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Abstract: In this paper we present an algorithm which counts the number of fixed point orbits of an
AND-OR dynamical system. We further extend the algorithm in order to list all its fixed point orbits
(FPOs) in polynomial time on the number of FPOs of the system.
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1. Introduction and Preliminaries

A directed graph G is a couple G = (V(G), E(G)) where V(G) is a set of vertices and
E(G) ⊆ V(G)×V(G) is a set of directed edges. In our setting, each edge (u, v) is labeled positive or
negative. The set of positive (resp. negative) edges of the graph are denoted by E+(G) (resp. E−(G)).
A graph is called positive (resp. negative) if all labels on the edges are positive (resp. negative).
If S ⊆ V(G), the subgraph of G induced by S, denoted as G(S), is the graph whose vertices set is
V(G(S)) = S and its edge set is E(G(S)) = {(u, v) ∈ E(G)|{u, v} ⊆ S}. We denote by G − S the
subgraph of G induced by V(G) \ S.

A graph is undirected if for every (u, v) ∈ E(G) then (v, u) ∈ E(G). A graph is symmetric if it is
undirected and for every v ∈ V(G) then (v, v) ∈ E(G). That is, a symmetric graph is an undirected
graph where each vertex has a (directed) selfloop.

If (u, v) is an edge then we say that u is a predecessor of v and it is positive (resp. negative) if (u, v)
is a positive (resp. negative) edge. The set of positive (resp. negative) predecessors of a vertex v is
denoted as P+

G (v) = {u|(u, v) ∈ E+(G)} (resp. P−G (v) = {u|(u, v) ∈ E−(G)}). The set of predecessors
of v is PG(v) = P+

G (v) ∪ P−G (v).
The neighborhood of a vertex v in a graph G, denoted as NG(v) is the set NG(v) = {u|(v, u) ∈

E(G)}. The closed neighborhood of v, denoted as NG[v] is NG[v] = NG(v) ∪ {v}. The degree of a
vertex is the number of vertices in its closed neighborhood and it is denoted by δG(v) = |NG[v]|.

A dynamical system (DS) [1–4] or Boolean Network (BN) [5–7] S is a couple S = (G, F) where
G is a directed graph called the dependency graph, F is a set of functions F = { fv|v ∈ V(G)} as
defined below. We also define a |V(G)|-dimensional vector O of states. O = (o1, o2, . . . , on) where
ov ∈ {0, 1}, v ∈ V(G). The vector O will be referred as an orbit of S . We also consider the restriction
(or the projection) of the vector O on a subset of vertices W ⊆ V(G) and we refer to it as OW .
Each function fv : {0, 1}h → {0, 1} is taken from the set of Boolean functions, where h is the number of
predecessors of v. The argument of fv is an h-dimensional vector x = (xu1 , . . . , xuh) where xui = oui

when ui ∈ P+
G (v), and, xui = oui when ui ∈ P−G (v) being oui the Boolean negation (or the complement

modulo 2) of oui . Although fv can be an arbitrary Boolean function on h variables, most pieces of
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research on DS and BN restrict the set of Boolean functions to AND, OR, NAND and NOR. This is
motivated by the following.

An AND term (resp. OR term) is the logical AND (resp. logical OR) of a set of variables
(where each variable can be either complemented or not complemented). Given a set of h Boolean
variables x1, . . . , xh, an AND term in which each of the h variables appears once (in either its
complemented or not complemented form) is called a minterm. Analogously, an OR term in which
each of the h variables appears once (in either its complemented or not complemented form) is called
a maxterm. It is well known that every Boolean function can be expressed either by disjunction of
uniquely minterms or by conjunction of just maxterms, among others. Furthermore, it is well known
that the Boolean algebra using the binary operators AND, OR and NOT are equivalent to the algebra
obtained by using either only NAND or only NOR.

In addition, the complexity of the problems involved in a DS dramatically changes when we
modify either the structure of the dependency graph, or the type or distribution of the Boolean
functions involved in the system. If the vertices of a DS use a function on a set F then we refer to the
dynamical system as an F -DS. We also call a DS positive when its dependency graph is positive.

Given a vertex v of a DS, we may consider the state of the vertex ov as a function of a discrete time
t ∈ N. Consequently, the global state O of the DS depends also on the time t. At time t = 0, we assign a
value to each ov and if O(t) is the state of DS at time t then the state of a single vertex at time t + 1 will
be ov(t + 1) = fv(OPG(v)(t)) where OPG(v) is the restriction of O to the predecessors of v. If the states
of the vertices are updated in parallel then we refer to the system as a parallel DS or PDS. In other
settings, we want to update the state of exactly one vertex at time t. A permutation π = {v0, . . . , vn−1}
of the vertices is given and if vi is the vertex that is updated at time t then only vi+1 (indices taken
modulo n) will change its state at time t + 1 and thus ovi+1(t + 1) = fvi+1(OPG(vi+1)

(t)). In this case,
we call the system a sequential DS or SDS.

Given a DS S = (G, F) and an orbit O, we call O a fixed point orbit (FPO) of S if and only if
O(t) = O(t + 1). When the set of functions F is clear from the context, we refer to O just as an FPO
of G.

Fixed point orbits are particularly interesting since they correspond to stable states of the system.
The problem of determining the existence of a fixed point orbit of a DS is called fixed point orbit
existence (FPOE) problem. A number of works have explored the FPOE problem under the hypothesis
that all the vertices have a selfloop. Some works put an additional restriction which requires the
graph of the DS to be symmetric and/or either all the edges to be positive or all of them negative.
Among others, the FPOE problem of an {AND}-DS, {OR}-DS, {NAND}-DS and {NOR}-DS is studied
in [2–4,8–10]. In addition, the FPOE problem in an {AND, OR, NAND, NOR}-DS is polynomially
solvable as shown in [4,11]. However, for {NAND, XNOR}-DS, {NAND, XOR}-DS,{NOR, XNOR}-DS
and {NOR, XOR}-DS, the FPOE problem is NP-complete [11]. The problem of counting the fixed point
orbits in a DS whose dependency graph is symmetric and all edges are positive is studied in [6] where
it is proved that the problem of counting the FPOs in a F -DS is #P-complete under the hypothesis that
the function associated to each node is arbitrary.

When the constraints that require the graph to be symmetric and positive are released, then the
FPOE problem will be NP-complete in {AND, OR}-DS [12,13]. It remains NP-Complete even when
the indegree of each vertex is at most two [13]. It can be demonstrated that the problem remains
NP-complete for {AND}-DS with all negative edges by using the transformation given in [5].

In this paper, we present an algorithm for counting the FPOs in an AND-OR symmetric positive
PDS. The algorithm has been designed by using more or less standard methodologies (such as the
one used also in [14–23]) and by using both a greedy strategy and recursion. The paper is organized
as follows. In Section 2, we present some theoretical results about AND-OR PDS whose dependency
graph is symmetric and positive. Based on them, we present an algorithm for counting all FPOs in
AND-OR symmetric positive PDS and we prove its correctness. In Section 3, we further develop the
algorithm given in Section 2 for building an algorithm which lists all FPOs in AND-OR symmetric PDS.
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2. Algorithm for Computing the Number of FPOs in AND-OR Symmetric Positive PDS

In this section, we first determine the structure and the number of FPOs in {AND, OR}-DS whose
dependency graph is symmetric and positive. It is well known that for this kind of graph the FPOE
problem is polynomially solvable [2,3]. Let S = (G, F) be an {AND, OR}-DS where G is a symmetric
positive graph. We denote by VOR (resp. VAND) the vertices of G such that fv is OR (resp. AND).
Furthermore, if for a vertex v we have that fv = OR (resp. fv = AND) we refer to v as an OR vertex
(resp. AND vertex).

Since, in the following, we will limit our discussion to symmetric positive {AND, OR}-DS,
for brevity we will often refer to them as DS without explicitly specifying that the dependency
graph is symmetric positive and the set of Boolean functions F ={AND, OR}.

Lemma 1. Let S be a DS and let O be an FPO of S . Let U ⊆ V(G) and let S ′ be a DS whose dependency
graph is G(U). Then OU is an FPO of S ′.

Proof. Let G′ be the subgraph of G induced by U and let O′ = OU , that is, O′ is the restriction of
O to the vertices in U. We prove only that if v ∈ U ∩ VOR then o′v(t) = o′v(t + 1). The proof when
v ∈ U ∩VAND can be obtained by applying a similar argument. Suppose first that o′v = 1. In this case
clearly we have that o′v(t) = o′v(t + 1). Suppose now that o′v = 0. Then, since O is an FPO of S , for each
u ∈ NG(v) we have that ou = 0. Thus, in G′, for each u ∈ NG′(v) we have that o′u = 0. Therefore, it
follows that o′v(t) = o′v(t + 1).

Let A = {A1, . . . , Ak} be the set of the connected components of G − VAND and let
B = {B1, . . . , Bh} be the set of the connected components of G − VOR. Let BG be the symmetric
bipartite graph whose vertices set is V(BG) = A∪ B with bipartition (A, B) (we remark that BG can be
disconnected or that A = ∅ or B = ∅). There is an edge (Ai, Bj) in E(BG) if and only if there is at least
one edge (u, v) ∈ E(G) with u ∈ Ai and v ∈ Bj. We will refer to BG as the AND-OR bipartition of G.
Furthermore we associate to S an {AND, OR}-DS S ′ = (BG, F′) referred to as the bipartite contraction
of S in which f ′a = OR if a ∈ A and f ′b = AND if b ∈ B.

Let us notice that S′ = (BG, F′) can be achieved from S = (G, F) just computing the connected
components within the sub-graphs associated to G−VAND and to G−VOR. In order to do this it is
sufficient with contracting all the vertices belonging to the same connected component in one.

The computational cost associated to this process is O(n) being n = |E(G)|+ |V(G)|.
For example, in Figure 1 on the left, there is an {AND, OR}-DS in which AND vertices are shaded

grey and OR vertices are shaded white, whereas on the right its bipartite contraction appears.

Figure 1. An {AND, OR}-DS and its bipartite contraction.

Lemma 2. Let S be a DS and let A be a connected component of G−VAND such that |V(A)| > 1. If O is an
FPO of S , then for all pairs of vertices v, u ∈ V(A) we have that ov = ou.

Proof. Let v, u ∈ V(A) and suppose by contradiction that ou 6= ov. Let P be a path in A connecting
v to u. Then, there are two adjacent vertices, say w and z, on this path, such that oz 6= ow. Suppose,
without loss of generality, that oz = 1. Since G is symmetric and positive there is an edge (z, w) in G.
Then O could not be an FPO since at time t + 1 we would have that ow = 1, a contradiction.
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By duality and in a similar way to Lemma 2, the following result is immediate to be proven:

Lemma 3. Let S be a DS and let B be a connected component of G−VOR such that |V(B)| > 1. If O is an
FPO of S , then for all pairs of vertices v, u ∈ V(B) we have that ov = ou.

Now we show that FPOs of a DS are strictly related with FPOs of its corresponding bipartite
contraction. In fact, we can prove the following two Lemmas.

Lemma 4. Let S = (G, F) be a DS and let S ′ = (BG, F′) be the bipartite contraction of S . If O is an FPO of
S then the orbit O′ obtained from O by setting, for each C ∈ V(BG), o′C = ov for any v ∈ V(C), is an FPO
of S ′.

Proof. Let O be an FPO of S . Let A = {A1, . . . , Ak} be the set of the connected components of
G − VAND and B = {B1, . . . , Bh} be the set of the connected components of G − VOR. If Ai ∈ A,
by Lemma 2, for all pairs of vertices u, v ∈ Ai we have that ou = ov. Similarly, by Lemma 3, if Bj ∈ B,
for all pairs of vertices u, v ∈ Bj we have that ou = ov. Let us suppose by contradiction that O′ is not an
FPO of S ′. Then there is a vertex C ∈ V(BG) such that o′C(t) 6= o′C(t + 1). Let us suppose that C ∈ A
(the proof of the case in which C ∈ B is similar and omitted). By this assumption it cannot be that
o′C(t) = 1 because otherwise o′C(t + 1) = 1 since BG is symmetric and positive and f ′C =OR. Therefore,
we have that o′C = 0 and C is adjacent, in BG, to a vertex C′ such that o′C′ = 1. Then, by definition of
bipartite contraction, there exists a vertex u ∈ V(C) and a vertex v ∈ C′ such that (v, u) ∈ E(G) and,
by what said above, ou = 0 and ov = 1. Furthermore u ∈ VOR. Then ou(t) 6= ou(t + 1) and O would
not be an FPO of S (a contradiction to the hypothesis).

Lemma 5. Let S = (G, F) be a DS and let S ′ = (BG, F′) be the bipartite contraction of S . If O′ is an FPO of
S ′ then the orbit O obtained from O′ by setting ov = o′C for all v ∈ V(C) and for all C ∈ V(BG) is an FPO
of S .

Proof. Let us suppose by contradiction that O is not an FPO of S . There must be at least a vertex
v ∈ V(G) such that ov(t + 1) 6= ov(t). Suppose that v ∈ VOR and let A be the connected component
of G− VAND containing v. Since ov(t + 1) 6= ov(t) and v ∈ VOR, we must have that ov = 0 and that
there exists a vertex u ∈ NG(v) such that ou = 1. Since, by construction, oz = 0 for all z ∈ V(A), we
have that u ∈ VAND. Let B be the connected component of G− VOR containing u. By construction,
and since ov = 0 and ou = 1, we have that o′A = 0, o′B = 1 and (A, B) is an edge of BG. Then we
have that o′A(t + 1) 6= o′A(t) contradicting the hypothesis that O′ is an FPO of S ′. The proof in which
v ∈ VAND is quite similar and therefore omitted.

Now we can give the following Lemma which states that the number of FPOs of a DS S meets the
number of FPOs of its bipartite contraction.

Lemma 6. Let S be a DS and let S ′ = (BG, F′) be the bipartite contraction of S . The number of FPOs of S
equals the number of FPOs of S ′.

Proof. By Lemmas 4 and 5, there is a surjective relation from the set of FPOs of S and the set of FPOs
of S ′. Therefore, we simply need to show that this relation is injective. That is, whenever we have two
distinct FPOs O1 and O2 of S, then the corresponding orbits O′1 and O′2 in S′ are distinct and vice versa.
This is straightforward to prove and is left to the reader.

The following algorithm will compute the number of FPOs of S = (G, F). In order to manage
the base case we admit null graphs G (that is, graphs in which V(G) = ∅) where we assume that null
graphs have exactly one FPO (the empty vector).
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Theorem 1. The procedure COUNT (Algorithm 1) correctly computes the number of FPOs in an
{AND, OR}-DS with symmetric positive dependency graph.

Proof. Let G be the symmetric positive dependency graph of an {AND, OR}-DS S . By Lemma 6,
we simply need to count the number of FPOs in the bipartite contraction S ′ of S . We prove the
correctness of the algorithm by induction on the number n of vertices of BG.

Base. If n = 1 then there is only one connected component in BG, that is, either all the vertices in
G are OR vertices or all of them are AND vertices. By [2], there are only 2 FPOs in the DS. In this case,
the algorithm will make two recursive calls with empty graphs as arguments, so returning 1 + 1 = 2.
Thus, in the base case the algorithm is correct.

Induction. Let us suppose the algorithm correctly computes the number of FPOs of these DSs
having graphs up to n − 1 vertices. Let BG be a graph with n vertices and let v ∈ V(BG) be an
OR vertex (v being an AND vertex requires so similar reasoning that it is omitted). In order to prove
this part it is sufficient to show (1) a one-to-one correspondence between all FPOs O of the contraction
of S to BG in which ov = 1, and all FPOs of the contraction of S to BG − {v} and (2) a one-to-one
correspondence between all FPOs O of the contraction of S to BG in which ov = 0, and all FPOs of the
contraction of S to BG − NBG [v].

Proof of (1). Let B′ = BG − {v} and let O′ be an FPO of the contraction of S to B′ (FPO of S
over B′, to abbreviate). Let O be an orbit of BG obtained from O′ by setting OV(B′) = O′ and setting
ov = 1. We show that O is an FPO of S over BG. In fact, let u ∈ NBG (v) since BG is bipartite and v is
an OR vertex, u must be an AND vertex. If o′u = 0, this means that ou(t) = ou(t + 1) = 0. Otherwise,
if o′u = 1 this means that, ∀w ∈ NB′(u), we have that o′w = 1. Since ov = 1, for all w ∈ NBG (u) we
have that ow = 1. All the vertices not belonging to NBG [v] have the same neighborhood in BG and
in B′. Thus, their value will not change with time t. This proves that O is an FPO of BG. To finish,
let us consider O, an FPO O of S over BG in which ov = 1, by Lemma 1, OV(B′) is an FPO of S over B′.

Proof of (2). Let B′ = BG − NBG [v]. Let O′ be an FPO of S over B′ and let O be an orbit of BG
obtained from O′ by setting OV(B′) = O′ and setting ou = 0 ∀u ∈ NBG [v]. Clearly each vertex in
u ∈ NBG (v) is an AND vertex, thus ou(t) = ou(t + 1) = 0. v is adjacent in BG to only vertices u such
that ou = 0 then ov(t) = ov(t + 1) = 0. A vertex w 6= v adjacent to a vertex in NBG (v) will not change
its value. In fact, first we note that w is an OR vertex. Thus, if ow(t) = 1 then ow(t) = ow(t + 1).
Otherwise, if ow(t) = 0, this means that w is adjacent in B′ to only vertices z with o′z = 0 and so
remains in BG, since for all u ∈ NBG (v), ou = 0. All the vertices neither in NBG [v] nor adjacent to any
vertex in NBG [v] have their neighborhood which the same in BG and B′. Thus, their value will not
change with time t. So that O is an FPO of S over BG. To finish, let us consider O, an FPO O of S over
BG in which ov = 0, by Lemma 1, OV(B′) is an FPO of S over B′.

As we said in the beginning of the proof, we may analogously prove that if v is an AND vertex
then there is (1) a one-to-one correspondence between all FPOs O of the contraction of S to BG in
which ov = 0, and all FPOs of the contraction of S to BG − {v} and (2) a one-to-one correspondence
between all FPOs O of the contraction of S to BG in which ov = 1, and all FPOs of the contraction of S
to BG − NBG . This completes the proof.

Figure 2 shows the recursive tree of calls of the Algorithm 1 applied to the bipartite contraction of
the graph G of Figure 1. Numbers in red by the graphs compute the number of FPOs of the recursive
call taking as argument the corresponding graph, so that the former call over the graph BG appears on
the top and outputs a total of 5 FPOs. The table on the right lists all the FPOs of BG as the labels of the
blue arrows show.
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Algorithm 1 Computing the number of FPOs of S = (G, F), an {AND, OR}-DS whose dependency
graph G is symmetric positive

Input: The AND-OR bipartition BG of G
Output: The number of FPOs of S

1: procedure COUNT(BG)
2: if V(BG) = ∅ then return 1
3: let v ∈ V(BG)
4: FP←COUNT(BG − {v})+COUNT(BG − NBG [v])
5: return FP
6: end procedure

Figure 2. Algorithm 1 performing over the bipartite contraction of the graph G of Figure 1. In addition,
the table listing all the FPOs of BG .

3. Algorithm for Listing All FPO in AND-OR Symmetric PDS

In this section, we provide a lower bound on Algorithm 1 and, based on it, we present an algorithm
for listing all the FPOs of an AND-OR symmetric PDS.

We have the following:

Lemma 7. Let S be a DS and let S ′ = (BG, F′) be the bipartite contraction of S . If (A, B) is the bipartition of
BG, then the number of FPOs of S is FP ≥ 2|A| + 2|B| − 1.

Proof. By Lemma 6, it is sufficient to prove that FP ≥ 2|A| + 2|B| − 1 where FP is the number of FPOs
in the bipartite contraction S ′ of S . Let O be an orbit of S ′ such that for all a ∈ A we have that oa = 1.
It is easy to check that if for any b ∈ B we set ob = 1 then ob(t) = ob(t + 1) since b is adjacent to vertices
in A, while if ob = 0 then ob(t) = ob(t + 1) since b is an AND vertex. We can build 2|B| different FPOs.
A similar argument applies if we set ob = 0 for all b ∈ B. Since the FPO O in which oa = 1 for all a ∈ A
and ob = 0 for all b ∈ B is present in both counts, we obtain the statement.

From Lemma 7, the next corollary is immediately followed.

Corollary 1. Let S be a DS and let S ′ = (BG, F′) be the bipartite contraction of S . If n = |V(BG)|, then the
number of FPOs of S is not less than 2n/2+1.

We also have the following result.
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Lemma 8. Let S be a DS and let S ′ = (BG, F′) be the bipartite contraction of S . If BG is a complete bipartite
graph Kn,m, then the number of FPOs of S equals 2n + 2m − 1.

Proof. By Lemma 6, it is sufficient to prove that FP = 2n + 2m − 1 where FP is the number of FPOs in
the bipartite contraction S ′ of S . Let (A, B) be the bipartition of BG where A is the set of OR vertices.
Suppose w.l.o.g. that |A| = n and |B| = m. We show that given an FPO O of S ′, only one of the
following two cases can happen: (i) ov = 1 for all v ∈ A or (ii) ou = 0 for all u ∈ B. Suppose not and
let O′ be an FPO in which there is a vertex v ∈ A and a vertex u ∈ B such that o′v = 0 and o′u = 1.
Since BG is complete, v is adjacent to u so that o′v(t) 6= o′v(t + 1) and o′u(t) 6= o′u(t + 1) a contradiction
to the hypothesis that O′ is an FPO. Now, it is easy to see that in case (i), if we assign to each vertex in
B any binary value, the orbit we obtain is a fixed point of S ′ (the same reasoning applies to case (ii)).
Since there are, in case (i), 2m of such orbits (2n in case (ii)), the statement follows by the fact that the
FPO O in which ov = 1 for all v ∈ A and ou = 0 for all u ∈ B is present in both counts.

By Lemma 8, when the bipartite contraction of a DS is complete, listing all its FPOs requires a
very simple algorithm for listing all the binary strings of a prefixed length. Therefore, in the following,
we always assume that the bipartite contraction of a DS is not complete.

The Algorithm 1 can be modified in order to list in polynomial time all the FPOs of an
{AND, OR}-DS whose dependency graph is symmetric positive as reported in Algorithm 2.

Algorithm 2 Listing all the FPOs of the bipartite contraction of an {AND, OR}-DS whose dependency
graph is symmetric positive

Input: The AND-OR bipartite contraction BG of G with bipartition (A, B) where A is the set of OR
vertices and B the set of AND vertices of BG. An orbit O of BG (initially ov is undefined for all
v ∈ BG)

Output: All FPOs of BG
1: procedure FPO(BG, O)
2: if V(BG) = ∅ then output O
3: let v ∈ V(BG)
4: if v ∈ A then b← 1 else b← 0
5: O′ ← O
6: o′v ← b
7: FPO(BG − {v}, O′)
8: O′′ ← O
9: For all u ∈ NBG [v]

10: o′′u ← b
11: FPO(BG − NBG [v], O′′)
12: end procedure

Theorem 2. Let S = (G, F) be an {AND, OR}-DS whose dependency graph is symmetric positive.
The Algorithm 2 lists all FPOs of the bipartite contraction of S in polynomial time using linear space.

Proof. Let S ′ = (BG, F′) be the bipartite contraction of S and (A, B) the bipartition of BG.
Let n = |A ∪ B|. The algorithm calls itself in line 7 and in line 11 and the argument, in each of
the recursive call, is a graph with n− 1 vertices, in the worst case. The for cycle (lines 9-10) takes
at most O(δBG (v)) times. Now we can have two cases: (i) in BG the degree δBG (v) of any vertex v is
bounded by a constant c and (ii) δBG (v) is not bounded by constant, that is, we have that δBG (v) = O(n)
so we can find a constant 0 < k < 1 such that δBG (v) ≤ kn for every v ∈ V(BG).

Therefore, in case (i), the recursive relation of the time T(n), the algorithm spends for listing all
the FPOs is:

T(n) = T(n− 1) + T(n− c) + c ≤ 2T(n− 1) + c (1)
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Assuming that T(0) = 1, clearly this recursion solves in T(n) ≤ (c+ 1)2n− c, so that the algorithm
has O(2n) complexity. In case (ii), the recursive relation is

T(n) = T(n− 1) + T(n− kn) + kn (2)

So we have that
T(n) ≤ 2T(n− 1) + kn (3)

The above recursion solves in T(n) ≤ k(2n+1 − n− 2) so that the algorithm has O(2n) complexity.
By Corollary 1, we have that the number of FPOs is not less than 2n/2+1 and this completes the proof.

As an example of the output of the algorithm, we refer to the table on the right hand side of Figure 2.

4. Conclusions

We presented an algorithm for counting all the FPOs of an {AND, OR}-DS whose dependency
graph is symmetric positive. We gave a lower bound on that number. Furthermore, we adapted the
algorithm in order to list all the FPOs of the system taking for it polynomial time on the length of the
output, and linear space over the same parameter.
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