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Abstract: The arithmetic operations of fuzzy sets are completely different from the arithmetic
operations of vectors of fuzzy sets. In this paper, the arithmetic operations of vectors of fuzzy
intervals are studied by using the extension principle and a form of decomposition theorem. These
two different methodologies lead to the different types of membership functions. We establish their
equivalences under some mild conditions. On the other hand, the a-level sets of addition, difference
and scalar products of vectors of fuzzy intervals are also studied, which will be useful for the different
usage in applications.

Keywords: decomposition theorem; extension principle; fuzzy numbers; fuzzy intervals; non-normal
fuzzy sets

1. Introduction

Let A and B be two fuzzy sets in R with the membership functions ¢ ; and ¢j, respectively.
The arithmetic operations A ® B, A© B, A® B and A © B are based on the extension principle.
More precisely, the membership functions are given by

Cipp(z) = sup  min{¢z(x),{5(y)}
{(xy)z=rty)

Ciop(z) =  sup  min{¢z(x),¢5(y)}
{(xy)iz=x—y}

Cies(z) = sup  min{¢z(x),¢5(y)}
{(rg)zmriy}

Ciop(z) = sup min{¢ z(x),&3(y)}

{(xy):z=x/y,y#0}

for all z € R. In this paper, we consider the vectors of fuzzy sets in R. The purpose is to study the
addition, difference and scalar products of vectors of fuzzy sets.
Suppose that A and B consist of fuzzy sets in R given by

A— (Am),. . ,Am)) and B — (1;(1),. N ,g(n)> ,

where A() and B() are fuzzy sets in R for i = 1,---,n. Then, we study the addition Ao B,
the difference A & B and the scalar product A e B.

The addition A() @ B, the difference A) © B() and multiplication A() © B(!) regarding the
components can be realized as shown above. Let ¢ ;) and ¢ () be the membership functions of Al
and B, respectively, and let ® denote any one of the arithmetic operations @, ©, @ between A() and
B®. According to the extension principle, the membership function of A() ® B() is defined by

Canepn(z) = sup  min{¢zu ()¢50 (¥)}
{(xy):z=x0y}
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for all z € R, where the arithmetic operations © € {®, ©,®} correspond to the arithmetic operations
o € {4, —, *}. More detailed properties can refer to the monographs of Dubois and Prade [1] and
Klir and Yuan [2]. In general, we can consider the t-norms instead of minimum functions by referring
to Bede and Stefanini [3], Dubois and Prade [4], Gebhardt [5], Gomes and Barros [6], Fullér and
Keresztfalvi [7], Mesiar [8], Ralescu [9], Weber [10], Wu [11-13] and Yager [14]. More precisely,
the membership function of AD o B jg given by

Canepn(z) = sup  HEzm (%), Cz0 (¥))
{(xy):z=xoy}

for all z € R, where t is a t-norm that is a function from [0, 1] x [0, 1] into [0, 1] satisfying four axioms.
It is well-known that the minimum function min is a t-norm. In this paper, we consider the general
aggregation function rather than using t-norms. In this case, the membership function of A() ® B is
given by
Canepn () = sup  A(E 0 (x), G50 () ¢))
{(xy):z=xoy}

forall z € R, where 2l is an aggregation function from [0, 1] x [0, 1] into [0, 1] without needing to satisfy
some required conditions.

According to the arithmetic operations (1), the addition A & B, the difference A © B and the scalar
product A e B can be naturally defined as follows

\_/

AoB= (A(” e B, ... A g g
o

o
|

A (A(D oM ...

(A(l) ® B(l)) P - (A(”) ® B )) .

v

AeB

We can see that the scalar product A e B is a fuzzy set in R. The membership function of A e B
can be realized below. Let C() = A() @ BU) fori = 1,---,n. The membership function of C) can be
obtained from (1). Therefore, the membership function of A e B is given by

(:AOB(Z) = Sup Ql(gc(l)(x]), ,é“c(n)(xn))’
{(x1,+ xn)iz=x1++x, }

where 2 is an aggregation function from [0, 1]" into [0, 1]. In particular, the extension principle says
that the aggregation function 2l is given by the minimum function. Therefore, the membership function
of A e B is given by

Caen(z) = sup min{¢xm) (¥1), -+, Eam (xn) }-

{(X],--- /xn)iz:ler--.ern}

We can see that A @ B and A © B are still vectors of fuzzy sets. However, their membership
functions cannot be obtained directly from (1). The main purpose of this paper is to propose two
methodologies to define the membership functions of A) @ B() and A®) & B(). Those methodologies
can also be used to define the membership function of the scalar product A() @ B(),

Following the conventional way, we can use the extension principle to define the arithmetic
operations of vectors of fuzzy sets. In this paper, we consider the general aggregation functions rather
than using t-norms. We should mention that the decomposition theorem is a well-known result in
fuzzy sets theory. Alternative, we also use the form of decomposition theorem to define the arithmetic
operations of vectors of fuzzy intervals. These two methodologies can lead to the different types
of membership functions. In this paper, we establish the equivalences between using the extension
principle and the form of decomposition theorem under some mild conditions.
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In Section 2, the concept and basic properties of non-normal fuzzy sets are presented. In Section 3,
the arithmetic operations of vectors of fuzzy sets are presented using the extension principle based on
the general aggregation functions. In Section 4, the arithmetic operations of vectors of fuzzy sets are
presented using the form of decomposition theorem. In Section 5, many types of difference of vectors
of fuzzy sets are proposed using the extension principle and the form of decomposition theorem, and
their a-level sets are studied. Their equivalences are also established under some mild conditions. In
Section 6, we study the addition of vectors of fuzzy sets following the same theme from Section 5. In
Section 7, the scalar product of vectors of fuzzy sets are proposed, and their a-level sets are also studied.

2. Non-Normal Fuzzy Sets

Let A be a fuzzy set in R with membership function ¢ ;. For & € (0,1], the a-level set of A is
denoted and defined by
Ay ={xeR:&4(x) >a}. 2)

We remark that the a-level set A, can be an empty set when a is larger than the supremum of
the membership function ¢ ;. This ambiguity will be clarified in this section. On the other hand, the
support of a fuzzy set A is the crisp set defined by

A0+:{XERZCA(X)>O}.

The 0-level set Aj is defined to be the closure of the support of 4, i.e., Ag = cl(Ag, ).

The range of membership function ¢ 4 is denoted by R (¢ ;) that is a subset of [0, 1]. We see that
the range R( 4) can be a proper subset of [0,1] with R({ ;) # [0, 1]. For example, the range R (¢ ;)
can be some disjoint union of subintervals of [0, 1].

Example 1. The membership function of a trapezoidal-like fuzzy number is given by

01407 -(x—1) if1<x<15
02407 -(x—1) iflh<x<?2
0.9 if2<x<3
02+07-(4—x) if3<x<35
01+07-(4—x) if35<x<4
0 otherwise.

It is clear to see that
R(CA) = [0.1,0.45] U (0.55,0.9].

Notice that if & ¢ R(&;), we still can consider the a-level set A,. Since R(¢z) # [0,1], it is
possible that the a-level set A, can be an empty set for some a € [0, 1]. Therefore, when we study the
properties that deal with more than two fuzzy sets, we cannot simply present the properties by saying
that they hold true for each « € [0, 1], since some of the a-level sets can be empty. In this case, we need
to carefully treat the ranges of membership functions.

Example 2. Continuing from Example 1, we see that 0.5 ¢ R(C ;). However, we still have the 0.5-level set
Ags. It is clear to see that Ags = A s, where 0.45 € R(E ).

Let f : R — R be a real-valued function defined on R, and let S be a subset of R. Recall that
the supremum sup, ¢ f(x) is attained if and only if there exists x* € S such that f(x) < f(x*) for all
x € S with x # x*. Equivalently, the supremum sup, ¢ f(x) is attained if and only if

sup f(x) = max f(x).

xes x€S
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Define a* = sup R(& ;). If sup R(¢ z) = max R (&), then A+ # @. If the supremum sup R(& ;)
is not attained, then A,+ = @. For example, assume that

1-1, ifx>1
0, if x < 1.

It is clear to see that R({ ;) = [0,1). In this case, the supremum sup R(¢ ;) is not attained.
However, we have supR(z) = 1 = a*. In this case, the 1-level set Ay = A = @,

sincea* =1 ¢ R(G ).

Proposition 1. Let A be a fuzzy set in R with membership function ¢ 5. Define a* = sup R(¢ 5) and

I, — [0,a*), if the maximum max R (G z) does not exist; 3)
A7) [0,a%],  if the maximum max R (¢ z) exists.
Then A, # @ forall w € 14 and A, = @ for all & & 1. Moreover, we have R(¢ ;) C 14 and
A= | A= U Ay 4)

{a€l;:a>0} {a€R(Z 5):a>0}

The interval I ; presented in Proposition 1 is also called an interval range of A. We see that the
interval range I ; contains the actual range R(¢ ;). The role of interval range I ; can be used to say
Ay #Qforalla € Iand Ay = @ foralla ¢ I;. We also remark that R(¢z) € I; and R(&;) # I in
general, since the range R( ;) can be some disjoint union of subintervals of [0, 1].

Example 3. Continuing from Example 1, recall that R( ;) = [0.1,0.45] U (0.55,0.9]. We also see that
sup R(& ;) = a* = 0.9. Proposition 1 says that 1 ; = [0,0.9] # R(E z). It is clear to see that A, # @ for all
w€l;=10009]and Ay =Dforalla & I; = [0,09].

Therefore, the interval I ; plays an important role for considering the a-level sets. In other words,
the range R (¢ 4) is not helpful for identifying the a-level sets.

Recall that A is called a normal fuzzy set in R if and only if there exists x € R such that ¢ 4 (x) = 1.
In this case, we have I; = [0,1]. However, the range R(( ;) is not necessarily equal to [0,1] even
though A is normal.

Let A be a normal fuzzy set in R. The well-known decomposition theorem says that the
membership function ¢ ; can be expressed as

Galx)= sup a-xz (x)= sup a-x; (x),
ael0,1] ae(0,1]

where x ; is the characteristic function of the a-level set A,. If A is not normal, then we can similarly
obtain the following form.

Theorem 1. (Decomposition Theorem) Let A be a fuzzy set in R. Then the membership function & ; can be
expressed as

Cilx)= sup a-xz (x)= max a-xz(x)
ER(Ez) “ER(G4)
=supwa-x; (x) =maxa-x; (x),
aely ¢ a€ly ‘

where 1 ; is given in (3).
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3. Arithmetics Using the Extension Principle

The generalized extension principle for non-normal fuzzy sets has been extensively studied
in Wu [15]. In this paper, we use the extension principle to study the arithmetics of a vector of
fuzzy intervals.

We denote by Fc(R) the family of all fuzzy sets in R such that each @ € F.(R) satisfies the
following conditions.

o  The membership function ¢; is upper semi-continuous and quasi-concave on R.
o  The O-level set dg is a compact subset of R; that is, a closed and bounded subset of R.

Each i € Fc(R) is also called a fuzzy interval. If the fuzzy interval 4 is normal and the 1-level
set 41 is a singleton set {a}, where a € R, then i is also called a fuzzy number with core value a. It is
well-known that the a-level sets of fuzzy interval 4 are all closed intervals denoted by d, = [ak,a{] for
« € [0,1], which can be regarded as a closed interval with degree a. This is the reason why we call 7 as

a fuzzy interval.
Example 4. The membership function of a trapezoidal fuzzy interval is given by

(r—al)/(a; —ab) ifat <r<ay

&a(r) = @ ifag <r<ap
Y (@Y —r) /(@Y —ay) ifay <1 <aY
0 otherwise,

which is denoted by i = (d*;aL, ay,as, au). It is clear to see that
R(Ca) = [0,d* ] and «* = supR({z) =d*.
Proposition 1 says that the interval range is given by
Ia = [0,a%] = [0,d"] = R(a).
Ifoa & Iz = [0,d*], then the a-level set d, = @. For a € I, the a-level set d, = [ﬁk,ﬁ},ﬂ is given by
L

ik = (1 —a)at 4 aay and 3¢ = (1 — a)a¥ + aa,. )

Letx = (xq,---,xy) and y = (y1,- - - ,¥n) be two vectors in R”. Then, the arithmetics of vectors x
and y are given by

x+y=(x1+y, -, Xn+Yn)

x—y=(X1—Y1," ", Xn —Yn)

Xey =x1y1+ -+ XnYn-
Let 4 and b be two vectors of fuzzy intervals given by

3 — (ﬁ(l),ﬁ(z),. .. ,g(”)) and b = (E(l),l}(z), e j(")) )

Based on the extension principle (abbreviated as EP), we study the arithmetics of a and b by
considering the scalar product 4 ®gp b, the addition a ®p b and the difference a Sgp b. Given the
aggregation function 2 : [0,1]2* — [0, 1], the membership functions are defined below.

e Foreach z € R, the membership function of the scalar product a ®gp b is given by

Caoppp(2) = sup A (S (1), o (Xn), Sy () -+ Egon () - (6)
{(xy):z=xey}
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e Foreach z € R" and for the operation ® € {®, ©} corresponding to the operation o € {+, -},
the membership function of @ Ogp b is given by

Caoppp(2) = sup A (G (x1), -+, Gaom (), Sy (1), -+, En (W) - ?)
{(xy):z=xoy}

If the aggregation function 20 = min is taken to be the minimum function, then the above
arithmetics coincide with the extension principle.
Given any fuzzy intervals al, ... g and bW, ...  p(") in R, let

a; =supR(Gym) = sup &y (x) fori=1,---,n

xeR
and
Bi = sup R(Gyi)) = sup & (x) fori=1,-- -, n.
xeR
From Proposition 1, the interval ranges ;) of ) and L) of b(0) are given by
[ — [0,a;), if the supremum sup R(¢,)) is not attained ®)
R wf], if the supremum sup R (¢, ) is attained
and
Low — [0,B7), if the supremum sup R (& ) is not attained ©)
59 o, B;l, if the supremum sup R(&; ) is attained

We also write R; = R({,()) to denote the ranges of membership functions ¢ fori =1,---,n,
and write R,,.; = R(} ) to denote the ranges of membership functions ;) fori =1,---,n. Let

*

ot = sup A(aq, -+, a0p). (10)

(a1, 0y ) ER X+ X Ry,
Example 5. Continuing from Example 4, we consider the following trapezoidal fuzzy intervals

and
b = (0.9;4,5,6,7) and b'® = (0.8;3,4,5,6)

Then, we have
a] =08 = prand a5 =09 = pj,

and the interval ranges are given by

L) = [0,08] = o) = R1 = R(G0)) = Ra = R(Gz)

and
L =10,09] = I;u) = Ry = R(E,0) = Rz = R(Ez))-

a

From (10), by taking the aggregation function U as the minimum function, we have

ot = sup min {ag, -, 04}

(0(],4~,064)€’R,1 XX Ry

= sup min {a, ap, a3, 04} = 0.8
(a1,00,03,4 ) €[0,0.8] % [0,0.9] % [0,0.9] % [0,0.8]
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We denote by ICE@EP) and I(GEP) the interval ranges of  ®p b and @ ®p b, respectively, where Igp)

and IéEP) depend on a and b. The supremum of range of membership function is given by

supR (‘ga@EPB) = sup gﬁ@]gpi)(z>

zeR™

=sup sup  A(G (xa) e Gaon (Kn), Gy (Wa), -+ G (W) (17
z€R™ {(x,y):z=x0y}

= sup A (g, -, 00) =
(@1, @2 ) ERY X+ X Ry

We can similarly obtain
supR (éi@.@gpf)) =a*,

Therefore, the definition of interval range says that

I(EBEP) _ { [0,a*] if the supremum a* = sup R <§ﬁ®5p5) is attained

,a*) otherwise
and

I((DEP) _ { [0,a*] if the supremum a* = sup R (Cécagpﬁ) is attained

[0,a*) otherwise.
Proposition 1 says that
(5 ®Ep B)a #+ Qfora € Iéfp) and (5 ®rp B)“ = Qfora ¢ Ié)EP)

and
(a0ppb), # @fora € ISP and (a@ppb), = D fora ¢ 17,

Example 6. Continuing from Example 5, we take the aggregation function 2 as the minimum function.
The membership function of scalar product (@), 32y @gp (b1, b)) is given by

8(am,22) 85 (60 52)) (2)

= sup min {&;a) (1), & (x2), &0 (1), g (v2) }
{(x1,2,91.2):2=(x1,%2) 8 (y1,y2) }

and it is a continuous function. Therefore, the supremum
08 =a* =supR (C (ﬁ(l),ﬁ@))@EP(B(l),E(Z)))
is attained. This says that the interval range Igp) of scalar product (@1, 3?) @gp (b, b)) is given
I(EBEP) =1[0,a™] =[0,0.8].
By considering the a-level sets, we also see that
((a(1>,a<2)) ®Ep (13(1),5(2)))“ £ @fora € IFP) = 0,08

and
(@,a®) @ep (31,6)) =0 fora ¢ 157 = [0,08].
o
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The membership function of addition (@V),a2)) @gp (b),5(?)) is given by

S 4@ pp () 520 (21, 22)

sup
{(x1,x2,y1,92):(21,22) = (x1+x2,y1+y2) }

min {&;a) (1), &0 (x2), &) (1), G (W2) } -

The interval range IE(BEP) of addition (a1),a2)) @p (b1, b)) is given by

1P = [0,4%] = [0,0.8].

By considering the a-level sets, we also see that

(@,a®) @ep 40,5%)) # @ fora € 157 = [0,08
and
(@,a%) &y (;,(1),;;(2)))a = @fora ¢ I'FY) = [0,03.
The membership function of difference (@1),a®)) cgp (b0, 5?)) is given by

8 (a,42)e e (60 5@ (21, 22)

= sup
{(xrx2y192):(z1,22)=(x¥1—x2,91—V2) }

min {&a) (x1), &z (¥2), &) (1), G (W2) } -

The interval range I(@Ep) of addition (&1),a®) cgp (b1, b)) is given

157 = [0,4%] = [0,0.8].

By considering the a-level sets, we also see that

(@,2®) opp 6V, 52)) # @ fora e 18P = (0,08

and
(@,a®) epp 6, 57)) =0 fora ¢ 157 = [0,08].
44

For further discussion, we provide a useful lemma.

Lemma 1. (Royden [16], p. 161) Let X be a topological space, and let K be a compact subset of X. Let f be a
real-valued function defined on X. Then the following statements hold true.

(i) If f is upper semi-continuous, then f assumes its maximum on a compact subset of X; that is, the supremum

is attained in the following sense:
sup f(x) = max f(x).

xeK xeK

(ii) If f is lower semi-continuous, then f assumes its minimum on a compact subset of X; that is, the infimum

is attained in the following sense:
inf f(x) = min f(x).

xeK xeK

Proposition 2. Suppose that the aggregation function 2 : [0,1)2* — [0, 1] is given by

min{ay, - ,a,}, ifa; € Rifori=1,---,2n
Q[([Xl,-..’wzn): . |
any expression, otherwise,
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Let

Then, the following statements hold true.

(i) We have
ot = min{ai‘p e ,(X;klrﬁ’{/' e /,sz}

(if) The supremum sup R(€5®EPB) is attained if and only if the supremum sup I* is attained, and the
supremum sup R(C5,, 1) is attained if and only if the supremum sup I* is attained.

§®pr
(iii) We have
(EP)

_ 7+ _ f(EP)
o =T=1

I oF),

Proof. It suffices to prove the case of a ©p b, since the case of @ ®gp b can be similarly obtained.
From (11), we have

ot = sup min{ay, -+ ,a,} > min{aj, -, a5, B1, -, Bn}-
(Nl,-~~,062n)€R1X"'XR2;1

On the other hand, from (11) again, we also have

o =sup  sup  min{Ga)(x1), -, Eaem (xn), S (1), S Cgon (Yn) } (12)
z€R™ {(x,y):z=xoy}
<sup sup min{aj, -,y By, Byt =min{ay, - ay,B1, 0 Bt

z€R™ {(x,y):z=xoy}

which proves part (i).

Suppose that the supremum sup R (C B) is attained. From (11), there exists z* € R" such that

aOfrp

« )SUP }min{§a<1>(x1)w“ s Caon (%), Sy (V1) -+ oy (yn) } = ™. (13)
X,y ):z*=xoy

Since the set {(x,y) : z* = x oy} is closed and bounded, i.e., a compact set, and the functions ¢
and §;;) are upper semi-continuous, Lemma 1 says that the supremum in (13) is attained. In other
words, there exists (x*,y*) such that

Catng) (Xny) = & 01 Tyg) (Y, ) = &” for some ng € {1,--- ,n}. (14)
For convenience, we write D‘Z+i = B, x;*lJrl. =y and an+i) = p) for i = 1,--- ,n. Then, from (13)

and (14), we have
min {Cﬁ(l) (xik)/ Tty gﬁ(”) (XZ), gﬁ(’l+1) (le+1)/ Tty CQ(ZH) (x;n)} = “*/ (15)

and we can say that {(,)(x;;,) = « for some n; € {1,---,2n}. Part (i) also says that a* = a;;, for
some ny € {1,---,2n}. Then, using (15), we have

*

Wy = 0" = Gy (Xp,) < Cany) (X,) < a7,

which says that the supremum a;;,, = sup R(¢ (1)) is attained. Using (8) and (9), we obtain I, =
[0, a7, ] is a closed interval, which also says that I* = [0, a;,, ]. Therefore, we conclude that the supremum
sup I* is also attained.

On the other hand, suppose that the supremum sup [* is attained. Then, we have

I = [0,ay,] = L(n, forsomens € {1,---,2n}
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and

a,’;s = min {a},---,a%,} = min{a,---,a},Bi,---,BL} = a,

which also says that the supremum a;;,, = sup R(G.5)) is attained; i.e., there exists x;,, € R such that
o (X2.) = &, = a*. By referring to (12), there exists x° € R?" such that its n3-component is x°, and
a(m3) (Xng 13 y g p 13

= min { &) (67), -+ Gy (¥5,) = &%+ Gy (%3,) }
= min { &) (x7), -+, G0 (x0), &gy (V1) -+, Sy (W) }

where y; = x,, ;fori =1, -, n. In this case, we have z° = x° o y°, which says that the supremum
sup R (§ a@EPB) is attained, which proves part (ii). Finally, part (iii) follows immediately from parts (i)
and (ii). This completes the proof. O

4. Arithmetics Using the Form of Decomposition Theorem

The differentiation and integrals of fuzzy-number-valued functions using the form of
decomposition theorem have been studied in Wu [17]. In this paper, we use the form of decomposition
theorem to study the arithmetics of vector of fuzzy intervals.

Let 4 and b be two vectors of fuzzy intervals with components 3*) and b)), respectively, for i =
1,---,n. Let

I = Loy N N Ly N gy N N I (16)

Then I* is not empty, since I, and [ are intervals with left end-point O fori =1, -- -, n. For
each & € I*, the a-level sets of ") and b(?) are nonempty and denoted by

al) = [a# i } and b\ = [bL bu}.

i Fin 1w’ “ix
We write
(#t 20+ k) = ak e R"and (a,afl, - al, ) = af R (17)
We also write
a = ﬁle) XX ﬁzgcn) = {ﬁ%au ﬁ%{x} X X {ﬁ%a/ ﬁ%x} (18)
and
Bo = B - x B = [Bh, B ] x - x (Bl Bl (19)

In order to define the difference 4 ©pr b, we consider the family {M, : a € I* with « > 0} that
is formed by applying the operation x — y to the a-level sets ﬁ,(xl) and ESZ) fori =1,---,n, where each
M, is a subset of R™. In this paper, we study three different families described below.

o  We take
M,;zéa—f)a:{x—y:xeiaandyel:)a}

to define a 69,1 b.

o  Wetake
M; = U Mélf) X oo X U M‘é”*) ,
{pel*:p=a} {pel*:p=a}
where Mgf) are bounded closed intervals given by

Mgf)—[mm{ ajg — bZLﬁﬁlLllg Eﬁ} max{ ajg — blLﬁ,lels bﬁ”
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fori=1,--- ,nto define d ©% b.
o  We take
My =M <o MU,

where M,gii) are bounded closed intervals given by
M,Sf_) = {min {ﬁﬁx — bk, a4 — EZLDE} ,max {ﬁf;x — bk, — EZLDEH

. . - + ~
fori=1,--- ,ntodefinea S b.

For ©pr € {8%7, 8% 6%}, based on the form of decomposition theorem, the membership
function of a ©pr b is defined by

‘:a@DTB(Z): sup “'XM;(Z)-
{w€l*:a>0}

Example 7. Continuing from Example 5, we have
I* = Loy N Ly N I N I = [0,0.8]N[0,0.9] 1 [0,0.9] N[0,0.8] = [0,0.8].
From (5), we have
iV = [ak,a8] = [(1—a) +20,4(1 — &) +3a] = [1+a,4 — a]
il = [k, al] = 201 — &) +3a,5(1 —a) + 4a] = 2+ a,5 —a

BV = [BE,BU ] = [4(1 — &) +50,7(1 — ) + 6a] = [4+a,7 — a]
(

B = [BL,BU] = [3(1 — &) +40,6(1 — &) +50] = [3+a,6 — a].
Then we have
a, = ay) xa?) = [ﬁﬁx,a%{x] x [ﬁﬁa,a}{a} = [1+a4—a]x[2+a,5—a]

and
Bo = B x B = |Bh L] x (B Bl ] = 4+ a7 —a] x 3+ a6 —a].

We consider three families
{My :aeI"witha >0} ={M, :a € (0,0.8]}
given below.
o We take

My =d,— by ={(x1,x2) — (y1,¥2) : (x1,x%2) € [1+a,4—a] X 2+a,5— 4]
and (y1,y2) € [A+a,7—a] x 3+a,6—a]}
= [—6+ 20, —20] X [—4+ 21,2 — 24]

or all « € (0,0.8]. The membership function of 3 ©%,.. b is given b
p prPbisg Yy

gﬁo%Tﬁ(Zl,Zg): sup & Xy (21,22) = sup a- xp- (21,22).
{a€l*:a>0} ae(0,0.8]
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Mo=| U My M),
{B€[0,08]:p>a} {Be[0,0.8:p>a}

where Mélf) and M}(ng) are bounded closed intervals given by

o  We take

= {mm{ulﬁ—ﬁ%ﬁ,dﬁg—f]ﬁ;} max{al/3 blﬁf”lﬁ 5”
min{(148) — (4+p), (4= B) = (7—p)} ,max{(1+p) — (4+p), (4= B) — (7= p)}]
(-3, 3] = {-3},

which says that M;;*) is a singleton set { =3} for all B € [0,0.8]. Similarly, we can obtain

Mézf) = [mm {ﬂzﬁ bhg, s — bzg} max {alﬁ brg s — bzﬂH = {1

forall B € [0,0.8]. Therefore, we obtain

My ={=3} x{-1} ={(-3,-1)} (20)

for all « € (0,0.8), which is a singleton set in R2. The membership function of & &% b is given by

Carr 5(z1,22) = sup zx~XM;(zl,zz) Sup @ X (z1,22)
bt {ael* >0} x€(0,0.8]
_{ 0.8 if(z1,22) = (=3,—1)

0 otherwise.

o  We take
My =M x M),

where M,Scl_) and M,Sf‘) are bounded closed intervals given by

M) = {min {altx bl A, — bm}/max{ﬂla bl A, — Elt,[xH ={-3}

and
2— .
M,SC )= [mm{“za D, B3g, — bZa}'maX{alzx Db, B3t — bzaH ={-1}.
Therefore, we obtain
My ={=3} x{-1} ={(-3,-1)} (21)
for all « € (0,0.8], which is a singleton set in R2. The membership function of & S5, b is equal to

membership function of 8 &% b.

In order to define the addition a ®pr b, we consider the family {M; : a € I* with « > 0} that

is formed by applying the operation x + y to the a-level sets afj) and E,Ef) fori=1,---,n, where each
M is a subset of R™. In this paper, we study three different families described below.

o  We take
M =a,+by={x+y:x€aandy € b,}

to define a ©}; b.
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o  Wetake

_ (1+) (n+)
MI-( U My )x~~~x( U Mﬁn ),
(eI pza} (el pza)

where Ml(;Jr) are bounded closed intervals given by

(i+) _ [,L L U u
My —{aiﬁjtbiﬁ,aiﬁ—i-biﬁ}

fori=1,--- ,nto define d &% b.
o  We take
M= MU e MU,

o

where MSJF) are bounded closed intervals given by
M) = [ak + oL, all + 011

w’

. . - + ~
fori=1,---,ntodefineda ®p  b.

For ©pr € {B%7, By ®hy}, based on the form of decomposition theorem, the membership
function of 4 ®pr b is defined by

‘gaeaDTB(Z): sup 04~XMI(Z).
{ael*:a>0}

Example 8. Continuing from Examples 5 and 7, we consider three families
{M} i aeI*witha >0} = {M] :a €(0,08]}
given below.

o  We take

M =a, +by = {(x,x2) + (y1,y2) : (x1, %) € 1+ a,4—a] x [2+a,5—q]
and (y1,y2) € [4+a,7 —a] x [3+a,6—a]}
= [5+2a,11 — 2a] x [5+ 2a,11 — 20

or all & € (0,0.8]. The membership function of 3 &% b is ¢iven b
p DT 8 Y

(’,‘ﬁ@%TB(zl,zz): sup IX'XM;(Zl,Zz)I sup zx'XM;(zl,zz).
{ael*:a>0} «e(0,0.8]

M =( U Mél”)x( U M;Z“),
{B<[0,08]:>a} {Be[0,0.8]:>a}

where Ml(31+) and Mé”) are bounded closed intervals given by
1
M) = [aby + bl ath + 05| = (14 B) + (4+B), (4= B) + (7 — B)) = [5+26,11 - 2]
forall B € [0,0.8]. We also obtain

M — [agﬁ + by, a3l + béﬂ =[2+B)+B+pB),5-p)+(6—p)] =[5+2811-2p].
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forall B € [0,0.8]. Now, we have

U Mé”) _ U [5+28,11 — 28] =[5+ 24,11 — 24]
{B€[0,0.8]:8>a} {B€[0,0.8]:>a}
and
U MéH) _ U [5+2B8,11 — 28] = [5+ 2,11 — 24] .
{B€[0,0.8]:>a} {B<l0,0.8]:>a}

Therefore, we obtain
My =[5+ 2a,11 — 2a] x [5+ 2a,11 — 24]
for all o € (0,0.8]. The membership function of & &% b is equal to the membership function of  ©% ;b
o Wetake
M;!_ _ M§£1+) % M§¢2+)/

where M,SCH) and Mfﬂ are bounded closed intervals given by
M = [a%a bk al ¢ bﬁx} =[(1+a)+(A+a),(d—a)+ (7 —a)] = [5+2a,11 — 2a]
and

MEH = {aﬁa + b5, a8 + ng} =[2+a)+B+a),(5—a)+(6—a)] =[5+2a,11 —2a].

Therefore, we obtain
M; = [5+2a,11 — 2a] x [5+ 24,11 — 24]

for all o € (0,0.8]. The membership function of & &% b is equal to membership function of a &% b.

In order to define the scalar product of & and b, we consider the family {M$ : a € I* with a > 0}

that is formed by applying the operation x e y to the a-level sets a,(j) and E,Ef) fori=1,---,n, where
each My, is a subset of R. In this paper, we study three different families described below.

e  We take
M, =a,eb, = {xey:xe€a, andyeﬁa}

to define the scalar product a ®7,; b.
o  Wetake
My= U M
{Bel*:p>a}

where My are bounded closed intervals given by

— : sL gL U o U sL gL U o U
Mg = [mln{aﬁ obﬁ,aﬁ obﬁ } ,max {aﬁ obﬁ,aﬁ obﬁ H
to define the scalar product  ®%; b.
o  Wetake
M; = {min {i,,LC ebl,all e f),xu} ,max {ik ebl,alle BEH
to define the scalar product a ®}; b.

For @pr € {®%7, ®)1, ®+DT}, based on the form of decomposition theorem, the membership
function of a ®pr b is defined by

Cawprb(2) = sup &~ xmz(2). (22)
{ael*:a>0}
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Example 9. Continuing from Examples 5 and 7, we consider three families
{My a0 € I"witha >0} = {M; : « € (0,0.8]}
given below.

o  We take

My =3, eb,
={(x1,x2) ® (y1,y2) : (x1,x2) € 1+ wa,4—a] x 24 a,5—qa]
and (y1,y2) € [4+a,7 —a] x [3+a,6—a]}
={xy1 +x10: (x1,x) € [1+a,4—a] X [24+0a,5— 4]
and (y1,y2) € [A+a,7 —a] x [3+a,6—a]}
=[(14+a)d+a),d—a)(7—a)]+[2+a)(B3+a),(5—na)6—a)]
= [10+ 108 + 4,58 — 220 + o]

orall « € (0,0.8]. The membership function of & ®%.. b is given
1l h bership 1 Hr b is given by

Caws,b(21/22) = sup  a-xupe(z1,22) = sup a-xme(21,22)-
{ael*:a>0} x€(0,0.8]
o  We take
My = U M

{B€[0,0.8]:p>a}

where Mp is a bounded closed interval given by

15 of 42

M = [min {(#ﬁl}fﬁ + akghky, ALt + 512{555_{5} , max {ﬁfﬂﬁfﬁ + abgbly, ALl + agﬁzagg}]

=min{(1+p)(4+p)+2+B)B+B),(4-B)(7—-B)+(5-B)(6—B)},
max {(1+p)(4+p)+(2+B)B+pB),(4—B)(7—B)+(5-B)(6—B)}]
= [min {10+ 108 + 2,58 - 228+ 2}, max {10 + 108 + p2,58 — 22 + f*}

= [10+ 108 + 2,58 — 22 + |
forall B € (0,0.8]. Therefore, we obtain

Mi= U Mg= U [10+108+p?58 226+
{B€[0,0.8]:p>a} {B<€[0,0.8]:p>u}

- [10 10 + 42,58 — 220 + az] .

The membership function of & ®% 1 b is equal to the membership function of 3 ®%1 b.
o Wetake

o : ~L 7L ~L 7L ~U7U ~U U ~L 7L ~L 7L =U7gU ~U tU
Mtx - [mln {ullxbltx + aZabZa/ alﬂéblﬂ( + a2¢xb2a} ,Mnax {alabla + a2ab2al alixblzx + a2ab2a}} .

Then, we obtain
M = [10 +10a + a2, 58 — 224 + az} .

Therefore, the membership function of  ®1,1. b is equal to the membership function of & ®% . b.
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We denote by IéEDT) and IgDT) the interval ranges of membership functions ¢, 5 and ¢

for ©pr € {®pr, SDT}, respectively, where I((@DT) and Ié)DT) depends on a and b. We consider the

supremum of range of membership function &5, _j as follows:

EGDTB

supR (ga@amfa) =SUpPGse,,.5(2) =sup sup a-xmy(z). =supl* =a’. (23)
zeR z€R {a€l*:a>0}

We can similarly obtain
supR (giQDTB) =sup[* =a°.

Therefore, the definition of interval ranges says that

(DT _ [0,4°] if the supremum a® = R (Ci@amf)) is attained (24)
© 0,4°) otherwise.
and
(D7) _ [0,4°] if the supremum a® = R <§5@DT5) is attained (25)
' [0,4°) otherwise.
Proposition 1 also says that
(a®prb), #Dfora e I((%DT) and (A®prb), = fora ¢ IéBDT)
and

aGprb @forzxel(,DT)and iaGOprb) = @fora IE\DT).
14 © 4 @

Proposition 3. Let a1, ,a(" and bV, ... ,b(") be fuzzy intervals. Suppose that the supremum sup I*

in (16) is attained. Then
1lPT = 1P — 1 — [0,a°].
Proof. Recall the definition I, and I in (8) and (9), respectively, fori = 1,---,n. It is clear to
see that
a® =supI* =min{aj, -, a5, B, -, Bn}- (26)

Since sup I* is assumed to be attained, it follows that I* = [0,a°]. By referring to (23), we can

take z € M}, C R, which says that the supremum «° is attained for the range R (& . ). Therefore,

a®prb
from (24), we have I<(,BDT) = [0,a®] = I*. We can similarly obtain IC(DDT) = [0,a®] = I*. This completes

the proof. O
More detailed properties will be studied separately in the sequel.

Example 10. Continuing from Examples 7-9, we consider the interval ranges I(EQDT), IéaDT) and I(GDT) of
a®prb, a®pr b and a ©pr b, respectively. Recall that I* = [0,0.8]. From (23), we see that «® = 0.8.
Proposition 3 says that

ICSBDT) _ Ie(aDT) _ I(GDT) =10,0.8].

Therefore, it follows that

(a®prb), # 9, (éEBDTf))[X #+ @ and (ﬁ@DTf))a # @ for o € [0,0.8]

and
(5 ®pT b) =Q, (5 ®pT B)a = @ and (5 OSpT B)a =Qfora ¢ [0,08]
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5. Difference of Vectors of Fuzzy Intervals

Let 4 and b be two vectors of fuzzy intervals with components ) and b/, respectively, for i =
1,---,n. Here we study the a-level set of 4 ©Orp b that is obtained from the extension principle,
and the a-level sets of a ©pr b for ©pr € {6%, &%, &%} that are obtained from the form of
decomposition theorem.

5.1. Using the Extension Principle to Study the a-Level Sets of 4 ©pp b

Given any aggregation function 2 : [0,1]>" — [0,1], recall that the membership function of
difference a ©fp b is defined by

Caoppp(@) = sup  A(Ea(x1), -, o (), Sy (Y1), -+, Gy (Yn))

{(xy)z=x-y}

for any z € R". Let I(@EP) be the interval range of 4 ©pp b. The a-level set (4 ©gp b), of a ©p b for
x € I(eEP) can be obtained by applying the results obtained in Wu [11] to the difference a ©gp b, which
(EP)

is shown below. For each « € I, * with « > 0, we have

(@eepb), = {x—y A (a0 (x1),++  Saon (¥n), Sy (Y1), -+ S (yn)) > ) @7)
= {1 =y, —yn) A (Sao0 (x1), -+, Saon (), Sy (1), -+, Egon (Ym)) =}
The 0-level set is given by
(aoppb),=d)—bg={x—y:xcapandy € by}.

Moreover, for each a € I(eEP), the a-level sets (4 ©pp B),X are closed and bounded subsets of R™.
Now, the aggregation function 2 : [0,1]?" — [0,1] is given by

min {aq, -+, a0}, ifa; € Rifori=1,---,2n
any expression, otherwise.

A(ag, -, 00) = {
i (EP) _ 1« (EP) _ 1« . i
Proposition 2 says that I.,;” © = I*. Therefore, for eacha € [.;"’ = I*, we have (A6ppb)y # O,

171,(;) # @ and E,Sf) #@foralli=1,---,n. Now, for each a € I(eEP) with & > 0, using (27), we have

Xn), &g (Y1), -+ /G yn)}zf"}

zxforeachz—l - my

(aoppb), = {x—y :min {0 (x1), -+, s
= {x—y: &u(x) >0¢and§b (y
= {(xl = Y1, Xn —Yn) 1 X € al) = [am,gm
and y; e by = [bL bu} foreachi=1,--- ,n}

)
i) =
(28)

w’ i

_ ~L Tu =u 7L
- |:allX bla/ala blﬂé:| e X [anzx - bnwana - bna} .

{ocel(eEP) >0}

_[-L 7 AL pu sU L
—{”10_1710/”10 bw} "'X[”no b0, 850 — bo | -
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Regarding the components ) and b(?), let Ig)(EP) be the interval range of ") ©pp b(). From
Proposition 2, we can similarly obtain Ig)(EP) = Lo N I Fora € Ig)(EP), we also have
(a9 o EU))“ = [ah — B2l —Bf] fori=1,- m. (29)

Therefore, from (28) and (29), for a € I(GEP), we obtain

(5 OFp B)a = (ﬁ(l) OFEp E(l)>lx X o+ X (ﬁ(n) OFp E(”)> .

o

The above results are summarized in the following theorem.

Theorem 2. LetdV),---,a" and bV, - .. 6" be any fuzzy intervals. Suppose that the aggregation function
22 [0,1]%" — [0,1] is given by

rnin{ocl,.. . ;"‘Zn}r if(xl- € Rl’fOT‘i =1,---,2n
any expression, otherwise,

Q[(txll... /D‘Zn) :{

Then, we have the following results.

(i) Let Ig)(EP) be the interval range of 3')) Spp bV fori =1, ,n. Then, for each a € I(@i)(EP), we have
(a0 cppb®) = [ak - Bl al; — 8]

EP) — 1o N L.

T a

We also have Ig)(

(i) Let I(@EP) be the interval range of & Spp b. We have

1D 1OEP i =1, and I = Loy ALy O Ly 00 .

For each o € I(eEP), we also have

inr Yin T

i opp bV = |ak — Y, &l — bk
24

and
(a@pr)a— (11 Orpb )ax X (11 ©fpb )a'

Remark 1. When @V, --- a0 and b, - .., b(") are taken to be fuzzy numbers instead of fuzzy intervals, it
follows that

Lo =TIy = 19 — 1P — (0 1) foralli = 1,- - ,m.

a

Therefore, Theorem 2 says that

(acepb), = (51(1) Okp 5(1))“ X oo X (ﬁ(") Orp E("))
= [ﬁh—l}ﬁuﬁﬁ_éﬁ} S e X |:ﬁL _pu U L

forall x € [0,1].
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Example 11. Continuing from Examples 5 and 7, Theorem 2 says that

(‘7(1) SEp E(l))a = [“m by, iy — bltx}

=[1+a)—(7—a),(4—a) — (4+ua)] = [-6+ 20, —24a]
and
(a2 eppb®) = [a5, — B, a5, — 5, |
=[2+a)—(6—0a),(5—a)— (3+a)] = [~4+ 2,2 — 2]
and

(acepb), = (ﬁ(l) Orp E(”) x (5(2) Srp E(Z)) = [~6+ 20, —2a] X [~4+ 20,2 — 2]

14

for a € [0,0.8]. Moreover, we have (a ©gpb), = @ for a ¢ [0,0.8].

5.2. Using the Form of Decomposition Theorem to to Study the a-Level Sets of & S% 1 b

Leta®, ... a0 and bV, ... 5(" be fuzzy intervals. The family {M, : « € I* fora > 0} is
given by

I = Iﬁu) n---N Iﬁ(n) N 15(1) NN IE(”) and M; =3, — b,.

We see that ﬁgf) # @ and E,Sf) # @Qforeacha € [*and fori =1,--- ,n. Now, fora € I* witha > 0,
we have

My —by={x—y:xca,andy € b,}

a,
{ — Y1, X — Y1) X € al) — [ﬁf&,ﬁ% and y; € i) — {bm,bm] fori=1,--- ,n} (30)
= |ak

Elzx'alzx bllX] e X { brLzlou ~lﬁla E%{X] .

Based on the form of decomposition theorem, the membership function of & ©%; b is given by

gg@%Tﬁ (z)= sup «a XMy (). (31)
{ael*:a>0}
Let I(ODT) be the interval range of 4 &% b. The a-level sets (3 ©%1 b), of 6% b fora € I(ODT)

are presented below.

(eDT)

Proposition 4. Suppose that the supremum sup I* is attained. Then I, = I* and

(ﬁ @%T B)a = Mo? = [ﬂltx bla/ala blzx] e X {d%a - B;%{xrﬁrl;[oc - Eﬁa} (32)
foreach o € I*.

Proof. We first consider « € I* with « > 0. Given any z € M, , we see that §a90 5(z) > a by (31).
Therefore, we obtain z € (a ©%7 b),, which proves the inclusion M, C (d 6% b)a.

For proving another direction of inclusion, it is clear to see that {M, : « € I* witha > 0} isa
nested family. Given any z € (4 597 b),, i.e., ‘:éogTB(Z) >uw, letd = gﬁ@%rﬁ(z)' Assume that & > «.
Lete = & —a > 0. According to the concept of supremum, there exists a9 € [* satisfying z € M, and
& — € < ap, which implies a < ag. This also says that z € M, , since M,, C M, by the nestedness.
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Now, we assume that & = a. Since I* is an interval with left end-point 0, given any a« € I* with
a > 0, we can consider the sequence {5} ; in I* satisfying 0 < a5 T a« with « > as € I* for all 5. Since
i) and b are fuzzy intervals fori = 1,- - - , n, it is well-known that

ﬁ,gf) = ﬂ a,&? and E&i) = ﬂ E,Efj fori=1,---,n.
Since

we can obtain

Since M, = a, — b,, we conclude that

[e9)

M, = ﬂMﬂfs fora € I* witha > 0and 0 < &g T a with o > a5 € I* for all s. (33)
s=1

Let es = a — a5 > 0. According to the concept of supremum, there exists ay € I* satisfying
z € M;O and & —e; = & — €5 < g, which implies #g > as € I*. This also says that z € M,_ by the
nestedness for all s. Therefore, we conclude that z € NgZ; M. From (33), it follows that z € M, .
Therefore, for & € I* with « > 0, we obtain

(ﬁ Q%T B),X - [alzx blwalzx bltx} e X [ 7% - b1l111x’ ~rl;[4x - bL } .

For the 0-level set, since I, (eDT) _

show that

= I* from Proposition 3, by referring to (4), it is not difficult to

(acprb), =d U (aeprb), | =d U (asprb),
{IXGI QDT k>0} {0(61*1“>0}
= [”10 b, aty — bw] e X {ﬁ;&o bro, dso — b, }

This completes the proof. [

Now, fori=1,--- ,nand fora € Loy NI » with « > 0, we take

m{™ =l — 8 = [ak,al] - [BL,BY] = [ak, — Yl — BL] . (34)
From (30), we see that
My =M xox MU c R (35)

Let a!) DT b() be obtained using the form of decomposition theorem based on the family
{M,Sf*) ta € I* with a > 0} that is defined in (34). Let I@)(QDT) be the interval range of a® o Shr b,
Suppose that the supremum sup (I N I ) is attained for eachi =1, - -, n. Then each I N ;) is a
bounded and closed interval with left end-point 0 fori =1, - - - , n. In this case, it is also clear to see
that I* is a bounded and closed interval with left end-point 0; that is, the supremum sup I* is also

attained. By referring to Proposition 4, we can similarly obtain I, BDT) _ | 50 N I and

(a0 ey b®) =M™ = |af — bl al; — Bl (36)
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fora € Loy NIz andi=1,---,n, which also implies
(5 Sy B)a = (5(1) ). E(l))a N (g(”) ). E(ﬂ))LY
for each & € I*. The above results are summarized below.

Theorem 3. Let V), --- ,a" and b1, ... ,b(") be fuzzy intervals. Suppose that the family {My : & €
I* for « > 0} is given by

I* = I-(l) n---N Iﬁ(”) N 15(1) n---N IE(”) and M,; = ﬁ,x —Ea.

Let I CPT) be the interval range of 4 591 b, and let I(@i)(QDT) be the interval range of 3" &%, b1 for
i=1---,m
(i) Suppose that the supremum sup I* is attained. Then I, COT) _ 1 and
(i @%T B)lx = |:u10( bla'altx blrx} e X [ﬁﬁa - Ei%[alﬁga - Bﬁa}

foreach o € I*.
(ii) Suppose that the supremum sup (I N Iy ) is attained for eachi =1, - - -, n. Then

19D _ 1 ALy and (ﬁ(i) %7 E(i)>a - [51.L _E,U,a}i—faﬂ

mw 1w

foreach a € Ii) N Iy and eachi =1, -+ ,n, and

160D = 1 and (3 S B), = (20 S BV - (a0 0 B9

o

foreach o € I*.

Remark 2. From (8) and (9), we see that zf the supremum sup R(& ) ) and sup R(Cj)) are attained, then I
and Iy are closed intervals for all i = 1,- - -, n, which also say that the supremum sup I* and sup(L;;) N I))
fori= 1, -+ nare attained.

Example 12. Continuing from Example 7, part (i) of Theorem 3 says that
(aeprb), = {“m Dl Ay — bla} [ﬂzlx Bl By — bzlx}
= [—6+ 20, —2a] X [—4+ 20,2 — 24]
for & € [0,0.8]. Moreover, we have (a S5, b), = @ for a & [0,0.8)].

5.3. Using the Form of Decomposition Theorem to to Study the a-Level Sets of 4 ©% 1 b

Let ﬁ(l), e ,ﬁ(”) and E(l), cee, b() be any fuzzy intervals. The family {M, : a € I* fora > 0} is
given by
I* = I~(1) NN Iﬁ(n) N IB(U NN IE(”)

M; = U M| = x J My, (37)
{per >} {perp>a)

and
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where Mgf) are bounded closed intervals given by

My~ = |min {af; Bl af — 5} | max {aly — Bl alf ~ B} }|

fori =1,---,n. Based on the form of decomposition theorem, the membership function of 4 S}, b is
given by

Cacs,b(2) = sup &y (2).
{ael*:a>0}
Let I(e* PT) be the interval range of 3 ©% 1 b. Here we study the a-level sets (3 ©% b), of S5, b
fora € I(@*DT).
Fori=1,---,n,we write ) (i)
1—) 1—
NT= U Mg,
{pel*:p=za}

It is clear to see that {No((i_) :ow € I* for a > 0} is a nested family. Since I* is a bounded interval
with left end-point 0, using the nestedness, we can show that

NG = N No(if) fora € I* witha > 0and 0 < «, 1 « with a,, < « for all n. (38)

n=1

From (37), we also see that

Using (38), we can also obtain

My, = (| M,, fora € I* witha > 0and 0 < a,, T & with &, < a for all n. (39)

n=1

Suppose that the supremum sup I* is attained. By applying (39) to the argument in the proof of

Proposition 4, we can show that I(e*DT) = I" and

(achrb), = My = NI x - NI

£ (*DT) _ 1«
orany « € I =TI~ ‘ ' ‘ '
Now, we consider the difference () DT bl of components i) and b fori=1,--- ,n. Using

the form of decomposition theorem, the membership function of (" S b1 is defined by

Cater 50 (2) = sup - x i)(2).
{acl*:a>0} *

Let I(@i)(*DT) be the interval range of a?) bT b(). We also study the a-level sets (4" b b)),
of 3 %, b for a € Ig)(*DT). Suppose that the supremum sup(I) N ;) is attained. Using the
argument in the proof of Proposition 4 again, we can obtain Ig)(*DT) = L N Iy and

(ﬁ(i) St E(U)a = No((i_)

*DT)

for any a € 11/*PT) = Lz N I

In order to obtain the compact form of the a-level sets, we propose a concept below.

Definition 1. We say that  is a canonical fuzzy interval if and only if @ is a fuzzy interval such that & and

@l are continuous with respect to « on I.
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Now, we assume that 41, - -, 4™ and b, -, 5" are any canonical fuzzy intervals. Let
¢F(B) = min {ﬁiL/z by, iy E%} and Z'(B) = max{ af — bjg, ajf — b ,B}

Then M = [¢F(B). cY(B)].

We also see that ¢ ZL and { lu are continuous functions on I*. Then, for « € I* with & > 0, we can obtain

NT = U M= U [

{pel:p>n} {pel*:p>u}
- i L u
- | O, 206)

— pL aU _ pu al, — L a4 — Y
l{ﬂerlrll/?m} mln{ ip — bip, g — /3} {ﬁel}laﬁxm} max {alﬁ big, dig blﬁ}] .
The above results are summarized below.
Theorem 4. Let ), .- ,a" and bM), -, 50" pe any fuzzy intervals. Suppose that the family { My

I* for « > 0} is given by
I* = I-(l) NN Iﬁ(,z) N 15(1) NN IE(")

and
- = (1-) (n-)
M“—< U Mﬁ )X"'X( U Mﬁn ),
{Ber*:p=a} {Bel*:p>a}
where Ml(;'*) are bounded closed intervals given by

Mg_) = [mm{ iB— 15/‘71‘% - E}é},max{ﬁfﬁ 1/5, zﬁ b%H
fori =1,---,n. Let I(*DT) be the interval range of  ©% 1 b, and let I(Z)(*DT) be the interval range of
ald) bT p(i) forz =1,

(*xDT)

(i) Suppose that the supremum sup I* is attained. Then I = I* and

(achrb), =M, = ( U Mf;—>) X x ( U Ml(%"_))
{per:pa} {per:p=>a}

foreach o € I*.
(ii) Suppose that the supremum sup (L N Iy ) is attained for eachi = 1,-- -, n. Then

196PT) _ 1 ety and (a0 ey 50) :( U Mg>)

{pel:p=a}
foreach o € Ii) N Iy and eachi =1, -+ ,n, and

15PT) — 1" and (acphy b), = (ﬁ(l) Shr E(U) XX (ﬁ(”) Spr E(”))
14 14

foreach o € I*.
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Assume that a1, ) and 5, ... 5(1) gre canonical fuzzy intervals. Then, fori =1,--- ,n, we
have

M) — _ploau _pu R
{ﬁeH@za} B [{ﬁerﬁ1?>a}mln{ aig — Yig 1/5 ,3} {ﬁerﬁ?/sxza}max{alﬁ i lﬁ ﬁ}

- {mm{{ﬁelﬁ?m}( ~55). {ﬁerflyﬁla}( i _E%)}’

max {{ﬂer}}agéa} (ﬁLﬁ - ElLﬁ) , {ﬁer}rlaﬁxM} (ﬁ% - E%) H
that are bounded and closed intervals.
Example 13. Continuing from Example 7 by referring to (20), part (i) of Theorem 4 says that
(36hrb), =My = {(=3,-1)}
for a € [0,0.8]. Moreover, we have (a &5, b), = @ for a & [0,0.8].

5.4. Using the Form of Decomposition Theorem to Study the a-Level Sets of &, b

Leta®,..-,a™ and bW, .. b pe any fuzzy intervals. The family {M, : a € I* fora > 0} is
given by
I = Layn---N Id(”) N 15(1) n---N IE(”)
and
My = M) s x M),

where M,Eff) are bounded closed intervals given by

M) = [mm{ — bk, a4 Eg} max{ — bk, a4 Eg”

ZDU ZDU

fori =1,--- ,n. Based on the form of decomposition theorem, the membership functions of & @BT b
and () ol b fori=1,--- ,nare given by

Gop 5(2) = sup o xy (2)
{ael*:a>0}
for any z € R" and
Catat, 5 (2) = sup a-x, ao)(2)

{ael*:a>0}
(+DT) and I( )(+DT) be the interval ranges of a 9+ band al) o E(i),
(+DT) and

. We first provide some useful lemmas.

for any z € R, respectively. Let I
respectively, fori = 1,- - -, n. Herein we study the a-level sets (4 &%, b), of S}, b fora € I
the a-level sets (77 Sy b®), of alt) Sy b fora € I( i(tDT)

Lemma 2. Let I be a closed subinterval of [0,1] given by I = [0, ] for some 0 < v < 1. Let {* : T — Rand
g : T — R be two bounded real-valued functions defined on I with {*(a) < Y (a) for each & € I. Suppose
that the following conditions are satisfied:

e lisan increasing function and Y is a decreasing function on I;
o tand Y are left-continuous on I\ {0} = (0,7].
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Let My = ["(a), Y ()] for & € 1. For any fixed x € R, the function

am:{o' A

a-xm,(x), ifaelwitha >0
is upper semi-continuous on I.

Lemma 3. Let I be a closed subinterval of [0,1] given by I = [0, y] for some 0 < v < 1. Foreachi =1,--- ,n,
let ¢t : 1 — Rand ¢ : I — R be bounded real-valued functions defined on I with {F(a) < ¢ () for each
« € I. Suppose that the following conditions are satisfied:

o (Fareincreasing function and g}l are decreasing functionon I fori =1,--- ,n;
o Ctand Y are left-continuous on 1\ {0} = (0,7 fori=1,--- ,n.

Let MU ™) = [CE(a), ¢ (a)] fora € Tand fori=1,--- ,n, and let My = M) s M), For
any fixed x = (x1,- -+ ,x,) € R", the following function

awz{o' Ju=0

a-xm, (x), ifaelwitha >0
is upper semi-continuous on I.

Proof. Lemma 2 says that the functions

0, ifa=0
Gi(w) = @ X ) (x;), ifaelwitha >0
are upper semi-continuous on I fori =1,--- ,n. For r € I, we define the sets
F={aecl:{(a)>r} and F'™) = {a€el:Ci(a)>r} fori=1,---,n.

The upper semi-continuity of {; says that Fr(if) isaclosed set fori =1,--- ,n. For r > 0, we want
to claim F, = N}, Fr(if). Given any a € F,, it follows that x € My and a« > 1, ie., x; € Mgf;) and
a>rfori=1,---,n, which also implies {;(«) > r fori =1, - - ,n. Therefore, we obtain the inclusion
F C Nty F,(i_). On the other hand, suppose that & € Fr(i_) fori =1,--- ,n. It follows that x; € M,Sf_)
anda >rfori=1,---,n;ie,x € My and a > r. Therefore, we obtain the equality F, = L, F,(i_),
which also says that F; is a closed set, since each F,(i_) isaclosedsetfori=1,---,n. Forr =0, itis
clear to see that Fy = I is a closed subinterval of [0, 1]. Therefore, we conclude that { is indeed upper

semi-continuous on I. This completes the proof. O

Now, we assume that the supremum sup I* is attained. Then I* is a bounded closed interval
with IgDT) = I* by referring to Proposition 3. We also assume that al), ... a4 and bV, ... b1 are

canonical fuzzy intervals. Under these assumptions, we claim
(i ok, f)) = U My fora € IgDT) with a > 0. (40)
‘ {Bel*:p>ua}

Let

L(oc) = min{ﬁL L ﬁiua — Eg} and giu(a) = max{ﬁﬁx — biLa,ﬁg — Eh{}
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Then M = [¢}(a), ¢H(«)]. We also see that ¢' and ¢H are continuous functions on I*. Using
Lemmas 2 and 3, given any fixed x = (x1,-- - ,x,) € R”, the functions

g(a)—{o' ifa =0

a-xm,(x), ifael*witha >0

and
0, ifa =0
i(a) = N'XM(H(xi)r ifaoa € I*witha >0

are upper semi-continuous on [* fori =1,--- ,n.

Given any o € I(+DT) * with @ > 0, suppose thatz € (465, b),and z ¢ Mg forall p € I*
with B > a. Then - x My (z ) < wa forall B € I*. Since I* is a bounded closed interval, i.e., a compact

set,and {(B) =B - x M (z) is upper semi-continuous on I* as described above, the supremum of the

function ¢ is attained by Lemma 1. This says that

Cact,5(2) =sup £(B) = sup p- xyr (z) = maxp-xy(2) = p* - Xy (2) <a
bt Bel* el pel p

for some B* € I*, which violates z € (a &1, b),. Therefore, there exists By € I* with By > a satisfying
z &€ Mg, which shows the following inclusion:

(a eBTﬁ)a c U M
{Bel*:p=>a}
On the other hand, the inclusion
U M;c { R :sup By, (2) > } —{z€R": 5,0y 5(2) 2 a} = (aShy B
{Bel*:p>a} Bel

is obvious. This shows (40).
Suppose that the supremum sup (I, N I ) is attained. Then I, N I;; is also a bounded closed

interval. Therefore, we can similarly obtain I, ( WDT) = Lo N I and

(ﬁ(i) ohr E(i)) = U M/(gi_) fora € Ig>(+DT) with « > 0.
‘ {BeL iy NIy :p>a}
The above results are summarized below.

Theorem 5. Let @V, .- ,a" and b, - ,b\") be canonical fuzzy intervals. Suppose that the family
{My :a € T* for a« > 0} is given by

I* = I-(l) N---N Iﬁ(,z) N 15(1) n---N IE(")

a

and
My =M <o MU,

where M,Ef;) are bounded closed intervals given by

w/ IDL’

W i 52 52



Mathematics 2020, 8, 1614 27 of 42

(tDT) (1)(tDT)

fori=1,---,n Let I

be the interval range of & S}, b, and let I,
alt) ol bt forz =1,

be the interval range of

(1DT)

(i) Suppose that the supremum sup I* is attained. Then I, =I*and

(36brB) = U My= U (M7 xm)
{Ber*:p>ua} {Bel*:p>ua}

foreach o € I* with « > 0, and the 0-level set
0 ) o
{ael*:a>0}

(ii) Suppose that the supremum sup (L N I;)) is attained for eachi = 1,-- -, n. Then

10D = 1 NIy and (a0 S B0) = U M
{ﬂe[d(i)mll;(i)I/SZﬂé}

for each a € I N Iy with o > and eachi =1, - - - ,n. The O-level set is
(0 he5) =a| U (a9
{zxelﬁ(i)ﬁlﬁ(i) ZIX>O} &
Moreover, fori =1,--- ,n, we have

(i)
U M

{BeL Nl :p>a}
= pL zU _pu AL Bl s
= |:{ﬁel (l)rrr#n p3a} min { ip tﬁ,ﬂiﬁ bzﬁ} ’ {ﬁelﬁ(,-)rg?;) p5a) max {”z/& b:ﬂ/ B~ zﬁ}:|
— s . "'L - EL U B Eu ,
|:m1n {{56117({)12;;,) B>a} (a'ﬁ 15) {561 5>“} (a iB 1/3)

L fL AU _pu
max {{ﬁel max ﬁ>o¢}( b,-ﬁ) /{ﬁ€lﬁ<, aX /5>a}< iB bzﬁ) }:|

which are bounded and closed intervals.
Remark 3. We remark that, in general, we cannot have the following equality:
(ﬁ @BTB) = (ﬁ(l) ok, E(l)) X e ( a™ ot pl ) foreach o € T*.
14 o

When a1, .. ,a" and b, - .., b") are taken to be canonical fuzzy numbers instead of canonical fuzzy
intervals, it follows that

Ly = Iy = I9UPD — 1P — (0 1] foralli = 1,--- ,m

Then, we can have the following equality:

(5 @BT‘B)“ = (ﬁ(l) ohr E(l))a X - ( m gt pl ) for each o € [0,1].
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Example 14. Continuing from Example 7 by referring to (21), we have M, = {(—3,—1)}. Part (i) of
Theorem 5 says that

(aebrb) = U My= U {(=3-1}={(-3-1}
{pel*:p=a} {B<[0,08]:p=a}
for a € [0,0.8]. Moreover, we have (a &}, b), = @ for a & [0,0.8].
5.5. The Equivalences and Fuzziness

Next, we present the equivalences between & Sgp b and d 5,7 b in Theorems 2 and 3, respectively.

Theorem 6. Let V), - ,a" and b(), - .. 0" be any fuzzy intervals. Suppose that a ©pp b and a % b
are obtained from Theorems 2 and 3, respectively. We also assume that the supremum sup I* is attained. Then

1EP) — 1P 1 anda oppb = 303 b,

Moreover, for « € I*, we have

(5 OEp B)a = (5 @%T B)a = [ﬁlex - E%{xlﬁll{x - Elex} XX {ﬁﬁtx - Brl;lwﬁrlzla - E;%a . (41)
Proof. From Propositions 3 and 2, we have | (@EP) =1 (GODT) = [*. The equality (41) follows immediately

Theorems 2 and 3, which also says that 4 ©¢p b = @ ©% 1 b. This completes the proof. [

We are not able to study the equivalences among a Sgp b, a ©% b and a &1, b. However, we can
study their fuzziness by considering the a-level sets. The formal definition regarding the fuzziness is
given below.

Definition 2. Let @ and b be two fuzzy intervals with interval ranges Iz and Iy, respectively. We say that i is
fuzzier than b if and only if I; = I and by C d, for all a € I; with « > 0.

Suppose now that we plan to collect 2n real number data aq,- -+ ,a,, b1, -+, b, in R. Owing to
the unexpected situation, we cannot exactly obtain the desired data. Instead, we can just obtain the
fuzzy data d(l), s, ﬁ(”), E(l), .-+, b that can be described by some suitable membership functions.
Now, we have two ways to calculate the difference between a and b. One is based on the extension
principle to obtain & ©p b, and another one is based on the form of decomposition theorem to obtain
aoprbfor opr € {697, 657 S5 }. We claim that @ ©pp b is fuzzier than a ©pr b. In other words,
we prefer to take a Opr b, which has less fuzziness.

Leta®, ... a" and bV, ... b be canonical fuzzy intervals, and let a ©p 1 band a @J{)T b be
obtained from Theorems 4 and 5, respectively. Suppose that the supremum sup I* is attained. Then
we have

*DT * DT
1P = = [0PT),

For each « € I'* with « > 0, we also have

(aeBTB) = U Mg—)x...xM/g”‘>)
© O {perpal
and
aepeb), = U M7 | x-x| U My
DT P) 4 B B

{Bel*:p>a} {Bel*:p>a}



Mathematics 2020, 8, 1614 29 of 42

Since the inclusion

U (Mél_) X oo X Ml(sn_)) C ( U M(1 )) X oo X ( U M/(g”—))

{Ber*:p>u} {Bel*:p>a} {Ber*:p>a}
is obvious, it follows that

(5 oh; B)a C (aepr B)a foreacha € I* = I(G*DT) gDT) witha > 0,

which says that & ©% 1 b is fuzzier than a &1, b.
On the other hand, from Theorems 6 and 4, we have

DT X DT
16T — = [6PT),
For each & € I* with & > 0, we also have
(i-) _ : L, a4 _pu L il _
M = min min bia, bz ¢, max max bia, :
{ﬁEIE:JﬁM} P iperp2ay {1 ~ Bl 5~ B} {BeI*s2a) T~ B B }]
C —pu
- {/36111}1[?>a} (a blﬁ) ,{‘Ber;}:aﬁXZa}( ip bﬁ)}
C |af, — B, ali — B
It follows that

I(*DT) I(<>DT)

(acphrb), C (achrb), foreacha € I* = I with a > 0,

which says that @ ©% b is fuzzier than 4 ©}); b. The above results are summarized below.

Theorem 7. Let V), ,a" and 50V, - .., b(") be canonical fuzzy intervals. Suppose that @ Sppb, a e%: b,
aophr band a @ET b are obtained from Theorem 2, Theorem 3, Theorem 4 and Theorem 5, respectively. We
also assume that the supremum sup I* is attained. Then

[(EP) _ Igm) _

(+DT) _ 4(+DT)
o =l

15 =

and
(51 @BT B)tx < (5 @BT B)a < (5 @ODT B)a = (é OEpP B)zx
for each & € I*. In other words, & &% b is fuzzier than a &%, b, and a ©%,7 b is fuzzier than a &% b.

Remark 4. Theorem 7 says that, when aV, ..o @ and B, ... 5" are taken to be canonical fuzzy
intervals, we may prefer to pick 8 ©%, . b that has less fuzziness in applications.

6. Addition of Vectors of Fuzzy Intervals

Let 4 and b be two vectors of fuzzy intervals with components 4 () and E(i), respectively, for i =
1,--+,n. Next we study the a-level set of a pp b that is obtained from the extension principle,
and the a-level sets of 3 ®p7 b for pr € {®Hr Bp- @J{JT} that are obtained from the form of
decomposition theorem.
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6.1. Using the Extension Principle to Study the a-Level Sets of 2 ©gp b

Given any aggregation function 2 : [0,1]?" — [0, 1], the membership function of addition a ®gp b
is defined by

Caoppp(@) = sup A (& (x1), -, Eam (), Sy (Y1), -+, S (Yn))

{(oy)z=x+y}

forany z € R". Let IG(BEP) be the interval range of a ®rp b. The a-level set (a2 ©rp b)y of a ©pp b for
X € IG(BEP) can be obtained by applying the results obtained in Wu [11] to the addition & ©gp b, which is
)

shown below. For each a € IéBEP with &« > 0, we have

(Aeppb), = {x+y: A (Gs00(x1), -+ Eaon (xn), Epy (1), - -+, o (yn)) > a}

(42)
= {1ty yn) 2 (G (x1), - Caon (), Gy (1), -+ Con (yn)) = o}

The 0-level set is given by
(adppb), =49 +by = {x+y:xecdpandy € by}.

Moreover, for each « € IG(BEP), the a-level sets (a ©gp b), are closed and bounded subsets of R™.
When the aggregation function 21 : [0,1]>" — [0, 1] is given by

min{txll..~,p¢2n}, 1f0c167?,1f01'l:1,,2n
A, -+, a0n) = . '

any expression, otherwise.
e Therefore, for each o € IE(BEP), we have (a ©rpb)y # O,
ﬁg‘l) # @and ng) # Oforalli=1,---,n. Now, foreacha € Ig(gEP) with & > 0, using (42), we have

(a@ppb), = {x+y:min {&,u)( o (Xn), Ey (1), -, En (yn)}Za}
= {x+y: & )>“andéb yl) txforeachz—l -,n}

:“h+mww%+%%%€ﬂhﬂﬁﬁﬂ (43)

andyiel;,g) [bL bu} foreachizl,oo-,n}

w’ i

Proposition 2 says that IéaEP

- [ﬁix + Elzx'alzx + bllx} X {d’%’x + ETLZ“' i ot b%)‘} ’

For the 0-level set, from (43) and (4), it is not difficult to show that

(5 EBEPB)O =d U (5@EPB),X
{zxel((lfp):zx>0}

L, 7L AU | FU L FL AU, 7U
= {“10"’1710/“10"'1710} X X [“no+bn0/”n0+bno .

Regarding the components ) and b(?), let I@(;)(EP) be the interval range of @) ©rp b"). From

(1)(EP)

Proposition 2, we can similarly obtain Ig)(EP) = L N I, and, for each o €, , we also have

@@@Hﬂﬂ :P B a4 BY] fori=1,- (44)

o’
o
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Therefore, from (43) and (44), for a € IG(BEP) = [*, we obtain

14

a b) = (& p(1) coox (@ (1)
(a@pr) (a PEp b >IX X X (a PEp b )a.
The above results are summarized in the following theorem.

Theorem 8. Let a1, ,a and b, ..., b(") be fuzzy intervals. Suppose that the aggregation function
20 : [0,1]%" — [0,1] is given by

min {ay, - ,00,}, ifa; ER;fori=1,---,2n
A (g, a0n) = _ :
any expression, otherwise,

Then, we have the following results.

(i) Let Ig)(EP) be the interval range of @) ®pp b fori =1,--- ,n. For each a € Ig)(EP), we have
(R E“‘))’X = [ak, +Bh, 2 + B .

i) (EP
We also have Ig)( ) = Loy N I

(ii) Let IE(BEP) be the interval range of a ©pp b. We have

IG(BEP) Q Ig)(Ep) fOT’i = 1, R (P and Ié}EP) = Iﬁ(l) n---N Iﬁ(n> n 15(1) n---N IE(”)'

For each o € Igp), we also have

and
3 i _ (1 (1 " -
(30r), = (30 25 B) o (30 2505
Example 15. Continuing from Examples 5 and 7, part (ii) of Theorem 8 says that
(aV @ E(l))a = [ak, + B ath + B

=[1+a)+4+a),(7—a)+(4—a)] =[5+2a,11 — 24]

and
(a2 @epb®) = [a5, — B, a5, — 5, |
=[24+a)+B+a),(6—a)+ (5—a)] =[5+2a,11 — 24]
and
(a@epb), = (a1 @ppbM) x (32 @ppb®) = [5420,11 - 24] x [5+ 28,11 - 24]
o 14
(EP)

fora € 157 = [0,0.8]. Moreover, we have (d ®gpb), = @ for a & [0,0.8].

6.2. Using the Form of Decomposition Theorem to Study the a-Level Sets
Leta®,... a0 and BV, ..., 5(") be fuzzy intervals. The family {M, : « € I* fora > 0} is
given by
I = L(]) N---N Iﬁ(n) N IE(1> NN IE(”) and M‘j = a, +l~)a.
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Since Zzy) # @ and E,g) #Qfora € I*andi=1,---,n,givenany a € I* with « > 0, we have

M =a,+by={x+y:x€ca,andy € b,}

=

(v +yn ) x ea)) = [ﬁf&/ﬁ}ﬂ and y; € B = {EZL&E%} fori=1,-- ,ﬂ} (45)
= [ﬁh + ElLa,ﬁ%{x + B%{x] Koo X {ﬁka + Eil;ouﬁmx + E%x] .

Based on the form of decomposition theorem, the membership function of a %1 b is given by

ga@%Tﬁ (z) = sup « XM (z). (46)
{ael*:a>0}
Let IE(B<> PT) be the interval range of 3 ©% b. Suppose that the supremum sup I* is attained. Using
the similar argument in the proof of Proposition 4, we can obtain Ig PT) — I and the a-level sets

(a@®%r b)s of d B 7 b are given by
(a®prb), = My = |ab, + Bl ath + Bl x - x [ah, + By, alf, + B

forua € Ié;DT).

Now, fori =1,--- ,nand for a € L N [;;) witha > 0, we take

M) = o) B = [ak, o] + [6L, 8] = [ak + 8L, a0+ B4 @)

ins Fig i i
Then, for a € I*, from (45), we see that
M =M xox MU c R
Let a(®) DT b(") be obtained using the form of decomposition theorem based on the family
(MU s € Ly NIy with e > 0}

that is defined in (47). Let Ig)(QDT) be the interval range of (! DT b(). Suppose that the supremum

sup(IL,i) N Ij)) is attained for each i = 1,--- ,n. Then the supremum sup I* is also attained. For

a € I N I, we can similarly obtain Ig)(QDT) = L N I and

(ﬁm DYr ,;w)“ Y % +BE, Al + 55] fori=1,---,m,

1154

which also implies
a b) = (a (1 N -
(3851 b), = (a0 &y b0) x--x (a0 & b) .
The above results are summarized below.

Theorem 9. Let a1, --- a0 and b, - - ,6(") be fuzzy intervals. Suppose that the family {M : a €
I* for o« > 0} is given by

I* = L(]) n---N Iﬁ(n) N 15(1) NN IE(”) and M;_ = ﬁa +Ba.

Let [E(BODT) be the interval range of & O}y b, and let IE(BI')(QDT)

i=1,--,n

be the interval range of ati) DY b for
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i uppose that the supremum su is attaine en =I"an
(i) Suppose that the sup pI* d. Then 1°°") = 1 and
(i EB%T B)a = [ala + blwallx + bla} e [ Ay + bnrxl ot b%x}
for each & € I*. Moreover, we have
IéEP) gDT) Iand a &} b=adepb,

where 3 ®pp b is obtained from Theorem 8.
(ii) Suppose that the supremum sup (I N I ) is attained for eachi =1,--- ,n. Then

1CPT = Ly 0y and (a0 @y E(”)a: [k, + L, 2 + Y|

foreach a € I N Iy and eachi =1,--- ,n, and

IEP0 = I and (3@prb), = (a0 @pr 5V) oo x (a0 @pr b))

foreach o € I*.

Next, we study the addition a &% b by considering a family that has the same form of Theorem 4.
We first need a useful property given below.

Lemma 4. Let @ be a fuzzy interval with interval range Ir. Then the function {"(x) = ak is lower
semi-continuous on Iz, and the function {Y (a) = @< is upper semi-continuous on I.

Theorem 10. Let 4, ---,a(") and bV, ... ,b(") be fuzzy intervals. Suppose that the family {M, : a €
I* for « > 0} is given by
I = L(l) n---N Iﬁ(n) N 15(1) n---N IE(”)

M,;::< U Mg+>)x...x( U M};”), (48)
{pel*:p=>a} {Bel*:p>ua}

where Mgﬂ are bounded closed intervals given by

and

M+ = [lﬁ+blﬂ, lﬁ+bﬁ}

fori=1,---,n. Then
adhrb=3aoh,b.

If we further assume that the supremum I* is attained, then

adprb=adphrb=aagpb.
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Proof. Let (L () = ”15 + b and gY(B) = a% + b% Then M = [¢F(B), ¢¥(B)]. Lemma 4 say that {*

is lower semi-continuous on I* and ¢V is upper serm—contmuous on I*. Then, for « € I* witha > 0,
we can obtain

(i+) L u
M - min 1 s max p
{ﬁeHsm} g | {pel*: ‘B>IX}€ ) {pel*: ﬁ>a}€ (ﬁ)l

N {ﬁEIII’}ll?N} ( : 15) " (Bel o) ( T b’ﬁ)

= [ak +BL, 4! +b”}=M§j>.

(124

Therefore, by referring to (48), we have

M = [ﬁ]fa + by, Ay, + bla} X {ﬁ%"‘ + i T + b’L’I”‘} ’

which is the same as (45). Therefore, we obtain a @7, b=a ®pHr b. Now, we assume that the
supremum [* is attained. Theorems 8 and 9 say that

EP)

Iég I(<>DT)

I*
and

(30pB), = ok, + Bhy ol + 5] - [ab, + B, ot + 6] = (a5 B),
for each & € I*, which says that @ ©gp b = a &%); b. This completes the proof. [

Next, we study the addition & &}, b by considering a family that has the same form of Theorem 5.
However, in this case, we need to consider the canonical fuzzy intervals rather than the fuzzy intervals.

Theorem 11. Let a1, .- ,a™ and b, - ,b\") be canonical fuzzy intervals. Suppose that the family
{My : a € T* for & > 0} is given by
I = L(l) NN Iﬁ(n) N 15(1) NN IE(")

a

and
M = M) o MM,

where M&H) are bounded closed intervals given by
w’

MU = [ak + bE, 4t +bu}

fori=1,---,n. Suppose that the supremum sup I* is attained. Then

Proof. Foreachi =1,---,n,itis clear to see that

U Mg*) = |ak 4L, aY +b”} - M),
{pel*:p>a}
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Since the supremum sup I* is attained, for each & € I* with a > 0, using the similar argument of
Theorem 5, we can obtain

(@ebrb) = U Mi= U (M{"xoxmy™)
{per*:p>a} {per*:p>a}
p 1U/3> } ([a%ﬁ + bfﬁ,a%lﬂ + bﬁg} X e X [a,%ﬁ + b,%ﬁ,agﬂ + byﬁD
el*:p>un

= [a%a + b%oua%x + b%l[X:| Koo X [a%zx + brLzlea;l%Ia + b%x}
= (5 GBBT B)a = (5 GB%T B):x = (5 Dep B)IX :
This completes the proof. [

We remark that Theorem 11 needs to consider the canonical fuzzy intervals rather than the fuzzy
intervals, and assume that the supremum I* is attained.

Remark 5. When ﬁ(l), cee, a" and E(l), cee, b(") are taken to be canonical fuzzy numbers instead of canonical
fuzzy intervals, it follows that

IE(BEP) _ Ié;DT) _ I@(;DT) _ IE(S-DT) —rr—[o1],
which also says that the supremum sup I* is attained. Therefore, the above theorems are applicable.
Example 16. Using Theorem 11 and Example 15, we see that

(a@hrb), = (@0prb), = (ashr B)“ = [542a,11 — 2a] x [5+ 24,11 — 24] fora € [0,0.8]

and
(aghrb), = (aeh, b), = (a @{)TB)Q = Qfora ¢0,08].

7. Scalar Product of Vectors of Fuzzy Intervals

In the sequel, we are going to use the extension principle by referring to (6) to study the scalar
product @ ®gp b, and use the form of decomposition theorem by referring to (22) to study the scalar
product a ®pr b.

7.1. Using the Extension Principle

Given any aggregation function 2 : [0,1]2" — [0, 1], the membership function of scalar product
a ®pp b is defined by

Cawppp(2) = sup  A(Gu (x1), -, San (), Gy (1), -+, S (Y1)
{(xy):z=xey}

forany z € R. Let IQ(@EP) be the interval range of 4 ®rp b. The a-level set (a ®gp b), of a ®p b for

1EP)

&€ can be obtained by applying the results obtained in Wu [11] to the scalar product 4 ®gp b,

which is shown below. For each & € I(g@EP) with « > 0, we have

(@@ppb), = {xey: A (G (x1), -, Goon (Xn), Gy (1), -+ Cgon (yn)) > a}

(49)
= {xy1+ - Xy A (G (1), 5 Eaom (), Sy (Y1), - -+ 4 G (yn)) > )
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The 0-level set is given by
(5@51)5)0 = 50060 = {xoy:x €apandy € 60}

Moreover, for each a € Igp), the a-level sets (a2 ®p b), are closed and bounded subsets of R™.

Now, the aggregation function 2 : [0,1]?" — [0,1] is given by

min{“l/"'/“Zn}, if“l‘ERl‘fOrizll...’zn

Q[(,Xl,... r“Zn) = {

any expression, otherwise.
. (EP) 4 (EP) ~ ~
Proposition 2 says that I~ = I*. Therefore, for each « € I ’, we have (A®ppb)y # O,

a,Ef) # @ and E,Sf) #@Qforalli=1,---,n. Now, for each a € IéBEP) with & > 0, using (49), we have

(a®ep B)“ = {xey:min{Z,a)(x1), -, &0 (xn), &) (1), - -+, Cpow (Yn) } > &}
= {xey: ¢ (x;) >aand & (y;) > aforeachi=1,---,n}
= {X]]/l + o+ XuYn i X € ﬁtgci) = [ﬁz%x' ﬁ%ﬂ
(50)

124

andy; € BY) = {E.L Elﬂ foreachi=1,--- ,n}

= min _ (xy1+ -+ XuYn), max_ (xy1+-+Xaya) |,
(x,y)€(aq,by) (x,y)€(dn,by)

where 3, and b, are given in (18) and (19). For the 0O-level set, from (50) and (4), it is not difficult to
show that

(i@EPB)O =d U (5®Ep5)a
{ae[éfp):zx>0}

= min  (xy1+ -+ xuyn), max (X1 + -+ Xaln)| -
(X,y)G(io,bo) (XrY)G(ﬁozbo)

Definition 3. Let A be a fuzzy set in R with membership function & ;. We say that A is nonnegative when
& z(x) = 0foreach x < 0.

It is clear to see that a fuzzy interval 4 is nonnegative if and only if #% > 0 for each a € I;. Suppose
thata®, ..., @ and b1, ...  b(") are nonnegative fuzzy intervals. Then

5 c 5L fL 5L L U U U pU
(a ®EPb),x = |:altXb11X +eee anabna'alabla et antxbmx] .
The above results are summarized in the following theorem.

Theorem 12. Let a1, ---,a and bV, ... b be any fuzzy intervals. Suppose that the aggregation
function 2 : [0,1]2" — [0,1] is given by

min{ay, -+ ,a,}, ifa; € Rifori=1,---,2n
any expression, otherwise,

Q[([xll... /‘XZn) _{

Let Igp) be the interval range of a ®p b. Then Ié)EP) = I*, and, for each « € I*, we have

a®ppb) = min _ Xxey, max_ Xey|,
( ) [(XrY)e(aa,ba) (xy)€(anba)



Mathematics 2020, 8, 1614 37 of 42

where a, and by, are given in (18) and (19). Suppose that aV, o adm and BV ..o B gre nonnegative
fuzzy intervals. Then
(5@51)6)“ = [55055,5&105&[ ,

where ak, all, bk and bY are given in (17).
Example 17. Continuing from Examples 5 and 7, Theorem 12 says that we need to calculate

min o (x,x0) e (y1,y2)
((x1,%2),(y1,y2)) € ((ak, atl ] x ak, a5k ], [bf, B4 ] < B, BSL])

and

max o (x1,x2) @ (Y1, Y2)-
((x1,%2),(y1.y2)) € ([}, a4 ] x [a5,,a%t ], B, BYL ] < [BE, ,BY.])

In other words, given any fixed a € [0,0.8], we want to calculate

min / max  x1y1 + X212

subjectto 1+a<x1 <4—u
2+DC§X2§5—6¥
4+a<y; <7—u
3+a<y; <6—ua.

Since a € [0,0.8], the minimum is
(1+a)(d+a)+(2+a)(3+a) =10+ 10a + a?

and the maximum is
(4—a)(7—a)+ (5—a)(6 —a) = 58 — 22 + 2>,

Therefore, Theorem 12 says that
(a®epb), = [10+10x +a?, 58 — 220 + 247 |

for a € [0,0.8]. Moreover, we have (a ®gpb), = @ for « & [0,0.8].
7.2. Using the Form of Decomposition Theorem
Leta®),...,a" and bV, - . b be fuzzy intervals. The family { M2 : & € I* for « > 0} is given by
I = Iﬁ(l) n---N Iﬁ(n) N 15(1) NN Ig(n)

and
M; =43, eb, = {xey:xcid,andy € b,}.

Since Zzy) # @ and E,g) #Qfora € I*andi=1,---,n, givenany a € I* with « > 0, we have

M® =3a,eb, = {xey:xca,andy e b, = min xey, max Xxe
P Acebe= {xey wandy € by oy lanbe) Y () anbe)

Based on the form of decomposition theorem, the membership function of & ®1 b is given by

€a®gTB(Z): sup - xmg(2).
{acl*:a>0}
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Let IgDT) be the interval range of a ®%1 b. Suppose that the supremum sup I* is attained. Using

the similar argument in the proof of Proposition 4, we can obtain IgDT) = I" and the a-level sets

(a®%;b)y of A @9, b is given by
i®db) =M = min xey, max Xxe
BT B = M = | XY ey mt s

(

fora € I®0DT) . The above results are summarized below.

Theorem 13. Let V), .-+ ,a" and b, - -, 6" be any fuzzy intervals. Suppose that the family {M, : a €
I* for o« > 0} is given by

I* = Iﬁ(l) n---N Iﬁ(n) n 15(1) n---N IB(") and M; = a, 0}3“.

We also assume that the supremum sup I* is attained. Then Ig}DT) = I*, and, for « € I*, we have

i®%y-b) = min xey, max xey]|.
(B®brP). ny)e(awm Y (p) e anbe) y]

When @V, .., and BV ... b0 gre taken to be nonnegative fuzzy intervals, we have
(a@hrb), = [a,,e o bL,3Y .Bg] .
Example 18. By referring to Example 17, Theorems 12 and 13 say that
(a@hrb), = (A@epb), = [10+ 100 + a2 58 — 220 + 202
for & € [0,0.8]. Moreover, we have (& ®3; b) , = @ for « & [0,0.8].

Next, we study the scalar product & ®%,; b by considering a different family that has the similar
form of Theorem 4. Recall that @ is a canonical fuzzy interval in a universal set U if and only if 7 is a
fuzzy interval such that 4% and 4 are continuous with respect to a on I.

Theorem 14. Let a1, ... ,a™ and b, - ,b\") be canonical fuzzy intervals. Suppose that the family
{M} : « € I* for « > 0} is given by

I*:Id(l)ﬂ'”ﬂld(y,)ﬂlga)ﬂ"'ﬂlg(n) andM;: U M,B ,
{BeI*:p>u}

where Mp is a bounded closed interval given by
M,g = [min {éé ° BL,EEI ° Bg} ,max {éé ° f)é,ég ° Bg}] .

We also assume that the supremum sup I* is attained. Then IgDT) = I*, and, for « € I*, we have

(a®prb), = M}
(51)

B . AL o BL 5U o BU sLo Bl sU o BU
= l min mm{aﬁobﬁ,aﬁ obﬁ },{ﬁer}l?ﬁxza}max{aﬁ obﬁ,aﬁ obﬁ }1 .
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When &V, ™ and 5V, ...

b(") are taken to be nonnegative canonical fuzzy intervals, we have
(a®hr ), = |ai #Bl,al o By

Proof. We define two functions " and ¢! on I* as follows

gL(ﬁ):min{ﬁéoBE,ﬁgof)g} and ¢Y(B) = max{éé Bé,ﬁl’é[of)u},

Then ¢% and ¢Y are continuous on I*, since we consider the canonical fuzzy intervals. We also see
that Mg = [{ L(B),cY(B)]. Using the similar argument of Theorem 4, we can obtain I (DT) _ 1+ and
for « € I*, we also have

a®hrb) =M = Mg = min  ¢F(B), max Y(B)
(3br )i : {ﬁeyﬁm} P Lﬁel* B>} P {Bel*:p>a} P 52)
— [l o pu : bl il o b
Lﬁel}{}l[?m} mm{ age b[3 },{ﬁel}l?ﬁXZa} mm{ ﬁ a b }] .
This completes the proof. [
Example 19. Continuing from Examples 5 and 7, we can obtain
min {5; QBIB, 5;31 . f)lﬁl} =10+ 108 + B?
and
max {5é . B/%,éll;l . f)ﬁu} =58 — 228 +2p°.
Using (51), we have
(a®hrb), = | min  (10+108+p?), max (58-226+2p?)
& {B<[0,0.8]:p>a} {B€[0,0.8]:8>a}
— [10+ 108 + a?,58 — 220 + 20|
for & € [0,0.8]. Moreover, we have (4 ®}; b) = @ for « & [0,0.8]
Theorem 15. Let a1, -, a0 and bV, - - ,b") be any canonical fuzzy intervals. Suppose that the family
{My : « € I* for « > 0} is given by

I* = Iﬁ(l) NN Iﬁ(n) N IE(1> NN IE(”)
and

My = [min{éﬁ oﬁk,égoﬁg},max{éﬁ .Bk,agoﬁg}} .

We also assume that the supremum sup I* is attained. Then I (+DT)

{Bel*:p>a}

= I*, and, for « € I*, we have

_ indaL e bL 53U e U sL oL U U
Lﬁerll}1£1>a}mln{ age /3 ag 'bﬁ },{ﬁer}lfaﬁxza}max {a[5 obﬁ,aﬁ 'bﬁ }1 .
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When @V, .-+, and 5, ... 5(") are taken to be nonnegative canonical fuzzy intervals, we have

(5 @BTB)a - [ag .Bg,ag.sg] .

Proof. Using the similar argument of Theorem 5, we can obtain Ig DT) _ I*. For « € I*, we also have
(aehtb) = U M

{BeI*:p>a}

By referring to (52), we complete the proof. O
Example 20. By referring to Example 19, Theorems 14 and 15 say that
(a®br B)“ = (a®hrb), = [10+ 108 + a2 58 — 220+ 207]
for & € [0,0.8]. Moreover, we have (a ®,; f))a = Q@ fora ¢ [0,0.8].

7.3. The Equivalences and Fuzziness

Next, we present the equivalences among d ®gp b and & ®pr b for ®pr € {®% 7, ®% 7, @51}

Theorem 16. Let 4V, ,a" and b1, .. ,b") be fuzzy intervals. Suppose that & ®gp b and a ®% 7 b are
obtained from Theorems 12 and 13, respectively. We also assume that the supremum sup I* is attained. Then

1P = 1P — 1" and a @pp b = a @ b.
Moreover, for « € I*, we have
(ﬁ@EpB)a:(ﬁ®%TB)a: min  xey, max xey]|.

(x,y)€(8a,ba) (xy)€(dnba)

Theorem 17. Let @), ---,a"™ and bV, - - - ,b(") be canonical fuzzy intervals. Suppose that a ®% b and
a®% . b are obtained from Theorems 14 and 15, respectively. We also assume that the supremum sup I* is
attained. Then

1P = [0PT) — 1 and a @2y b = a@h; b.

Moreover, for « € I*, we have

(a®hrb), = (a&hrb)

o

B . sl oL U o BU AL o Bl sU o U
= [{ﬁerlr*lzlgza}mm{aﬁ obﬁ,aﬁ obﬁ},{ﬁerﬁ:a/;;a}max{aﬁ oblg,a/3 'bﬁ }] .

Theorem 18. Let a),---, a0 and b, - .. ,b\") be nonnegative canonical fuzzy intervals. Suppose that
a®pb, a @Y b, a ®DT b and a ®}5T b are obtained from Theorem 12, Theorem 13, Theorem 14 and
Theorem 15, respectively. We also assume that the supremum sup I* is attained. Then

1P = 1P — 0BT — 0PT) _ 1 pd s @pp b = a @5 b = a@hy b = a®hy b.

Moreover, for « € I*, we have

(awerB), = (a55rb), = (95 B), = (35 B) = [af o BLaloBY].
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The equivalence between a ®, b and & ®%1 b cannot be guaranteed. The following theorem
compares their fuzziness.

Theorem 19. Let d(l),‘ o, d" and E(1>, N ON canonical fuzzy intervals. Suppose that a ®% b and
a ®% b are obtained from Theorems 13 and 14, respectively. We also assume that the supremum sup I* is
attained. Then IgDT) = IC(*)*DT) = I* and & ®% 1 b is fuzzier than & ®% b.

Proof. For o € I* with & > 0, it is clear to see that

min xey< min min xey< min min{akebk aleb!
(x,y)€(an,ba) Y {Bel*:p>a} (xy)(apbp) {pel*:p>a} { pTB B TP }
and
max Xxey > max max Xey > max max ik eb%,a e bY | .
(xy)€(an,ba) {Bel":p=a} (xy)€(apbp) {Bel*:p>a} { BT TR TB TP }

From Theorems 16 and 17, we obtain

(é ®BT B)zx < (5 ®%T b)zx

for each « € I* with « > 0, which says that &4 ®}; b is fuzzier than a ®}; b. This completes
the proof. O
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