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Abstract: Vendor selection is an established problem in supply chain management. It is regarded
as a strategic resource by manufacturers, which must be managed efficiently. Any inappropriate
selection of the vendors may lead to severe issues in the supply chain network. Hence, the desire to
develop a model that minimizes the combination of transportation, deliveries, and ordering costs
under uncertainty situation. In this paper, a multi-objective vendor selection problem under fuzzy
environment is solved using a fuzzy goal programming approach. The vendor selection problem
was modeled as a multi-objective problem, including three primary objectives of minimizing the
transportation cost; the late deliveries; and the net ordering cost subject to constraints related
to aggregate demand; vendor capacity; budget allocation; purchasing value; vendors’ quota;
and quantity rejected. The proposed model input parameters are considered to be LR fuzzy
numbers. The effectiveness of the model is illustrated with simulated data using R statistical
package based on a real-life case study which was analyzed using LINGO 16.0 optimization software.
The decision on the vendor’s quota allocation and selection under different degree of vagueness in
the information was provided. The proposed model can address realistic vendor selection problem in
the fuzzy environment and can serve as a useful tool for multi-criteria decision-making in supply
chain management.

Keywords: multi-objective optimization; vendor selection problem; weighted criterion; LR fuzzy
numbers; fuzzy goal programming

1. Introduction

One of the most vexing problems facing purchasing managers in organizational business
decision-making is a vendor selection problem (VSP). A supply chain is a complex network in both
manufacturing and service industries with interconnected components such as the suppliers of raw
materials, enterprise, manufacturers, retailers, distributors, storage facilities and transporters of goods
and services to desired customers in its simplest form. Thus, decision-making in a supply chain
encompasses all the involved partners and activities in satisfying the demand of customers. Vendor
selection plays a vital role in supply chain management; this is because of the pressing need to
incorporate alliance strategies with the vendors. The types of equipment and materials supplied from
vendors play a significant role in the effective management of the supply network. A location of a
vendor, for instance, has a substantial impact on the firm’s logistic decision for planning transportation
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and distribution. Hence, selecting potential vendors is an integral part of achieving the overall
objectives of the supply chain. The fewer the vendors, the more they are reliable similarly, the more
substantial the number, the lesser the purchasing risk but increase the associated cost. There are
many criteria for evaluating any selected vendor(s), which can vary from individual to another based
on their performance characteristics. For example, 23 selection criteria are identified by Dickson [1]
and 18 by Dempsey [2]. Also, constraints such as system policies, ordering quantities, vendors
quota allocation, time to delivery, and the like exist in the process. Hence, VSP is a multi-objective
decision-making problem. According to Xia and Wu [3] supplier selection problem can be either single
or multiple sourcing. In the former, the buyer decides the best among available suppliers. In contrast,
in the later, the buyer’s requirement cannot be satisfied by a single supplier due to certain constraints
listed above and hence, he must decide accordingly. Moreover, uncertainty is another property of
VSP because of the imperfect information inherently in the chain, as such fuzzy set theory has to
be incorporated to handle the vagueness and imperfections in the decision parameters. The goal
programming developed by Charnes et al. [4] emerged as a powerful and strong technique for solving
multi-criteria decision-making problems. Many researchers such as Lee [5], Ignizio [6] and many more
improved the goal programming technique since its inception. Undoubtedly, the method is regarded
as one of the breakthroughs in handling multi-criteria decision-making problems. On the other hand,
the concept of fuzzy sets is seeing as one possible way of improving the modeling and formulation
of vague parameters Zadeh [7]. A fuzzy programming concept was developed by Zimmermann [8]
for solving multi-criteria decision-making problems. However, one of the significant issues which
bedeviling the decision-makers is the problems where the coefficients are imprecise and vague or
modeling of an ill-conditioned optimization problem. Such situations cannot be optimized using
classical methods. According to Bellman and Zadeh [9], the constraints and goals of such may be
viewed as fuzzy. In this study, imprecise input decision parameters are considered to be LR fuzzy
numbers, and multi-objective vendor selection problem (MOVSP) is formulated using the concept of
fuzzy goal programming with relative weight. We also proposed the aggregated weighted criterion
method which is attached to each fuzzy number itself. We compared the result from using the
aggregated weighted criterion with those results obtained using the standard weighted criterion,
which is a link to each objective function in the form of priority. We demonstrate this approach using
a numerical example. Section 2 of the paper reviewed various literature related to mathematical
programming in VSP and classified them according to the solution techniques. Section 3 discusses the
fuzzy set theory to make it self-contained. Section 4 presents the formulation of MOVSP, conversion
from fuzzy to crip MOVSP under different cases also discussed, and fuzzy goal programming and
its computational procedures in brief. Section 5 outline a case study of the MOVSP considering
two scenarios of fixed and varying demand. Section 6 analyses and present results from different
techniques employed in the study, while Section 7 concludes the paper by drawing the effectiveness
regarding the developed solution procedure and suggest an area for further investigations.

2. Literature Review

Research on supply chain and supplier selection has a long tradition since the 1960s, the criteria
for vendor selection and vendor rating is a main central area of research in supply chain management
(SCM). Studies related to this include but not limited to Ravindran [10], Wind et al. [11], Stewart [12],
Hinkle et al. [13], Miller [14], McMillan [15], Lucas and Moore [16], Wieters and Ostrom [17], Manzer
et al. [18]. More recently, fuzzy set methods were introduced in the study of supply chains, in order to
cope with robustness, uncertainty and vagueness, see for instance [19–22]. Three quantitative techniques
used for decision-making in supplier selection are mathematical programming, multiple attribute, and
intelligent approaches. Of the three methods, mathematical programming models are used extensively
in the vendor selection problem (VSP) [see Tables 1 and 2]. The nature of the vendor selection in
the supply chain was discussed as a multi-criterion decision-making problem by Kumar et al. [23].
Weber and Current [24] gave the concept of multi-objective programming technique in selecting
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multiple conflicting criteria of vendors alongside their order quantities. Several authors such as Xia
and Wu [3], Dahel [25], Pokharel [26], Tsai and Wang [27], Rezaei and Davoodi [28] worked on the
multi-objective vendor selection problem (MOVSP). Kumar et al. [23,29] formulated a fuzzy mixed
integer goal programming model for a multiple sourcing supplier selection problems (MSSP) with
cost, quality, and delivery as fuzzy goals, subject to the constraints of buyer’s demand, the suppliers’
capacity, and others. The max-min technique developed by Zimmermann [8] employed in solving
the multi-objective problem in their study. A systematic vendor selection process was developed by
Lamberson et al. [30] to identify and prioritize relevant criteria, evaluate the trade-offs between the
economic, technical, and performance criteria. Kumar et al. [31] used a lexicographic goal programming
approach for solving a piecewise linear VSP of quantity discounts.

In real-life situations, the criteria for purchasing department may have various weights related
to their strategies. To cope with these problems, Amid et al. [32,33] formulated a fuzzy-based model
for MSSP, including three fuzzy goals: cost, quality and delivery, which are subject to capacity
restriction and market demand. They used the additive model developed by Tiwari et al. [34] in
solving their multi-criterion model. A weighted max-min (WMM) model was subsequently proposed
by Lin [35] for solving fuzzy multi-criterion model of supplier selection. The approach was applied
later by Amid et al. [36] to a fuzzy multi-objective supplier selection problem (MOSSP). Liao and
Kao [37] combined the Taguchi loss function, AHP, and multi-choice goal programming model to
solve the supplier selection problem. Liao and Kao [38] also gave a two-stage model for selecting
suppliers in a company which engaged in the watch manufacturing sector by using a fuzzy technique
for order preference by similarity to an ideal solution (TOPSIS) with fuzzy triangular numbers and
multi-choice goal programming (MCGP) to optimize the problem. Wu et al. [39] used a trapezoidal
membership function and solved the probabilistic multi-criteria vendor selection model by using
sequential programming, considering risk factors. Ozkok and Tiryaki [40] established a compensatory
fuzzy approach for solving a multi-objective linear supplier selection problem with multiple items
by using cost, service, and quality as objectives. Some latest research work in the vendor selection
problem using fuzzy goal programming includes: Pandey et al. [41], Mirzaee et al. [42], Abbas [43],
Sari [44], Wadhwa [45], Kamal et al. [46], Shaw [47], Aggarwal et al. [48], Islam and Deb [49], Ho [50],
Torres-Ruiz and Ravindran [51], Mahmudul Hassan et al. [52], Alizadeh and Yousefi [53], Ozkan and
Aydin [54], Jia et al. [55], Krishankumar et al. [56]. Arikan [57] formulated a multi-objective VSP based
on price, quality, customer service and delivery criteria, by using Lai and Hwang [58,59], gave
fuzzy augmented approach to solve the fuzzy MOVSP. Shirkouhi et al. [60] developed an interactive
two-phase fuzzy multi-objective linear programming model for the supplier selection under multi-price
level and multi-products. Kilic [61] developed an integrated approach, including a fuzzy technique for
selecting the best supplier in a multi-item/multi-supplier environment. Rouyendegh and Saputro [62]
described an optimum decision-making method for selecting a supplier and allocating order by
applying fuzzy TOPSIS and MCGP. Jadidi et al. [63] developed a normalized goal programming model
with predetermined goals and predetermined weights for solving a multi-objective supplier selection
problem. Chang et al. [64] considered multiple aspiration levels and vague goal relations to help the
decision-makers for choosing better suppliers by using multi-choice goal programming (MCGP) with
the fuzzy approach. Karimi and Rezaeinia [65] adopted a revised multi-segment goal programming
model for selecting the suppliers. Sivrikaya et al. [66] adopted a fuzzy-AHP goal programming
approach with linguistic variables that are express in trapezoidal fuzzy numbers, and applied to assess
weights and ratings of supplier selection criteria.
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The single objective programming problem can be easily solved. However, the “multi-criteria
decision-making” (MCDM) problem cannot be directly solved using any algorithm, and therefore some
other algorithms are used to address this issue. The algorithms which are frequently use for solving
the MCDM problems are “fuzzy goal programming, goal programming and interactive fuzzy-goal
programming respectively.” These algorithms are used to obtain the compromise solution of the
MCDM problems. Presently, several methods are available to solve MCDM problems; one of the
simplest methods is weighted criterion method. In weighting method we can use the following
criterion: point allocation, pairwise comparison, ranking or rating methods, and trade-off analysis.
Each criterion differs according to its accuracy, ease of use, complexity for users, and theoretical
foundations and produces different sets of weight criteria. Selecting a proper method of weighting is a
crucial step for solving an MCDM problem. The main purpose of any criteria weighting method is to
attach ordinal values to different standards indicating their relative importance in an MCDM problem.
Weighted criterion works well if the objectives behaved well, and trade-offs between the objectives
allow the weights to be certainly determined. The weights can be changed both during and after the
optimization. This change allows the decision maker to optimize only for one objective, change the
weights and optimize to another objective. It can accomplish by setting one weight to 1 and all the
others to 0 (or some small positive number). Also, the decision maker can make his priority level for
the objective functions and optimize the problem accordingly to his preference. The choices of weights
assigned to the objective functions depend on the choices of the decision maker. The flexibility in the
weights allows to the decision maker to generate new solutions accordingly to his special ordering of
the objective functions. Therefore, there is always an opportunity to solve the problem for setting the
better-improved solutions.

Motivated from the literature, we extend a non-fuzzy MOVSP model from Kumar et al. [23] to
imprecise parameters which are considered to be fuzzy numbers. This extended model is approximated
using the α-cut approach by a series of classical (non-fuzzy) linear programs, which are solved by
standard linear programming techniques and numerical solvers.
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Table 1. Summary of Literature Review.

Authors Model Objectives Techniques Used Converted to Single Objective By

Jia et al. [55] Multiple Preemtive GP Expected & join chance constraints
Tirkolaee et al. [67] Multiple FANP,FTOPSIS & FDEMATEL WGP

Maragatham et al. [68] Multiple FILP Modefied Zimmermann’s approach
Sumrit [69] Multiple Fuzzy Delphi, Fuzzy SWARA MCDM framewoek proposed

Shen et al. [70] Single Fuzzy TOPSIS MCGP
Mahmudul Hassan et al. [52] Multi-Attribute FTOPSIS MCGP

Alizadeh and Yousefi [53] Multiple MCGP Utility Function
Ozkan and Aydin [54] Multiple IFAHP FGP

Islam and Deb [49] Multiple Neutrosophic AHP & GP Compared with FGP
Ho [50] Multiple WGP, FG WGP, MINMAX MCGP

Torres-Ruiz and Ravindran [51] Multiple Preemtive, Non-preemtive & FGP DEA
Mirzaee et al. [42] Multiple MILP Preemtive & WFP, Max-min & Classical GP

Abbas [43] Multiple Intractive Fuzzy GP Alpha-cut, FGP
Sari [44] Multiple FAHP, FGP FGP

Kamal et al. [46] Multiple WFGP Weighted root power mean, linear, exponential, & hyperbolic
Charles et al. [71] Multiple Additive, Weighted & Preemtive GP FGP

Aggarwal et al. [48] Multiple Non-preemtive GP Weighted Sum AOF
Shaw [47] Multiple IGP,WGP, IFG Interactive fuzzy ε-constraint

Wadhwa [45] Multiple Criteria FGP, Tcebycheff Min-max Preemtive & non-preemtive GP
Pandey et al. [41] Multiple WFGP Hyperbolic membership function
Razmi et al. [72] Multiple IFGP Two-step GP

Sivrikaya et al. [66] Multiple FAHP, GP Trapezoidal Fuzzy, geometric mean Method
Jadidi et al. [63] Multiple WGP, TOPSIS, Min-Max GP, WMin-Max, Compromise Programming, Normalized GP developed

Karimi and Rezaeinia [65] Multiple multi-segment goal programming multi-segment goal programming revised
Rouyendegh and Saputro [62] Multi-Criteria FTOPSIS, MCGP Triangular fuzzy numbers

Arikan [57] Multiple FGP Fuzzy additive, augumented max-min model
Shirkouhi et al. [60] Multiple FMOLP Piecewise linear membership

Kilic [61] Multiple FTOPSIS & MILP Many MCDM proposed
Ozkok and Tiryaki [40] Multi-item MLSSP-MI Fuzzy operator
Ozkok and Tiryaki [40] Multiple Weners’ fuzzy and µand operator compensatory fuzzy approach developed

Rezaei and Davoodi [28] Multiple Genatic Algorithm Two Multiobjective Mixed-Integer Non-linear models developed
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Table 2. Summary of Literature Review.(Cont’d).

Authors Model Objectives Techniques Used Converted to Single Objective by

Chang et al. [64] Multiple MCGP FMCGP
Liao and Kao [37,38] Multi-Criteria AHP, Taguschi loss function, FTOPSIS MCGP

Wu et al. [39] Multiple FMOP Simulation
Amid et al. [32,33,36] Multiple Fuzzy-assymetric weighted additive, alpha-cute approach

Pokharel [26] Two Objectives STEP Method MOP
Xia and Wu [3] Multi-Criteria AHP MILP

Yong [73] Multi-Criteria Fuzzy TOPSIS new FTOPSIS proposed
Kumar et al. [23,29] Multiple Fuzzy Integer Linear membership

Lin [35] Multiple FGP Weighted Max-min
Dulmin and Mininno [74] Multiple criteria promethee/ gaia techniques MCDM investigated

Tam and Tummala [75] Multi-Criteria AHP AHP-based model developed
Muralidharan et al. [76] Multiple-Criteria Confidence interval approach Ranking methodology proposed
Petroni and Braglia [77] Multi-Attribute PCA Multi-attribute approach discussed

Yahya and Kingsman [78] Multiple criteria AHP Vendor rating and comparison
Mandal and Deshmukh [79] Qualitative research Interpretive Structural Modeling Vendor selection framework

Lai and Hwang [58] Single Probalistic LP Augmented max-min proposed
Weber and Current [24] Multi-criteria ILP IMB XT

Tiwari et al. [34] Multiple aditive & weighted GP additive FGP formulated
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3. Fuzzy Sets Preliminaries

This section is devoted to an introduction to our fuzzy set notations and definitions, which
will be used in the next section for the problem formulation. Starting with several basic definitions
involving fuzzy sets, fuzzy numbers and its types, especially LR fuzzy numbers, are outlined. A brief
discussion of α-cuts for Gaussian and exponential fuzzy numbers is also given. For more details,
we refer to [7,9,80,81].

Let X be a set, called universe of discourse. A mapping µ : X → [0, 1] is a membership function, if
µ(x) ∈ [0, 1]. A fuzzy set Ã is the pair (X, µ).

Let x ∈ X and Ã := (X, µ). If µ(x) = 0, then x is not included in Ã. If µ(x) = 1, then x is fully
included in Ã. If µ(x) ∈ (0, 1), then x is partially included in Ã.

For Ã := (X, µ) being a fuzzy set and α ∈ [0, 1] the following (non-fuzzy, classical, or crisp) sets
are defined: The α-cut or α-level set is A≥ α := Aα := {x ∈ X : µ(x) ≥ α} and the strong α-cut or
strong α-level set is A> α := A′α := {x ∈ X : µx > α}. Based on these two, we define the support
S(A) = Supp(A) as the strong 0-cut and the core or kernel C(A) = Core(A) as the 1-cut of Ã.

The height of a fuzzy set Ã is defined by h(Ã) = Hgt(Ã) := sup{µ(x) : x ∈ X}. If h(Ã) = 1,
then Ã is said to be normal, otherwise it is called subnormal.

Let X ⊆ Rn. Then the fuzzy set Ã := (X, µ) is called convex, if for all x, y ∈ X and all λ ∈ [0, 1] it
holds that µ(λx + (1− λ)y) ≥ min{µ(x), µ(y)}.

A fuzzy set Ã = (X, µ) for X ⊆ R is called a fuzzy number if Ã is convex and normal, µ is piecewise
continuous, Aα is a closed interval for all α ∈ (0, 1], and S(A) is bounded.

Some special cases of fuzzy numbers with their α-cuts are:

• A trapezoidal fuzzy number Ã = (R, µ) is a fuzzy number whose membership function µ is
defined as:

µ(x) =



0, x < a,
x−a
b−c , a ≤ x ≤ b,
1, b ≤ x ≤ c,
d−x
d−c , c ≤ x ≤ d,
0, x > d,

where a, b, c, d ∈ R with a ≤ b ≤ c ≤ d. Please note that the membership function is piecewise
continuous and Ã is normal, hence it is a well-defined fuzzy number. Further, note that the
quadruple (a, b, c, d) is sufficient to describe Ã, so we write Ã = (a, b, c, d) as abbreviation for a
trapezoidal fuzzy number. In case of b = c, the trapezoidal fuzzy number is called a triangular fuzzy
number, and one can write Ã = (a, b, d). The α-cut of the trapezoidal fuzzy number Ã = (a, b, c, d)
is the closed interval

Ãα = [ÃL
α , ÃR

α ] = [a + (b− a)α, d− (d− c)α].

The α-cut of a triangular fuzzy number Ã = (a, b, d) is the closed interval

Ãα = [ÃL
α , ÃR

α ] = [a + (b− a)α, d− (d− b)α].

• A trapezoidal fuzzy number is a special case of an LR fuzzy number Ã = (R, µ), where in addition
to (a, b, c, d), two continuous, strictly monotone function L, R : [0, 1]→ [0, 1] with L(0) = R(0) = 0
and L(1) = R(1) = 1 are specified, and µ is defined as

µ(x) =



0, x < a,

L
(

x−a
b−c

)
, a ≤ x ≤ b,

1, b ≤ x ≤ c,

R
(

d−x
d−c

)
, c ≤ x ≤ d,

0, x > d,
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Please note that the core of Ã is the interval [b, c]. The left spread and the right spread are defined as
β := b− a and γ := d− c, respectively. The α-cut is

Ãα = [ÃL
α , ÃR

α ] = [a + L−1(α)β, d− R−1(α)γ].

• A fuzzy number Ã = (R, µ) is called a Gaussian fuzzy number, if its membership function µ is
defined as

µ(x) =



0, x < m− σL,

exp
(
− (m−x)2

2σ2
L

)
, m− σL ≤ x < m,

exp
(
− (x−m)2

2σ2
R

)
, m ≤ x < m + σR,

0, x ≥ m + σR,

where m ∈ R. Here σL, σR are called the left spread and right spread, respectively. As abbreviation,
we write Ã = (m, σL, σR), and if σL = σR, we write as abbreviation Ã = (m, σ). Please note that
{m} is the core of the Gaussian fuzzy number. Please note that the Gaussian fuzzy number is a
special case of the LR fuzzy number. The α-cut of a Gaussian fuzzy number Ã = (m, σ) is

Ãα = [ÃL
α , ÃR

α ] = [m− σ
√
−2 ln α, m + σ

√
−2 ln α].

• An exponential fuzzy number is a fuzzy number which has a membership function µ given by

µ(x) =


0, x < m− σL,

exp
(
−m−x

σL

)
, m− σL ≤ x < m,

exp
(
− x−m

σR

)
, m ≤ x < m + σR,

0, x ≥ m + σR,

where {m} is the core, for m ∈ R. Here σL, σR are called the left spread and right spread, respectively.
As abbreviation, we write Ã = (m, σL, σR), and if σL = σR, we write as abbreviation Ã = (m, σ).
Please note that the exponential fuzzy number is a special case. The α-cut of an exponential fuzzy
number Ã = (m, σ) is

Ãα = [ÃL
α , ÃR

α ] = [m− σ ln(1/α), m + σ ln(1/α)].

4. Multi-Objective Vendor Selection Problem (MOVSP)

The MOVSP is an extension of the problem discussed by [23], where a system of n vendors with a
deterministic parameter is considered. The list of symbols used in the model formulation is given
in Table 3.
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Table 3. Nomenclature.

Indices
j vendor’s index, ∀ i = 1, 2, ..., n
k objectives index, ∀ k = 1, 2, 3, ..., K
Parameters
n vendors’ number who are competing for selection
D aggregate item demand for a fixed planning period
pj per unit item price for the quantity ordered qj to the jth vendor
tj unit item transportation cost from the jth vendor
lj percentage for the late delivered units by the jth vendor
Uj upper limit for the jth vendor’s quantity available
Bj each vendor’s budget constraint allocation
sj percentage for the jth vendor rejected units
rj rating value for the jth vendor
P vendor’s minimum total purchasing value
f j jth vendor quota flexibility
F vendor’s minimum value flexible in supply quota
R maximum affordable rejection by a purchaser
Decision Variable
qj order quantity is given to the vendor j

The MOVSP is formulated as follows:

Optimize



Z1 = ∑n
j=1 pjqj., related to net− ordering− costs

Z2(X) = ∑n
j=1 tjqj, related to net− transportation costs

Z3(X) = ∑n
j=1 ljqj, related to late delivered items

Subject to set o f constraints :
∑n

j=1 qj = D, constraint related to aggregate demand
qj ≤ Uj , for all j = 1, 2, ..., n., constraint related to vendor capacity
pjqj ≤ Bj for all j = 1, 2, ..., n., constraint related to budget allocation
∑n

j=1 rjqj ≥ P. constraint related to Purchasing value
∑n

j=1 f jqj ≤ F. constraint related to vendor′s quota
∑n

j=1 sjqj ≤ R constraint related to rejected items
qj ≥ 0, ∀ j = 1, 2, ..., n. constraint related to non− negative vendor

(1)

The assumptions contained in [23] is hold, we therefore, formulate the MOVSP with n decision
variables and m constraints under fuzzy logic set theory. The fuzzy mathematical formulation is stated
as follows:

Minimize
(

Z1 = ∑n
j=1 p̃jqj, Z2 = ∑n

j=1 t̃jqj, Z3 = ∑n
j=1 l̃jqj

)
subject to ∑n

j=1 qj = D̃,
qj ≤ Ũj , ∀j = 1, 2, ..., n
p̃jqj ≤ B̃j, ∀j = 1, 2, ..., n
∑n

j=1 s̃jqj ≤ R̃,

∑n
j=1 r̃jqj ≥ P̃,

∑n
j=1 f̃ jqj ≤ F̃,

qj ≥ 0, ∀j = 1, 2, ..., n

(2)

In problem (2), we assume that all the vague parameters are LR type fuzzy number.

4.1. The Conversion Procedure of Fuzzy MOVSP into Crisp MOVSP

In this section, the MOVSP formulated under three different types of LR fuzzy numbers,
enlightening their applications in real-world problems.
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Case 1. The vague input parameters of the problem (2) is defined by the generalized exponential LR
normalize fuzzy number Ã = (a, b, σL, σR), where a, b are left and right extreme (lower and
upper values) endpoints, and σL, σR are left and right spread. Let L(α),R(α) are two monotonic
functions respectively.

L(α) = exp
{
−
(

a− x
σL

)}
⇒ L−1(α) = a− σL

(
ln

1
α

)
and

R(α) = exp
{
−
(

x− b
σR

)}
⇒ R−1(α) = b + σR

(
ln

1
α

)
.

We now define the ranking function value as

R (Ã) = λ
∫ 1

0

[
a− σL

(
ln

1
α

)]
dα + (1− λ)

∫ 1

0

[
b + σR

(
ln

1
α

)]
dα

= λ[a− σL] + (1− λ)[b + σR] (3)

Problem (2) is transformed into the equivalent crisp form using Equation (3):

Minimize [(Z1(Q))λ] = ∑n
j=1

(
λ
(

apj − σpR

)
+ (1− λ)

(
bpj + σpL

))
qj

Minimize [(Z2(Q))λ] = ∑n
j=1

(
λ
(

atj − σtR

)
+ (1− λ)

(
btj + σtL

))
qj

Minimize [(Z3(Q))λ] = ∑n
j=1

(
λ
(

alj
− σlR

)
+ (1− λ)

(
blj

+ σlR

))
qj

subject to

∑n
j=1 qj = λ (D− σDR) + (1− λ) (D− σDL),

qj ≤ λ
(

aUj − σUR

)
+ (1− λ)

(
bUj + σUL

)
,(

λ
(

apj − σPR

)
+ (1− λ)

(
bpj + σPL

))
qj ≤ λ

(
aBj − σBR

)
+ (1− λ)

(
bBj + σBL

)
,

∑n
i=1

(
λ
(

asj − σSR

)
+ (1− λ)

(
bsj + σSL

))
qj ≤ λ (aR − σRR) + (1− λ) (bR + σRL) ,

∑n
i=1

(
λ
(

arj − σrR

)
+ (1− λ)

(
brj + σrL

))
qj ≥ λ (aP − σPR) + (1− λ) (bP + σPL) ,

∑n
i=1

(
λ
(

a f j
− σf R

)
+ (1− λ)

(
b f j

+ σf L

))
qj ≤ λ (aF − σFR) + (1− λ) (bF + σFL) ,

qj ≥ 0, ∀j = 1, 2, ..., n,

(4)

where λ ∈ [0, 1] is an arbitrary chosen fixed value.
Case 2. The vague input parameters of the problem (2) is defined by the Gaussian LR normalize fuzzy

number Ã = (a, b, σL, σR).

L(α) = exp

{
−
(

a− x
σL

)2
}
⇒ L−1(α) = a− σL

√
− ln α.

and

R(α) = exp

{
−
(

x− b
σR

)2
}
⇒ R−1(α) = b + σR

√
− ln α.

We now define the ranking function value as

R (Ã) = λ
∫ 1

0

[
a− σL

√
− ln α

]
dα + (1− λ)

∫ 1

0

[
b + σR

√
− ln α

]
dα
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= λ[a−
√

π

2
σL] + (1− λ)[b +

√
π

2
σR] (5)

Problem (2) is transformed into the equivalent crisp form using Equation (5) as

Minimize [(Z1(Q))λ] = ∑n
j=1

(
λ
(

apj −
√

π
2 σpR

)
+ (1− λ)

(
bpj +

√
π
2 σpL

))
qj

Minimize [(Z2(Q))λ] = ∑n
j=1

(
λ
(

atj −
√

π
2 σtR

)
+ (1− λ)

(
btj +

√
π
2 σtL

))
qj

Minimize [(Z3(Q))λ] = ∑n
j=1

(
λ
(

alj
−
√

π
2 σlR

)
+ (1− λ)

(
blj

+
√

π
2 σlR

))
qj

subject to

∑n
j=1 qj = λ (D−

√
π
2 σDR) + (1− λ) (D−

√
π
2 σDL),

qj ≤ λ
(

aUj −
√

π
2 σUR

)
+ (1− λ)

(
bUj +

√
π
2 σUL

)
,(

λ
(

apj −
√

π
2 σPR

)
+ (1− λ)

(
bpj +

√
π
2 σPL

))
qj ≤ λ

(
aBj −

√
π
2 σBR

)
+ (1− λ)

(
bBj +

√
π
2 σBL

)
,

∑n
i=1

(
λ
(

asj −
√

π
2 σSR

)
+ (1− λ)

(
bsj +

√
π
2 σSL

))
qj ≤ λ

(
aR −

√
π
2 σRR

)
+ (1− λ)

(
bR +

√
π
2 σRL

)
,

∑n
i=1

(
λ
(

arj −
√

π
2 σrL

)
+ (1− λ)

(
brj +

√
π
2 σrL

))
qj ≥ λ

(
aP −

√
π
2 σPR

)
+ (1− λ)

(
bP +

√
π
2 σPL

)
,

∑n
i=1

(
λ
(

a f j
−
√

π
2 σf R

)
+ (1− λ)

(
b f j

+
√

π
2 σf L

))
qj ≤ λ

(
aF −

√
π
2 σFR

)
+ (1− λ)

(
bF +

√
π
2 σFL

)
,

qj ≥ 0, ∀j = 1, 2, ..., n ,

(6)

where λ ∈ [0, 1] is an arbitrary chosen fixed value.
Case 3. The vague input parameters of the problem (2) is defined by the Gaussian LR normalize fuzzy

number Ã = (a, b, σL, σR).

L(α) = exp

{
−1

2

(
a− x

σL

)2
}
⇒ L−1(α) = a− σL

√
−2 ln α.

and

R(α) = exp

{
−1

2

(
x− b

σR

)2
}
⇒ R−1(α) = b + σR

√
−2 ln α.

We now define the ranking function value as

R (Ã) = λ
∫ 1

0

[
a− σL

√
−2 ln α

]
dα + (1− λ)

∫ 1

0

[
b + σR

√
−2 ln α

]
dα

= λ[a−
√

πσL] + (1− λ)[b +
√

πσR] (7)

Problem (2) is transformed into the equivalent crisp form using Equation (5) as

Minimize [(Z1(Q))λ] = ∑n
j=1

(
λ
(

apj −
√

πσpR

)
+ (1− λ)

(
bpj +

√
πσpL

))
qj

Minimize [(Z2(Q))λ] = ∑n
j=1

(
λ
(

atj −
√

πσtR

)
+ (1− λ)

(
btj +

√
πσtL

))
qj

Minimize [(Z3(Q))λ] = ∑n
j=1

(
λ
(

alj
−
√

πσlR

)
+ (1− λ)

(
blj

+
√

πσlR

))
qj

subject to

∑n
j=1 qj = λ (D−

√
πσDR) + (1− λ) (D−

√
πσDL),

qj ≤ λ
(

aUj −
√

π σUR

)
+ (1− λ)

(
bUj +

√
πσUL

)
,(

λ
(

apj −
√

π σPR

)
+ (1− λ)

(
bpj +

√
πσPL

))
qj ≤ λ

(
aBj −

√
πσBR

)
+ (1− λ)

(
bBj +

√
πσBL

)
,

∑n
i=1

(
λ
(

asj −
√

πσSR

)
+ (1− λ)

(
bsj +

√
πσSL

))
qj ≤ λ

(
aR −

√
πσRR

)
+ (1− λ)

(
bR +

√
πσRL

)
,

∑n
i=1

(
λ
(

arj −
√

πσrL

)
+ (1− λ)

(
brj +

√
πσrL

))
qj ≥ λ

(
aP −

√
πσPR

)
+ (1− λ)

(
bP +

√
πσPL

)
,

∑n
i=1

(
λ
(

a f j
−
√

πσf R

)
+ (1− λ)

(
b f j

+
√

πσf L

))
qj ≤ λ

(
aF −

√
πσFR

)
+ (1− λ)

(
bF +

√
πσFL

)
,

qj ≥ 0, ∀j = 1, 2, ..., n ,

(8)
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where λ ∈ [0, 1] is an arbitrary chosen fixed value.

4.2. Fuzzy Goal Programming Procedure

To solve the formulated problems (4), (6) and (8), we use Zimmermann’s fuzzy programming
approach, see [8,82]. This approach was applied to solve various multi-objective optimization problems
(such as linear programming, non-linear programming, or stochastic programming). In this section,
we present a brief fuzzy programming method for solving the crisp MOVSP (4), (6) and (8), which in
an abstract way can be written as:

Minimize [(Z1(Q))λ , (Z2(Q))λ , . . . , (Zk(Q))λ] , k = 1, 2, . . . , K
subject to x ∈ X

where x ∈ X is used to represent all set of the feasible constraint of the MOVSP (4), (6) and (8),
respectively. We assume that the problem is feasible and that an optimal compromise solution exists.

Step 1. Firstly, we solve the problem to obtain the ideal solutions (g1, g2, . . . , gk) for the respective
objective functions. Using these ideal solutions, we formulate a pay-off matrix. Then lower
and upper bound of each of the objective functions is estimated from the pay-off matrix as:
gk ≤ [(Zk(Q))λ] ≤ uk, k = 1, 2, . . . K Where gk are imprecise aspiration levels of fuzzy goals
(Zk(Q))λfor which we define linear membership functions in the next step.

Step 2. In this step, we define a fuzzy membership function for the k-th objective function (Zk(Q))λ:

1. For first minimize type objective function, the membership function is constructed as:

µ1 ([(Z1(Q))λ]) =


1, [(Z1(Q))λ] ≤ g1

u1−[(Z1(Q))λ ]
u1−g1

, g1 ≤ [(Z1(Q))λ] ≤ u1

0, [(Z1(Q))λ] ≥ u1

2. For second minimize type objective function, the membership function is constructed as:

µ2 ([(Z2(Q))λ]) =


1, [(Z2(Q))λ] ≤ g2

u2−[(Z2(Q))λ ]
u2−g2

, g2 ≤ [(Z2(Q))λ] ≤ u2

0, [(Z2(Q))λ] ≥ u2

For third minimize type objective function, the membership function is constructed as:

µ3 ([(Z3(Q))λ]) =


1, [(Z3(Q))λ] ≤ g3

u3−[(Z3(Q))λ ]
u3−g3

, g3 ≤ [(Z3(Q))λ] ≤ u3

0, [(Z3(Q))λ] ≥ u3

Here u1, u2 and u3 are upper tolerance limit for the fuzzy goal (Z1(Q))λ , (Z1(Q))λ and
(Z3(Q))λ, respectively.

Step 3. Next, we consider the conversion of the objective functions into fuzzy goals using aspiration
level to the corresponding objective function. Thus, problems (4), (6) and (8) are approximated
as a fuzzy goal program by taking certain aspiration levels and introducing an auxiliary variable
for the deviation from below to the objective function.

The minimization type objective function is approximated as

uk − [(Zk(Q))λ]

uk − gk
+ d−k ≥ 1, k = 1, 2, ...K
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The above membership function is used to formulate the multi-objective optimization problem
as a single-objective optimization problem. Now we can use the FGP approach for attaining
the highest degree of membership and thus the above problem is transformed into a goal
programming problem as

Min Z = ∑3
k=1 w−k d−k

subject to x ∈ X
uk−[(Zk(Q))λ ]

uk−gk
+ d−k ≥ 1, k = 1, 2, ...K,

Here, Z represents the achievement function of the problems (4), (6) and (8), and w−k =
1

uk−gk
∀ k = 1, 2, . . . K attached to each of the objective functions measures the relative importance

of a deviation from their respective target.

4.3. Computational Procedure

The conversion method presented in Section 3 can be organized into the following steps as:

Step 1. Formulate the real world problem as a mathematical programming problem with fuzzy
parameter. In our case, we formulated the MOVSP with LR fuzzy parameters.

Step 2. Define the membership function for fuzzy parameters in the mathematical formulation of the
stated problem.

Step 3. Compute the ranking function for these fuzzy parameters to convert them into an equivalent
crisp parameter.

Step 4. Determine the solution of multi-objective programming problem with objectives (Z1(Q))λ,
(Z1(Q))λ and (Z3(Q))λ respectively with crisp parameter as obtained in Step 3 for an
individual optimal solution by any optimization software (Lingo, R, Matlab and any other
appropriate software).

Step 5. Set the optimal solution obtained in Step 4 as a goal, and compute the appropriate aspiration
level for each goal.

Step 6. Repeat the Steps 4 and 5 for the various choices of values of lambda set by the decision maker.
Step 7. Compute w−k = 1

uk−gk
∀ k = 1, 2, . . . K.

Step 8. Finally, formulate the problem into a deterministic goal programming problem.
Step 9. Solve the deterministic goal programming problem for various values of alpha-cut set by decision

maker by any optimization software.
Step 10. Choose the optimal solution from the obtained solution set and the corresponding

decision variables.

5. Case Study

In order to illustrate the proposed work, we considered a simulated case study for the vendor
Selection Problem in continuation of [31] with some extensions. The instance consists of four vendors.
Their profiles with uncertainty are giving in Table 4. All the parameters of the problem are considered
to be randomly distributed and are simulated using uniform distribution through the R software
package. If the purchasers follow a 95% (2σ limits) for the accepted policy, then the rejection maximum
limit should not be more than 5% of the demand. Hence, the tolerance for the maximum rejection for a
purchaser should be 25,000 × 0.05 = 1250. The minimum value for the vendors’ quota flexibility and
that of the total purchase for supplied items are the policy decisions, which depend on the demand.
The minimum flexible value in the quota of the suppliers is F = f · D, and that of total purchase
value for the items supplied is given as P = r · D. The other information is fuzzy. We assumed that
fuzzy numbers Ã = (a, b, σL, σR) are LR type fuzzy numbers. The instance data for the vendors with
LR type fuzzy numbers are given in Table 4. Furthermore, we studied the following pattern of the
fuzzy number, i.e., Exponential, Normal, and Gaussian-Normal. Parameters in the form of LR-fuzzy
numbers (a, b, σL, σR) are given below:
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Table 4. Instance data for the Vendor Selection Problem with LR fuzzy numbers.

Vendors 1 2 3 4

p̃j (110, 130, 10, 15) (305, 325, 15, 20) (250, 265, 13, 18) (355, 370, 12, 20)
t̃j (15, 17, 2, 3) (11, 12, 1, 2) (5, 7, 0.9, 1.8) (21, 24, 4, 6)
l̃j (2, 2.5, 0.3, 0.7) (3, 4.5, 0.6, 0.9) (9, 11, 0.8, 1.1) (4, 6, 0.5, 0.7)

Ũj
(5600, 5800,

200, 400)
(16,500, 16,900,

600, 750)
(7000, 7900,

250, 450)
(5500, 5800,

310, 420)

B̃j
(1,250,000, 1,300,000,

50,000, 60,000)
(5,000,000, 5,500,000,

65,000, 70,000)
(1,750,000, 1,800,000,

40,000, 45,000)
(300,000, 325,000,

10,000, 15,000)
s̃j (4, 6, 0.8, 1.2) (4, 5.5, 0.6, 0.8) (1, 2, 0.1, 0.2) (7.5, 8.5, 1.5, 1.8)

f̃ j
(0.05, 0.06,

0.001, 0.002)
(0.02, 0.03,

0.002, 0.003)
(0.07, 0.09,

0.001, 0.003)
(0.03, 0.04,

0.001, 0.002)

r̃j
(0.87, 0.88,
0.01, 0.02)

(0.90, 0.94,
0.04, 0.06)

(0.91, 0.93,
0.03, 0.05)

(0.89, 0.90,
0.08, 0.09)

Using the ranking function approaches (3), (5), and (7) as defined above in the preliminary section,
the LR generalized exponential, the LR normalized, and the LR Gaussian-Normal fuzzy number,
respectively, are transformed into an equivalent deterministic form. Tables 5–7 provide the parameters
equivalent to the deterministic or crisp value for cases 1, 2, 3 at the distinct value of λ = 0, 0.5 and
1, respectively.

Table 5. Optimistic, pessimistic and most likely value of the fuzzy parameter for case 1.

Vendors λ 1 2 3 4

0 145.00 345.00 283.00 390.00
pj 0.5 122.50 317.50 260.00 366.50

1 100.00 290.00 237.00 343.00

0 20.00 14.00 8.80 30.00
tj 0.5 16.50 12.00 6.45 23.50

1 13.00 10.00 4.10 17.00

0 3.2 5.4 12.10 6.70
lj 0.5 2.45 3.9 10.15 5.10

1 1.7 2.4 8.20 3.50

0 6200 17,650 8350 6220
Uj 0.5 5800 16,775 7550 5705

1 5400 15,900 6750 5190

0 1,360,000 5,570,000 1,845,000 340,000
Bj 0.5 1,280,000 5,252,500 1,777,500 315,000

1 1,200,000 4,935,000 1,710,000 290,000

0 7.20 6.30 2.20 10.30
sj 0.5 5.20 4.85 1.55 8.15

1 3.20 3.40 0.90 6.00

0 0.0620 0.0330 0.0930 0.0420
f j 0.5 0.0555 0.0255 0.0810 0.0355

1 0.0490 0.0180 0.0690 0.0290

0 0.90 1.00 0.98 0.99
rj 0.5 0.88 0.93 0.93 0.90

1 0.86 0.86 0.88 0.81
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Table 6. Optimistic, pessimistic and most likely value of the parameter for case 2.

Vendors λ 1 2 3 4

0 148.79 350.00 287.55 395.06
pj 0.5 123.13 318.13 260.63 367.52

1 97.46 286.20 233.71 339.96

0 20.76 14.51 9.25 31.52
tj 0.5 16.62 12.13 6.56 23.75

1 12.49 9.74 3.87 15.98

0 3.37 5.63 12.38 6.87
lj 0.5 2.50 3.94 10.18 5.13

1 1.63 2.25 7.99 3.37

0 6301 17,840 8464 6326
Uj 0.5 5825 16,794 7575 5719

1 5349 15,748 6687 5111

0 1,375,198 5,587,731 1,856,398 343,799
Bj 0.5 1,281,266 5,253,133 1,778,133 315,633

1 1,187,335 4,918,536 1,699,868 287,467

0 7.51 6.51 2.25 10.75
sj 0.5 5.25 4.87 1.56 8.18

1 2.99 3.25 0.87 5.62

0 0.0625 0.0337 0.0937 0.0425
f j 0.5 0.0556 0.0256 0.0813 0.0356

1 0.0487 0.0174 0.0687 0.0287

0 0.91 1.02 0.99 1.02
rj 0.5 0.88 0.93 0.93 0.91

1 0.86 0.85 0.87 0.79

Table 7. Optimistic, pessimistic and most likely value of the parameter for case 3.

Vendors λ 1 2 3 4

0 135.43 338.22 269.79 380.63
pj 0.5 123.64 322.73 257.18 368.69

1 111.85 307.24 244.57 356.75

0 17.82 13.15 7.52 27.04
tj 0.5 16.39 11.88 6.18 23.06

1 14.96 10.61 4.84 19.08

0 2.93 4.88 10.84 5.99
lj 0.5 2.48 3.87 9.61 4.98

1 2.03 2.86 8.38 3.97

0 5932 17,230 7885 6043
Uj 0.5 5700 16,817 7505 5689

1 5468 16,403 7124 5335

0 1,331,185 5,394,682 1,777,112 323,239
Bj 0.5 1,280,245 5,231,522 1,764,536 308,615

1 1,229,305 5,068,362 1,751,960 293,990
0 6.44 5.61 1.87 8.67

sj 0.5 5.51 4.63 1.49 7.54
1 4.58 3.65 1.11 6.41
0 0.0605 0.0286 0.0875 0.0395

f j 0.5 0.0547 0.0246 0.0794 0.0357
1 0.0488 0.0206 0.0714 0.0319

0 0.88 0.95 0.96 0.91
rj 0.5 0.87 0.92 0.94 0.88

1 0.85 0.88 0.91 0.84
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When demand is fixed to D = 25,000 units. Using values of Table 5, problem (4) of case 1 was solved
using the FGP approach as defined in Section 4.2. The results obtained at the distinct value of
λ = 0, 0.5 and 1 are given in Table 8.

Table 8. Compromise objective value and allocation for case 1 with fixed demand.

λ Objective Value Vendor’s Allocation

0 (7,232,987, 385,099.2, 1431.551) (6200, 14,845, 6084, 871)
0.5 (6,455,521, 298,038.7, 1328.458) (5800, 11,505, 6836, 859)
1 (5,911,035, 232,290, 962.99) (5400, 122,005, 6750, 845)

Similarly, problems (6) and (8) of case 2 and 3 respectively were solved for the distinct value of
λ = 0, 0.5 and 1 using the FGP approach, and the result is summarized below in Tables 9 and 10.

Table 9. Compromise objective value and allocation for case 2 with fixed demand.

λ Objective Value Vendor’s Allocation

0 (7,118,268, 382,976.7, 1674.064) (6301, 11,374, 6455, 870)
0.5 (6,467,487, 301,375.7, 1337.023) (5825, 11,495, 6822, 858)
1 (5,839,909, 224,235.7, 922.5766) (5349, 12,120, 6686, 845)

Table 10. Compromise objective value and allocation for case 3 with fixed demand.

λ Objective Value Vendor’s Allocation

0 (6,837,807, 331,160.2, 1506.335) (5932, 11,632, 6587, 849)
0.5 (6,522,167, 292,957, 1055.71) (5700, 11,602, 6861, 837)
1 (6,206,943, 254,909.6, 1072.01) (5468, 11,584, 7124, 824)

The optimal result for various discrete choices for λ is presented in Tables 8–10. They show
that vendor 4 has lost most of his quota due to inferior performance on the criterion set up
by the manufacturer, i.e., percentage of flexibility, purchase rating, percentage of rejection,
purchasing cost, and budget allocation. However, vendor 2 received more quota allocation as he
performed best among the other vendors on the different performance criteria. The quota for
vendor 3 is higher than the vendor 1 due to their inferior capacity. The result also indicates that
if the value of λ increases or decreases, then the quota allocation to different vendors also starts
changing consistently.

When the demand is not fixed (D = 22,000 or 23,000 or 2000 or 4000) units. Since the parameters
are in uncertain form; we generated the optimistic, pessimistic and most likely value of the
fuzzy parameters, and their corresponding solutions. The compromise solution values for Z1, Z2

and Z3 and optimum allocation of order quantities for the vendors for the same discrete values
for λ are summarized below in Tables 8–10.

By using the values in Table 5, problem (4) of case 1 was solved using the FGP approach as
defined in Section 4.2. The results obtained at the distinct value of λ = 0, 0.5 and 1 are given in
Table 11.

Table 11. Compromise objective value and allocation for case 1 without fixed demand.

λ Objective Value Vendor’s Allocation

0 (7,710,017, 395,237.2, 1769.69) (6200, 13,410, 6519, 871)
0.5 (5,979,271, 280,038.7, 1269.95) (5800, 10,005, 6836, 859)
1 (4,461,035, 182,290, 842.99) (5400, 7005, 6750, 845)
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Similarly, problem (6) and (8) of case 2 and 3 respectively were solved for the distinct value of
λ = 0, 0.5 and 1 using the FGP approach, and the result is summarized in Tables 12 and 13.

Table 12. Compromise objective value and allocation for case 2 without fixed demand.

λ Objective Value Vendor’s Allocation

0 (8,172,818, 426,695.3, 1833.757) (6301, 14,387, 6455, 870)
0.5 (6,070,779, 286,249.6, 1287.89) (5825, 10,248, 6822, 858)
1 (4,263,805, 170,597.5, 798.66) (5349, 6613, 6686, 845)

Table 13. Compromise objective value and allocation for case 3 without fixed demand.

λ Objective Value Vendor’s Allocation

0 (6,866,894, 332,291.1, 1510.53) (5932, 11,718, 6587, 849)
0.5 (5,788,602, 265,953.7, 990.71) (5700, 9329, 6861, 837)
1 (4,784,421, 205,785.3, 939.58) (5468, 6954, 7124, 824)

The optimal result for various discrete choices λ is presented in Tables 11–13. They show
that vendor 4 lost most of their quota due to inferior performance on the criterion set up
by the manufacturer, i.e., percentage of flexibility, purchase rating, percentage of rejection,
purchasing cost, and budget allocation. However, the second vendor received more quota
allocation as he performed best among the other vendors on the different performance criteria.
The quota for vendor 3 is higher than the vendor 1 due to their inferior capacity. The result
also indicates that if the value of λ increases or decreases, then the quota allocation to different
vendors also starts changing consistently.

6. Result Analysis and Discussion

The efficiency of the solution at a different value λ was compared within the different methods by
calculating the Relative Effectiveness (R.E.).

Here TApproach1 represents the trace value obtained when demand is fixed and TApproach2 represents
the trace value when demand is not fixed. Approach 1, and Approach 2 are based on the use of different
types of ranking function and are evaluated on the different scales of λ, i.e., 0, 0.5, and 1, because of
this value of the objective function and the quota allocation to the vendor’s also changes. However,
among all the methods used, case 3 provides the best optimum result under the given restrictions,
and the solution found, is very close to the aspiration level set by the decision-maker.

Pessimistic Result (λ = 0). From the different solutions tables and their obtained trace value, we can
see that the results attained from Approach 2 are very close to the aspiration goal set by the
decision-maker. Approach 2 provides a better objective value in comparison to Approach 1 for
an aggregate demand of 25,000 units that yields a minimum net ordering cost of 6,837,807 rupees,
minimum transportation cost of 331,160.2 rupees and a minimum late delivered units to be
around 1506 (aggregated) during the process. Based on the optimization technique and the results
generated from it show that the manufacturer decides to purchase 11,632 units form vendor 2,
6587 units form vendor 3, 5932 units from vendor 1 and purchase only 849 units from vendor 4
due to their most inferior performance on the criteria set (viz. the highest percentage rejections,
high percentage late deliveries, less vendor rating value, less quota flexibility value, etc.).

Most Likely Result (λ = 0.5). From the different solutions tables and their obtained trace value,
we can see that the results attained from Approach 1 are very close to the aspiration goal set by
the decision-maker. Approach 1 provides a better objective value in comparison to Approach 2
for an aggregate demand of 25,000 units that yields a minimum net ordering cost of 6,455,521
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rupees, minimum transportation cost of 298,038.7 rupees and a minimum late delivered units
to be around 1328 (aggregated) during the process. Based on the optimization technique and
the results generated from it, show that the manufacturer decides to purchase 11,505 units form
vendor 2, 6836 units form vendor 3, 5800 units from vendor 1 and purchase only 859 units from
vendor 4 due to their most inferior performance on the criteria set (viz. the highest percentage
rejections, high percentage late deliveries, less vendor rating value, less quota flexibility value,
etc.). (5,839,909, 224,235.7, 922.5766)

Optimistic Result (λ = 1.0). From the different solutions tables and their obtained trace value, we can
see that the results attained from Approach 2 is very close to the aspiration goal set by the
decision-maker. Approach 1 provides a better objective value in comparison to Approach 2 for
an aggregate demand of 25,000 units that yields a minimum net ordering cost of 5,839,909 rupees,
minimum transportation cost of 224,235.7 rupees and a minimum late delivered units to be
around 923 (aggregated) during the process. Based on the optimization technique and the
results generated from it show that the manufacturer decides to purchase 12,120 units form
vendor 2, 6686 units form vendor 3, 5349 units from vendor 1 and purchase only 845 units from
vendor 4 due to their most inferior performance on the criteria set (viz. the highest percentage
rejections, high percentage late deliveries, less vendor rating value, less quota flexibility value,
etc.). A similar conclusion can be drawn for the uncertain demand. Notable, the objective values
and order quantities associated with different λ values do not need to be the same.

The solution to the problem instance given above was solved by LINGO 16.0. The following
results were generated, which indicate that most of the goals are attainable either with some minor
and significant improvement in the set of targets. The result analysis of vendor selection for discrete
choices of λ is given in Figures 1 and 2.

Figure 1. Value of objective function.
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Figure 2. Vendor’s quota.

Mean value Method. Since Table 6 is in the case of vagueness, where the input information is present
in the form of LR fuzzy numbers. The suitable fuzzy set theory concept was applied to obtain
the equivalent crisp form. Moreover, we can consider the mean method of extreme values to
handle the vagueness in the input parameters. Therefore, Table 4 is revised accordingly to the
mean values method, and resultant Table 14 is given below:

Table 14. Averaging data of Vendor Selection Problem.

Vendors 1 2 3 4

pi 122.50 316.30 258.80 364.50
ti 16.30 11.80 6.20 23.00
li 2.35 3.825 10.075 5.05
Ui 5750 16,737 7500 5678
Bi 1,277,500 5,251,250 1,776,250 313, 750
qi 5.10 4.80 1.525 8.075
fi 0.055 0.025 0.081 0.035
ri 0.878 0.925 0.925 0.898

Also, we used some well-known existing multi-objective approaches, i.e., goal programming,
Chebyshev goal programming, and also the two different types of fuzzy goal programming for solving
the proposed MOVSP model and found that the solution obtained by these approaches are ranging
within the solution range provided by the proposed approach. The different approaches for solving
the proposed MOVSP model are shortly defined below:

The Goal Programming. The data given in Table 15 was used to solve the MOVSP by the goal
programming approach.

Min ∑K
k=1 λk

s.t.
Zk(x)− λk ≤ Z∗k (x), k = 1, 2, . . . , K
gi (x) {≤,=,≥} bi, i = 1, 2, ..., m
x ≥ 0

After using the goal programming approach, the optimal compromise solution is obtained as
(6,398,528, 282,442.2, 1301.87) with the order quantities (5750,12,387,6863,0).
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The Chebyshev Goal Programming. The data given in Table 15 was used to solve the MOVSP by the
Chebyshev goal programming approach.

Min λ

s.t.
Zk(x) + λ ≥ Z∗k (x), k = 1, 2, . . . , K
gi (x) {≤,=,≥} bi, i = 1, 2, ..., m
x ≥ 0

After using the Chebyshev goal programming approach, the optimal compromise solution is
obtained as (6,439,980, 292,074.2, 1313.05) with order quantities (5750, 11, 527, 6863, 860).

The Fuzzy Goal Programming. The data given in Table 15 was used to solve the MOVSP by the fuzzy
goal programming approach.

Max λ

s.t.
λ ≤ Uk−Zk(x)

Uk−Lk
, k = 1, 2, . . . , K

gi (x) {≤,=,≥} bi; i = 1, 2, ..., m
x ≥ 0
0 ≤ λ ≤ 1

After using the fuzzy goal programming approach, the optimal compromise solution is obtained
as (6,925,348, 297,672, 1140.43) with order quantities (4063, 16,602, 3819, 516). Also, by introducing
the auxiliary variables for each objective function as λK, the above model is reformulated as:

Max ∑K
k=1 λk

s.t.
λk ≤

Uk−Zk(x)
Uk−Lk

, k = 1, 2, . . . , K
gi (x) {≤,=,≥} bi; i = 1, 2, ..., m
x ≥ 0
0 ≤ λk ≤ 1

After using the fuzzy goal programming approach with auxiliary variables, the optimal
compromise solution is obtained as (6,731,794, 299,191.8, 1088.83) with order quantities (5078,
16,590, 3332, 0).
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Table 15. Relative efficiency of the methods.

Problem 1(a) of case 1

λ TApproach1 TApproach2

(
R.E. = TApproach1/TApproach2

)
0 7,619,517.75 7,502,918.76 1.0155

0.5 6,754,888.16 6,770,199.72 0.9977
1 6,144,287.99 6,065,067.28 1.0131

Problem 1(a) of case 2

λ TApproach1 TApproach2

(
R.E. = TApproach1/TApproach2

)
0 7,619,517.75 7,170,473.54 1.0626

0.5 6,754,888.16 6,816,179.71 0.9910
1 6,144,287.99 6,462,924.61 0.9506

Problem 1(a) of case 3

λ TApproach1 TApproach2

(
R.E. = TApproach1/TApproach2

)
0 7,502,918.76 7,170,473.54 1.0464

0.5 6,770,199.72 6,816,179.71 0.9934
1 6,065,067.28 6,462,924.61 0.9384

7. Conclusions

A Multi-Objective Vendor Selection Problem (MOVSP) incorporating vagueness in the parameters
was presented in this paper, which is useful to select vendors’ quota allocation in supply chain
management. Two approaches, certainty and uncertainty in demand along with different types
of defuzzification methods of fuzzy numbers are considered. Various techniques such as mean
value method, goal programming with some of its variants are incorporated in this work Under
both cases of fixed and uncertainty in demand considered, three values of the fuzzy parameters are
generated. That is, the optimistic, the pessimistic, and the most likely as shown in Tables 5–7. The trace
values of each case are represented with an approach. Different ranking functions were used in
evaluating the approaches at varying values of λ. The relative effectiveness of these approaches is
compared to ascertain the efficiency of the solution (Table 15). The optimal compromise multi-objective
solution for various λ values is presented in Tables 8–13. It can be seen that the forth vendor lost
most of their quota as a result of inferior performance on the criteria such as flexibility percentage,
purchase rating, rejection percentage, purchasing cost, and budget allocation set by the decision-maker.
However, the second vendor received more quota allocation due to his best performance among the
vendors on the different criteria. The quota for the third vendor is higher than the first vendor due to
their low capacity. The result also indicates quota allocation to vendors changes with the value of λ

consistently. Fuzzy multi-objective programming is used to solve the entire MOVSP. Since in multiple
objective optimization problems, a single satisfying solution for all the objectives is not possible,
the concept of Pareto multi-objective solution is considered. In this regard, we solved the formulated
MOVSP to obtain the compromise multi-objective solution of the problem to enable manufacturers
to make a viable and profitable decision in their manufacturing process. The Pareto solution for the
various vendors is analyzed above. The technique can handle the complexity of quota allocation
problems of vendors in the supply chain even if their capacities are vague, which may be due to the
information gap between suppliers and buyers. The proposed MOVSP under fuzzy environment
has advantages over the deterministic techniques in the sense that precise information is not readily
available in supply chain management. The inherent uncertainty in the input information such as
transportation cost; the demand, the price, late delivery cost of an item as well as budget and vendors
capacity are considered to be fuzzy. In addition, this will enable decision-makers to address VSPs
under uncertainty. Another advantage of this proposed model is that, any available commercial
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packages such as LINDO/LINGO, GAMS and the like could be useful in solving such problems.
A case study with simulated data concerning vendor selection is used to demonstrate the effectiveness
of the proposed MOVSP model. This research opens to researchers a new methodology which can
be applied to solve other similar supplier selection problems with slight modifications. For instance,
in the future, this study can be further examined under an extended fuzzy environment, or where an
astronomical data on the real-life situation is available, a probabilistic approach to solving the problem
can be employed.
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