
mathematics

Article

Arithmetics of Vectors of Fuzzy Sets

Hsien-Chung Wu

Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan;
hcwu@nknucc.nknu.edu.tw

Received: 5 August 2020; Accepted: 15 September 2020; Published: 18 September 2020
����������
�������

Abstract: The arithmetic operations of fuzzy sets are completely different from the arithmetic
operations of vectors of fuzzy sets. In this paper, the arithmetic operations of vectors of fuzzy
intervals are studied by using the extension principle and a form of decomposition theorem. These
two different methodologies lead to the different types of membership functions. We establish their
equivalences under some mild conditions. On the other hand, the α-level sets of addition, difference
and scalar products of vectors of fuzzy intervals are also studied, which will be useful for the different
usage in applications.

Keywords: decomposition theorem; extension principle; fuzzy numbers; fuzzy intervals; non-normal
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1. Introduction

Let Ã and B̃ be two fuzzy sets in R with the membership functions ξ Ã and ξ B̃, respectively.
The arithmetic operations Ã ⊕ B̃, Ã 	 B̃, Ã ⊗ B̃ and Ã � B̃ are based on the extension principle.
More precisely, the membership functions are given by

ξ Ã⊕B̃(z) = sup
{(x,y):z=x+y}

min{ξ Ã(x), ξ B̃(y)}

ξ Ã	B̃(z) = sup
{(x,y):z=x−y}

min{ξ Ã(x), ξ B̃(y)}

ξ Ã⊗B̃(z) = sup
{(x,y):z=x∗y}

min{ξ Ã(x), ξ B̃(y)}

ξ Ã�B̃(z) = sup
{(x,y):z=x/y,y 6=0}

min{ξ Ã(x), ξ B̃(y)}

for all z ∈ R. In this paper, we consider the vectors of fuzzy sets in R. The purpose is to study the
addition, difference and scalar products of vectors of fuzzy sets.

Suppose that Ã and B̃ consist of fuzzy sets in R given by

Ã =
(

Ã(1), · · · , Ã(n)
)

and B̃ =
(

B̃(1), · · · , B̃(n)
)

,

where Ã(i) and B̃(i) are fuzzy sets in R for i = 1, · · · , n. Then, we study the addition Ã ⊕ B̃,
the difference Ã	 B̃ and the scalar product Ã • B̃.

The addition Ã(i) ⊕ B̃(i), the difference Ã(i) 	 B̃(i) and multiplication Ã(i) ⊗ B̃(i) regarding the
components can be realized as shown above. Let ξ Ã(i) and ξ B̃(i) be the membership functions of Ã(i)

and B̃(i), respectively, and let � denote any one of the arithmetic operations ⊕,	,⊗ between Ã(i) and
B̃(i). According to the extension principle, the membership function of Ã(i) � B̃(i) is defined by

ξ Ã(i)�B̃(i)(z) = sup
{(x,y):z=x◦y}

min{ξ Ã(i)(x), ξ B̃(i)(y)}
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for all z ∈ R, where the arithmetic operations � ∈ {⊕,	,⊗} correspond to the arithmetic operations
◦ ∈ {+,−, ∗}. More detailed properties can refer to the monographs of Dubois and Prade [1] and
Klir and Yuan [2]. In general, we can consider the t-norms instead of minimum functions by referring
to Bede and Stefanini [3], Dubois and Prade [4], Gebhardt [5], Gomes and Barros [6], Fullér and
Keresztfalvi [7], Mesiar [8], Ralescu [9], Weber [10], Wu [11–13] and Yager [14]. More precisely,
the membership function of Ã(i) � B̃(i) is given by

ξ Ã(i)�B̃(i)(z) = sup
{(x,y):z=x◦y}

t(ξ Ã(i)(x), ξ B̃(i)(y))

for all z ∈ R, where t is a t-norm that is a function from [0, 1]× [0, 1] into [0, 1] satisfying four axioms.
It is well-known that the minimum function min is a t-norm. In this paper, we consider the general
aggregation function rather than using t-norms. In this case, the membership function of Ã(i) � B̃(i) is
given by

ξ Ã(i)�B̃(i)(z) = sup
{(x,y):z=x◦y}

A
(
ξ Ã(i)(x), ξ B̃(i)(y)

)
(1)

for all z ∈ R, where A is an aggregation function from [0, 1]× [0, 1] into [0, 1] without needing to satisfy
some required conditions.

According to the arithmetic operations (1), the addition Ã⊕ B̃, the difference Ã	 B̃ and the scalar
product Ã • B̃ can be naturally defined as follows

Ã⊕ B̃ =
(

Ã(1) ⊕ B̃(1), · · · , Ã(n) ⊕ B̃(n)
)

Ã	 B̃ =
(

Ã(1) 	 B̃(1), · · · , Ã(n) 	 B̃(n)
)

Ã • B̃ =
(

Ã(1) ⊗ B̃(1)
)
⊕ · · · ⊕

(
Ã(n) ⊗ B̃(n)

)
.

We can see that the scalar product Ã • B̃ is a fuzzy set in R. The membership function of Ã • B̃
can be realized below. Let C̃(i) = Ã(i) ⊗ B̃(i) for i = 1, · · · , n. The membership function of C̃(i) can be
obtained from (1). Therefore, the membership function of Ã • B̃ is given by

ξÃ•B̃(z) = sup
{(x1,··· ,xn):z=x1+···+xn}

A
(
ξC̃(1)(x1), · · · , ξC̃(n)(xn)

)
,

where A is an aggregation function from [0, 1]n into [0, 1]. In particular, the extension principle says
that the aggregation function A is given by the minimum function. Therefore, the membership function
of Ã • B̃ is given by

ξÃ•B̃(z) = sup
{(x1,··· ,xn):z=x1+···+xn}

min{ξC̃(1)(x1), · · · , ξC̃(n)(xn)}.

We can see that Ã ⊕ B̃ and Ã 	 B̃ are still vectors of fuzzy sets. However, their membership
functions cannot be obtained directly from (1). The main purpose of this paper is to propose two
methodologies to define the membership functions of Ã(i) ⊕ B̃(i) and Ã(i) 	 B̃(i). Those methodologies
can also be used to define the membership function of the scalar product Ã(i) ⊗ B̃(i).

Following the conventional way, we can use the extension principle to define the arithmetic
operations of vectors of fuzzy sets. In this paper, we consider the general aggregation functions rather
than using t-norms. We should mention that the decomposition theorem is a well-known result in
fuzzy sets theory. Alternative, we also use the form of decomposition theorem to define the arithmetic
operations of vectors of fuzzy intervals. These two methodologies can lead to the different types
of membership functions. In this paper, we establish the equivalences between using the extension
principle and the form of decomposition theorem under some mild conditions.
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In Section 2, the concept and basic properties of non-normal fuzzy sets are presented. In Section 3,
the arithmetic operations of vectors of fuzzy sets are presented using the extension principle based on
the general aggregation functions. In Section 4, the arithmetic operations of vectors of fuzzy sets are
presented using the form of decomposition theorem. In Section 5, many types of difference of vectors
of fuzzy sets are proposed using the extension principle and the form of decomposition theorem, and
their α-level sets are studied. Their equivalences are also established under some mild conditions. In
Section 6, we study the addition of vectors of fuzzy sets following the same theme from Section 5. In
Section 7, the scalar product of vectors of fuzzy sets are proposed, and their α-level sets are also studied.

2. Non-Normal Fuzzy Sets

Let Ã be a fuzzy set in R with membership function ξ Ã. For α ∈ (0, 1], the α-level set of Ã is
denoted and defined by

Ãα = {x ∈ R : ξ Ã(x) ≥ α} . (2)

We remark that the α-level set Ãα can be an empty set when α is larger than the supremum of
the membership function ξ Ã. This ambiguity will be clarified in this section. On the other hand, the
support of a fuzzy set Ã is the crisp set defined by

Ã0+ = {x ∈ R : ξ Ã(x) > 0}.

The 0-level set Ã0 is defined to be the closure of the support of Ã, i.e., Ã0 = cl(Ã0+).
The range of membership function ξ Ã is denoted byR(ξ Ã) that is a subset of [0, 1]. We see that

the range R(ξ Ã) can be a proper subset of [0, 1] with R(ξ Ã) 6= [0, 1]. For example, the range R(ξ Ã)

can be some disjoint union of subintervals of [0, 1].

Example 1. The membership function of a trapezoidal-like fuzzy number is given by

ξ Ã(x) =



0.1 + 0.7 · (x− 1) if 1 ≤ x ≤ 1.5
0.2 + 0.7 · (x− 1) if 1.5 < x < 2
0.9 if 2 ≤ x ≤ 3
0.2 + 0.7 · (4− x) if 3 < x < 3.5
0.1 + 0.7 · (4− x) if 3.5 ≤ x ≤ 4
0 otherwise.

It is clear to see that
R(ξ Ã) = [0.1, 0.45] ∪ (0.55, 0.9].

Notice that if α 6∈ R(ξ Ã), we still can consider the α-level set Ãα. Since R(ξ Ã) 6= [0, 1], it is
possible that the α-level set Ãα can be an empty set for some α ∈ [0, 1]. Therefore, when we study the
properties that deal with more than two fuzzy sets, we cannot simply present the properties by saying
that they hold true for each α ∈ [0, 1], since some of the α-level sets can be empty. In this case, we need
to carefully treat the ranges of membership functions.

Example 2. Continuing from Example 1, we see that 0.5 6∈ R(ξ Ã). However, we still have the 0.5-level set
Ã0.5. It is clear to see that Ã0.5 = Ã0.45, where 0.45 ∈ R(ξ Ã).

Let f : R → R be a real-valued function defined on R, and let S be a subset of R. Recall that
the supremum supx∈S f (x) is attained if and only if there exists x∗ ∈ S such that f (x) ≤ f (x∗) for all
x ∈ S with x 6= x∗. Equivalently, the supremum supx∈S f (x) is attained if and only if

sup
x∈S

f (x) = max
x∈S

f (x).
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Define α∗ = supR(ξ Ã). If supR(ξ Ã) = maxR(ξ Ã), then Ãα∗ 6= ∅. If the supremum supR(ξ Ã)

is not attained, then Ãα∗ = ∅. For example, assume that

ξ Ã(x) =

{
1− 1

x , if x ≥ 1
0, if x < 1.

It is clear to see that R(ξ Ã) = [0, 1). In this case, the supremum supR(ξ Ã) is not attained.
However, we have supR(ξ Ã) = 1 = α∗. In this case, the 1-level set Ãα∗ = Ã1 = ∅,
since α∗ = 1 6∈ R(ξ Ã).

Proposition 1. Let Ã be a fuzzy set in R with membership function ξ Ã. Define α∗ = supR(ξ Ã) and

IÃ =

{
[0, α∗), if the maximum maxR(ξ Ã) does not exist;
[0, α∗], if the maximum maxR(ξ Ã) exists.

(3)

Then Ãα 6= ∅ for all α ∈ IÃ and Ãα = ∅ for all α 6∈ IÃ. Moreover, we haveR(ξ Ã) ⊆ IÃ and

Ã0+ =
⋃

{α∈IÃ :α>0}
Ãα =

⋃
{α∈R(ξ Ã):α>0}

Ãα. (4)

The interval IÃ presented in Proposition 1 is also called an interval range of Ã. We see that the
interval range IÃ contains the actual range R(ξ Ã). The role of interval range IÃ can be used to say
Ãα 6= ∅ for all α ∈ IÃ and Ãα = ∅ for all α 6∈ IÃ. We also remark thatR(ξ Ã) ⊆ IÃ andR(ξ Ã) 6= IÃ in
general, since the rangeR(ξ Ã) can be some disjoint union of subintervals of [0, 1].

Example 3. Continuing from Example 1, recall that R(ξ Ã) = [0.1, 0.45] ∪ (0.55, 0.9]. We also see that
supR(ξ Ã) = α∗ = 0.9. Proposition 1 says that IÃ = [0, 0.9] 6= R(ξ Ã). It is clear to see that Ãα 6= ∅ for all
α ∈ IÃ = [0, 0.9] and Ãα = ∅ for all α 6∈ IÃ = [0, 0.9].

Therefore, the interval IÃ plays an important role for considering the α-level sets. In other words,
the rangeR(ξ Ã) is not helpful for identifying the α-level sets.

Recall that Ã is called a normal fuzzy set in R if and only if there exists x ∈ R such that ξ Ã(x) = 1.
In this case, we have IÃ = [0, 1]. However, the range R(ξ Ã) is not necessarily equal to [0, 1] even
though Ã is normal.

Let Ã be a normal fuzzy set in R. The well-known decomposition theorem says that the
membership function ξ Ã can be expressed as

ξ Ã(x) = sup
α∈[0,1]

α · χÃα
(x) = sup

α∈(0,1]
α · χÃα

(x),

where χÃα
is the characteristic function of the α-level set Ãα. If Ã is not normal, then we can similarly

obtain the following form.

Theorem 1. (Decomposition Theorem) Let Ã be a fuzzy set in R. Then the membership function ξ Ã can be
expressed as

ξ Ã(x) = sup
α∈R(ξ Ã)

α · χÃα
(x) = max

α∈R(ξ Ã)
α · χÃα

(x)

= sup
α∈IÃ

α · χÃα
(x) = max

α∈IÃ

α · χÃα
(x),

where IÃ is given in (3).
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3. Arithmetics Using the Extension Principle

The generalized extension principle for non-normal fuzzy sets has been extensively studied
in Wu [15]. In this paper, we use the extension principle to study the arithmetics of a vector of
fuzzy intervals.

We denote by Fcc(R) the family of all fuzzy sets in R such that each ã ∈ Fcc(R) satisfies the
following conditions.

• The membership function ξ ã is upper semi-continuous and quasi-concave on R.
• The 0-level set ã0 is a compact subset of R; that is, a closed and bounded subset of R.

Each ã ∈ Fcc(R) is also called a fuzzy interval. If the fuzzy interval ã is normal and the 1-level
set ã1 is a singleton set {a}, where a ∈ R, then ã is also called a fuzzy number with core value a. It is
well-known that the α-level sets of fuzzy interval ã are all closed intervals denoted by ãα = [ãL

α , ãU
α ] for

α ∈ [0, 1], which can be regarded as a closed interval with degree α. This is the reason why we call ã as
a fuzzy interval.

Example 4. The membership function of a trapezoidal fuzzy interval is given by

ξ ã(r) =


(r− aL)/(a1 − aL) if aL ≤ r ≤ a1

d∗ if a1 < r ≤ a2

(aU − r)/(aU − a2) if a2 < r ≤ aU

0 otherwise,

which is denoted by ã = (d∗; aL, a1, a2, aU). It is clear to see that

R(ξ ã) = [0, d∗] and α∗ ≡ supR(ξ Ã) = d∗.

Proposition 1 says that the interval range is given by

Iã = [0, α∗] = [0, d∗] = R(ξ ã).

If α 6∈ Iã = [0, d∗], then the α-level set ãα = ∅. For α ∈ Iã, the α-level set ãα =
[
ãL

α , ãU
α

]
is given by

ãL
α = (1− α)aL + αa1 and ãU

α = (1− α)aU + αa2. (5)

Let x = (x1, · · · , xn) and y = (y1, · · · , yn) be two vectors in Rn. Then, the arithmetics of vectors x
and y are given by

x + y = (x1 + y1, · · · , xn + yn)

x− y = (x1 − y1, · · · , xn − yn)

x • y = x1y1 + · · ·+ xnyn.

Let ã and b̃ be two vectors of fuzzy intervals given by

ã =
(

ã(1), ã(2), · · · , ã(n)
)

and b̃ =
(

b̃(1), b̃(2), · · · , b̃(n)
)

.

Based on the extension principle (abbreviated as EP), we study the arithmetics of ã and b̃ by
considering the scalar product ã ~EP b̃, the addition ã⊕EP b̃ and the difference ã	EP b̃. Given the
aggregation function A : [0, 1]2n → [0, 1], the membership functions are defined below.

• For each z ∈ R, the membership function of the scalar product ã ~EP b̃ is given by

ξã~EPb̃(z) = sup
{(x,y):z=x•y}

A
(
ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)

)
. (6)
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• For each z ∈ Rn and for the operation � ∈ {⊕,	} corresponding to the operation ◦ ∈ {+,−},
the membership function of ã�EP b̃ is given by

ξ ã�EPb̃(z) = sup
{(x,y):z=x◦y}

A
(
ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)

)
. (7)

If the aggregation function A ≡ min is taken to be the minimum function, then the above
arithmetics coincide with the extension principle.

Given any fuzzy intervals ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) in R, let

α∗i = supR(ξ ã(i)) = sup
x∈R

ξ ã(i)(x) for i = 1, · · · , n

and
β∗i = supR(ξ b̃(i)) = sup

x∈R
ξ b̃(i)(x) for i = 1, · · · , n.

From Proposition 1, the interval ranges Iã(i) of ã(i) and Ib̃(i) of b̃(i) are given by

Iã(i) =

{
[0, α∗i ), if the supremum supR(ξ ã(i)) is not attained
[0, α∗i ], if the supremum supR(ξ ã(i)) is attained

(8)

and

Ib̃(i) =

{
[0, β∗i ), if the supremum supR(ξ b̃(i)) is not attained
[0, β∗i ], if the supremum supR(ξ b̃(i)) is attained

(9)

We also writeRi ≡ R(ξ ã(i)) to denote the ranges of membership functions ξ ã(i) for i = 1, · · · , n,
and writeRn+i ≡ R(ξ b̃(i)) to denote the ranges of membership functions ξ b̃(i) for i = 1, · · · , n. Let

α∗ = sup
(α1,··· ,α2n)∈R1×···×R2n

A (α1, · · · , α2n) . (10)

Example 5. Continuing from Example 4, we consider the following trapezoidal fuzzy intervals

ã(1) = (0.8; 1, 2, 3, 4) and ã(2) = (0.9; 2, 3, 4, 5)

and
b̃(1) = (0.9; 4, 5, 6, 7) and b̃(2) = (0.8; 3, 4, 5, 6)

Then, we have
α∗1 = 0.8 = β∗2 and α∗2 = 0.9 = β∗1,

and the interval ranges are given by

Iã(1) = [0, 0.8] = Ib̃(2) = R1 ≡ R(ξ ã(1)) = R4 ≡ R(ξ b̃(2))

and
Iã(2) = [0, 0.9] = Ib̃(1) = R2 ≡ R(ξ ã(2)) = R3 ≡ R(ξ b̃(1)).

From (10), by taking the aggregation function A as the minimum function, we have

α∗ = sup
(α1,··· ,α4)∈R1×···×R4

min {α1, · · · , α4}

= sup
(α1,α2,α3,α4)∈[0,0.8]×[0,0.9]×[0,0.9]×[0,0.8]

min {α1, α2, α3, α4} = 0.8
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We denote by I(EP)
~ and I(EP)

� the interval ranges of ã ~EP b̃ and ã�EP b̃, respectively, where I(EP)
~

and I(EP)
� depend on ã and b̃. The supremum of range of membership function is given by

supR
(

ξã�EPb̃

)
= sup

z∈Rm
ξã�EPb̃(z)

= sup
z∈Rm

sup
{(x,y):z=x◦y}

A
(
ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)

)
= sup

(α1,··· ,α2n)∈R1×···×R2n

A (α1, · · · , α2n) = α∗.

(11)

We can similarly obtain
supR

(
ξã~EPb̃

)
= α∗.

Therefore, the definition of interval range says that

I(EP)
~ =

{
[0, α∗] if the supremum α∗ = supR

(
ξã~EPb̃

)
is attained

[0, α∗) otherwise

and

I(EP)
� =

{
[0, α∗] if the supremum α∗ = supR

(
ξã�EPb̃

)
is attained

[0, α∗) otherwise.

Proposition 1 says that(
ã ~EP b̃

)
α
6= ∅ for α ∈ I(EP)

~ and
(
ã ~EP b̃

)
α
= ∅ for α 6∈ I(EP)

~

and (
ã�EP b̃

)
α
6= ∅ for α ∈ I(EP)

� and
(
ã�EP b̃

)
α
= ∅ for α 6∈ I(EP)

� .

Example 6. Continuing from Example 5, we take the aggregation function A as the minimum function.
The membership function of scalar product (ã(1), ã(2))~EP (b̃(1), b̃(2)) is given by

ξ(ã(1),ã(2))~EP(b̃(1),b̃(2))
(z)

= sup
{(x1,x2,y1,y2):z=(x1,x2)•(y1,y2)}

min
{

ξ ã(1)(x1), ξ ã(2)(x2), ξ b̃(1)(y1), ξ b̃(2)(y2)
}

,

and it is a continuous function. Therefore, the supremum

0.8 = α∗ = supR
(

ξ(ã(1),ã(2))~EP(b̃(1),b̃(2))

)
is attained. This says that the interval range I(EP)

~ of scalar product (ã(1), ã(2))~EP (b̃(1), b̃(2)) is given

I(EP)
~ = [0, α∗] = [0, 0.8].

By considering the α-level sets, we also see that(
(ã(1), ã(2))~EP (b̃(1), b̃(2))

)
α
6= ∅ for α ∈ I(EP)

~ = [0, 0.8]

and (
(ã(1), ã(2))~EP (b̃(1), b̃(2))

)
α
= ∅ for α 6∈ I(EP)

~ = [0, 0.8].
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The membership function of addition (ã(1), ã(2))⊕EP (b̃(1), b̃(2)) is given by

ξ(ã(1),ã(2))⊕EP(b̃(1),b̃(2))
(z1, z2)

= sup
{(x1,x2,y1,y2):(z1,z2)=(x1+x2,y1+y2)}

min
{

ξ ã(1)(x1), ξ ã(2)(x2), ξ b̃(1)(y1), ξ b̃(2)(y2)
}

.

The interval range I(EP)
⊕ of addition (ã(1), ã(2))⊕EP (b̃(1), b̃(2)) is given by

I(EP)
⊕ = [0, α∗] = [0, 0.8].

By considering the α-level sets, we also see that(
(ã(1), ã(2))⊕EP (b̃(1), b̃(2))

)
α
6= ∅ for α ∈ I(EP)

⊕ = [0, 0.8]

and (
(ã(1), ã(2))⊕EP (b̃(1), b̃(2))

)
α
= ∅ for α 6∈ I(EP)

⊕ = [0, 0.8].

The membership function of difference (ã(1), ã(2))	EP (b̃(1), b̃(2)) is given by

ξ(ã(1),ã(2))	EP(b̃(1),b̃(2))
(z1, z2)

= sup
{(x1,x2,y1,y2):(z1,z2)=(x1−x2,y1−y2)}

min
{

ξ ã(1)(x1), ξ ã(2)(x2), ξ b̃(1)(y1), ξ b̃(2)(y2)
}

.

The interval range I(EP)
	 of addition (ã(1), ã(2))	EP (b̃(1), b̃(2)) is given

I(EP)
	 = [0, α∗] = [0, 0.8].

By considering the α-level sets, we also see that(
(ã(1), ã(2))	EP (b̃(1), b̃(2))

)
α
6= ∅ for α ∈ I(EP)

	 = [0, 0.8]

and (
(ã(1), ã(2))	EP (b̃(1), b̃(2))

)
α
= ∅ for α 6∈ I(EP)

	 = [0, 0.8].

For further discussion, we provide a useful lemma.

Lemma 1. (Royden [16], p. 161) Let X be a topological space, and let K be a compact subset of X. Let f be a
real-valued function defined on X. Then the following statements hold true.

(i) If f is upper semi-continuous, then f assumes its maximum on a compact subset of X; that is, the supremum
is attained in the following sense:

sup
x∈K

f (x) = max
x∈K

f (x).

(ii) If f is lower semi-continuous, then f assumes its minimum on a compact subset of X; that is, the infimum
is attained in the following sense:

inf
x∈K

f (x) = min
x∈K

f (x).

Proposition 2. Suppose that the aggregation function A : [0, 1]2n → [0, 1] is given by

A (α1, · · · , α2n) =

{
min {α1, · · · , α2n} , if αi ∈ Ri for i = 1, · · · , 2n
any expression, otherwise,
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Let
I∗ ≡ Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) .

Then, the following statements hold true.

(i) We have
α∗ = min {α∗1 , · · · , α∗n, β∗1, · · · , β∗n} .

(ii) The supremum supR(ξã�EPb̃) is attained if and only if the supremum sup I∗ is attained, and the
supremum supR(ξã~EPb̃) is attained if and only if the supremum sup I∗ is attained.

(iii) We have
I(EP)
� = I∗ = I(EP)

~ .

Proof. It suffices to prove the case of ã �EP b̃, since the case of ã ~EP b̃ can be similarly obtained.
From (11), we have

α∗ = sup
(α1,··· ,α2n)∈R1×···×R2n

min {α1, · · · , α2n} ≥ min {α∗1 , · · · , α∗n, β∗1, · · · , β∗n} .

On the other hand, from (11) again, we also have

α∗ = sup
z∈Rm

sup
{(x,y):z=x◦y}

min
{

ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)
}

(12)

≤ sup
z∈Rm

sup
{(x,y):z=x◦y}

min {α∗1 , · · · , α∗n, β∗1, · · · , β∗n} = min {α∗1 , · · · , α∗n, β∗1, · · · , β∗n} ,

which proves part (i).
Suppose that the supremum supR

(
ξã�EPb̃

)
is attained. From (11), there exists z∗ ∈ Rn such that

sup
{(x,y):z∗=x◦y}

min
{

ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)
}
= α∗. (13)

Since the set {(x, y) : z∗ = x ◦ y} is closed and bounded, i.e., a compact set, and the functions ξ ã(i)

and ξ b̃(i) are upper semi-continuous, Lemma 1 says that the supremum in (13) is attained. In other
words, there exists (x∗, y∗) such that

ξ ã(n0)(x∗n0
) = α∗ or ξ b̃(n0)(y

∗
n0
) = α∗ for some n0 ∈ {1, · · · , n}. (14)

For convenience, we write α∗n+i ≡ β∗i , x∗n+i ≡ y∗i and ã(n+i) ≡ b̃(i) for i = 1, · · · , n. Then, from (13)
and (14), we have

min
{

ξ ã(1)(x∗1), · · · , ξ ã(n)(x∗n), ξ ã(n+1)(x∗n+1), · · · , ξ ã(2n)(x∗2n)
}
= α∗, (15)

and we can say that ξ ã(n1)(x∗n1
) = α∗ for some n1 ∈ {1, · · · , 2n}. Part (i) also says that α∗ = α∗n2

for
some n2 ∈ {1, · · · , 2n}. Then, using (15), we have

α∗n2
= α∗ = ξ ã(n1)(x∗n1

) ≤ ξ ã(n2)(x∗n2
) ≤ α∗n2

,

which says that the supremum α∗n2
= supR(ξ ã(n2)) is attained. Using (8) and (9), we obtain Iã(n2) =

[0, α∗n2
] is a closed interval, which also says that I∗ = [0, α∗n2

]. Therefore, we conclude that the supremum
sup I∗ is also attained.

On the other hand, suppose that the supremum sup I∗ is attained. Then, we have

I∗ = [0, α∗n3
] = Iã(n3) for some n3 ∈ {1, · · · , 2n}
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and
α∗n3

= min {α∗1 , · · · , α∗2n} = min {α∗1 , · · · , α∗n, β∗1, · · · , β∗n} = α∗,

which also says that the supremum α∗n3
= supR(ξ ã(n3)) is attained; i.e., there exists x◦n3

∈ R such that
ξ ã(n3)(x◦n3

) = α∗n3
= α∗. By referring to (12), there exists x◦ ∈ R2n such that its n3-component is x◦n3

and

α∗ = min
{

ξ ã(1)(x◦1), · · · , ξ ã(n3)(x◦n3
) = α∗, · · · , ξ ã(2n)(x◦2n)

}
= min

{
ξ ã(1)(x◦1), · · · , ξ ã(n)(x◦n), ξ b̃(1)(y

◦
1), · · · , ξ b̃(n)(y

◦
n)
}

,

where y◦i = x◦n+i for i = 1, · · · , n. In this case, we have z◦ = x◦ ◦ y◦, which says that the supremum

supR
(

ξ ã�EPb̃

)
is attained, which proves part (ii). Finally, part (iii) follows immediately from parts (i)

and (ii). This completes the proof.

4. Arithmetics Using the Form of Decomposition Theorem

The differentiation and integrals of fuzzy-number-valued functions using the form of
decomposition theorem have been studied in Wu [17]. In this paper, we use the form of decomposition
theorem to study the arithmetics of vector of fuzzy intervals.

Let ã and b̃ be two vectors of fuzzy intervals with components ã(i) and b̃(i), respectively, for i =
1, · · · , n. Let

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) . (16)

Then I∗ is not empty, since Iã(i) and Ib̃(i) are intervals with left end-point 0 for i = 1, · · · , n. For
each α ∈ I∗, the α-level sets of ã(i) and b̃(i) are nonempty and denoted by

ã(i)α ≡
[

ãL
iα, ãU

iα

]
and b̃(i)α ≡

[
b̃L

iα, b̃U
iα

]
.

We write (
ãL

1α, ãL
2α, · · · , ãL

nα

)
= ãL

α ∈ Rn and
(

ãU
1α, ãU

2α, · · · , ãU
nα

)
= ãU

α ∈ Rn. (17)

We also write
ãα = ã(1)α × · · · × ã(n)α =

[
ãL

1α, ãU
1α

]
× · · · ×

[
ãL

nα, ãU
nα

]
(18)

and
b̃α = b̃(1)α × · · · × b̃(n)α =

[
b̃L

1α, b̃U
1α

]
× · · · ×

[
b̃L

nα, b̃U
nα

]
. (19)

In order to define the difference ã	DT b̃, we consider the family {M−α : α ∈ I∗ with α > 0} that
is formed by applying the operation x− y to the α-level sets ã(i)α and b̃(i)α for i = 1, · · · , n, where each
M−α is a subset of Rm. In this paper, we study three different families described below.

• We take
M−α = ãα − b̃α =

{
x− y : x ∈ ãα and y ∈ b̃α

}
to define ã	�DT b̃.

• We take

M−α =

 ⋃
{β∈I∗ :β≥α}

M(1−)
β

× · · · ×
 ⋃
{β∈I∗ :β≥α}

M(n−)
β

 ,

where M(i−)
β are bounded closed intervals given by

M(i−)
β =

[
min

{
ãL

iβ − b̃L
iβ, ãU

iβ − b̃U
iβ

}
, max

{
ãL

iβ − b̃L
iβ, ãU

iβ − b̃U
iβ

}]
.
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for i = 1, · · · , n to define ã	?
DT b̃.

• We take
M−α = M(1−)

α × · · · ×M(n−)
α ,

where M(i−)
α are bounded closed intervals given by

M(i−)
α =

[
min

{
ãL

iα − b̃L
iα, ãU

iα − b̃U
iα

}
, max

{
ãL

iα − b̃L
iα, ãU

iα − b̃U
iα

}]
for i = 1, · · · , n to define ã	†

DT b̃.

For 	DT ∈ {	�DT ,	?
DT ,	†

DT}, based on the form of decomposition theorem, the membership
function of ã	DT b̃ is defined by

ξã	DT b̃(z) = sup
{α∈I∗ :α>0}

α · χM−α
(z).

Example 7. Continuing from Example 5, we have

I∗ = Iã(1) ∩ Iã(2) ∩ Ib̃(1) ∩ Ib̃(2) = [0, 0.8] ∩ [0, 0.9] ∩ [0, 0.9] ∩ [0, 0.8] = [0, 0.8].

From (5), we have

ã(1)α =
[

ãL
1α, ãU

1α

]
= [(1− α) + 2α, 4(1− α) + 3α] = [1 + α, 4− α]

ã(2)α =
[

ãL
2α, ãU

2α

]
= [2(1− α) + 3α, 5(1− α) + 4α] = [2 + α, 5− α]

b̃(1)α =
[
b̃L

1α, b̃U
1α

]
= [4(1− α) + 5α, 7(1− α) + 6α] = [4 + α, 7− α]

b̃(2)α =
[
b̃L

2α, b̃U
2α

]
= [3(1− α) + 4α, 6(1− α) + 5α] = [3 + α, 6− α] .

Then we have

ãα = ã(1)α × ã(2)α =
[

ãL
1α, ãU

1α

]
×
[

ãL
nα, ãU

nα

]
= [1 + α, 4− α]× [2 + α, 5− α]

and
b̃α = b̃(1)α × b̃(2)α =

[
b̃L

1α, b̃U
1α

]
×
[
b̃L

nα, b̃U
nα

]
= [4 + α, 7− α]× [3 + α, 6− α] .

We consider three families

{M−α : α ∈ I∗ with α > 0} = {M−α : α ∈ (0, 0.8]}

given below.

• We take

M−α = ãα − b̃α = {(x1, x2)− (y1, y2) : (x1, x2) ∈ [1 + α, 4− α]× [2 + α, 5− α]

and (y1, y2) ∈ [4 + α, 7− α]× [3 + α, 6− α]}
= [−6 + 2α,−2α]× [−4 + 2α, 2− 2α]

for all α ∈ (0, 0.8]. The membership function of ã	�DT b̃ is given by

ξã	�DT b̃(z1, z2) = sup
{α∈I∗ :α>0}

α · χM−α
(z1, z2) = sup

α∈(0,0.8]
α · χM−α

(z1, z2).
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• We take

M−α =

 ⋃
{β∈[0,0.8]:β≥α}

M(1−)
β

×
 ⋃
{β∈[0,0.8]:β≥α}

M(2−)
β

 ,

where M(1−)
β and M(2−)

β are bounded closed intervals given by

M(1−)
β =

[
min

{
ãL

1β − b̃L
1β, ãU

1β − b̃U
1β

}
, max

{
ãL

1β − b̃L
1β, ãU

1β − b̃U
1β

}]
= [min {(1 + β)− (4 + β), (4− β)− (7− β)} , max {(1 + β)− (4 + β), (4− β)− (7− β)}]

= [−3,−3] = {−3} ,

which says that M(1−)
β is a singleton set {−3} for all β ∈ [0, 0.8]. Similarly, we can obtain

M(2−)
β =

[
min

{
ãL

2β − b̃L
2β, ãU

2β − b̃U
2β

}
, max

{
ãL

1β − b̃L
1β, ãU

2β − b̃U
2β

}]
= {−1}

for all β ∈ [0, 0.8]. Therefore, we obtain

M−α = {−3} × {−1} = {(−3,−1)} (20)

for all α ∈ (0, 0.8], which is a singleton set in R2. The membership function of ã	?
DT b̃ is given by

ξã	?
DT b̃(z1, z2) = sup

{α∈I∗ :α>0}
α · χM−α

(z1, z2) = sup
α∈(0,0.8]

α · χM−α
(z1, z2)

=

{
0.8 if (z1, z2) = (−3,−1)
0 otherwise.

• We take
M−α = M(1−)

α ×M(2−)
α ,

where M(1−)
α and M(2−)

α are bounded closed intervals given by

M(1−)
α =

[
min

{
ãL

1α − b̃L
1α, ãU

1α − b̃U
1α

}
, max

{
ãL

1α − b̃L
1α, ãU

1α − b̃U
1α

}]
= {−3}

and
M(2−)

α =
[
min

{
ãL

2α − b̃L
2α, ãU

2α − b̃U
2α

}
, max

{
ãL

1α − b̃L
2α, ãU

2α − b̃U
2α

}]
= {−1} .

Therefore, we obtain
M−α = {−3} × {−1} = {(−3,−1)} (21)

for all α ∈ (0, 0.8], which is a singleton set in R2. The membership function of ã 	†
DT b̃ is equal to

membership function of ã	?
DT b̃.

In order to define the addition ã⊕DT b̃, we consider the family {M+
α : α ∈ I∗ with α > 0} that

is formed by applying the operation x + y to the α-level sets ã(i)α and b̃(i)α for i = 1, · · · , n, where each
M+

α is a subset of Rm. In this paper, we study three different families described below.

• We take
M+

α = ãα + b̃α =
{

x + y : x ∈ ãα and y ∈ b̃α

}
to define ã⊕�DT b̃.
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• We take

M+
α =

 ⋃
{β∈I∗ :β≥α}

M(1+)
β

× · · · ×
 ⋃
{β∈I∗ :β≥α}

M(n+)
β

 ,

where M(i+)
β are bounded closed intervals given by

M(i+)
β =

[
aL

iβ + bL
iβ, aU

iβ + bU
iβ

]
for i = 1, · · · , n to define ã⊕?

DT b̃.
• We take

M+
α = M(1+)

α × · · · ×M(n+)
α ,

where M(i+)
α are bounded closed intervals given by

M(i+)
α =

[
aL

iα + bL
iα, aU

iα + bU
iα

]
for i = 1, · · · , n to define ã⊕†

DT b̃.

For ⊕DT ∈ {⊕�DT ,⊕?
DT ,⊕†

DT}, based on the form of decomposition theorem, the membership
function of ã⊕DT b̃ is defined by

ξã⊕DT b̃(z) = sup
{α∈I∗ :α>0}

α · χM+
α
(z).

Example 8. Continuing from Examples 5 and 7, we consider three families

{M+
α : α ∈ I∗ with α > 0} = {M+

α : α ∈ (0, 0.8]}

given below.

• We take

M+
α = ãα + b̃α = {(x1, x2) + (y1, y2) : (x1, x2) ∈ [1 + α, 4− α]× [2 + α, 5− α]

and (y1, y2) ∈ [4 + α, 7− α]× [3 + α, 6− α]}
= [5 + 2α, 11− 2α]× [5 + 2α, 11− 2α]

for all α ∈ (0, 0.8]. The membership function of ã⊕�DT b̃ is given by

ξã⊕�DT b̃(z1, z2) = sup
{α∈I∗ :α>0}

α · χM+
α
(z1, z2) = sup

α∈(0,0.8]
α · χM+

α
(z1, z2).

• We take

M+
α =

 ⋃
{β∈[0,0.8]:β≥α}

M(1+)
β

×
 ⋃
{β∈[0,0.8]:β≥α}

M(2+)
β

 ,

where M(1+)
β and M(2+)

β are bounded closed intervals given by

M(1+)
β =

[
aL

1β + bL
1β, aU

1β + bU
1β

]
= [(1 + β) + (4 + β), (4− β) + (7− β)] = [5 + 2β, 11− 2β]

for all β ∈ [0, 0.8]. We also obtain

M(2+)
β =

[
aL

2β + bL
2β, aU

2β + bU
2β

]
= [(2 + β) + (3 + β), (5− β) + (6− β)] = [5 + 2β, 11− 2β] .
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for all β ∈ [0, 0.8]. Now, we have

⋃
{β∈[0,0.8]:β≥α}

M(1+)
β =

⋃
{β∈[0,0.8]:β≥α}

[5 + 2β, 11− 2β] = [5 + 2α, 11− 2α]

and ⋃
{β∈[0,0.8]:β≥α}

M(2+)
β =

⋃
{β∈[0,0.8]:β≥α}

[5 + 2β, 11− 2β] = [5 + 2α, 11− 2α] .

Therefore, we obtain
M+

α = [5 + 2α, 11− 2α]× [5 + 2α, 11− 2α]

for all α ∈ (0, 0.8]. The membership function of ã⊕?
DT b̃ is equal to the membership function of ã⊕�DT b̃

• We take
M+

α = M(1+)
α ×M(2+)

α ,

where M(1+)
α and M(2+)

α are bounded closed intervals given by

M(1+)
α =

[
aL

1α + bL
1α, aU

1α + bU
1α

]
= [(1 + α) + (4 + α), (4− α) + (7− α)] = [5 + 2α, 11− 2α]

and

M(2+)
α =

[
aL

2α + bL
2α, aU

2α + bU
2α

]
= [(2 + α) + (3 + α), (5− α) + (6− α)] = [5 + 2α, 11− 2α] .

Therefore, we obtain
M+

α = [5 + 2α, 11− 2α]× [5 + 2α, 11− 2α]

for all α ∈ (0, 0.8]. The membership function of ã⊕†
DT b̃ is equal to membership function of ã⊕?

DT b̃.

In order to define the scalar product of ã and b̃, we consider the family {M•α : α ∈ I∗ with α > 0}
that is formed by applying the operation x • y to the α-level sets ã(i)α and b̃(i)α for i = 1, · · · , n, where
each M•α is a subset of R. In this paper, we study three different families described below.

• We take
M•α = ãα • b̃α =

{
x • y : x ∈ ãα and y ∈ b̃α

}
to define the scalar product ã ~�DT b̃.

• We take
M•α =

⋃
{β∈I∗ :β≥α}

Mβ,

where Mβ are bounded closed intervals given by

Mβ =
[
min

{
ãL

β • b̃L
β, ãU

β • b̃U
β

}
, max

{
ãL

β • b̃L
β, ãU

β • b̃U
β

}]
to define the scalar product ã ~?

DT b̃.
• We take

M•α =
[
min

{
ãL

α • b̃L
α , ãU

α • b̃U
α

}
, max

{
ãL

α • b̃L
α , ãU

α • b̃U
α

}]
to define the scalar product ã ~†

DT b̃.

For ~DT ∈ {~�DT ,~?
DT ,~†

DT}, based on the form of decomposition theorem, the membership
function of ã ~DT b̃ is defined by

ξã~DT b̃(z) = sup
{α∈I∗ :α>0}

α · χM•α (z). (22)
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Example 9. Continuing from Examples 5 and 7, we consider three families

{M•α : α ∈ I∗ with α > 0} = {M•α : α ∈ (0, 0.8]}

given below.

• We take

M•α = ãα • b̃α

= {(x1, x2) • (y1, y2) : (x1, x2) ∈ [1 + α, 4− α]× [2 + α, 5− α]

and (y1, y2) ∈ [4 + α, 7− α]× [3 + α, 6− α]}
= {x1y1 + x2y2 : (x1, x2) ∈ [1 + α, 4− α]× [2 + α, 5− α]

and (y1, y2) ∈ [4 + α, 7− α]× [3 + α, 6− α]}
= [(1 + α)(4 + α), (4− α)(7− α)] + [(2 + α)(3 + α), (5− α)(6− α)]

=
[
10 + 10α + α2, 58− 22α + α2

]
for all α ∈ (0, 0.8]. The membership function of ã ~�DT b̃ is given by

ξã~�DT b̃(z1, z2) = sup
{α∈I∗ :α>0}

α · χM•α (z1, z2) = sup
α∈(0,0.8]

α · χM•α (z1, z2).

• We take
M•α =

⋃
{β∈[0,0.8]:β≥α}

Mβ,

where Mβ is a bounded closed interval given by

Mβ =
[
min

{
ãL

1β b̃L
1β + ãL

2β b̃L
2β, ãU

1β b̃U
1β + ãU

2β b̃U
2β

}
, max

{
ãL

1β b̃L
1β + ãL

2β b̃L
2β, ãU

1β b̃U
1β + ãU

2β b̃U
2β

}]
= [min {(1 + β)(4 + β) + (2 + β)(3 + β), (4− β)(7− β) + (5− β)(6− β)} ,

max {(1 + β)(4 + β) + (2 + β)(3 + β), (4− β)(7− β) + (5− β)(6− β)}]

=
[
min

{
10 + 10β + β2, 58− 22β + β2

}
, max

{
10 + 10β + β2, 58− 22β + β2

}]
=
[
10 + 10β + β2, 58− 22β + β2

]
for all β ∈ (0, 0.8]. Therefore, we obtain

M•α =
⋃

{β∈[0,0.8]:β≥α}
Mβ =

⋃
{β∈[0,0.8]:β≥α}

[
10 + 10β + β2, 58− 22β + β2

]
=
[
10 + 10α + α2, 58− 22α + α2

]
.

The membership function of ã ~?
DT b̃ is equal to the membership function of ã ~�DT b̃.

• We take

M•α =
[
min

{
ãL

1α b̃L
1α + ãL

2α b̃L
2α, ãU

1α b̃U
1α + ãU

2α b̃U
2α

}
, max

{
ãL

1α b̃L
1α + ãL

2α b̃L
2α, ãU

1α b̃U
1α + ãU

2α b̃U
2α

}]
.

Then, we obtain
M•α =

[
10 + 10α + α2, 58− 22α + α2

]
.

Therefore, the membership function of ã ~†
DT b̃ is equal to the membership function of ã ~�DT b̃.
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We denote by I(DT)
~ and I(DT)

� the interval ranges of membership functions ξã~DT b̃ and ξ ã�DT b̃

for �DT ∈ {⊕DT ,	DT}, respectively, where I(DT)
~ and I(DT)

� depends on ã and b̃. We consider the
supremum of range of membership function ξã~DT b̃ as follows:

supR
(

ξã~DT b̃

)
= sup

z∈R
ξã~DT b̃(z) = sup

z∈R
sup

{α∈I∗ :α>0}
α · χM•α (z). = sup I∗ ≡ α�. (23)

We can similarly obtain
supR

(
ξã�DT b̃

)
= sup I∗ ≡ α�.

Therefore, the definition of interval ranges says that

I(DT)
~ =

{
[0, α�] if the supremum α� = R

(
ξ ã~DT b̃

)
is attained

[0, α�) otherwise.
(24)

and

I(DT)
� =

{
[0, α�] if the supremum α� = R

(
ξ ã�DT b̃

)
is attained

[0, α�) otherwise.
(25)

Proposition 1 also says that(
ã ~DT b̃

)
α
6= ∅ for α ∈ I(DT)

~ and
(
ã ~DT b̃

)
α
= ∅ for α 6∈ I(DT)

~

and (
ã�DT b̃

)
α
6= ∅ for α ∈ I(DT)

� and
(
ã�DT b̃

)
α
= ∅ for α 6∈ I(DT)

� .

Proposition 3. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be fuzzy intervals. Suppose that the supremum sup I∗

in (16) is attained. Then
I(DT)
~ = I(DT)

� = I∗ = [0, α�] .

Proof. Recall the definition Iã(i) and Ib̃(i) in (8) and (9), respectively, for i = 1, · · · , n. It is clear to
see that

α� = sup I∗ = min {α∗1 , · · · , α∗n, β∗1, · · · , β∗n} . (26)

Since sup I∗ is assumed to be attained, it follows that I∗ = [0, α�]. By referring to (23), we can
take z ∈ M•α� ⊂ R, which says that the supremum α� is attained for the rangeR(ξã~DT b̃). Therefore,

from (24), we have I(DT)
~ = [0, α�] = I∗. We can similarly obtain I(DT)

� = [0, α�] = I∗. This completes
the proof.

More detailed properties will be studied separately in the sequel.

Example 10. Continuing from Examples 7–9, we consider the interval ranges I(DT)
~ , I(DT)

⊕ and I(DT)
	 of

ã ~DT b̃, ã ⊕DT b̃ and ã	DT b̃, respectively. Recall that I∗ = [0, 0.8]. From (23), we see that α� = 0.8.
Proposition 3 says that

I(DT)
~ = I(DT)

⊕ = I(DT)
	 = [0, 0.8].

Therefore, it follows that(
ã ~DT b̃

)
α
6= ∅,

(
ã⊕DT b̃

)
α
6= ∅ and

(
ã	DT b̃

)
α
6= ∅ for α ∈ [0, 0.8]

and (
ã ~DT b̃

)
α
= ∅,

(
ã⊕DT b̃

)
α
= ∅ and

(
ã	DT b̃

)
α
= ∅ for α 6∈ [0, 0.8].
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5. Difference of Vectors of Fuzzy Intervals

Let ã and b̃ be two vectors of fuzzy intervals with components ã(i) and b̃(i), respectively, for i =
1, · · · , n. Here we study the α-level set of ã 	EP b̃ that is obtained from the extension principle,
and the α-level sets of ã 	DT b̃ for 	DT ∈ {	�DT ,	?

DT ,	†
DT} that are obtained from the form of

decomposition theorem.

5.1. Using the Extension Principle to Study the α-Level Sets of ã	EP b̃

Given any aggregation function A : [0, 1]2n → [0, 1], recall that the membership function of
difference ã	EP b̃ is defined by

ξã	EPb̃(z) = sup
{(x,y):z=x−y}

A
(
ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)

)
for any z ∈ Rn. Let I(EP)

	 be the interval range of ã	EP b̃. The α-level set (ã	EP b̃)α of ã	EP b̃ for

α ∈ I(EP)
	 can be obtained by applying the results obtained in Wu [11] to the difference ã	EP b̃, which

is shown below. For each α ∈ I(EP)
	 with α > 0, we have

(
ã	EP b̃

)
α =

{
x− y : A

(
ξ ã(1) (x1), · · · , ξ ã(n) (xn), ξ b̃(1) (y1), · · · , ξ b̃(n) (yn)

)
≥ α

}
=
{
(x1 − y1, · · · , xn − yn) : A

(
ξ ã(1) (x1), · · · , ξ ã(n) (xn), ξ b̃(1) (y1), · · · , ξ b̃(n) (yn)

)
≥ α

}
.

(27)

The 0-level set is given by(
ã	EP b̃

)
0 = ã0 − b̃0 =

{
x− y : x ∈ ã0 and y ∈ b̃0

}
.

Moreover, for each α ∈ I(EP)
	 , the α-level sets (ã	EP b̃)α are closed and bounded subsets of Rm.

Now, the aggregation function A : [0, 1]2n → [0, 1] is given by

A (α1, · · · , α2n) =

{
min {α1, · · · , α2n} , if αi ∈ Ri for i = 1, · · · , 2n
any expression, otherwise.

Proposition 2 says that I(EP)
	 = I∗. Therefore, for each α ∈ I(EP)

	 = I∗, we have (ã	EP b̃)α 6= ∅,

ã(i)α 6= ∅ and b̃(i)α 6= ∅ for all i = 1, · · · , n. Now, for each α ∈ I(EP)
	 with α > 0, using (27), we have(

ã	EP b̃
)

α
=
{

x− y : min
{

ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)
}
≥ α

}
=
{

x− y : ξ ã(i)(xi) ≥ α and ξ b̃(i)(yi) ≥ α for each i = 1, · · · , n
}

=
{
(x1 − y1, · · · , xn − yn) : xi ∈ ã(i)α ≡

[
ãL

iα, ãU
iα

]
and yi ∈ b̃(i)α ≡

[
b̃L

iα, b̃U
iα

]
for each i = 1, · · · , n

}
=
[

ãL
1α − b̃U

1α, ãU
1α − b̃L

1α

]
× · · · ×

[
ãL

nα − b̃U
nα, ãU

nα − b̃L
nα

]
.

(28)

For the 0-level set, from (28) and (4), it is not difficult to show that

(
ã	EP b̃

)
0 = cl

 ⋃
{α∈I(EP)

	 :α>0}

(
ã	EP b̃

)
α


=
[

ãL
10 − b̃U

10, ãU
10 − b̃L

10

]
× · · · ×

[
ãL

n0 − b̃U
n0, ãU

n0 − b̃L
n0

]
.
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Regarding the components ã(i) and b̃(i), let I(i)(EP)
	 be the interval range of ã(i) 	EP b̃(i). From

Proposition 2, we can similarly obtain I(i)(EP)
	 = Iã(i) ∩ Ib̃(i) . For α ∈ I(i)(EP)

	 , we also have(
ã(i) 	EP b̃(i)

)
α
=
[

ãL
iα − b̃U

iα, ãU
iα − b̃L

iα

]
for i = 1, · · · , n. (29)

Therefore, from (28) and (29), for α ∈ I(EP)
	 , we obtain

(
ã	EP b̃

)
α
=
(

ã(1) 	EP b̃(1)
)

α
× · · · ×

(
ã(n) 	EP b̃(n)

)
α

.

The above results are summarized in the following theorem.

Theorem 2. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be any fuzzy intervals. Suppose that the aggregation function
A : [0, 1]2n → [0, 1] is given by

A (α1, · · · , α2n) =

{
min {α1, · · · , α2n} , if αi ∈ Ri for i = 1, · · · , 2n
any expression, otherwise,

Then, we have the following results.

(i) Let I(i)(EP)
	 be the interval range of ã(i) 	EP b̃(i) for i = 1, · · · , n. Then, for each α ∈ I(i)(EP)

	 , we have(
ã(i) 	EP b̃(i)

)
α
=
[

ãL
iα − b̃U

iα, ãU
iα − b̃L

iα

]
.

We also have I(i)(EP)
	 = Iã(i) ∩ Ib̃(i) .

(ii) Let I(EP)
	 be the interval range of ã	EP b̃. We have

I(EP)
	 ⊆ I(i)(EP)

	 for i = 1, · · · , n, and I(EP)
	 = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) .

For each α ∈ I(EP)
	 , we also have(

ã(i) 	EP b̃(i)
)

α
=
[

ãL
iα − b̃U

iα, ãU
iα − b̃L

iα

]
and (

ã	EP b̃
)

α
=
(

ã(1) 	EP b̃(1)
)

α
× · · · ×

(
ã(n) 	EP b̃(n)

)
α

.

Remark 1. When ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are taken to be fuzzy numbers instead of fuzzy intervals, it
follows that

Iã(i) = Ib̃(i) = I(i)(EP)
	 = I(EP)

	 = [0, 1] for all i = 1, · · · , n.

Therefore, Theorem 2 says that(
ã	EP b̃

)
α
=
(

ã(1) 	EP b̃(1)
)

α
× · · · ×

(
ã(n) 	EP b̃(n)

)
α

=
[

ãL
1α − b̃U

1α, ãU
1α − b̃L

1α

]
× · · · ×

[
ãL

nα − b̃U
nα, ãU

nα − b̃L
nα

]
.

for all α ∈ [0, 1].
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Example 11. Continuing from Examples 5 and 7, Theorem 2 says that(
ã(1) 	EP b̃(1)

)
α
=
[

ãL
1α − b̃U

1α, ãU
1α − b̃L

1α

]
= [(1 + α)− (7− α), (4− α)− (4 + α)] = [−6 + 2α,−2α]

and (
ã(2) 	EP b̃(2)

)
α
=
[

ãL
2α − b̃U

2α, ãU
2α − b̃L

2α

]
= [(2 + α)− (6− α), (5− α)− (3 + α)] = [−4 + 2α, 2− 2α]

and (
ã	EP b̃

)
α
=
(

ã(1) 	EP b̃(1)
)

α
×
(

ã(2) 	EP b̃(2)
)

α
= [−6 + 2α,−2α]× [−4 + 2α, 2− 2α]

for α ∈ [0, 0.8]. Moreover, we have
(
ã	EP b̃

)
α
= ∅ for α 6∈ [0, 0.8].

5.2. Using the Form of Decomposition Theorem to to Study the α-Level Sets of ã	�DT b̃

Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be fuzzy intervals. The family {M−α : α ∈ I∗ for α > 0} is
given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) and M−α = ãα − b̃α.

We see that ã(i)α 6= ∅ and b̃(i)α 6= ∅ for each α ∈ I∗ and for i = 1, · · · , n. Now, for α ∈ I∗ with α > 0,
we have

M−α = ãα − b̃α =
{

x− y : x ∈ ãα and y ∈ b̃α
}

=
{
(x1 − y1, · · · , x1 − y1) : xi ∈ ã(i)α =

[
ãL

iα, ãU
iα

]
and yi ∈ b̃(i)α =

[
b̃L

iα, b̃U
iα

]
for i = 1, · · · , n

}
=
[

ãL
1α − b̃U

1α, ãU
1α − b̃L

1α

]
× · · · ×

[
ãL

nα − b̃U
nα, ãU

nα − b̃L
nα

]
.

(30)

Based on the form of decomposition theorem, the membership function of ã	�DT b̃ is given by

ξã	�DT b̃(z) = sup
{α∈I∗ :α>0}

α · χM−α
(z). (31)

Let I(�DT)
	 be the interval range of ã	�DT b̃. The α-level sets (ã	�DT b̃)α of ã	�DT b̃ for α ∈ I(�DT)

	
are presented below.

Proposition 4. Suppose that the supremum sup I∗ is attained. Then I(�DT)
	 = I∗ and

(
ã	�DT b̃

)
α
= M−α =

[
ãL

1α − b̃U
1α, ãU

1α − b̃L
1α

]
× · · · ×

[
ãL

nα − b̃U
nα, ãU

nα − b̃L
nα

]
(32)

for each α ∈ I∗.

Proof. We first consider α ∈ I∗ with α > 0. Given any z ∈ M−α , we see that ξã	�DT b̃(z) ≥ α by (31).

Therefore, we obtain z ∈ (ã	�DT b̃)α, which proves the inclusion M−α ⊆ (ã	�DT b̃)α.
For proving another direction of inclusion, it is clear to see that {M−α : α ∈ I∗ with α > 0} is a

nested family. Given any z ∈ (ã	�DT b̃)α, i.e., ξã	�DT b̃(z) ≥ α, let α̂ = ξã	�DT b̃(z). Assume that α̂ > α.
Let ε = α̂− α > 0. According to the concept of supremum, there exists α0 ∈ I∗ satisfying z ∈ M−α0

and
α̂− ε < α0, which implies α < α0. This also says that z ∈ M−α , since M−α0

⊆ M−α by the nestedness.
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Now, we assume that α̂ = α. Since I∗ is an interval with left end-point 0, given any α ∈ I∗ with
α > 0, we can consider the sequence {αs}∞

s=1 in I∗ satisfying 0 < αs ↑ α with α > αs ∈ I∗ for all s. Since
ã(i) and b̃(i) are fuzzy intervals for i = 1, · · · , n, it is well-known that

ã(i)α =
∞⋂

s=1

ã(i)αs and b̃(i)α =
∞⋂

s=1

b̃(i)αs for i = 1, · · · , n.

Since
ãα = ã(1)α × · · · × ã(n)α and b̃α = b̃(1)α × · · · × b̃(n)α ,

we can obtain

ãα =
∞⋂

s=1

ãαs and b̃α =
∞⋂

s=1

b̃αs ,

Since M−α = ãα − b̃α, we conclude that

M−α =
∞⋂

s=1

M−αs for α ∈ I∗ with α > 0 and 0 < αs ↑ α with α > αs ∈ I∗ for all s. (33)

Let εs = α − αs > 0. According to the concept of supremum, there exists α0 ∈ I∗ satisfying
z ∈ M−α0

and α̂− εs = α− εs < α0, which implies α0 > αs ∈ I∗. This also says that z ∈ M−αs by the
nestedness for all s. Therefore, we conclude that z ∈ ⋂∞

s=1 M−αs . From (33), it follows that z ∈ M−α .
Therefore, for α ∈ I∗ with α > 0, we obtain(

ã	�DT b̃
)

α
=
[

ãL
1α − b̃U

1α, ãU
1α − b̃L

1α

]
× · · · ×

[
ãL

nα − b̃U
nα, ãU

nα − b̃L
nα

]
.

For the 0-level set, since I(�DT)
	 = I∗ from Proposition 3, by referring to (4), it is not difficult to

show that

(
ã	�DT b̃

)
0 = cl

 ⋃
{α∈I(�DT)

	 :α>0}

(
ã	�DT b̃

)
α

 = cl

 ⋃
{α∈I∗ :α>0}

(
ã	�DT b̃

)
α


=
[

ãL
10 − b̃U

10, ãU
10 − b̃L

10

]
× · · · ×

[
ãL

n0 − b̃U
n0, ãU

n0 − b̃L
n0

]
.

This completes the proof.

Now, for i = 1, · · · , n and for α ∈ Iã(i) ∩ Ib̃(i) with α > 0, we take

M(i−)
α = ã(i)α − b̃(i)α =

[
ãL

iα, ãU
iα

]
−
[
b̃L

iα, b̃U
iα

]
=
[

ãL
iα − b̃U

iα, ãU
iα − b̃L

iα

]
. (34)

From (30), we see that
M−α = M(1−)

α × · · · ×M(n−)
α ⊂ Rn. (35)

Let ã(i) 	�DT b̃(i) be obtained using the form of decomposition theorem based on the family

{M(i−)
α : α ∈ I∗ with α > 0} that is defined in (34). Let I(i)(�DT)

	 be the interval range of ã(i) 	�DT b̃(i).
Suppose that the supremum sup(Iã(i) ∩ Ib̃(i)) is attained for each i = 1, · · · , n. Then each Iã(i) ∩ Ib̃(i) is a
bounded and closed interval with left end-point 0 for i = 1, · · · , n. In this case, it is also clear to see
that I∗ is a bounded and closed interval with left end-point 0; that is, the supremum sup I∗ is also
attained. By referring to Proposition 4, we can similarly obtain I(i)(�DT)

	 = Iã(i) ∩ Ib̃(i) and(
ã(i) 	�DT b̃(i)

)
α
= M(i−)

α =
[

ãL
iα − b̃U

iα, ãU
iα − b̃L

iα

]
(36)
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for α ∈ Iã(i) ∩ Ib̃(i) and i = 1, · · · , n, which also implies

(
ã	�DT b̃

)
α
=
(

ã(1) 	�DT b̃(1)
)

α
× · · · ×

(
ã(n) 	�DT b̃(n)

)
α

for each α ∈ I∗. The above results are summarized below.

Theorem 3. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be fuzzy intervals. Suppose that the family {M−α : α ∈
I∗ for α > 0} is given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) and M−α = ãα − b̃α.

Let I(�DT)
	 be the interval range of ã	�DT b̃, and let I(i)(�DT)

	 be the interval range of ã(i) 	�DT b̃(i) for
i = 1, · · · , n.

(i) Suppose that the supremum sup I∗ is attained. Then I(�DT)
	 = I∗ and

(
ã	�DT b̃

)
α
=
[

ãL
1α − b̃U

1α, ãU
1α − b̃L

1α

]
× · · · ×

[
ãL

nα − b̃U
nα, ãU

nα − b̃L
nα

]
for each α ∈ I∗.

(ii) Suppose that the supremum sup(Iã(i) ∩ Ib̃(i)) is attained for each i = 1, · · · , n. Then

I(i)(�DT)
	 = Iã(i) ∩ Ib̃(i) and

(
ã(i) 	�DT b̃(i)

)
α
=
[

ãL
iα − b̃U

iα, ãU
iα − b̃L

iα

]
for each α ∈ Iã(i) ∩ Ib̃(i) and each i = 1, · · · , n, and

I(�DT)
	 = I∗ and

(
ã	�DT b̃

)
α
=
(

ã(1) 	�DT b̃(1)
)

α
× · · · ×

(
ã(n) 	�DT b̃(n)

)
α

for each α ∈ I∗.

Remark 2. From (8) and (9), we see that if the supremum supR(ξ ã(i)) and supR(ξ b̃(i)) are attained, then Iã(i)

and Ib̃(i) are closed intervals for all i = 1, · · · , n, which also say that the supremum sup I∗ and sup(Iã(i) ∩ Ib̃(i))

for i = 1, · · · , n are attained.

Example 12. Continuing from Example 7, part (i) of Theorem 3 says that(
ã	�DT b̃

)
α
=
[

ãL
1α − b̃U

1α, ãU
1α − b̃L

1α

]
×
[

ãL
2α − b̃U

2α, ãU
2α − b̃L

2α

]
= [−6 + 2α,−2α]× [−4 + 2α, 2− 2α]

for α ∈ [0, 0.8]. Moreover, we have
(
ã	�DT b̃

)
α
= ∅ for α 6∈ [0, 0.8].

5.3. Using the Form of Decomposition Theorem to to Study the α-Level Sets of ã	?
DT b̃

Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be any fuzzy intervals. The family {M−α : α ∈ I∗ for α > 0} is
given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n)

and

M−α =

 ⋃
{β∈I∗ :β≥α}

M(1−)
β

× · · · ×
 ⋃
{β∈I∗ :β≥α}

M(n−)
β

 , (37)
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where M(i−)
β are bounded closed intervals given by

M(i−)
β =

[
min

{
ãL

iβ − b̃L
iβ, ãU

iβ − b̃U
iβ

}
, max

{
ãL

iβ − b̃L
iβ, ãU

iβ − b̃U
iβ

}]
for i = 1, · · · , n. Based on the form of decomposition theorem, the membership function of ã	?

DT b̃ is
given by

ξã	?
DT b̃(z) = sup

{α∈I∗ :α>0}
α · χM−α

(z).

Let I(?DT)
	 be the interval range of ã	?

DT b̃. Here we study the α-level sets (ã	?
DT b̃)α of ã	?

DT b̃

for α ∈ I(?DT)
	 .

For i = 1, · · · , n, we write
N(i−)

α ≡
⋃

{β∈I∗ :β≥α}
M(i−)

β .

It is clear to see that {N(i−)
α : α ∈ I∗ for α > 0} is a nested family. Since I∗ is a bounded interval

with left end-point 0, using the nestedness, we can show that

N(i−)
α =

∞⋂
n=1

N(i−)
αn for α ∈ I∗ with α > 0 and 0 < αn ↑ α with αn < α for all n. (38)

From (37), we also see that
M−α = N(1−)

α × · · · × N(n−)
α .

Using (38), we can also obtain

M−α =
∞⋂

n=1

M−αn for α ∈ I∗ with α > 0 and 0 < αn ↑ α with αn < α for all n. (39)

Suppose that the supremum sup I∗ is attained. By applying (39) to the argument in the proof of
Proposition 4, we can show that I(?DT)

	 = I∗ and

(
ã	?

DT b̃
)

α
= M−α = N(1−)

α × · · · × N(n−)
α

for any α ∈ I(?DT)
	 = I∗.

Now, we consider the difference ã(i) 	?
DT b̃(i) of components ã(i) and b̃(i) for i = 1, · · · , n. Using

the form of decomposition theorem, the membership function of ã(i) 	?
DT b̃(i) is defined by

ξ ã(i)	?
DT b̃(i)(z) = sup

{α∈I∗ :α>0}
α · χ

N(i−)
α

(z).

Let I(i)(?DT)
	 be the interval range of ã(i) 	?

DT b̃(i). We also study the α-level sets (ã(i) 	?
DT b̃(i))α

of ã(i) 	?
DT b̃(i) for α ∈ I(i)(?DT)

	 . Suppose that the supremum sup(Iã(i) ∩ Ib̃(i)) is attained. Using the

argument in the proof of Proposition 4 again, we can obtain I(i)(?DT)
	 = Iã(i) ∩ Ib̃(i) and(

ã(i) 	?
DT b̃(i)

)
α
= N(i−)

α

for any α ∈ I(i)(?DT)
	 = Iã(i) ∩ Ib̃(i) .

In order to obtain the compact form of the α-level sets, we propose a concept below.

Definition 1. We say that ã is a canonical fuzzy interval if and only if ã is a fuzzy interval such that ãL
α and

ãU
α are continuous with respect to α on Iã.
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Now, we assume that ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are any canonical fuzzy intervals. Let

ζL
i (β) = min

{
ãL

iβ − b̃L
iβ, ãU

iβ − b̃U
iβ

}
and ζU

i (β) = max
{

ãL
iβ − b̃L

iβ, ãU
iβ − b̃U

iβ

}
.

Then M(i−)
β = [ζL

i (β), ζU
i (β)].

We also see that ζL
i and ζU

i are continuous functions on I∗. Then, for α ∈ I∗ with α > 0, we can obtain

N(i−)
α =

⋃
{β∈I∗ :β≥α}

M(i−)
β =

⋃
{β∈I∗ :β≥α}

[
ζL

i (β), ζU
i (β)

]

=

[
min

{β∈I∗ :β≥α}
ζL

i (β), max
{β∈I∗ :β≥α}

ζU
i (β)

]

=

[
min

{β∈I∗ :β≥α}
min

{
ãL

iβ − b̃L
iβ, ãU

iβ − b̃U
iβ

}
, max
{β∈I∗ :β≥α}

max
{

ãL
iβ − b̃L

iβ, ãU
iβ − b̃U

iβ

}]
.

The above results are summarized below.

Theorem 4. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be any fuzzy intervals. Suppose that the family {M−α : α ∈
I∗ for α > 0} is given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n)

and

M−α =

 ⋃
{β∈I∗ :β≥α}

M(1−)
β

× · · · ×
 ⋃
{β∈I∗ :β≥α}

M(n−)
β

 ,

where M(i−)
β are bounded closed intervals given by

M(i−)
β =

[
min

{
ãL

iβ − b̃L
iβ, ãU

iβ − b̃U
iβ

}
, max

{
ãL

iβ − b̃L
iβ, ãU

iβ − b̃U
iβ

}]
for i = 1, · · · , n. Let I(?DT)

	 be the interval range of ã 	?
DT b̃, and let I(i)(?DT)

	 be the interval range of
ã(i) 	?

DT b̃(i) for i = 1, · · · , n.

(i) Suppose that the supremum sup I∗ is attained. Then I(?DT)
	 = I∗ and

(
ã	?

DT b̃
)

α
= M−α =

 ⋃
{β∈I∗ :β≥α}

M(1−)
β

× · · · ×
 ⋃
{β∈I∗ :β≥α}

M(n−)
β


for each α ∈ I∗.

(ii) Suppose that the supremum sup(Iã(i) ∩ Ib̃(i)) is attained for each i = 1, · · · , n. Then

I(i)(?DT)
	 = Iã(i) ∩ Ib̃(i) and

(
ã(i) 	?

DT b̃(i)
)

α
=

 ⋃
{β∈I∗ :β≥α}

M(i−)
β


for each α ∈ Iã(i) ∩ Ib̃(i) and each i = 1, · · · , n, and

I(?DT)
	 = I∗ and

(
ã	?

DT b̃
)

α
=
(

ã(1) 	?
DT b̃(1)

)
α
× · · · ×

(
ã(n) 	?

DT b̃(n)
)

α

for each α ∈ I∗.
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Assume that ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are canonical fuzzy intervals. Then, for i = 1, · · · , n, we
have

⋃
{β∈I∗ :β≥α}

M(i−)
β =

[
min

{β∈I∗ :β≥α}
min

{
ãL

iβ − b̃L
iβ, ãU

iβ − b̃U
iβ

}
, max
{β∈I∗ :β≥α}

max
{

ãL
iβ − b̃L

iβ, ãU
iβ − b̃U

iβ

}]

=

[
min

{
min

{β∈I∗ :β≥α}

(
ãL

iβ − b̃L
iβ

)
, min
{β∈I∗ :β≥α}

(
ãU

iβ − b̃U
iβ

)}
,

max

{
max

{β∈I∗ :β≥α}

(
ãL

iβ − b̃L
iβ

)
, max
{β∈I∗ :β≥α}

(
ãU

iβ − b̃U
iβ

)}]

that are bounded and closed intervals.

Example 13. Continuing from Example 7 by referring to (20), part (i) of Theorem 4 says that(
ã	?

DT b̃
)

α
= M−α = {(−3,−1)}

for α ∈ [0, 0.8]. Moreover, we have
(
ã	?

DT b̃
)

α
= ∅ for α 6∈ [0, 0.8].

5.4. Using the Form of Decomposition Theorem to Study the α-Level Sets of ã	†
DT b̃

Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be any fuzzy intervals. The family {M−α : α ∈ I∗ for α > 0} is
given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n)

and
M−α = M(1−)

α × · · · ×M(n−)
α ,

where M(i−)
α are bounded closed intervals given by

M(i−)
α =

[
min

{
ãL

iα − b̃L
iα, ãU

iα − b̃U
iα

}
, max

{
ãL

iα − b̃L
iα, ãU

iα − b̃U
iα

}]
for i = 1, · · · , n. Based on the form of decomposition theorem, the membership functions of ã	†

DT b̃
and ã(i) 	†

DT b̃(i) for i = 1, · · · , n are given by

ξ ã	†
DT b̃(z) = sup

{α∈I∗ :α>0}
α · χM−α

(z)

for any z ∈ Rn and
ξ ã(i)	†

DT b̃(i)(z) = sup
{α∈I∗ :α>0}

α · χ
M(i−)

α
(z)

for any z ∈ R, respectively. Let I(†DT)
	 and I(i)(†DT)

	 be the interval ranges of ã	†
DT b̃ and ã(i) 	†

DT b̃(i),

respectively, for i = 1, · · · , n. Herein we study the α-level sets (ã	†
DT b̃)α of ã	†

DT b̃ for α ∈ I(†DT)
	 , and

the α-level sets (ã(i) 	†
DT b̃(i))α of ã(i) 	†

DT b̃(i) for α ∈ I(i)(†DT)
	 . We first provide some useful lemmas.

Lemma 2. Let I be a closed subinterval of [0, 1] given by I = [0, γ] for some 0 < γ ≤ 1. Let ζL : I → R and
ζU : I → R be two bounded real-valued functions defined on I with ζL(α) ≤ ζU(α) for each α ∈ I. Suppose
that the following conditions are satisfied:

• ζL is an increasing function and ζU is a decreasing function on I;
• ζL and ζU are left-continuous on I \ {0} = (0, γ].
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Let Mα = [ζL(α), ζU(α)] for α ∈ I. For any fixed x ∈ R, the function

ζ(α) =

{
0, if α = 0
α · χMα(x), if α ∈ I with α > 0

is upper semi-continuous on I.

Lemma 3. Let I be a closed subinterval of [0, 1] given by I = [0, γ] for some 0 < γ ≤ 1. For each i = 1, · · · , n,
let ζL

i : I → R and ζU
i : I → R be bounded real-valued functions defined on I with ζL

i (α) ≤ ζU
i (α) for each

α ∈ I. Suppose that the following conditions are satisfied:

• ζL
i are increasing function and ζU

i are decreasing function on I for i = 1, · · · , n;
• ζL

i and ζU
i are left-continuous on I \ {0} = (0, γ] for i = 1, · · · , n.

Let M(i−)
α = [ζL

i (α), ζU
i (α)] for α ∈ I and for i = 1, · · · , n, and let Mα = M(1−)

α × · · · ×M(n−)
α . For

any fixed x = (x1, · · · , xn) ∈ Rn, the following function

ζ(α) =

{
0, if α = 0
α · χMα(x), if α ∈ I with α > 0

is upper semi-continuous on I.

Proof. Lemma 2 says that the functions

ζi(α) =

{
0, if α = 0
α · χ

M(i−)
α

(xi), if α ∈ I with α > 0

are upper semi-continuous on I for i = 1, · · · , n. For r ∈ I, we define the sets

Fr = {α ∈ I : ζ(α) ≥ r} and F(i−)
r = {α ∈ I : ζi(α) ≥ r} for i = 1, · · · , n.

The upper semi-continuity of ζi says that F(i−)
r is a closed set for i = 1, · · · , n. For r > 0, we want

to claim Fr =
⋂n

i=1 F(i−)
r . Given any α ∈ Fr, it follows that x ∈ Mα and α ≥ r, i.e., xi ∈ M(i−)

α and
α ≥ r for i = 1, · · · , n, which also implies ζi(α) ≥ r for i = 1, · · · , n. Therefore, we obtain the inclusion
Fr ⊆

⋂n
i=1 F(i−)

r . On the other hand, suppose that α ∈ F(i−)
r for i = 1, · · · , n. It follows that xi ∈ M(i−)

α

and α ≥ r for i = 1, · · · , n; i.e., x ∈ Mα and α ≥ r. Therefore, we obtain the equality Fr =
⋂n

i=1 F(i−)
r ,

which also says that Fr is a closed set, since each F(i−)
r is a closed set for i = 1, · · · , n. For r = 0, it is

clear to see that F0 = I is a closed subinterval of [0, 1]. Therefore, we conclude that ζ is indeed upper
semi-continuous on I. This completes the proof.

Now, we assume that the supremum sup I∗ is attained. Then I∗ is a bounded closed interval
with I(†DT)

	 = I∗ by referring to Proposition 3. We also assume that ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are
canonical fuzzy intervals. Under these assumptions, we claim(

ã	†
DT b̃

)
α
=

⋃
{β∈I∗ :β≥α}

M−β for α ∈ I(†DT)
	 with α > 0. (40)

Let
ζL

i (α) = min
{

ãL
iα − b̃L

iα, ãU
iα − b̃U

iα

}
and ζU

i (α) = max
{

ãL
iα − b̃L

iα, ãU
iα − b̃U

iα

}
.
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Then M(i−)
α = [ζL

i (α), ζU
i (α)]. We also see that ζL

i and ζU
i are continuous functions on I∗. Using

Lemmas 2 and 3, given any fixed x = (x1, · · · , xn) ∈ Rn, the functions

ζ(α) =

{
0, if α = 0
α · χMα(x), if α ∈ I∗ with α > 0

and

ζi(α) =

{
0, if α = 0
α · χ

M(i−)
α

(xi), if α ∈ I∗ with α > 0

are upper semi-continuous on I∗ for i = 1, · · · , n.
Given any α ∈ I(†DT)

	 = I∗ with α > 0, suppose that z ∈ (ã	†
DT b̃)α and z 6∈ M−β for all β ∈ I∗

with β ≥ α. Then β · χM−β
(z) < α for all β ∈ I∗. Since I∗ is a bounded closed interval, i.e., a compact

set, and ζ(β) = β · χM−β
(z) is upper semi-continuous on I∗ as described above, the supremum of the

function ζ is attained by Lemma 1. This says that

ξ ã	†
DT b̃(z) = sup

β∈I∗
ζ(β) = sup

β∈I∗
β · χM−β

(z) = max
β∈I∗

β · χM−β
(z) = β∗ · χMβ∗ (z) < α

for some β∗ ∈ I∗, which violates z ∈ (ã	†
DT b̃)α. Therefore, there exists β0 ∈ I∗ with β0 ≥ α satisfying

z ∈ M−β0
, which shows the following inclusion:(

ã	†
DT b̃

)
α
⊆

⋃
{β∈I∗ :β≥α}

M−β .

On the other hand, the inclusion

⋃
{β∈I∗ :β≥α}

M−β ⊆
{

z ∈ Rn : sup
β∈I∗

β · χM−β
(z) ≥ α

}
= {z ∈ Rn : ξ ã	†

DT b̃(z) ≥ α} = (ã	†
DT b̃)α

is obvious. This shows (40).
Suppose that the supremum sup(Iã(i) ∩ Ib̃(i)) is attained. Then Iã(i) ∩ Ib̃(i) is also a bounded closed

interval. Therefore, we can similarly obtain I(i)(†DT)
	 = Iã(i) ∩ Ib̃(i) and(

ã(i) 	†
DT b̃(i)

)
α
=

⋃
{β∈I

ã(i)
∩I

b̃(i)
:β≥α}

M(i−)
β for α ∈ I(i)(†DT)

	 with α > 0.

The above results are summarized below.

Theorem 5. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be canonical fuzzy intervals. Suppose that the family
{Mα : α ∈ I∗ for α > 0} is given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n)

and
M−α = M(1−)

α × · · · ×M(n−)
α ,

where M(i−)
α are bounded closed intervals given by

M(i−)
α =

[
min

{
ãL

iα − b̃L
iα, ãU

iα − b̃U
iα

}
, max

{
ãL

iα − b̃L
iα, ãU

iα − b̃U
iα

}]
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for i = 1, · · · , n. Let I(†DT)
	 be the interval range of ã 	†

DT b̃, and let I(i)(†DT)
	 be the interval range of

ã(i) 	†
DT b̃(i) for i = 1, · · · , n.

(i) Suppose that the supremum sup I∗ is attained. Then I(†DT)
	 = I∗ and(

ã	†
DT b̃

)
α
=

⋃
{β∈I∗ :β≥α}

M−β =
⋃

{β∈I∗ :β≥α}

(
M(1−)

β × · · · ×M(n−)
β

)
for each α ∈ I∗ with α > 0, and the 0-level set

(
ã	†

DT b̃
)

0
= cl

 ⋃
{α∈I∗ :α>0}

(
ã	†

DT b̃
)

α

 .

(ii) Suppose that the supremum sup(Iã(i) ∩ Ib̃(i)) is attained for each i = 1, · · · , n. Then

I(i)(†DT)
	 = Iã(i) ∩ Ib̃(i) and

(
ã(i) 	†

DT b̃(i)
)

α
=

⋃
{β∈I

ã(i)
∩I

b̃(i)
:β≥α}

M(i−)
β

for each α ∈ Iã(i) ∩ Ib̃(i) with α > and each i = 1, · · · , n. The 0-level set is

(
ã(i) 	†

DT b̃(i)
)

0
= cl

 ⋃
{α∈I

ã(i)
∩I

b̃(i)
:α>0}

(
ã(i) 	†

DT b̃(i)
)

α

 .

Moreover, for i = 1, · · · , n, we have

⋃
{β∈I

ã(i)
∩I

b̃(i)
:β≥α}

M(i−)
β

=

[
min

{β∈I
ã(i)
∩I

b̃(i)
:β≥α}

min
{

ãL
iβ − b̃L

iβ, ãU
iβ − b̃U

iβ

}
, max
{β∈I

ã(i)
∩I

b̃(i)
:β≥α}

max
{

ãL
iβ − b̃L

iβ, ãU
iβ − b̃U

iβ

}]

=

[
min

{
min

{β∈I
ã(i)
∩I

b̃(i)
:β≥α}

(
ãL

iβ − b̃L
iβ

)
, min
{β∈I

ã(i)
∩I

b̃(i)
:β≥α}

(
ãU

iβ − b̃U
iβ

)}
,

max

{
max

{β∈I
ã(i)
∩I

b̃(i)
:β≥α}

(
ãL

iβ − b̃L
iβ

)
, max
{β∈I

ã(i)
∩I

b̃(i)
:β≥α}

(
ãU

iβ − b̃U
iβ

)}]

which are bounded and closed intervals.

Remark 3. We remark that, in general, we cannot have the following equality:(
ã	†

DT b̃
)

α
=
(

ã(1) 	†
DT b̃(1)

)
α
× · · · ×

(
ã(n) 	†

DT b̃(n)
)

α
for each α ∈ I∗.

When ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are taken to be canonical fuzzy numbers instead of canonical fuzzy
intervals, it follows that

Iã(i) = Ib̃(i) = I(i)(†DT)
	 = I(†DT)

	 = [0, 1] for all i = 1, · · · , n.

Then, we can have the following equality:(
ã	†

DT b̃
)

α
=
(

ã(1) 	†
DT b̃(1)

)
α
× · · · ×

(
ã(n) 	†

DT b̃(n)
)

α
for each α ∈ [0, 1].
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Example 14. Continuing from Example 7 by referring to (21), we have M−α = {(−3,−1)}. Part (i) of
Theorem 5 says that(

ã	†
DT b̃

)
α
=

⋃
{β∈I∗ :β≥α}

M−β =
⋃

{β∈[0,0.8]:β≥α}
{(−3,−1)} = {(−3,−1)}

for α ∈ [0, 0.8]. Moreover, we have
(
ã	†

DT b̃
)

α
= ∅ for α 6∈ [0, 0.8].

5.5. The Equivalences and Fuzziness

Next, we present the equivalences between ã	EP b̃ and ã	�DT b̃ in Theorems 2 and 3, respectively.

Theorem 6. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be any fuzzy intervals. Suppose that ã	EP b̃ and ã	�DT b̃
are obtained from Theorems 2 and 3, respectively. We also assume that the supremum sup I∗ is attained. Then

I(EP)
	 = I(�DT)

	 = I∗ and ã	EP b̃ = ã	�DT b̃.

Moreover, for α ∈ I∗, we have(
ã	EP b̃

)
α
=
(
ã	�DT b̃

)
α
=
[

ãL
1α − b̃U

1α, ãU
1α − b̃L

1α

]
× · · · ×

[
ãL

nα − b̃U
nα, ãU

nα − b̃L
nα

]
. (41)

Proof. From Propositions 3 and 2, we have I(EP)
	 = I(�DT)

	 = I∗. The equality (41) follows immediately
Theorems 2 and 3, which also says that ã	EP b̃ = ã	�DT b̃. This completes the proof.

We are not able to study the equivalences among ã	EP b̃, ã	?
DT b̃ and ã	†

DT b̃. However, we can
study their fuzziness by considering the α-level sets. The formal definition regarding the fuzziness is
given below.

Definition 2. Let ã and b̃ be two fuzzy intervals with interval ranges Iã and Ib̃, respectively. We say that ã is
fuzzier than b̃ if and only if Iã = Ib̃ and b̃α ⊆ ãα for all α ∈ Iã with α > 0.

Suppose now that we plan to collect 2n real number data a1, · · · , an, b1, · · · , bn in R. Owing to
the unexpected situation, we cannot exactly obtain the desired data. Instead, we can just obtain the
fuzzy data ã(1), · · · , ã(n), b̃(1), · · · , b̃(n) that can be described by some suitable membership functions.
Now, we have two ways to calculate the difference between ã and b̃. One is based on the extension
principle to obtain ã	EP b̃, and another one is based on the form of decomposition theorem to obtain
ã	DT b̃ for 	DT ∈ {	�DT ,	?

DT ,	†
DT}. We claim that ã	EP b̃ is fuzzier than ã	DT b̃. In other words,

we prefer to take ã	DT b̃, which has less fuzziness.
Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be canonical fuzzy intervals, and let ã	?

DT b̃ and ã	†
DT b̃ be

obtained from Theorems 4 and 5, respectively. Suppose that the supremum sup I∗ is attained. Then
we have

I(?DT)
	 = I∗ = I(†DT)

	 .

For each α ∈ I∗ with α > 0, we also have(
ã	†

DT b̃
)

α
=

⋃
{β∈I∗ :β≥α}

(
M(1−)

β × · · · ×M(n−)
β

)
and (

ã	?
DT b̃

)
α
=

 ⋃
{β∈I∗ :β≥α}

M(1−)
β

× · · · ×
 ⋃
{β∈I∗ :β≥α}

M(n−)
β

 .
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Since the inclusion

⋃
{β∈I∗ :β≥α}

(
M(1−)

β × · · · ×M(n−)
β

)
⊆

 ⋃
{β∈I∗ :β≥α}

M(1−)
β

× · · · ×
 ⋃
{β∈I∗ :β≥α}

M(n−)
β


is obvious, it follows that(

ã	†
DT b̃

)
α
⊆
(
ã	?

DT b̃
)

α
for each α ∈ I∗ = I(?DT)

	 = I(†DT)
	 with α > 0,

which says that ã	?
DT b̃ is fuzzier than ã	†

DT b̃.
On the other hand, from Theorems 6 and 4, we have

I(?DT)
	 = I∗ = I(�DT)

	 .

For each α ∈ I∗ with α > 0, we also have

⋃
{β∈I∗ :β≥α}

M(i−)
β =

[
min

{β∈I∗ :β≥α}
min

{
ãL

iβ − b̃L
iβ, ãU

iβ − b̃U
iβ

}
, max
{β∈I∗ :β≥α}

max
{

ãL
iβ − b̃L

iβ, ãU
iβ − b̃U

iβ

}]

⊆
[

min
{β∈I∗ :β≥α}

(
ãL

iβ − b̃U
iβ

)
, max
{β∈I∗ :β≥α}

(
ãU

iβ − b̃L
iβ

)]
⊆
[

ãL
iα − b̃U

iα, ãU
iα − b̃L

iα

]
.

It follows that(
ã	?

DT b̃
)

α
⊆
(
ã	�DT b̃

)
α

for each α ∈ I∗ = I(?DT)
	 = I(�DT)

	 with α > 0,

which says that ã	�DT b̃ is fuzzier than ã	?
DT b̃. The above results are summarized below.

Theorem 7. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be canonical fuzzy intervals. Suppose that ã	EP b̃, ã	�DT b̃,
ã	?

DT b̃ and ã	†
DT b̃ are obtained from Theorem 2, Theorem 3, Theorem 4 and Theorem 5, respectively. We

also assume that the supremum sup I∗ is attained. Then

I(EP)
	 = I(�DT)

	 = I(?DT)
	 = I(†DT)

	 = I∗

and (
ã	†

DT b̃
)

α
⊆
(
ã	?

DT b̃
)

α
⊆
(
ã	�DT b̃

)
α
=
(
ã	EP b̃

)
α

for each α ∈ I∗. In other words, ã	?
DT b̃ is fuzzier than ã	†

DT b̃, and ã	�DT b̃ is fuzzier than ã	?
DT b̃.

Remark 4. Theorem 7 says that, when ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are taken to be canonical fuzzy
intervals, we may prefer to pick ã	†

DT b̃ that has less fuzziness in applications.

6. Addition of Vectors of Fuzzy Intervals

Let ã and b̃ be two vectors of fuzzy intervals with components ã(i) and b̃(i), respectively, for i =
1, · · · , n. Next we study the α-level set of ã ⊕EP b̃ that is obtained from the extension principle,
and the α-level sets of ã ⊕DT b̃ for ⊕DT ∈ {⊕�DT ,⊕?

DT ,⊕†
DT} that are obtained from the form of

decomposition theorem.
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6.1. Using the Extension Principle to Study the α-Level Sets of ã⊕EP b̃

Given any aggregation function A : [0, 1]2n → [0, 1], the membership function of addition ã⊕EP b̃
is defined by

ξã⊕EPb̃(z) = sup
{(x,y):z=x+y}

A
(
ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)

)
for any z ∈ Rn. Let I(EP)

⊕ be the interval range of ã⊕EP b̃. The α-level set (ã⊕EP b̃)α of ã⊕EP b̃ for

α ∈ I(EP)
⊕ can be obtained by applying the results obtained in Wu [11] to the addition ã⊕EP b̃, which is

shown below. For each α ∈ I(EP)
⊕ with α > 0, we have

(
ã⊕EP b̃

)
α =

{
x + y : A

(
ξ ã(1) (x1), · · · , ξ ã(n) (xn), ξ b̃(1) (y1), · · · , ξ b̃(n) (yn)

)
≥ α

}
=
{
(x1 + y1, · · · , xn + yn) : A

(
ξ ã(1) (x1), · · · , ξ ã(n) (xn), ξ b̃(1) (y1), · · · , ξ b̃(n) (yn)

)
≥ α

}
.

(42)

The 0-level set is given by(
ã⊕EP b̃

)
0 = ã0 + b̃0 =

{
x + y : x ∈ ã0 and y ∈ b̃0

}
.

Moreover, for each α ∈ I(EP)
⊕ , the α-level sets (ã⊕EP b̃)α are closed and bounded subsets of Rm.

When the aggregation function A : [0, 1]2n → [0, 1] is given by

A (α1, · · · , α2n) =

{
min {α1, · · · , α2n} , if αi ∈ Ri for i = 1, · · · , 2n
any expression, otherwise.

Proposition 2 says that I(EP)
⊕ = I∗. Therefore, for each α ∈ I(EP)

⊕ , we have (ã ⊕EP b̃)α 6= ∅,

ã(i)α 6= ∅ and b̃(i)α 6= ∅ for all i = 1, · · · , n. Now, for each α ∈ I(EP)
⊕ with α > 0, using (42), we have(

ã⊕EP b̃
)

α
=
{

x + y : min
{

ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)
}
≥ α

}
=
{

x + y : ξ ã(i)(xi) ≥ α and ξ b̃(i)(yi) ≥ α for each i = 1, · · · , n
}

=
{
(x1 + y1, · · · , xn + yn) : xi ∈ ã(i)α ≡

[
ãL

iα, ãU
iα

]
and yi ∈ b̃(i)α ≡

[
b̃L

iα, b̃U
iα

]
for each i = 1, · · · , n

}
=
[

ãL
1α + b̃L

1α, ãU
1α + b̃U

1α

]
× · · · ×

[
ãL

nα + b̃L
nα, ãU

nα + b̃U
nα

]
.

(43)

For the 0-level set, from (43) and (4), it is not difficult to show that

(
ã⊕EP b̃

)
0 = cl

 ⋃
{α∈I(EP)

⊕ :α>0}

(
ã⊕EP b̃

)
α


=
[

ãL
10 + b̃L

10, ãU
10 + b̃U

10

]
× · · · ×

[
ãL

n0 + b̃L
n0, ãU

n0 + b̃U
n0

]
.

Regarding the components ã(i) and b̃(i), let I(i)(EP)
⊕ be the interval range of ã(i) ⊕EP b̃(i). From

Proposition 2, we can similarly obtain I(i)(EP)
⊕ = Iã(i) ∩ Ib̃(i) , and, for each α ∈(i)(EP)

⊕ , we also have(
ã(i) ⊕EP b̃(i)

)
α
=
[

ãL
iα + b̃L

iα, ãU
iα + b̃U

iα

]
for i = 1, · · · , n. (44)
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Therefore, from (43) and (44), for α ∈ I(EP)
⊕ = I∗, we obtain

(
ã⊕EP b̃

)
α
=
(

ã(1) ⊕EP b̃(1)
)

α
× · · · ×

(
ã(n) ⊕EP b̃(n)

)
α

.

The above results are summarized in the following theorem.

Theorem 8. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be fuzzy intervals. Suppose that the aggregation function
A : [0, 1]2n → [0, 1] is given by

A (α1, · · · , α2n) =

{
min {α1, · · · , α2n} , if αi ∈ Ri for i = 1, · · · , 2n
any expression, otherwise,

Then, we have the following results.

(i) Let I(i)(EP)
⊕ be the interval range of ã(i) ⊕EP b̃(i) for i = 1, · · · , n. For each α ∈ I(i)(EP)

⊕ , we have(
ã(i) ⊕EP b̃(i)

)
α
=
[

ãL
iα + b̃L

iα, ãU
iα + b̃U

iα

]
.

We also have I(i)(EP)
⊕ = Iã(i) ∩ Ib̃(i) .

(ii) Let I(EP)
⊕ be the interval range of ã⊕EP b̃. We have

I(EP)
⊕ ⊆ I(i)(EP)

⊕ for i = 1, · · · , n, and I(EP)
⊕ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) .

For each α ∈ I(EP)
⊕ , we also have(

ã(i) ⊕EP b̃(i)
)

α
=
[

ãL
iα + b̃L

iα, ãU
iα + b̃U

iα

]
and (

ã⊕EP b̃
)

α
=
(

ã(1) ⊕EP b̃(1)
)

α
× · · · ×

(
ã(n) ⊕EP b̃(n)

)
α

.

Example 15. Continuing from Examples 5 and 7, part (ii) of Theorem 8 says that(
ã(1) ⊕EP b̃(1)

)
α
=
[

ãL
1α + b̃L

1α, ãU
1α + b̃U

1α

]
= [(1 + α) + (4 + α), (7− α) + (4− α)] = [5 + 2α, 11− 2α]

and (
ã(2) ⊕EP b̃(2)

)
α
=
[

ãL
2α − b̃U

2α, ãU
2α − b̃L

2α

]
= [(2 + α) + (3 + α), (6− α) + (5− α)] = [5 + 2α, 11− 2α]

and (
ã⊕EP b̃

)
α
=
(

ã(1) ⊕EP b̃(1)
)

α
×
(

ã(2) ⊕EP b̃(2)
)

α
= [5 + 2α, 11− 2α]× [5 + 2α, 11− 2α]

for α ∈ I(EP)
⊕ = [0, 0.8]. Moreover, we have

(
ã⊕EP b̃

)
α
= ∅ for α 6∈ [0, 0.8].

6.2. Using the Form of Decomposition Theorem to Study the α-Level Sets

Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be fuzzy intervals. The family {M+
α : α ∈ I∗ for α > 0} is

given by
I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) and M+

α = ãα + b̃α.



Mathematics 2020, 8, 1614 32 of 42

Since ã(i)α 6= ∅ and b̃(i)α 6= ∅ for α ∈ I∗ and i = 1, · · · , n, given any α ∈ I∗ with α > 0, we have

M+
α = ãα + b̃α =

{
x + y : x ∈ ãα and y ∈ b̃α

}
=
{
(x1 + y1, · · · , x1 + y1) : xi ∈ ã(i)α =

[
ãL

iα, ãU
iα

]
and yi ∈ b̃(i)α =

[
b̃L

iα, b̃U
iα

]
for i = 1, · · · , n

}
=
[

ãL
1α + b̃L

1α, ãU
1α + b̃U

1α

]
× · · · ×

[
ãL

nα + b̃L
nα, ãU

nα + b̃U
nα

]
.

(45)

Based on the form of decomposition theorem, the membership function of ã⊕�DT b̃ is given by

ξã⊕�DT b̃(z) = sup
{α∈I∗ :α>0}

α · χM+
α
(z). (46)

Let I(�DT)
⊕ be the interval range of ã⊕�DT b̃. Suppose that the supremum sup I∗ is attained. Using

the similar argument in the proof of Proposition 4, we can obtain I(�DT)
⊕ = I∗ and the α-level sets

(ã⊕�DT b̃)α of ã⊕�DT b̃ are given by

(
ã⊕�DT b̃

)
α
= M+

α =
[

ãL
1α + b̃L

1α, ãU
1α + b̃U

1α

]
× · · · ×

[
ãL

nα + b̃L
nα, ãU

nα + b̃U
nα

]
for α ∈ I(�DT)

⊕ .
Now, for i = 1, · · · , n and for α ∈ Iã(i) ∩ Ib̃(i) with α > 0, we take

M(i+)
α = ã(i)α + b̃(i)α =

[
ãL

iα, ãU
iα

]
+
[
b̃L

iα, b̃U
iα

]
=
[

ãL
iα + b̃L

iα, ãU
iα + b̃U

iα

]
. (47)

Then, for α ∈ I∗, from (45), we see that

M+
α = M(1+)

α × · · · ×M(n+)
α ⊂ Rn.

Let ã(i) ⊕�DT b̃(i) be obtained using the form of decomposition theorem based on the family

{M(i+)
α : α ∈ Iã(i) ∩ Ib̃(i) with α > 0}

that is defined in (47). Let I(i)(�DT)
⊕ be the interval range of ã(i) ⊕�DT b̃(i). Suppose that the supremum

sup(Iã(i) ∩ Ib̃(i)) is attained for each i = 1, · · · , n. Then the supremum sup I∗ is also attained. For

α ∈ Iã(i) ∩ Ib̃(i) , we can similarly obtain I(i)(�DT)
⊕ = Iã(i) ∩ Ib̃(i) and(

ã(i) ⊕�DT b̃(i)
)

α
= M(i+)

α =
[

ãL
iα + b̃L

iα, ãU
iα + b̃U

iα

]
for i = 1, · · · , n,

which also implies (
ã⊕�DT b̃

)
α
=
(

ã(1) ⊕�DT b̃(1)
)

α
× · · · ×

(
ã(n) ⊕�DT b̃(n)

)
α

.

The above results are summarized below.

Theorem 9. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be fuzzy intervals. Suppose that the family {M+
α : α ∈

I∗ for α > 0} is given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) and M+
α = ãα + b̃α.

Let I(�DT)
⊕ be the interval range of ã⊕�DT b̃, and let I(i)(�DT)

⊕ be the interval range of ã(i) ⊕�DT b̃(i) for
i = 1, · · · , n.
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(i) Suppose that the supremum sup I∗ is attained. Then I(�DT)
⊕ = I∗ and

(
ã⊕�DT b̃

)
α
=
[

ãL
1α + b̃L

1α, ãU
1α + b̃U

1α

]
× · · · ×

[
ãL

nα + b̃L
nα, ãU

nα + b̃U
nα

]
for each α ∈ I∗. Moreover, we have

I(EP)
⊕ = I(�DT)

⊕ = I∗ and ã⊕�DT b̃ = ã⊕EP b̃,

where ã⊕EP b̃ is obtained from Theorem 8.
(ii) Suppose that the supremum sup(Iã(i) ∩ Ib̃(i)) is attained for each i = 1, · · · , n. Then

I(i)(�DT)
⊕ = Iã(i) ∩ Ib̃(i) and

(
ã(i) ⊕�DT b̃(i)

)
α
=
[

ãL
iα + b̃L

iα, ãU
iα + b̃U

iα

]
for each α ∈ Iã(i) ∩ Ib̃(i) and each i = 1, · · · , n, and

I(�DT)
⊕ = I∗ and

(
ã⊕�DT b̃

)
α
=
(

ã(1) ⊕�DT b̃(1)
)

α
× · · · ×

(
ã(n) ⊕�DT b̃(n)

)
α

for each α ∈ I∗.

Next, we study the addition ã⊕?
DT b̃ by considering a family that has the same form of Theorem 4.

We first need a useful property given below.

Lemma 4. Let ã be a fuzzy interval with interval range Iã. Then the function ζL(α) = ãL
α is lower

semi-continuous on Iã, and the function ζU(α) = ãU
α is upper semi-continuous on Iã.

Theorem 10. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be fuzzy intervals. Suppose that the family {Mα : α ∈
I∗ for α > 0} is given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n)

and

M+
α =

 ⋃
{β∈I∗ :β≥α}

M(1+)
β

× · · · ×
 ⋃
{β∈I∗ :β≥α}

M(n+)
β

 , (48)

where M(i+)
β are bounded closed intervals given by

M(i+)
β =

[
aL

iβ + bL
iβ, aU

iβ + bU
iβ

]
for i = 1, · · · , n. Then

ã⊕?
DT b̃ = ã⊕�DT b̃.

If we further assume that the supremum I∗ is attained, then

ã⊕?
DT b̃ = ã⊕�DT b̃ = ã⊕EP b̃.
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Proof. Let ζL
i (β) = aL

iβ + bL
iβ and ζU

i (β) = aU
iβ + bU

iβ. Then M(i)
β = [ζL

i (β), ζU
i (β)]. Lemma 4 say that ζL

i

is lower semi-continuous on I∗ and ζU
i is upper semi-continuous on I∗. Then, for α ∈ I∗ with α > 0,

we can obtain

⋃
{β∈I∗ :β≥α}

M(i+)
β =

[
min

{β∈I∗ :β≥α}
ζL

i (β), max
{β∈I∗ :β≥α}

ζU
i (β)

]

=

[
min

{β∈I∗ :β≥α}

(
aL

iβ + bL
iβ

)
, max
{β∈I∗ :β≥α}

(
aU

iβ + bU
iβ

)]
=
[

aL
iα + bL

iα, aU
iα + bU

iα

]
= M(i)

α .

Therefore, by referring to (48), we have

M+
α =

[
ãL

1α + b̃L
1α, ãU

1α + b̃U
1α

]
× · · · ×

[
ãL

nα + b̃L
nα, ãU

nα + b̃U
nα

]
,

which is the same as (45). Therefore, we obtain ã ⊕?
DT b̃ = ã ⊕�DT b̃. Now, we assume that the

supremum I∗ is attained. Theorems 8 and 9 say that

I(EP)
⊕ = I(�DT)

⊕ = I∗

and (
ã⊕EP b̃

)
α
=
[

ãL
1α + b̃L

1α, ãU
1α + b̃U

1α

]
× · · · ×

[
ãL

nα + b̃L
nα, ãU

nα + b̃U
nα

]
=
(
ã⊕�DT b̃

)
α

for each α ∈ I∗, which says that ã⊕EP b̃ = ã⊕�DT b̃. This completes the proof.

Next, we study the addition ã⊕†
DT b̃ by considering a family that has the same form of Theorem 5.

However, in this case, we need to consider the canonical fuzzy intervals rather than the fuzzy intervals.

Theorem 11. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be canonical fuzzy intervals. Suppose that the family
{Mα : α ∈ I∗ for α > 0} is given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n)

and
M+

α = M(1+)
α × · · · ×M(n+)

α ,

where M(i+)
α are bounded closed intervals given by

M(i+)
α =

[
aL

iα + bL
iα, aU

iα + bU
iα

]
for i = 1, · · · , n. Suppose that the supremum sup I∗ is attained. Then

ã⊕†
DT b̃ = ã⊕?

DT b̃ = ã⊕�DT b̃ = ã⊕EP b̃.

Proof. For each i = 1, · · · , n, it is clear to see that⋃
{β∈I∗ :β≥α}

M(i+)
β =

[
aL

iα + bL
iα, aU

iα + bU
iα

]
= M(i+)

α .
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Since the supremum sup I∗ is attained, for each α ∈ I∗ with α > 0, using the similar argument of
Theorem 5, we can obtain(

ã⊕†
DT b̃

)
α
=

⋃
{β∈I∗ :β≥α}

M+
β =

⋃
{β∈I∗ :β≥α}

(
M(1+)

β × · · · ×M(n+)
β

)
⋃

{β∈I∗ :β≥α}

([
aL

1β + bL
1β, aU

1β + bU
1β

]
× · · · ×

[
aL

nβ + bL
nβ, aU

nβ + bU
nβ

])
=
[

aL
1α + bL

1α, aU
1α + bU

1α

]
× · · · ×

[
aL

nα + bL
nα, aU

nα + bU
nα

]
=
(
ã⊕?

DT b̃
)

α
=
(
ã⊕�DT b̃

)
α
=
(
ã⊕EP b̃

)
α

.

This completes the proof.

We remark that Theorem 11 needs to consider the canonical fuzzy intervals rather than the fuzzy
intervals, and assume that the supremum I∗ is attained.

Remark 5. When ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are taken to be canonical fuzzy numbers instead of canonical
fuzzy intervals, it follows that

I(EP)
⊕ = I(�DT)

⊕ = I(?DT)
⊕ = I(†DT)

⊕ = I∗ = [0, 1],

which also says that the supremum sup I∗ is attained. Therefore, the above theorems are applicable.

Example 16. Using Theorem 11 and Example 15, we see that(
ã⊕�DT b̃

)
α
=
(
ã⊕?

DT b̃
)

α
=
(

ã⊕†
DT b̃

)
α
= [5 + 2α, 11− 2α]× [5 + 2α, 11− 2α] for α ∈ [0, 0.8]

and (
ã⊕�DT b̃

)
α
=
(
ã⊕?

DT b̃
)

α
=
(

ã⊕†
DT b̃

)
α
= ∅ for α 6∈ [0, 0.8].

7. Scalar Product of Vectors of Fuzzy Intervals

In the sequel, we are going to use the extension principle by referring to (6) to study the scalar
product ã ~EP b̃, and use the form of decomposition theorem by referring to (22) to study the scalar
product ã ~DT b̃.

7.1. Using the Extension Principle

Given any aggregation function A : [0, 1]2n → [0, 1], the membership function of scalar product
ã ~EP b̃ is defined by

ξã~EPb̃(z) = sup
{(x,y):z=x•y}

A
(
ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)

)
for any z ∈ R. Let I(EP)

~ be the interval range of ã ~EP b̃. The α-level set (ã ~EP b̃)α of ã ~EP b̃ for

α ∈ I(EP)
~ can be obtained by applying the results obtained in Wu [11] to the scalar product ã ~EP b̃,

which is shown below. For each α ∈ I(EP)
~ with α > 0, we have(

ã ~EP b̃
)

α
=
{

x • y : A
(
ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)

)
≥ α

}
=
{

x1y1 + · · ·+ xnyn : A
(
ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)

)
≥ α

}
.

(49)



Mathematics 2020, 8, 1614 36 of 42

The 0-level set is given by(
ã ~EP b̃

)
0 = ã0 • b̃0 =

{
x • y : x ∈ ã0 and y ∈ b̃0

}
.

Moreover, for each α ∈ I(EP)
~ , the α-level sets (ã ~EP b̃)α are closed and bounded subsets of Rm.

Now, the aggregation function A : [0, 1]2n → [0, 1] is given by

A (α1, · · · , α2n) =

{
min {α1, · · · , α2n} , if αi ∈ Ri for i = 1, · · · , 2n
any expression, otherwise.

Proposition 2 says that I(EP)
~ = I∗. Therefore, for each α ∈ I(EP)

~ , we have (ã ~EP b̃)α 6= ∅,

ã(i)α 6= ∅ and b̃(i)α 6= ∅ for all i = 1, · · · , n. Now, for each α ∈ I(EP)
~ with α > 0, using (49), we have(

ã ~EP b̃
)

α
=
{

x • y : min
{

ξ ã(1)(x1), · · · , ξ ã(n)(xn), ξ b̃(1)(y1), · · · , ξ b̃(n)(yn)
}
≥ α

}
=
{

x • y : ξ ã(i)(xi) ≥ α and ξ b̃(i)(yi) ≥ α for each i = 1, · · · , n
}

=
{

x1y1 + · · ·+ xnyn : xi ∈ ã(i)α ≡
[

ãL
iα, ãU

iα

]
and yi ∈ b̃(i)α ≡

[
b̃L

iα, b̃U
iα

]
for each i = 1, · · · , n

}
=

[
min

(x,y)∈(ãα ,b̃α)
(x1y1 + · · ·+ xnyn) , max

(x,y)∈(ãα ,b̃α)
(x1y1 + · · ·+ xnyn)

]
,

(50)

where ãα and b̃α are given in (18) and (19). For the 0-level set, from (50) and (4), it is not difficult to
show that

(
ã ~EP b̃

)
0 = cl

 ⋃
{α∈I(EP)

~ :α>0}

(
ã ~EP b̃

)
α


=

[
min

(x,y)∈(ã0,b̃0)
(x1y1 + · · ·+ xnyn) , max

(x,y)∈(ã0,b̃0)
(x1y1 + · · ·+ xnyn)

]
.

Definition 3. Let Ã be a fuzzy set in R with membership function ξ Ã. We say that Ã is nonnegative when
ξ Ã(x) = 0 for each x < 0.

It is clear to see that a fuzzy interval ã is nonnegative if and only if ãL
α ≥ 0 for each α ∈ Iã. Suppose

that ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are nonnegative fuzzy intervals. Then(
ã ~EP b̃

)
α
=
[

ãL
1α b̃L

1α + · · ·+ ãL
nα b̃L

nα, ãU
1α b̃U

1α + · · ·+ ãU
nα b̃U

nα

]
.

The above results are summarized in the following theorem.

Theorem 12. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be any fuzzy intervals. Suppose that the aggregation
function A : [0, 1]2n → [0, 1] is given by

A (α1, · · · , α2n) =

{
min {α1, · · · , α2n} , if αi ∈ Ri for i = 1, · · · , 2n
any expression, otherwise,

Let I(EP)
~ be the interval range of ã ~EP b̃. Then I(EP)

~ = I∗, and, for each α ∈ I∗, we have

(
ã ~EP b̃

)
α
=

[
min

(x,y)∈(ãα ,b̃α)
x • y, max

(x,y)∈(ãα ,b̃α)
x • y

]
,
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where ãα and b̃α are given in (18) and (19). Suppose that ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are nonnegative
fuzzy intervals. Then (

ã ~EP b̃
)

α
=
[
ãL

α • b̃L
α , ãU

α • b̃U
α

]
,

where ãL
α , ãU

α , b̃L
α and b̃U

α are given in (17).

Example 17. Continuing from Examples 5 and 7, Theorem 12 says that we need to calculate

min
((x1,x2),(y1,y2))∈([ãL

1α ,ãU
1α ]×[ã

L
2α ,ãU

2α ],[b̃
L
1α ,b̃U

1α ]×[b̃
L
2α ,b̃U

2α ])
(x1, x2) • (y1, y2)

and
max

((x1,x2),(y1,y2))∈([ãL
1α ,ãU

1α ]×[ã
L
2α ,ãU

2α ],[b̃
L
1α ,b̃U

1α ]×[b̃
L
2α ,b̃U

2α ])
(x1, x2) • (y1, y2).

In other words, given any fixed α ∈ [0, 0.8], we want to calculate

min / max x1y1 + x2y2

subject to 1 + α ≤ x1 ≤ 4− α

2 + α ≤ x2 ≤ 5− α

4 + α ≤ y1 ≤ 7− α

3 + α ≤ y2 ≤ 6− α.

Since α ∈ [0, 0.8], the minimum is

(1 + α)(4 + α) + (2 + α)(3 + α) = 10 + 10α + α2

and the maximum is
(4− α)(7− α) + (5− α)(6− α) = 58− 22α + 2α2.

Therefore, Theorem 12 says that(
ã ~EP b̃

)
α
=
[
10 + 10α + α2, 58− 22α + 2α2

]
for α ∈ [0, 0.8]. Moreover, we have

(
ã ~EP b̃

)
α
= ∅ for α 6∈ [0, 0.8].

7.2. Using the Form of Decomposition Theorem

Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be fuzzy intervals. The family {M•α : α ∈ I∗ for α > 0} is given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n)

and
M•α = ãα • b̃α =

{
x • y : x ∈ ãα and y ∈ b̃α

}
.

Since ã(i)α 6= ∅ and b̃(i)α 6= ∅ for α ∈ I∗ and i = 1, · · · , n, given any α ∈ I∗ with α > 0, we have

M•α = ãα • b̃α =
{

x • y : x ∈ ãα and y ∈ b̃α

}
=

[
min

(x,y)∈(ãα ,b̃α)
x • y, max

(x,y)∈(ãα ,b̃α)
x • y

]
.

Based on the form of decomposition theorem, the membership function of ã ~�DT b̃ is given by

ξ ã~�DT b̃(z) = sup
{α∈I∗ :α>0}

α · χM•α (z).
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Let I(�DT)
~ be the interval range of ã ~�DT b̃. Suppose that the supremum sup I∗ is attained. Using

the similar argument in the proof of Proposition 4, we can obtain I(�DT)
~ = I∗ and the α-level sets

(ã ~�DT b̃)α of ã ~�DT b̃ is given by

(
ã ~�DT b̃

)
α
= M•α =

[
min

(x,y)∈(ãα ,b̃α)
x • y, max

(x,y)∈(ãα ,b̃α)
x • y

]

for α ∈ I(�DT)
~ . The above results are summarized below.

Theorem 13. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be any fuzzy intervals. Suppose that the family {Mα : α ∈
I∗ for α > 0} is given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) and M•α = ãα • b̃α.

We also assume that the supremum sup I∗ is attained. Then I(�DT)
~ = I∗, and, for α ∈ I∗, we have

(
ã ~�DT b̃

)
α
=

[
min

(x,y)∈(ãα ,b̃α)
x • y, max

(x,y)∈(ãα ,b̃α)
x • y

]
.

When ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are taken to be nonnegative fuzzy intervals, we have(
ã ~�DT b̃

)
α
=
[
ãL

α • b̃L
α , ãU

α • b̃U
α

]
.

Example 18. By referring to Example 17, Theorems 12 and 13 say that(
ã ~�DT b̃

)
α
=
(
ã ~EP b̃

)
α
=
[
10 + 10α + α2, 58− 22α + 2α2

]
for α ∈ [0, 0.8]. Moreover, we have

(
ã ~�DT b̃

)
α
= ∅ for α 6∈ [0, 0.8].

Next, we study the scalar product ã ~?
DT b̃ by considering a different family that has the similar

form of Theorem 4. Recall that ã is a canonical fuzzy interval in a universal set U if and only if ã is a
fuzzy interval such that ãL

α and ãU
α are continuous with respect to α on Iã.

Theorem 14. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be canonical fuzzy intervals. Suppose that the family
{M•α : α ∈ I∗ for α > 0} is given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) and M•α =

 ⋃
{β∈I∗ :β≥α}

Mβ

 ,

where Mβ is a bounded closed interval given by

Mβ =
[
min

{
ãL

β • b̃L
β, ãU

β • b̃U
β

}
, max

{
ãL

β • b̃L
β, ãU

β • b̃U
β

}]
.

We also assume that the supremum sup I∗ is attained. Then I(?DT)
~ = I∗, and, for α ∈ I∗, we have(

ã ~?
DT b̃

)
α
= M•α

=

[
min

{β∈I∗ :β≥α}
min

{
ãL

β • b̃L
β, ãU

β • b̃U
β

}
, max
{β∈I∗ :β≥α}

max
{

ãL
β • b̃L

β, ãU
β • b̃U

β

}]
.

(51)
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When ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are taken to be nonnegative canonical fuzzy intervals, we have(
ã ~?

DT b̃
)

α
=
[
ãL

α • b̃L
α , ãU

α • b̃U
α

]
.

Proof. We define two functions ζL and ζU on I∗ as follows:

ζL(β) = min
{

ãL
β • b̃L

β, ãU
β • b̃U

β

}
and ζU(β) = max

{
ãL

β • b̃L
β, ãU

β • b̃U
β

}
.

Then ζL and ζU are continuous on I∗, since we consider the canonical fuzzy intervals. We also see
that Mβ = [ζL(β), ζU(β)]. Using the similar argument of Theorem 4, we can obtain I(?DT)

~ = I∗, and,
for α ∈ I∗, we also have

(
ã ~?

DT b̃
)

α
= M•α =

⋃
{β∈I∗ :β≥α}

Mβ =

[
min

{β∈I∗ :β≥α}
ζL(β), max

{β∈I∗ :β≥α}
ζU(β)

]

=

[
min

{β∈I∗ :β≥α}
min

{
ãL

β • b̃L
β, ãU

β • b̃U
β

}
, max
{β∈I∗ :β≥α}

min
{

ãL
β • b̃L

β, ãU
β • b̃U

β

}]
.

(52)

This completes the proof.

Example 19. Continuing from Examples 5 and 7, we can obtain

min
{

ãL
β • b̃L

β, ãU
β • b̃U

β

}
= 10 + 10β + β2

and
max

{
ãL

β • b̃L
β, ãU

β • b̃U
β

}
= 58− 22β + 2β2.

Using (51), we have

(
ã ~?

DT b̃
)

α
=

[
min

{β∈[0,0.8]:β≥α}

(
10 + 10β + β2

)
, max
{β∈[0,0.8]:β≥α}

(
58− 22β + 2β2

)]
=
[
10 + 10α + α2, 58− 22α + 2α2

]
for α ∈ [0, 0.8]. Moreover, we have

(
ã ~?

DT b̃
)

α
= ∅ for α 6∈ [0, 0.8].

Theorem 15. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be any canonical fuzzy intervals. Suppose that the family
{Mα : α ∈ I∗ for α > 0} is given by

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n)

and
M•α =

[
min

{
ãL

α • b̃L
α , ãU

α • b̃U
α

}
, max

{
ãL

α • b̃L
α , ãU

α • b̃U
α

}]
.

We also assume that the supremum sup I∗ is attained. Then I(†DT)
~ = I∗, and, for α ∈ I∗, we have(

ã ~†
DT b̃

)
α
=

⋃
{β∈I∗ :β≥α}

M•β

=

[
min

{β∈I∗ :β≥α}
min

{
ãL

β • b̃L
β, ãU

β • b̃U
β

}
, max
{β∈I∗ :β≥α}

max
{

ãL
β • b̃L

β, ãU
β • b̃U

β

}]
.
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When ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are taken to be nonnegative canonical fuzzy intervals, we have(
ã ~†

DT b̃
)

α
=
[
ãL

α • b̃L
α , ãU

α • b̃U
α

]
.

Proof. Using the similar argument of Theorem 5, we can obtain I(?DT)
~ = I∗. For α ∈ I∗, we also have(

ã ~†
DT b̃

)
α
=

⋃
{β∈I∗ :β≥α}

M•β.

By referring to (52), we complete the proof.

Example 20. By referring to Example 19, Theorems 14 and 15 say that(
ã ~†

DT b̃
)

α
=
(
ã ~?

DT b̃
)

α
=
[
10 + 10α + α2, 58− 22α + 2α2

]
for α ∈ [0, 0.8]. Moreover, we have

(
ã ~†

DT b̃
)

α
= ∅ for α 6∈ [0, 0.8].

7.3. The Equivalences and Fuzziness

Next, we present the equivalences among ã ~EP b̃ and ã ~DT b̃ for ~DT ∈ {~�DT ,~?
DT ,~†

DT}.

Theorem 16. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be fuzzy intervals. Suppose that ã ~EP b̃ and ã ~�DT b̃ are
obtained from Theorems 12 and 13, respectively. We also assume that the supremum sup I∗ is attained. Then

I(EP)
~ = I(�DT)

~ = I∗ and ã ~EP b̃ = ã ~�DT b̃.

Moreover, for α ∈ I∗, we have

(
ã ~EP b̃

)
α
=
(
ã ~�DT b̃

)
α
=

[
min

(x,y)∈(ãα ,b̃α)
x • y, max

(x,y)∈(ãα ,b̃α)
x • y

]
.

Theorem 17. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be canonical fuzzy intervals. Suppose that ã ~?
DT b̃ and

ã ~†
DT b̃ are obtained from Theorems 14 and 15, respectively. We also assume that the supremum sup I∗ is

attained. Then
I(?DT)
~ = I(†DT)

~ = I∗ and ã ~?
DT b̃ = ã ~†

DT b̃.

Moreover, for α ∈ I∗, we have(
ã ~?

DT b̃
)

α
=
(

ã ~†
DT b̃

)
α

=

[
min

{β∈I∗ :β≥α}
min

{
ãL

β • b̃L
β, ãU

β • b̃U
β

}
, max
{β∈I∗ :β≥α}

max
{

ãL
β • b̃L

β, ãU
β • b̃U

β

}]
.

Theorem 18. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be nonnegative canonical fuzzy intervals. Suppose that
ã ~EP b̃, ã ~�DT b̃, ã ~?

DT b̃ and ã ~†
DT b̃ are obtained from Theorem 12, Theorem 13, Theorem 14 and

Theorem 15, respectively. We also assume that the supremum sup I∗ is attained. Then

I(EP)
~ = I(�DT)

~ = I(?DT)
~ = I(†DT)

~ = I∗ and ã ~EP b̃ = ã ~�DT b̃ = ã ~?
DT b̃ = ã ~†

DT b̃.

Moreover, for α ∈ I∗, we have(
ã ~EP b̃

)
α
=
(
ã ~�DT b̃

)
α
=
(
ã ~?

DT b̃
)

α
=
(

ã ~†
DT b̃

)
α
=
[
ãL

α • b̃L
α , ãU

α • b̃U
α

]
.
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The equivalence between ã ~�DT b̃ and ã ~?
DT b̃ cannot be guaranteed. The following theorem

compares their fuzziness.

Theorem 19. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be canonical fuzzy intervals. Suppose that ã ~�DT b̃ and
ã ~?

DT b̃ are obtained from Theorems 13 and 14, respectively. We also assume that the supremum sup I∗ is

attained. Then I(�DT)
~ = I(?DT)

~ = I∗ and ã ~�DT b̃ is fuzzier than ã ~?
DT b̃.

Proof. For α ∈ I∗ with α > 0, it is clear to see that

min
(x,y)∈(ãα ,b̃α)

x • y ≤ min
{β∈I∗ :β≥α}

min
(x,y)∈(ãβ ,b̃β)

x • y ≤ min
{β∈I∗ :β≥α}

min
{

ãL
β • b̃L

β, ãU
β • b̃U

β

}
and

max
(x,y)∈(ãα ,b̃α)

x • y ≥ max
{β∈I∗ :β≥α}

max
(x,y)∈(ãβ ,b̃β)

x • y ≥ max
{β∈I∗ :β≥α}

max
{

ãL
β • b̃L

β, ãU
β • b̃U

β

}
.

From Theorems 16 and 17, we obtain(
ã ~?

DT b̃
)

α
⊆
(
ã ~�DT b̃

)
α

for each α ∈ I∗ with α > 0, which says that ã ~�DT b̃ is fuzzier than ã ~?
DT b̃. This completes

the proof.
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