2, Y3), FX3) = g(σ(X3, Y3), φX2) + g(σ(X2, X3), FY3) + X2(ln f )g(X3, TY3). (32)

Then, the required result follows from (31) and (32).

By interchanging X3 with TX3 and Y3 with TY3, one can get the following relations.

g(σ(TX3, Y3), φX2) =
1
3

X2(ln f ) cos2 θg(X3, Y3) + g(σ(X2, TX3), FY3), (33)
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g(σ(X3, TY3), φX2) = −
1
3

X2(ln f ) cos2 θg(X3, Y3) + g(σ(X2, X3), FTY3), (34)

g(σ(TX3, TY3), φX2) =
1
3

X2(ln f ) cos2 θg(X3, TY3) + g(σ(X2, TX3), FTY3). (35)

4. Main Results

In this section, we present our main results of the paper. First, we have the following non-existence
theorem of proper CR-slant warped products.

Theorem 2. Let M = B× f Nθ be a CR-slant warped product in a nearly cosymplectic manifold M̃ such that
B = NT × N⊥. If M is D⊕Dθ-mixed totally geodesic then, f depends only on N⊥, i.e., f is constant along NT.

Proof. For a D ⊕Dθ-mixed totally geodesic CR-slant warped product, from Lemma 1 (iii) and (21),
we derive

(cos2 θ − 9)φX1(ln f )g(X3, Y3) = 0, (36)

for any X1 ∈ Γ(D) and X3, Y3 ∈ Γ(Dθ). Since g is a Riemannian metric, then we find either
cos θ = ±3 which is impossible, or φX1(ln f ) = 0, i.e., f is constant along NT, which proves the
theorem completely.

Now, we establish a sharp estimation for the length of the second fundamental form by using the
following frame field for a CR-slant warped product.

Let M = B × f Nθ be a m-dimensional CR-slant warped product submanifold of
a 2n + 1 dimensional nearly cosymplectic manifold M̃ such that B is the Riemannian
product of an invariant submanifold NT and an anti-invariant submanifold N⊥ in M̃.
Let the corresponding tangent space of NT , N⊥ and Nθ respectively are D,D⊥ and Dθ .
If dimD = 2α + 1, dimD⊥ = γ and dimDθ = 2β, then the tangent bundle TM is spanned by the
following orthonormal frame fields D = Span{E1, · · · , Eα, Eα+1 = φE1, · · · , E2α = φEα, E2α+1 = ξ},
D⊥ = Span{E2α+2 = Ê1, · · · , E2α+γ+1 = Êγ} and Dθ = Span{E2α+γ+2 = E∗1 , · · · , E2α+γ+β+1 =

E∗β, E2α+γ+β+2 = E∗β+1 = sec θTE∗1 , · · · , Em = E∗2β = sec θTE∗β}. Furthermore, the normal

subbundles of T⊥M are spanned by φD⊥ = Span{Em+1 = Ẽ1 = φÊ1, · · · , Em+γ = Ẽγ = φÊγ},
FDθ = Span{Em+γ+1 = Ẽγ+1 = csc θFE∗1 , · · · , Em+γ+β = Ẽγ+β = csc θFE∗β, Em+γ+β+1 =

Ẽγ+β+1 = csc θ sec θFTE∗1 , · · · , Em+γ+2β = Ẽγ+2β = csc θ sec θFTE∗γ} and µ = Span{Em+γ+2β+1 =

Ẽγ+2β+1, · · · , E2n+1 = Ẽ2n+1−m−γ−2β}.

Theorem 3. Let M = B× f Nθ be a D⊥ ⊕Dθ-mixed totally geodesic CR-slant warped product submanifold of
a nearly cosymplectic manifold M̃ such that B = NT ×N⊥. Then, the second fundamental form σ of M satisfies:

‖σ‖2 ≥ 2β

9
cos4 θ‖∇⊥(ln f )‖2 + 4β(csc2 θ +

1
9

cot2 θ)‖∇T(ln f )‖2, (37)

where β = 1
2 dim Nθ and ∇⊥(ln f ) and ∇T(ln f ) are the gradient components of ln f along N⊥ and

NT , respectively.
Moreover, if the equality sign holds in (37), then NT and N⊥ are totally geodesic submanifolds of M̃

and Nθ is a totally umbilical submanifold of M̃. Furthermore, M is also a D ⊕D⊥-mixed totally geodesic
submanifold of M̃ but never be a D ⊕Dθ-mixed totally geodesic and hence M is not minimal in M̃.
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Proof. From (5), we have

‖σ‖2 =
2n+1

∑
r=m+1

m

∑
i,j=1

g(σ(Ei, Ej), Er)
2

=
m+γ

∑
r=m+1

m

∑
i,j=1

g(σ(Ei, Ej), Er)
2 +

m+γ+2β

∑
r=m+γ+1

m

∑
i,j=1

g(σ(Ei, Ej), Er)
2

+
2n+1

∑
r=m+γ+2β+1

m

∑
i,j=1

g(σ(Ei, Ej), Er)
2. (38)

Leaving the third term and decompose first two terms in the right hand side of (39) for the
considered orthonormal frame fields, we derive

‖σ‖2 ≥
γ

∑
r=1

2α+1

∑
i,j=1

g(σ(Ei, Ej), φÊr)
2 +

γ

∑
r=1

γ

∑
i,j=1

g(σ(Êi, Êj), φÊr)
2 (39)

+
γ

∑
r=1

2β

∑
i,j=1

g(σ(E∗i , E∗j ), φÊr)
2 + 2

γ

∑
r=1

2α+1

∑
i=1

γ

∑
j=1

g(σ(Ei, Êj), φÊr)
2

+ 2
γ

∑
r=1

2α+1

∑
i=1

2β

∑
j=1

g(σ(Ei, E∗j ), φÊr)
2 + 2

γ

∑
r=1

γ

∑
i=1

2β

∑
j=1

g(σ(Êi, E∗j ), φÊr)
2

+
γ+2β

∑
r=γ+1

2α+1

∑
i,j=1

g(σ(Ei, Ej), Ẽr)
2 +

γ+2β

∑
r=γ+1

q

∑
i,j=1

g(σ(Êi, Êj), Ẽr)
2

+
γ+2β

∑
r=γ+1

2β

∑
i,j=1

g(σ(E∗i , E∗j ), Ẽr)
2 + 2

γ+2β

∑
r=γ+1

2α+1

∑
i=1

γ

∑
j=1

g(σ(Ei, Êj), Ẽr)
2

+ 2
γ+2β

∑
r=γ+1

2α+1

∑
i=1

2β

∑
j=1

g(σ(Ei, E∗j ), Ẽr)
2 + 2

γ+2β

∑
r=γ+1

γ

∑
i=1

2β

∑
j=1

g(σ(Êi, E∗j ), Ẽr)
2.

Using Lemma 1, relations (17)–(23), Lemmas 2 and 3 with the relations (33)–(35), after computations,
we derive

‖σ‖2 ≥ 2β

9
cos4 θ

γ

∑
r=1

(Êr(ln f ))2 + 10
γ+2β

∑
r=γ+1

2α+1

∑
i=1

γ

∑
j=1

g(σ(Ei, Êj), Ẽr)
2

+ 4β csc2 θ
α

∑
i=1

[
(Ei(ln f ))2 + (φEi(ln f ))2

]
+

4β

9
cot2 θ

α

∑
i=1

[
(Ei(ln f ))2 + (φEi(ln f ))2

]
. (40)

Since ∑α
i=1(φEi(ln f ))2 = ∑α

i=1 g(∇ ln f , φEi)
2 = ∑2α

i=α+1 g(∇ ln f , Eα+i)
2. Using this fact in (40),

we obtain

‖σ‖2 ≥ 2β

9
cos4 θ‖∇⊥(ln f )‖2 + 4β(csc2 θ +

1
9

cot2 θ)
2α+1

∑
i=1

(Ei(ln f ))2

− 4β(csc2 θ +
1
9

cot2 θ)ξ(ln f ). (41)

The required inequality follows from (41) by using the fact ξ(ln f ) = 0. For the equality, from the
leaving third term in r.h.s. of (37), we find σ(X, Y) has no components in µ for all X, Y tangent to M.
Furthermore, from the leaving first term and vanishing seventh term in r.h.s. of (39) with the above
fact that σ has no components in µ, we find

σ(D,D) = {0}. (42)
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Also, from the leaving fourth term in r.h.s. of (39) and the second term in r.h.s. of (40) with the
fact that σ has no components in µ, we find

σ(D,D⊥) = {0}. (43)

From the hypothesis of the theorem

σ(D⊥,Dθ) = {0}. (44)

And from the leaving second term and vanishing eighth term in r.h.s. of (39) with this fact that σ

has no components in µ, we conclude that

σ(D⊥,D⊥) = {0}. (45)

Furthermore, from the leaving ninth term in r.h.s. of (39) with the fact that σ has no components in µ,
we obtain

σ(Dθ ,Dθ) ⊂ φD⊥. (46)

With the help of above facts and the fact that B is totally geodesic and Nθ is totally umbilical
in M [7,8], we conclude that NT and N⊥ are totally geodesic submanifolds of M̃, while Nθ is a
totally umbilical submanifold of M̃. Furthermore, from (43) M is also D ⊕D⊥-mixed totally geodesic.
Moreover, from Theorem 2, M can never be a D ⊕Dθ-mixed totally geodesic. Hence, the theorem is
proved completely.

As applications of Theorem 3, we have the following results.
If dim NT = 0 in Theorem 3, then we have

Theorem 4. Let M = N⊥ × f Nθ be a mixed totally geodesic proper hemi-slant warped product of a nearly
cosymplectic manifold M̃. Then, the second fundamental form σ of M satisfies

‖σ‖2 ≥ 2s
9

cos4 θ‖∇⊥(ln f )‖2, (47)

where 2s = dim Nθ and ∇⊥(ln f ) is the gradient of ln f .
Moreover, if the equality holds in (47), then N⊥ is a totally geodesic submanifold of M̃ and Nθ is a totally

umbilical submanifold of M̃. Furthermore, M is minimal in M̃.

If N⊥ = {0} in Theorem 3, then we state the following theorem.

Theorem 5. Let M = NT × f Nθ be a warped product semi-slant submanifold of a nearly cosymplectic
manifold M̃. Then, the second fundamental form σ of M satisfies

‖σ‖2 ≥ 4s(csc2 θ +
1
9

cot2 θ)‖∇T(ln f )‖2, (48)

where s = 1
2 dim Nθ and ∇T(ln f ) is the gradient of ln f .

Moreover, if the equality holds in (48), then NT is a totally geodesic submanifold of M̃ and Nθ is a totally
umbilical submanifold of M̃. Furthermore, M is never a mixed totally geodesic submanifold and hence M is not
minimal in M̃.

Notice that Theorem 5 was proved in [27] which is a special case of Theorem 3. Also, in the above
statement we improve the equality case of the main theorem of [27].

Theorem 5 implies the following theorem proved in [28].



Mathematics 2020, 8, 1622 10 of 11

Theorem 6. Let M = NT × f N⊥ be a contact CR-warped product submanifold of a nearly cosymplectic
manifold M̃. Then, the second fundamental form σ of M satisfies

‖σ‖2 ≥ 2s‖∇T(ln f )‖2, (49)

where s = dim N⊥ and ∇T(ln f ) is the gradient of ln f .
Moreover, if the equality holds in (49), then NT is a totally geodesic submanifold of M̃ and N⊥ is a totally

umbilical submanifold of M̃. Furthermore, M is a minimal submanifold of M̃.

5. Conclusions

In [27,28], we studied contact CR-warped product and semi-slant warped product submanifolds
of nearly cosymplectic manifolds and obtained B.-Y. Chen’s inequalities. As a generalised class of these
submanifolds, in this paper, we study CR-slant warped products in nearly cosymplectic manifolds
and establish a geometric inequality (Theorem 3) which generalizes Theorem 6 for contact CR-warped
products, Theorem 5 for semi-slant warped products and Theorem 4 for hemi-slant warped products.
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