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1. Introduction

In 1982, Ivanov formulated in [1] his remarkable inequality in the form of the following (slightly
more precise) theorem.

Theorem 1. (cf. [1] Theorem) Let f be a (single-valued) continuous self-map of a compact polyhedron. Then the
inequality

h( f ) ≥ log N∞( f ) := log max
{

1, lim sup
m→∞

(N( f m))
1
m

}
holds for the topological entropy h( f ) of f , where N( f m) denotes the Nielsen number of the m-th iterate of f .

The notion of a topological entropy can be understood in the sense of both [2,3]. For the definition
and properties of the Nielsen number, see e.g., [4], where some single-valued generalizations of
Theorem 1 for more abstract manifolds can also be found in ([4] Chapter VII.2).

For a positive topological entropy, Theorem 1 was effectively applied to discrete chaotic dynamics
in [5–8] and to chaotic impulsive differential equations on tori in [9]. Let us note that the results
dealing with the topological entropy for dynamic processes and differential equations from another
perspective are rather rare (see e.g., [10–14]), and those for multivalued dynamics are even more
delicate (see e.g., [15]).

On the other hand, although there exist several various definitions of a topological entropy
for multivalued maps (see e.g., [16–22]), as far as we know, none have been applied to differential
equations without uniqueness or, more generally to differential inclusions. Moreover, no analogy of
Theorem 1 exists for multivalued maps.
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Since the appropriate multivalued Nielsen theory, applicable to (impulsive) differential equations
without uniqueness or differential inclusions on tori, does not possess (in difference to the standard
single-valued Nielsen theory) the lower estimate of the number of fixed points, but “only” of
coincidences of the associated admissible pairs (see [23–26] and cf. [27] Chapter I.10, [4] Chapter
VII.4), no possible extension of Theorem 1 for quoted multivalued generalizations of a topological
entropy would apply there via the associated Poincaré translation operators along the trajectories.

Hence, we need a new definition of a topological entropy for the class of (multivalued) admissible
maps. On this basis, we will be able to generalize Theorem 1 in a desired way, i.e., in order to be
applied to impulsive differential inclusions on tori.

Our paper is therefore organized as follows. At first, we will recall some preliminaries about
ANR-spaces and admissible maps in the sense of Górniewicz, for which we will newly define the
topological entropy. Then, in Section 3, we will make more precise the technicalities concerning the
Nielsen theory for multivalued maps. In Section 4, a multivalued version of Ivanov’s Theorem 1 will
be formulated on compact polyhedra, jointly with its particular consequences on tori. The application
to impulsive differential inclusions on tori, supplied by an illustrative example, will be given in
Section 5. In the concluding Section 6, besides the comments, the relationship between a positive
topological entropy for multivalued dynamics and the coexistence of (subharmonic) periodic solutions
with various periods will be clarified.

2. Preliminaries (Including the Definition of a Topological Entropy for Admissible Pairs)

In the entire text, all topological spaces will be metric. A space X is an absolute neighborhood
retract (written X ∈ ANR) if, for every space Y and every closed subset A ⊂ Y, each continuous map
f : A→ X is extendable over some open neighborhood U of A in Y. A space X is an absolute retract
(written X ∈ AR) if each f : A→ X is extendable over Y. Evidently, if X ∈ AR, then X ∈ ANR.

By a polyhedron, we understand usually a triangulable space. It is well known that every
polyhedron is an ANR-space. An important example of a compact polyhedron will be for us a torus.
By the n-torus Tn, n ≥ 1, we will mean here either the factor space Rn/Zn = (R/Z)n or the Cartesian
product S1 × . . .× S1︸ ︷︷ ︸

n-times

, where R denotes the set of reals, Z denotes the set of integers, and

S1 := {x ∈ R2 | |x| = 1} or S1 := {z = e2πs i | s ∈ [0, 1]}.

In particular, for n = 1, T1 = S1 becomes a circle.
If not explicitly specified, we will not distinguish between the additive and multiplicative

notations, because the logarithm map e2πs i → s, s ∈ [0, 1], establishes an isomorphism between
these two representations.

Let us also note that the relation between the Euclidean space Rn and its factorization Rn/Zn

can be realized by means of the natural projection, sometimes also called a canonical mapping,
τ : Rn → Rn/Zn, x → [x], where the symbol [x] := {y ∈ Rn | (y− x) ∈ Zn} stands for the equivalent
class of elements with x in Rn/Zn, i.e., Rn/Zn := {[x] | x ∈ Rn}, where [x] = x +Zn, x ∈ [0, 1)n.

A nonempty set X is called acyclic (or, more precisely, Q-acyclic), provided

Hn(X) =

{
0, for n > 0,

Q, for n = 0,

where Q stands for the field of rationals and Hn denotes the n-dimensional Čech homology functor
with rational coefficients. When Q is replaced by Z, then we speak about the Z-acyclicity.

A continuous map p : Γ⇒ X is called the Vietoris map, provided

(i) p is onto (i.e., p(Γ) = X),
(ii) p is proper, i.e., p−1(K) is a nonempty compact set, for every compact K ⊂ X,

(iii) the given set p−1(x) is acyclic, for every x ∈ X.
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By a multivalued map ϕ : X ( Y, we understand ϕ : X → 2Y \ {∅}. In the entire text, we will
still assume that ϕ has closed values.

Definition 1. A map ϕ : X ( Y is said to be upper semicontinuous (written u.s.c.) if, for every open
U ⊂ Y, the set {x ∈ X | ϕ(x) ⊂ U} is open in X, or equivalently, if for every closed V ⊂ Y, the set
{x ∈ X | ϕ(x) ∩V 6= ∅} is closed in X.

If, in particular, a single-valued map f : X → Y is u.s.c., then it is continuous. Furthermore, every
u.s.c. map ϕ : X ( Y has a closed graph {(x, y) ∈ X×Y | y ∈ ϕ(x)}, but not vice versa. Nevertheless,
if the graph of a compact map ϕ : X ( Y (i.e., when the set ϕ(X) =

⋃
x∈X ϕ(x) is contained in a

compact subset of Y) is closed, then ϕ is u.s.c. If ϕ : X ( Y is u.s.c. with compact values and A ⊂ X is
compact, then ϕ(A) is compact.

Definition 2. Assume that we have a diagram X
p⇐= Γ

q−→ Y, where p : Γ⇒ X is a (single-valued) Vietoris
map and q : Γ → Y is a continuous mapping. Then the map ϕ : X ( Y is called admissible (in the sense of
Górniewicz) if it is induced by ϕ(x) = q(p−1(x)), for every x ∈ X. Thus, we determine the admissible map ϕ

by the pair (p, q) called an admissible (selected) pair.

One can readily check that every admissible map is u.s.c. with nonempty compact connected
values, but not vice versa. The class of admissible maps is closed with respect to finite compositions
of admissible maps, i.e., a finite composition of admissible maps is also admissible. In fact, a map
is admissible if and only if it is a composition of acyclic maps, i.e., u.s.c. maps with compact acyclic
values. On the other hand, the composition of two acyclic maps need not be acyclic. For more details,
see e.g., [27] Chapter I.4).

Let ϕ : X ( X be an admissible self-map determined by the admissible pair (p, q), i.e., X
p⇐=

Γ
q−→ X, where ϕ(·) = q(p−1(·)).

The point x ∈ X such that x ∈ ϕ(x) is called a fixed point of ϕ, while z ∈ Γ such that p(z) = q(z)
is called a coincidence point of ϕ, shortly a coincidence of ϕ. Observe that, letting the fixed point set of
(p, q) as

Fix(p, q) := {x ∈ X | x ∈ q(p−1(x))},

and the coincidence point set of (p, q) as

Coin(p, q) := {z ∈ Γ | p(z) = q(z)},

we obviously have the equalities

p(Coin(p, q)) = q(Coin(p, q)) = Fix(p, q).

Definition 3. The sequence of points z1, . . . , zn ∈ Γ is called an n-orbit of the pair (p, q) if q(zi) = p(zi+1),
i = 1, . . . , n− 1. If, additionally, p(z1) = q(zn), then we call it a periodic n-orbit, written z1 ∈ Coin((p, q)n).
Schematically:

@
@
@@R

z1
�

�
��	

z2
@
@
@@R

q p q p q

. . .

�
�
��	

zn
@
@
@@Rq q q q

q(z1) = p(z2) q(z2) = p(z3) q(zn−1) = p(zn) q(zn) = p(z1) .

Observe that z1 ∈ Coin((p, q)n) implies zk ∈ Coin((p, q)n), for all k = 1, . . . , n.
Now, we are in position to define the topological entropy for admissible pairs (p, q),

when following the definition of Bowen [3] for single-valued maps.
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Definition 4. We say that the n-orbits (z1, . . . , zn) and (z′1, . . . , z′n) of (p, q) are (n, ε)-separable if
d1(zk, z′k) > ε holds for at least one k = 1, . . . , n, where

d1(zk, z′k) := max{d(p(zk), p(z′k)), d(q(zk), q(z′k))}

stands for the semi-metric in Γ and d is the metric in X.
Furthermore, denoting by s(n, ε) the maximal number of n-orbits such that any two of them are

(n, ε)-separable, we put

hse(p, q; ε) := log max
{

1, lim sup
m→∞

(s(m, ε))
1
m

}
.

Since 0 < ε′ < ε implies that hse(p, q; ε) ≤ hse(p, q; ε′), we define the topological entropy h(p, q) for
admissible pairs (p, q) as

h(p, q) := lim
ε→0

hse(p, q; ε).

Remark 1. On compact spaces, the topological entropy h(p, q) does not depend on the metric. Let d, d′ be two
metrics on the compact metric space X. Since they are equivalent,

∀ε > 0 ∃δ > 0 ∀x, x′ ∈ X : d(x, x′) < δ⇒ d′(x, x′) < ε.

Hence, if two m-orbits are (m, ε)-separable with respect to d, then they are (m, δ)-separable with respect
to d′. This implies s(d)(p, q; m, ε) ≤ s(d

′)(p, q; m, δ), h(d)se (p, q; ε) ≤ h(d
′)

se (p, q; δ), and finally h(d)(p, q) ≤
h(d
′)(p, q). The symmetry gives the opposite inequality.

3. Elements of the Nielsen Theory for Multivalued Maps

In the classical (single-valued) Nielsen fixed point theory, we consider a continuous self-map
f : X → X of a space X, divide the fixed point set Fix( f ) := {x ∈ X | x = f (x)} into the Nielsen
classes (using the paths linking the fixed points), and finally we define the Nielsen number N( f ) of f
as the number of essential Nielsen classes, i.e., those with nonzero fixed point index ind( f ; A) 6= 0.
For the related definitions and more details, see e.g., [4].

It is natural to extend this approach to admissible maps. In [25] (cf. also [27] Example I.10.1 and [4]
Example 7.4.7), we have given an example of an admissible self-map ϕ : S1 ( S1, determined by the
admissible pair (p, q), with the following properties:

(i) the values p−1(x) are points or compact arcs,
(ii) ϕ is admissibly homotopic to a single-valued map f of degree d (for any prescribed integer d),
(iii) the fixed point set Fix(ϕ) := {x ∈ S1 | x ∈ q(p−1(x))} consists of two points.

Since d ∈ Z can be arbitrary and the fixed point set Fix(ϕ) has only two elements, this example
demonstrates that there is no natural extension of the ordinary Nielsen fixed point theory to the class
of multivalued admissible maps.

Instead of it, we should ask about the number of coincidences, i.e.,

# Coin(p, q) := #{z ∈ Γ | p(z) = q(z)}.

For this goal, we will recall and modify the Nielsen theory for admissible self-maps, developed
by ourselves in [25,26] (cf. also [27] Chapter I.10 and [4] Chapter VII.4). This theory is nontrivial,
because the space Γ need not be path-connected and the splitting into the Nielsen classes involves
some extra problems. Moreover, we cannot apply the classical index theory to maps on such an
arbitrary space as Γ.
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Hence, let us proceed to the definition of the Nielsen classes. Let us consider an admissible pair

(p, q), i.e., X
p⇐= Γ

q−→ X, where X is a compact ANR-space, Γ is a compact space, p is the Vietoris
map and q is continuous. We are willing to split the coincidence set Coin(p, q) into the Nielsen classes.
Since the space Γ need not be locally connected, we cannot traditionally use the paths. Instead of it,
we will use the universal covering spaces approach.

We fix a universal covering pX : X̃ → X. Letting Γ̃ := {(x̃, z) ∈ X̃ × Γ | pX(x̃) = p(z)}, denote
the pullback giving the commutative diagram

X̃

pX

��

Γ̃
p̃oo

pΓ

��
X Γ ,

pks

where p̃(x̃, z) := x̃, pΓ(x̃, z) := z. In order to split Coin(p, q) into classes, which we will also
call the Nielsen classes, we will need a lift q̃ : Γ̃ → X̃ satisfying pX(q̃) = q(pΓ). This gives the
commutative diagram:

X̃

pX

��

Γ̃
p̃oo

pΓ

��

q̃ // X̃

pX

��
X Γ

pks q // X .

Let us emphasize that p̃ is the pullback projection, while q̃ is a fixed, but arbitrarily chosen, lift of q.
We will use the above diagram to split Coin(p, q) into the Nielsen classes, but before it, we would

like to explain the existence of the lift q̃ by means of the following lemmas.

Lemma 1. Let p : X̃ → X be a universal covering of a connected locally simply-connected space X. Let Γ be a
paracompact space and Γ0 be its compact subset. Let f0 : Γ0 → X have a lift f̃0 : Γ0 → X̃ such that p( f̃0) = f0.
Then there exists an extension of the lift f̃0 to f̃1 : Γ1 → X̃ onto an open neighbourhood Γ1 ⊃ Γ0.

Proof. For each x ∈ Γ0, we fix an open neighbourhood Ux ⊂ Γ such that x ∈ Ux and f̃x admits an
extension f̃x : Γ0 ∪Ux → X̃. We may assume, when taking each Ux smaller, that the intersection of
each fibre f̃x(Ux) ∩ p−1(y) is a singleton or an empty set, for each y ∈ X. We choose a finite covering
{Vi}i∈I of Γ0, which is star-subwritten to {Ux}. For each i ∈ I, we furthermore choose an xi ∈ Γ0

satisfying Vi ⊂ Uxi , and we define the extension f̃i as the restriction of f̃xi . We will show that the
system { f̃i} defines correctly the extension f̃1 :

⋃
i∈I Vi → X̃, which gives the desired extension on the

neighbourhood Γ1 :=
⋃

i∈I Vi.
It remains to show that the extensions f̃i are consistent. Letting z ∈ Vi ∩Vi′ , then z ∈ Vi ∪Vi′ ⊂ Uj

for some j ∈ I. Since f̃i(z) and f̃i′(z) belong to the same fibre of p and a small Uj, f̃i(z) and f̃i′(z) must
be equal, which completes the proof.

Lemma 2. ([27] Lemma I.10.6) Let p : Γ ⇒ X, q : Γ → Y be continuous maps. where X, Y are compact
connected ANR-spaces, Γ is a compact connected space, and p is the Vietoris map. Assume, furthermore, that
X is simply-connected and that the restriction q|p−1(x) : p−1(x) → Y admits a lift q̃|p−1(x) : p−1(x) → Ỹ,

for each x ∈ X. Then there exists a map q̃ : Γ→ Ỹ making the diagram commutative:

Ỹ

pY
��

Γ
q //

q̃
??��������
Y .

Proof. For the proof, it is enough to follow the arguments in ([27] Lemma I.10.6).
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Lemma 3. If the restriction q|p−1(x) : p−1(x) → X lifts, for each x ∈ X, to a map q̃|p−1(x) : p−1(x) → X̃,
then q : Γ→ X admits a lift q̃ : Γ̃→ X̃.

Proof. It is enough to apply Lemma 2 for X = Y and q = q(pΓ).

Let θX := {α : X̃ → X̃ | pXα = pX} denote the set of natural transformations of X̃. Recall that
then θX = π1X.

Similarly, we define θΓ = {α : Γ̃ → Γ̃ | pΓα = pΓ}. Since Γ̃ is the pullback, there is a natural
bijection given by θX = θΓ, i.e., α ∈ θX induces θΓ 3 (x̃, z)→ (α(x̃), z) ∈ θΓ.

We denote by p! : θX → θΓ the natural isomorphism given by the formula p̃!(α)(x̃, z) = (αx̃, z).
On the other hand, the right hand side of the diagram gives a homomorphism q̃! : θΓ → θX given by
q̃α = (q̃!α)q̃. Finally, we denote ρ̃ = q̃! p̃!. Now, we are in position to define the Reidemeister relation.

We consider the action of θX on itself, α ◦ ω = αωρ̃(α−1). The quotient set is called the set of
Reidemeister classes and is denoted byR( p̃, q̃). In [25], we have shown that the definition does not
depend on the choice of the lift q̃.

To split the set Coin(p, q) to the Nielsen classes, we need the above theory modulo a subgroup.
We consider the pair (p, q) as above and assume that H / θX is a normal subgroup preserved by ρ̃,

i.e., ρ̃(H) ⊂ H. Then we can follow the above construction to get the commutative diagram:

X̃H

pXH
��

Γ̃H
p̃Hoo

pΓH
��

q̃H // X̃H

pXH
��

X Γ
pks q // X ,

where X̃H is the covering corresponding to the subgroup H and Γ̃H is the corresponding pullback.
This gives the homomorphism q̃H! p̃!

H : θXH → θXH .

Lemma 4. (cf. [25] Lemma 4.1)

(i) Coin(p, q) =
⋃

α∈θXH
pΓH Coin( p̃H , αq̃H);

(ii) if
pΓH Coin( p̃H , αq̃H) ∩ pΓH Coin( p̃H , βq̃H)

is not empty, then there exists a γ ∈ θXH such that

β = γ · α · (q̃H! p̃!
Hγ)−1;

(iii) the sets pΓH Coin( p̃H , αq̃H) are either disjoint or equal.

Now, we get the splitting of Coin(p, q) into the H-Nielsen classes and the natural injection from
the set of H-Nielsen classes into the set of the Reidemeister classes modulo H, namelyRH(p, q).

At last, we can proceed to the essential Nielsen classes, i.e., the coincidence classes which
do not disappear under any admissible homotopy. We recall the notion of essential classes given
in (Section 5 [25]). However, besides the assumptions that p, q : Γ→ X is an admissible pair (i.e., X is
a compact ANR-space, Γ is a compact space, p is the Vietoris map and q is continuous), we will still
assume that there exists a normal subgroup of finite index H / π1X such that ρ̃(H) ⊂ H (which will
enable us to use finite covering spaces).

Since X is a compact ANR-space and cl(q(Γ)) ⊂ X is compact, the Lefschetz number L(p, q) is
defined (see e.g., [27] Chapter I.6).

Let us recall that, according to Lemma 4, Coin(p, q) =
⋃

α∈θXH
pΓH Coin( p̃H , αq̃H), where any

two summands are either equal or empty. This gives the splitting into the Nielsen classes modulo H.
On the other hand, since X̃H is compact, by the second property L( p̃, αq̃) is defined. If L( p̃, αq̃) 6= 0,
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then we call the corresponding H-Nielsen class essential. As in the single-valued case, each essential
Nielsen class is nonempty.

We define the coincidence Nielsen number modulo the subgroup H as the number of the essential
Nielsen classes, and we denote it by NH(p, q).

The following two important theorems will be stated in the form of propositions.

Proposition 1. (cf. [25] Theorem 5.8) NH(p, q) is a homotopy invariant (with respect to the admissible
homotopies X× [0, 1]

p⇐= Γ
q−→ X). Moreover, (p, q) has at least NH(p, q) coincidences.

The following statement shows that the above definition is consistent with the classical Nielsen
number for single-valued maps.

Proposition 2. (cf. [25] Theorem 5.9) If an admissible map (p, q) is admissibly homotopic to a pair (p′, q′)
(written (p, q) ∼ (p′, q′)), representing a single-valued map ρ = (p′, q′) (i.e., q′ = ρp′), then NH(p, q) =
NH(ρ), i.e., the classical Nielsen number modulo H.

For the calculation in applications, it will be also convenient to give the following statements
on tori. Let us recall that by an Rδ-set, we mean an intersection of a decreasing sequence of compact
absolute retracts or, equivalently, of compact contractible (i.e., homotopically equivalent to one point)
sets. For more details, see e.g., ([27] Chapters I.2 and I.4).

Proposition 3. Any admissible self-map ϕ on the torus Tn, determined by the admissible pairs (p, q), where
p−1(x) is an Rδ-set for every x ∈ Tn, is admissibly homotopic to a pair (p′, q′), representing a single-valued
(continuous) map ρ : Tn → Tn (written ϕ ∼ ρ).

Proof. For the proof, we can proceed in the same way as in ([25] Theorem 6.2) (cf. also [27] Theorem
I.10.24), where instead of the lemma in ([25] Lemma 6.1), we apply the fact that since an Rδ-set is
Z-acyclic, we have that H̃(p−1(x);Z) = 0, and so any restriction q|p−1(x) : p−1(x)→ S1 is contractible.

The fact that any Rδ-set is Z-acyclic follows from the following continuity arguments due to
Górniewicz (N. Copernicus Univ. Toruń, Poland). By the definition, the Rδ-set A can be written as
the intersection A =

⋂
n≥1 An of a decreasing sequence {An} of compact AR-spaces (or, in particular,

compact contractible sets) An, which are Z-acyclic, for every n ∈ N. The claim is then implied by the
theorem in ([28] Theorem 3.1 in Chapter X.3, p. 261), saying that the Čech homology theory based
on a coefficient group which is in GR (the category of modulus over a ring R) or GC (the category of
compact Abelian groups) is continuous on the category of compact pairs. Moreover, when R is the
ring of integers, GR is just the category of ordinary Abelian groups and their homomorphisms (see
e.g., [28] Chapter IV.3, p. 110). Thus, for our needs, we can put R = Z, which completes the proof.

Remark 2. In fact, in the proof of the foregoing Proposition 3, we needed to have the commutative diagram:

X̃

pX

��

Γ̃
p̃oo

pΓ

��

q̃ // X̃

pX

��
X Γ

pks q // X ,

in order to get the splitting of the coincidence set Coin(p, q) into the Nielsen classes. More precisely, we needed
the lift q̃ as above.

To get such a lift, we should assume that the restrictions q|p−1(x) : p−1(x) → X admit lifts
q̃|p−1(x) : p−1(x) → X̃ and pX(q̃) = q. In the case of the torus, i.e., for X = Tn = S1 × · · · × S1, this
condition takes the form that each map p−1(x)→ S1 is homotopic to a constant map. It is true, provided p−1(x)
is Z-acyclic, for every x ∈ S1.



Mathematics 2020, 8, 1602 8 of 14

Proposition 4. (cf. [24] equalities (4)) Under the assumptions of Proposition 3, the equalities

(NH((p, q)k) =) N((p, q)k) = N(ρk) = |L(ρk)| (1)

hold for every k ∈ N, where NH is the coincidence Nielsen number modulo the (concrete) subgroup H defined
above, N is the ordinary Nielsen number and L is the ordinary Lefschetz number.

Proof. The equalities (1) were derived in [24], on the basis of the proposition in ([23] Proposition 2.6)
and Proposition 3. For the definition of the concrete subgroup H, see the proof in ([25] Theorem 6.3)
(cf. also [27] Theorem I.10.25).

4. Ivanov’s Theorem for Admissible Pairs

The crucial argument in the proof of Theorem 1 can be reformulated in the form of the following
lemma (cf. [1], the proof of Theorem).

Lemma 5. Let f : X → X be a continuous self-map of a compact polyhedron X endowed with the metric d. Then
there exists a number ε > 0 such that, for any x, y ∈ X and n ∈ N: if d( f k(x), f k(y)) < ε, for k = 1, . . . , n,
and f n(x) = x, f n(y) = y, then the points x, y belong to the same Nielsen class as the fixed points of f n.

Let us emphasize that ε > 0 in Lemma 5 depends only on f and it is independent of n.

We would like therefore to generalize Lemma 5 to the admissible pairs X
p⇐= Γ

q−→ X, where X
is a compact polyhedron. Thus, we will again assume that p is the Vietoris map and q is continuous.
For this generalization, we need the following technical lemma.

Lemma 6. Consider the diagram:

X̃

pX

��

Γ̃
p̃oo

pΓ

��

q̃ // X̃

pX

��
X Γ

pks q // X ,

with fixed z1, z′1 ∈ Γ satisfying d1(z1, z′1) ≤ ε (for the definition of the semi-metric d1, see Definition 4).
Denoting x1 := p(z1), x2 := q(z1), x′1 := p(z′1), x′2 := q(z′1), we will be able to find the points z̃1, z̃′1 ∈ Γ̃,
x̃1, x̃′1 ∈ Ũ1, x̃2, x̃′2 ∈ Ũ2 such that:

1. pΓ(z̃1) = z1, pΓ(z̃′1) = z′1,

2. p̃(z̃1) = x̃1, p̃(z̃′1) = x̃′1, q̃(z̃1) = x̃2, q̃(z̃′1) = x̃′2,

3. x̃i, x̃′i ∈ Ũi, where Ũi ⊂ X̃ is an open contractible set which is sent homeomorphically by pX (i = 1, 2).

Moreover x̃1, x̃′1 ∈ Ũ1 can be any pair of points x̃1 ∈ p−1
X (x1), x̃′1 ∈ p−1

X (x′1), satisfying 3.

Proof. Since the simplicial complex X is locally contractible and compact, there exists an ε0 > 0 such
that each subset D ⊂ X with diam(D) < 2ε0 is contained in a contractible set U ⊂ X. We assume that
the numbers ε, which appear below, satisfy ε0 > ε > 0.

Let z1, z′1 ∈ Γ be the given pair of points satisfying d1(z1, z′1) < ε. We define x1 := p(z1),
x′1 := p(z′1) and x2 := q(z1), x′2 := q(z′1). It is easy to see that there exist lifts of these points making
the diagram commutative.
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x̃1, x̃′1

pX

��

z̃1, z̃′1
p̃oo

pΓ

��

q̃ // x̃2, x̃′2

pY

��
x1, x′1 z1, z′1

pks q // x2, x′2

In fact, we choose the lifts z̃1, z̃′1 ∈ Γ̃ of the given z1, z′1 ∈ Γ, and these determine the rest.
Moreover, the assumption d1(z1, z′1) < ε implies d(x1, x′1) < ε and d(x2, x′2) < ε, which in turn

implies x′1 ∈ K(x1, ε), x′2 ∈ K(x2, ε), z′1 ∈ K(z1, ε) (here K(., ε) denotes the open ball). We will show that
if ε > 0 is small enough, then the inverse images p−1

X (K(x1, ε)), p−1
X (K(x2, ε)), p−1

Γ (K(z1, ε)) split into
mutually disjoint parts, each of them sent isometrically onto its image. We will overuse the notation
and call these parts by components. Notice that for a sufficiently small ε > 0, K(x, ε) is connected and
the introduced components coincide with the connected components of p−1

X (K(x1, ε)) =
⋃

α Ũα.
However, K(z, ε) need not be connected, because Γ need not be locally connected. So we define

the splitting

p−1
Γ (K(z, ε)) :=

⋃
α∈OX

p−1(Ũα),

where Uα = α ·U0 and OX := {α : X̃ → X̃ | pXα = pX}. In other words, we define the components
Wα := p−1(Ũα) and we can denote p−1

Γ (K(z, ε)) =
⋃

α Wα.
Our lemma will be proved once we show that: if z̃1, z̃′1 belong to the same component in p−1

Γ (K(z1, ε)),
then we can choose the pairs of lifts x̃1, x̃′1 and x̃2, x̃′2, which also belong to the same component of the
corresponding inverse images p−1

X (K(x1, ε)), p−1
X (K(x2, ε)).

Considering the left hand side of the diagram, the claim is obvious, because p̃ sends the component
Uα into Wα.

Now, let us consider its right hand side. Since Γ need not be locally connected and q is an arbitrary
continuous map, we cannot use a similar argument.

We will prove that, for a sufficiently small ε, if the lifts z̃1 and z̃′1 are chosen in the same component
of p−1

Γ (K(z1, ε)), then x̃2 = q̃(z̃1) and x̃′2 = q̃(z̃′1) belong to the same component of p−1
Γ (K(x2, ε)).

We will proceed by a contradiction. Let us assume that, for a sequence ε0 > εk > 0 converging to
0, there exist the pairs of points zk, z′k ∈ Γ with d(zk, z′k) < εk, and each pair of lifts z̃k, z̃′k ∈ X̃ lying
in the same component of p−1

Γ (K(z1, εk)) implies that the points q(z̃k), q(z̃′k) ∈ X̃ belong to different
components of p−1

X (K(x2, εk)).
By the compactness of Γ, we can assume that zk converges to a point z0 ∈ Γ. Thus, K(zk, εk) ⊂

K(z0, ε0), for almost all k. We choose a component Ũ ⊂ p−1
Γ (K(z0, ε)) and define z̃k := p−1

Γ (zk) ∩ Ũ,
z̃′k := p−1

Γ (z′k) ∩ Ũ.
Now, z′k also converges to z0 ∈ Γ but q̃(z̃′k), which belong by the assumption to other components,

cannot converge to q̃(z̃0), because the fibre p−1
X (q(z0)) is discrete. The last fact contradicts to the

continuity of q̃ : Γ̃→ X̃ in the point z̃0, which completes the proof.

The desired multivalued generalization of Lemma 5 reads as follows.

Lemma 7. Let X
p⇐= Γ

q−→ X be an admissible self-map of a compact polyhedron X endowed with the metric
d. Then there exists a number ε > 0 such that, for each pair of periodic n-orbits (z1, . . . , zn), (z′1, . . . , z′n) ∈
Coin((p, q)n) (see Definition 3): d1(zk, z′k) < ε, for k = 1, . . . , n, implies that z1, z′1 ∈ Coin((p, q)n) are in
the same coincidence Nielsen class, where the semi-metric d1 on Γ was defined in Definition 4.

Proof. We have given a multivalued map X
p⇐= Γ

q−→ X and two ε-close orbits of the length n,
namely (z1, · · · , zn) and (z′1, · · · , z′n). We have to show that z1 and z′1 belong to the same Nielsen class
as the coincidence points of Coin((p, q)n).
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Let us recall that Coin((p, q)n) =
⋃

α pΓ(Coin((id × α)(p, q)n)), where the summation runs
through the set of one representative α from each Reidemester class, is a mutually disjoint sum,
and each summand pΓ(Coin(id× α)(p, q)n)) is either the Nielsen class or it is empty.

We will show that there exist orbits (z̃1, · · · , z̃n) and (z̃′1, · · · , z̃′n) of ( p̃, q̃), satisfying pΓ(z̃′i) = z′i,
pΓ(z̃i) = zi and z̃1, z̃′1 ∈ Coin(id× β)( p̃, q̃)n)), for some β ∈ OX := {α : X̃ → X̃ | pXα = pX}.

Applying Lemma 6 to z1, z′1 and x1, x′1, we get the elements z̃1, z̃′1 and x̃2, x̃′2. Then we repeat
the same for z2, z′2 and x2, x′2, and we get z̃2, z̃′2. We follow it, until we get z̃n+1, z̃′n+1, satisfying
pΓ(z̃n+1) = zn+1 = z1, pΓ(z̃′n+1) = z′n+1 = z′1. This implies z̃n+1 = βz̃1, z̃′n+1 = β′ z̃′1, for some
β, β′ ∈ OX . However, by the construction, the points z̃i, z̃′i belong to a contractible open set which is
mapped by pX homeomorphically. Hence, β = β′ which completes the proof.

We are ready to give the first main theorem.

Theorem 2. Let ϕ : X ( X be an admissible self-map of a compact polyhedron X, determined by the admissible
pair (p, q), i.e., ϕ(·) = q(p−1(·)), where X

p⇐= Γ
q−→ X. Then the inequality

h(p, q) ≥ log N∞
H (p, q) := log max

{
1, lim sup

m→∞
(NH((p, q)m))

1
m

}
(2)

holds for the topological entropy h(p, q) of (p, q), defined in Definition 4, and the asymptotic Nielsen number
N∞

H (p, q) (modulo the subgroup H), where NH((p, q)m) denotes the coincidence Nielsen number (modulo the
subgroup H) of the pair (p, q)m, defined in Section 3.

Proof. By Lemma 7, for a sufficiently small ε > 0, there exist NH((p, q)m) (m, ε)-separated m-orbits.
This implies NH((p, q)m) ≤ s(m, ε), and subsequently

log max
{

1, lim sup
m→∞

(NH((p, q)m))
1
m

}
≤ log max

{
1, lim sup

m→∞
(s(m, ε))

1
m

}
= hse(p, q; ε).

Since h(p, q) := limε→0 hse(p, q; ε), we arrive at the inequality (2), which completes the proof.

On tori, Theorem 2 can be still improved by means of the equalities (1) in the following way.

Theorem 3. Let ϕ : Tn ( Tn be an admissible map, determined by the admissible pair (p, q) such that p−1(x)
is an Rδ-set, for every x ∈ Tn. Then the relations

h(p, q) ≥ log N∞(p, q) = log |L∞(ρ)| := log max
{

1, lim sup
m→∞

m
√
|L(ρm)|

}
(3)

hold for the topological entropy h(p, q) of (p, q) and the asymptotic Lefschetz number L∞(ρ) of ρ, where
ρ : Tn → Tn is a single-valued continuous map, which is admissibly homotopic to ϕ.

Proof. The relations (3) follow directly from those in (1) and (2). The existence of single-valued
continuous map ρ, which is admissibly homotopic to ϕ, is guaranteed by Proposition 3.

Remark 3. Let us note that, in difference to the topological invariants like the Nielsen number and the Lefschetz
number, the topological entropy is not invariant under homotopy.

As an illustrative example of the calculation by means of (3), we can give the following one.

Example 1. Let ϕ : Tn ( Tn be an admissible map, determined by the admissible pair (p, q) such that p−1(x)
is an Rδ-set, for every x ∈ Tn. Let ϕ be admissibly homotopic to a single-valued endomorphism ρ : Tn → Tn,
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defined by an integer (n× n)-matrix A. Let (λ1, · · · , λn) be the eigenvalues of A. Then, according to (3) in
Theorem 3,

h(p, q) ≥ log |L∞(ρ)| = ∑
|λk |>1

log |λk|, provided λk 6= 1, for all k = 1, . . . , n, (4)

where

|L∞(ρ)| =
{

1, if ∏n
k=1(1− λk) = 0,

∏|λk |>1 |λk| otherwise.

In particular, for n = 1, h(p, q) ≥ log |d| = log |A|, where d stands for the topological degree of ρ.

5. Application to Impulsive Differential Inclusions on Tori

Consider the impulsive vector differential inclusionx′ ∈ F(t, x), t 6= tj := t0 + jω, for some given ω > 0,

x(t+j ) = I(x(t−j )), j ∈ Z,
(5)

where F : R×Rn ( Rn is an upper-Carathéodory mapping such that

F(t, x) ≡ F(t + ω, x), F(t, . . . , xj, . . .) ≡ F(t, . . . , xj + 1, . . .), j = 1, . . . , n, (6)

and I : Rn → Rn is a single-valued continuous impulsive mapping such that

I(. . . , xj, . . .) ≡ I(. . . , xj + 1, . . .) (mod 1), j = 1, . . . , n, (7)

where x = (x1, . . . , xn). Furthermore, x(t+j ) := limt→t+j
x(t), j ∈ Z, i.e., x(t+j ) stands for the right limit,

x(t−j ) := limt→t−j
x(t), j ∈ Z, i.e., x(t−j ) stands for the left limit.

Let us recall that a multivalued map F : R × Rn ( Rn is, under (6), upper-Carathéodory,
provided:

(i) F(·, x) : [0, ω] ( Rn is Lebesgue measurable, for every x ∈ [0, 1]n, i.e., {t ∈ [0, ω] : F(·, x) ⊂ U} is
Lebesgue measurable, for each open U ⊂ [0, 1]n,

(ii) F(t, ·) : [0, 1]n ( R is u.s.c., for almost all (a.a.) t ∈ [0, ω], (cf. Definition 1),
(iii) F has convex and compact values {F(t, x)}, for all (t, x) ∈ [0, ω]× [0, 1]n,
(iv) |y| ≤ r(t)(1+ |x|), for all (t, x) ∈ [0, ω]× [0, 1]n, y ∈ F(t, x), where r : [0, ω]→ [0, ∞) is a Lebesgue

integrable function.

If F : Rn → Rn is single-valued, then it is called Carathéodory.
By a solution of (5), we understand a (piece-wise) absolutely continuous vector function

x ∈ AC((tj, tj+1),Rn), j ∈ Z, satisfying (5), for a.a. t ∈ R \ {tj}j∈Z.
Let us notice that conditions (6) and (7) allow us to consider the inclusion (5) on the factor space

Rn/Zn.
Hence, assuming (6) and (7), consider the composition Î ◦ T̂µω : Rn/Zn × [0, 1] ( Rn/Zn,

where the (µ-parametrized) Poincaré translation operator T̂µω : Rn/Zn × [0, 1] ( Rn/Zn along
the trajectories of (5) considered on R/Z, is defined by

T̂µω([x0]) := {x̂(t0 + µω) ∈ Rn/Zn : x̂(·) ∈ AC(R,Rn/Zn) is a solution of

x′ ∈ F(t, x) considered on Rn/Zn, such that x̂(t0) = [x0]}, (8)

and Î : Rn/Zn → Rn/Zn is the factorization of the impulsive mapping I : Rn → Rn, i.e., [τ ◦ I(x)] =
Î([x]), for every x ∈ Rn.
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Proposition 5. (cf. [24] Proposition 3.2) The above composition Î ◦ Tµω := Î ◦ T̂µω , µ ∈ [0, 1], where T̂µω is
the (factorized) Poincaré translation operator defined in (8) and Î is the factorized impulsive mapping, builds an
admissible homotopy bridge between Î ◦ Tω and Î.

For the desired application of Theorem 3 to (5), the following correspondence is crucial.

Lemma 8. (cf. [24] Lemma 4.1) There exists a selected pair ( p̂, q̂) which determines the (admissible) operator
Î ◦ Tω, treated in Proposition 5, such that p̂−1([x]) is an Rδ-set, for every [x] ∈ Rn/Zn. Moreover, there is a
one-to-one correspondence, for every k ∈ N, between the irreducible k-orbits of coincidences (for their definition
and more details, see [23,24]) of the mapping

Rn/Zn p̂⇐= Ẑ
q̂−→ Rn/Zn (9)

and kω-periodic (mod 1) solutions of the impulsive inclusion (5), provided (6) and (7) hold.

Since the operator Î ◦ Tω is, according to Proposition 5 and Lemma 8, admissible in the sense
of Definition 2, and such that p̂−1([x]) is an Rδ-set, for every [x] ∈ Rn/Zn, and it is also admissibly
homotopic to the factorization Î of the impulsive mapping I, satisfying (7), we can use the formulas
(1)–(4) for the calculation of the (asymptotic) Nielsen and Lefschetz numbers.

It is also natural to introduce the following definition.

Definition 5. The impulsive differential inclusion (5) has, under (6) and (7), a positive topological entropy if
h( p̂, q̂) > 0 holds for the admissible pair ( p̂, q̂), determining the Poincaré translation operator T̂ω defined in (8).

In view of the above arguments, Theorem 3 can be immediately applied to (5) as follows.

Theorem 4. The impulsive differential inclusion (5) has, under (6) and (7), a positive topological entropy in the
sense of Definition 5, provided

lim sup
m→∞

m
√
|L( Îm)| > 1. (10)

Proof. Because of an admissible homotopy ( p̂, q̂) ∼ Î (cf. Proposition 5), where p̂−1([x]) is an Rδ-set,
for every [x] ∈ Rn/Zn (cf. Lemma 8), we have (in view of (3))

h( p̂, q̂) ≥ log N∞( p̂, q̂) = log |L∞( Î)| := log max
{

1, lim sup
m→∞

m
√
|L( Îm)|

}
. (11)

Thus, h( p̂, q̂) > 0 holds, when lim supm→∞
m
√
|L( Îm)| > 1, as claimed.

Example 2. (continued Example 1) Consider (5), under (6) and (7). Let the impulsive mapping Î :=
τ ◦ I : Rn/Zn → Rn/Zn be an endomorphism defined by the integer (n× n)-matrix A like in Example 1.
Since ( p̂, q̂) ∼ Î, condition (10) can be improved, by means of (4) and (11), into the form ∑|λk |>1 log |λk| > 0,
provided λk 6= 1, for all k = 1, . . . , n. It happens, when λk 6= 1, for all k = 1, . . . , n, and at least one of the
eigenvalues λk satisfies |λk| > 1. In particular, for n = 1, h( p̂, q̂) ≥ log |d| = log |I(1)− I(0)| > 0, where d
stands for the topological degree of Î, when |I(1)− I(0)| > 1.
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6. Concluding Remarks

If

N∞(p, q) := lim sup
m→∞

m
√

N((p, q)m) > 1

and

|L∞(p, q)| := lim sup
m→∞

m
√
|L((p, q)m)| > 1

hold for the asymptotic Nielsen and Lefschetz numbers N∞(p, q) and L∞(p, q), then the sequences
{N((p, q)m)} and {|L((p, q)m)|} of the Nielsen and Lefschetz numbers grow exponentially. Thus,
there exists m∗ ∈ N such that, for infinitely many m ≥ m∗, the sequences {N((p, q)m)} and
{|L((p, q)m)|} are strictly (exponentially) increasing.

Therefore, according to ([23] Theorem 5.3), the admissible mapTn p⇐= Γ
q−→ Tn such that p−1([x])

is an Rδ-set, for every [x] ∈ Tn, then admits an irreducible m-orbit of coincidences, for infinitely many
m ≥ m∗.

In view of one-to-one correspondence, described in Lemma 8, we can give the last theorem
as follows.

Theorem 5. There exists a positive integer m∗ such that the impulsive differential inclusion (5) admits, under (6)
and (7), an mω-periodic (mod 1) solution, for infinitely many m ≥ m∗, provided (10) holds for the Lefschetz
numbers L( Îm) of the m-th iterates of Î := τ ◦ I.

Proof. The proof is quite analogous to the one in ([24] Theorem 4.3).

Remark 4. For n = 1, the impulsive differential inclusion (5) admits, under (6) and (7), an mω-periodic
(mod 1) solution, for every m ∈ N, provided |I(1)− I(0)| > 1 or |I(1)− I(0)| < −2. If |I(1)− I(0)| = −2,
then an mω-periodic (mod 1) solution of (5) exists, for every m ∈ N \ {2}. For more details, see ([24]
Theorem 4.6).

Remark 5. For n = 2, 3, the more explicit conditions than (10) for the minimal sets of periods can be found
in [29–31].
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