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Abstract: Cancer remains one of the world’s leading healthcare issues, and attempts continue not
only to find new medicines but also to find better ways of distributing medications. It is harmful
and lethal to most of its patients. The need to selectively deliver cytotoxic agents to cancer cells,
to enhance protection and efficacy, has prompted the implementation of nanotechnology in medicine.
The latest findings have found that gold nanomaterials can heal and conquer it because the material
is studied such as gold (atomic number 79) which produces a large amount of heat and contribute to
the therapy of malignant tumors. The purpose of the present study is to research the consequence
of heat transport through blood flow (Casson model) that contains gold particles in a slippery
shrinking/stretching curved surface. The mathematical modeling of Casson nanofluid containing
gold nanomaterials towards the slippery curved shrinking/stretching surface is simplified by utilizing
suitable transformation. Numerical dual solutions for the temperature and velocity fields are calculated
by using bvp4c methodology in MATLAB. Impacts of related parameters are investigated in the
temperature and velocity distribution. The results indicate that the suction parameter accelerates
the velocity in the upper branch solution and decelerates it in the lower branch solution, while the
temperature diminishes in both solutions. In addition, the Casson parameter shrinks the thickness of
the velocity boundary-layer owing to rapid enhancement in the plastic dynamics’ viscosity. Moreover,
the nanoparticle volume fraction accelerates the viscosity of blood as well as the thermal conductivity.
Thus, findings suggested that gold nanomaterials are useful for drug moving and delivery mechanisms
since the velocity boundary is regulated by the volume fraction parameter. Gold nanomaterials also
raise the temperature field, so that cancer cells can be destroyed.

Keywords: MHD (Magnetohydrodynamics) blood flow; Casson fluid; gold particle; non-uniform
heat source/sink; thermal radiation; dual solutions
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1. Introduction

In the biomedical sciences, gold nanoparticles (GNPs) are significant and emerge as potential
factors for treatment. These are treated as carriers of narcotics, contrast agents, radio-infections,
and photovoltaic agents. They are also known as efficient drug exchange substances and delivery
medicines since they can contain medicinal molecules in large quantities. Gold nanomaterials possess
loads of appealing characteristics for cancer treatment usages. They are tiny and thus can reach the
whole body. Most significantly, they can join a variety of drugs and proteins, and can effectively attack,
weaken, and kill cancer cells. Gold nanostructures have a large atomic amount, which corresponds to
heat generation and use in tumor-specific phototherapy. Huang and El-Sayed [1] utilized the gold
nanomaterials for the treatment of photothermal cure and in cancer diagnosis. GNPs were considered
a significant field of research because of their special, intense Plasmon resonance in observable choice
and their usages in biological sciences [2]. In the analysis of their significance, some researchers have
investigated the GNPs’ flow through two coaxial tubes. The third-grade liquid conveying GNPs in a
hollow and a porous tube was investigated through various analytical techniques by researchers ([3,4]).
Recent papers on nanomaterials’ and nanoliquids’ flows, with different aspects, were cited by [5–10].

Recently, due to its broad use in manufacturing, engineering, and biological processes,
the analysis of flow and heat procedures in non-Newtonian liquids has acquired significant attention.
The manufacturing of plastic polymers and fiber optics, cosmetic products, and clay coating are
some examples of these applications. The legendary Naiver–Stokes equations are not adequate
to explain the non-Newtonian fluid attributes; therefore, various physical models including the
Ellis and Cross, Carreau, and Casson replicas are required to refill this void. The applications of
non-Newtonian liquid stream physical conditions are difficult for investigators because of their complex
character and need of constitutive equations to explain all non-Newtonian liquid flow characteristics.
Because of assortment in nature flows, it produces various characteristics. Such examples are power-law
fluids, Eyring–Powell fluid rheological fluids, Jeffrey fluid, etc. Casson liquid is a closed model of
rheological liquid flow to describe properties of non-Newtonian liquid flow of the yield stress.
This was developed as a result of the viscous suspension in a liquid flow of cylindrical artifacts
while nevertheless, a few fluids that are reportedly well because of their nonlinearity within the fluid
flow, yielding stresses, and pseudo-plasticity in nature. Harris [11] and Bird et al. [12] contributed
substantially to the exploration of non-Newtonian liquid models through an assortment of rheological
properties; later on, many authors [13,14] examined the non-Newtonian flow features with specific
flow-control parameters. In recent times, Jamalabadi et al. [15] addressed the transient simulation of
the Carreau blood flow via a stenosis artery based on the principles of FHD (Ferrohydrodynamics) and
MHD (Magnetohydrodynamics). They indicated that the control of blood temperature can maintain
its ideal range of blood temperature. The simulation of fluid–structure interaction of Carreau blood
flow through a tiny occlusion in an artery was examined by Amiri et al. [16].

The thermal radiation and magnetic fields with heat transfer containing blood gold nanoparticles
become imperative in industrial and biological processes, for instance, lubricants, emulsions,
cancer therapy, biofluids in biological polymer and tissue, drug transportation, nuclear fuel slurries,
cancer tumor treatment, and bio-medical fluids. Also, the magnetic field is significant, as it is useful
to control the blood flow during thermal therapy, or surgery. We, therefore, recommend studying
the significance of heat transport with the Casson liquid involving gold GNPs through a curved
shrinking/stretching surface. The blood is described by taking a Casson liquid model and Gold
nanoparticles are used to destroy bacteria and treatment for cancer in medical operations. Therefore,
the mixture of blood with gold nanomaterials ensures that it is acceptable in many medical usages
including cancer and catheter treatment. In addition, the thermal radiation (see [17,18]) and non-uniform
heat source effects have been included in the study of heat phenomena. Numerical dual solutions have
been calculated for both profiles by using bvp4c methodology in MATLAB.
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2. Problem Formulation

Consider a 2D steady, incompressible blood flow (Casson fluid) involving gold GNPs through
a shrinking/stretched curved bent surface with radius R. The coordinates of the curvilinear form
(r, s) are to be utilized and the components of velocity corresponding to the curvilinear coordinates
are considered as [u1, v1, 0]. The velocity of the shrinking/stretched surface has been presumed
along the s-direction. The geometry of the problem is depicted in Figure 1. It is also supposed that
mass-flux velocity v0 with v0 > 0 is recognized as suction and v0 < 0 as an injection, while the
constant temperature at the curved surface, and the free stream or ambient temperature, are signified
by Tw and T∞, respectively. Further, for simplicity, let ra = r + R are the modified space variables.
Under these conjectures, along with a boundary-layer approximation, the leading PDEs (partial
differential equations) are [19,20]

∂
∂r

[
v1ra

]
+

(
ra
− r

)∂u1

∂s
= 0, (1)

ρn f

ra u1
2 =

∂p
∂r

, (2)

v1
∂u1

∂r
+

(
ra
− r
ra

)
u1
∂u1

∂s
+

1
ra u1v1 +

1
ρn f

(
ra
− r
ra

)
∂p
∂s

= −
σn f B2

ρn f
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ρn f
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1 +

1
γ
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∂
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[
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]
+

q′′′(
ρcp

)
n f

,

qr =
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−
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]
∂T1

4

∂r
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4
≈ −3T4

∞ + 4T1T3
∞, q′′′ =

k f uw(s)(Tw − T∞)

sν f

[
A1F′ + B1

( T1 − T∞
Tw − T∞

)]
.

(4)

along with the appropriate boundary conditions

u1 = a1λs, v1 = v0, T1 = Tw at r = 0,

u1 → 0,
∂u1

∂r
→ 0, T1 → T∞ as r→∞.

(5)

where a1 > 0 and λ are stretching (λ > 0) or shrinking (λ < 0) parameters, T1 the temperature, F′ the
velocity, p the pressure, σ∗ the Stefan–Boltzmann constant, qr the radiative heat flux, q′′′ the erratic
heat sink/source, B1 and A1 the temperature and space-dependent heat source/sink, k∗ the mean
proportion constant, while the remaining terms are nanofluids in the problem, such as ρn f the density,

µn f dynamic viscosity, σn f electrical conductivity, kn f thermal conductivity, and
(
ρcp

)
n f

heat capacitance.

The expressions based on the experimental and theoretical results are proposed by Mintsa et al. [21],
Afshari et al. [22], and the Makinde and Animasaun [23], and are defined as

µn f = µ f
(
1 + 7.3φ+ 123φ2

)
for 0.02 < φ,ρn f = (1−φ)ρ f + φρs1 ,(

ρcp
)
n f

=
(
ρcp

)
f
+ φ

(
ρcp

)
s1

,
kn f

k f
=

(
ks1 + 2k f

)
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(
k f − ks1

)(
ks1 + 2k f

)
+ φ

(
k f − ks1

) ,

σn f

σ f
=

1 +

3φ
(
σs1

σ f
− 1

)
(
σs1

σ f
+ 2

)
−

(
σs1

σ f
− 1

)
φ

.

(6)
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where in the aforementioned Equation (6), the symbols or notations stand for the base fluid and
nanofluid, respectively, like µ f ,ρ f ,ρs1 , σ f , σs1 , k f , ks1 ,

(
ρcp

)
f
,
(
ρcp

)
s1

, which are abbreviated as the

viscosity, density, electrical conductivity, thermal conductivity, and the heat capacitance, respectively,
and φ is the volume fraction of nanofluid.   
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Figure 1. (a–c): Physical diagram of the problem.

To further ease this analysis, the transformation is introduced as

u1 = a1sF′(η), v1 = −

(
ra
− r
ra

)
√a1ν f F(η),θ(η) =

T1 − T∞
Tw − T∞

,

η = r
√

a1

ν f
, p = ρ f a1

2s2P(η).
(7)

By using Equation (7), the continuity equation is approved, while Equations (2)–(4) suit

P′

ξ1
=

F′2

η+ W
, (8)
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2WP
(η+ W)ξ1

=
W

(η+ W)

{
FF′′ − F′2

}
+

W

(η+ W)2 FF′ −
M
ξ1
ξ3F′+(

ξ2

ξ1

)(
1 +

1
γ

)F′′′ +
F′′

(η+ W)
−

F′

(η+ W)2

,
(9)

(
ξ4 +

4
3

Rd

){
θ′′ +

θ′

(η+ W)

}
+ ξ5Pr

W
(η+ W)

θ′F + A1F′ + B1θ = 0, (10)

In which:
ξ1 = (1−φ) + φ

ρs1

ρ f
,

ξ2 = 1 + 7.3φ+ 123φ2,

ξ3 =

1 +
3φ

σs1

σ f
−1

σs1

σ f
+2

−
σs1

σ f
−1

φ

,

ξ4 =

(
ks1 + 2k f

)
− 2φ

(
k f − ks1

)(
ks1 + 2k f

)
+ φ

(
k f − ks1

) ,

ξ5 = (1−φ) + φ

(
ρcp

)
s1(

ρcp
)

f

,

where M = σ f B0
2/ρ f a1, Pr = ν f /α f , W = R

√
a1/ν f and Rd = 4σ∗T3

∞/k∗k f is the magnetic field

parameter, Prandtl number, the curvature parameter, and the radiation parameter, respectively.
Eliminating the pressure from Equations (8) and (9), we have{

ξ2 +
ξ2

γ

}F(4) +
2

η+ W
F′′′ −

1

(η+ W)2 F′′ +
1

(η+ W)3 F′
+ ξ1W

η+ W
(FF′′′ − F′F′′ )−

Mξ3

(
F′

(η+ W)
+ F′′

)
−

ξ1W

(η+ W)2

(
F′2 − FF′′

− ξ1W

(η+ W)3 FF′ = 0.

(11)

The boundary restrictions are F(0) = S1, F′(0) = λ, θ(0) = 1 at η = 0,

F′′ (η)→ 0, F′(η)→ 0, θ(η)→ 0 as η→∞.
(12)

where S1 = −v0/√a1ν f .
From Equation (9), we can calculate the pressure as

P =
(η+ W)ξ1

2W


W

(η+ W)

{
FF′′ − F′2

}
+

W

(η+ W)2 FF′ −
M
ξ1
ξ3F′+

(
ξ2

ξ1

)(
1 +

1
γ

)F′′′ +
F′′

(η+ W)
−

F′

(η+ W)2



, (13)

The friction factor coefficient CF and the local Nusselt number Nus are the engineering quantities
of interest, which are mathematically written as

CF =
τs

ρ f uw2 and Nus =
sqw

k f (Tw − T∞)
where qw, τs called the wall heat flux and shear stress (14)
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and further, these are defined as

τs = µn f

(
1 +

1
γ

)(
∂u1

∂r
−

u1

ra

)∣∣∣∣∣∣
r=0

,

qw =

(
−kn f

{
∂T1

∂r

}
+ (qr)w

)∣∣∣∣∣∣
r=0

.

(15)

By plugging Equation (7) in Equations (14) and (15), we get the dimensionless form of skin friction
coefficient CF and the local Nusselt number Nus which are given as

{Res}
0.5CF = ξ2

{
1 +

1
γ

}(
F′′ −

F′

η+ W

)
,

{Res}
−0.5Nus = −θ′(0)

{
ξ4 +

4
3

Rd

}
, where Res = a1s2/ν f .

(16)

3. Methodology

After removing the pressure, the transformed ODEs (ordinary differential equations) (10) and
(11) with the boundary restrictions (12) are solved numerically through the Lobatto IIIA formula.
The Lobatto IIIA formula is also signified as a collocation formula with fourth-order accuracy. The mesh
selection and control of error is obtained by using the residual of the interrupted solution. In this
method, the non-linear system (10)–(12) is rewritten as in the first-order ODEs system by introducing
new variables. Let the process can be proceed as follow:

F = Z∗1, F′ = Z∗2, F′′ = Z∗3, F′′′ = Z∗4,θ = Z∗5,θ′ = Z∗6 (17)

Inserting the aforementioned new variables in the dimensional form of ODEs will be sealed in the
following compact form as

d
dη



Z∗1
Z∗2
Z∗3
Z∗4
Z∗5
Z∗6


=



Z∗2
Z∗3
Z∗4

(
ξ2 +

ξ2

γ

) −2Z∗4
η+ W

+
Z∗3

(η+ W)2 −
Z∗2

(η+ W)3

− ξ1W
η+ W

(
Z∗1Z∗4 −Z∗2Z∗3

)
+

Mξ3

(
Z∗2

η+ W
+ Z∗3

)
+

ξ1W

(η+ W)2

(
Z∗2Z∗2 −Z∗1Z∗3

)
+

ξ1W

(η+ W)3 Z∗1Z∗2ξ2+
ξ2

γ




Z∗6 

−

(
ξ4 +

4
3

Rd

)( Z∗6
η+ W

)
− ξ5Pr

W
η+ W

Z∗6Z∗1 −A1Z∗2 − B1Z∗5(
ξ4 +

4
3

Rd

)




(18)

subject to boundary restrictions

Z∗1(0) = S1, Z∗2(0) = λ, Z∗5(0) = 1,

Z∗2(∞)→ 0, Z∗3(∞)→ 0, Z∗5(∞)→ 0.

 (19)
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The preceding equations’ scheme may probably have different solutions or more than two solutions.
The provided numerical solution, therefore, required specific early guesses to fulfill the conditions (19).
Therefore, some initial early guesses are needed to operate the bvp4c process. The initial or early guess
is quite simple when it comes to finding the first solution compared to achieving the second solution,
as they needed the best suitable guess, which is quite difficult. The maximum range of numerical
integration is considered as ηmax = 2 in the simulation analysis, which is very useful for asymptotically
obeying the conditions in the appropriate or schematic solutions. The mesh size value is considered
∆η = 0.01. The iterative process is repeated, waiting for the necessary results to be obtained to match
the convergence criterion up to the precision point 10−5.

4. Stability Analysis

The literature review generally offers a greater number of insightful works concerned with the
analysis of the stability of the fluid flows such as the boundary layer, in which the researchers tested the
adequacy of more than one solution (multiple) extracted from a physical point of view and rejected the
unstable ones (which were not physically realizable). In this regard, the readers can refer to numerous
research studies stated by Weidman et al. [24], Zaib et al. [25], Sharma et al. [26], and Rosca and Pop [27].
Based on these references, they have investigated that the solution of the first branch is physically
realizable (stable) and the solution of the second branch is not realizable (unstable) in physical practice.
To determine the physical significance of these solutions, we consider the mathematical problem in the
unsteadiness form as given below:

∂
∂r

[
v1ra

]
+

(
ra
− r

)∂u1

∂s
= 0, (20)

ρn f

ra u1
2 =

∂p
∂r

, (21)

∂u1

∂t
+ v1

∂u1

∂r
+

(
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− r
ra

)
u1
∂u1

∂s
+

1
ra u1v1 +

1
ρn f

(
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− r
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)
∂p
∂s

= −
σn f B2
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+
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(
1 +

1
γ
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1
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∂u1
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−
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(ra)2
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∂t
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∂r

+

(
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)
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∂T1
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=
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)
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(
∂2T1

∂r2 +
1
ra
∂T1

∂r

)
−

1(
ρcp

)
n f

ra

∂
∂r

[
raqr

]
+

q′′′(
ρcp

)
n f

,

qr =
[
−

4σ∗

3k∗

]
∂T1

4

∂r
, T1

4
≈ −3T4

∞ + 4T1T3
∞, q′′′ =

k f uw(s)(Tw − T∞)

sν f

A1 f ′ + B1

(
T1 − T∞
Tw − T∞

).
(23)

along with the appropriate boundary conditions

u1 =
a1λs

1− βt
, v1 = vw, T1 = Tw at r = 0,

u1 → 0,
∂u1

∂r
→ 0, T1 → T∞ as r→∞.

(24)

Here, for the unsteady problem, we take the velocity at the boundary of the curved surface in

terms of time such as u1 =
a1λs

1− βt
where β < 0 is signify the decelerated sheet and β > 0 is used for the

accelerated sheet, while the rest of them are discussed in the mathematical formulation. On the other

hand, the porosity of the sheet is taken to be variable and is defined as vw(t) = −
√ a1ν f

1− βt
S1, where S1
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represents the uniform wall mass suction parameter, with S1 < 0 representing the case of injection
or blowing and S1 > 0 denote the phenomenon of suction, respectively. To further ease this analysis,
we introduce the new transformation along with the dimensionless variable τ for the aforementioned
unsteady problem, such as:

u1 =
a1s

1− βt
∂F(η, τ)
∂η

, v1 = −

(
ra
− r
ra

)√ a1ν f

1− βt
F(η, τ),θ =

T1(η, τ) − T∞
Tw − T∞

η = r
√

a1

ν f 1− βt
, p =

ρ f a1
2s2

(1− βt)2 P(η, τ), τ = a1t
, (25)

where the coordinate t elucidates the dimensional temporal variable. Plugging Equation (25),
the continuity is identically true, while Equations (21) to (23) take the form of:

∂P
∂η

=
ξ1

η+ W

(
∂F
∂η

)2

, (26)

2WP
(η+ W)ξ1

=
W

(η+ W)

F
∂2F
∂η2 −

(
∂F
∂η

)2
+

W

(η+ W)2 F
∂F
∂η
−

M
ξ1
ξ3
∂F
∂η

+

(
ξ2

ξ1

)(
1 +

1
γ

)
∂3F
∂η3 +

∂2F
∂η2

(η+ W)
−

∂F
∂η

(η+ W)2

− B
(
∂F
∂η

+
η

2
∂2F
∂η2

)
− (1− βt)

∂2F
∂η∂τ

,

(27)

(
ξ4 +

4
3

Rd

){
∂2θ

∂η2 +
1

(η+ W)

∂θ
∂η

}
+ ξ5Pr

(
W

(η+ W)
F
∂θ
∂η
− B

η

2
∂θ
∂η
− (1− βt)

∂θ
∂τ

)
+

A1F′ + B1θ = 0.
(28)

Here, involved dimensional constraints such as W = R
√

a1/ν f (1− βt) and B = β/a1 are called
the curvature parameter and the unsteadiness parameter, respectively.

Eliminating the pressure from Equations (26) and (27), we have{
ξ2 +

ξ2

γ

}∂4F
∂η4

+
2

η+ W
∂3F
∂η3 −

1

(η+ W)2
∂2F
∂η2 +

1

(η+ W)3
∂F
∂η

− ξ1W
η+ W

(
∂F
∂η
∂2F
∂η2 − F

∂3F
∂η3

)
−

ξ1W

(η+ W)2

(∂F
∂η

)2

− F
∂2F
∂η2

− ξ1W

(η+ W)3 F
∂F
∂η
−Mξ3

(
1

(η+ W)

∂F
∂η

+
∂2F
∂η2

)
−

B
η+ W

ξ1

(
∂F
∂η

+
η

2
∂2F
∂η2

)
−

B
2
ξ1

(
3
∂2F
∂η2 + η

∂3F
∂η3

)
−
(1− βt)
η+ W

ξ1
∂2F
∂η∂τ

− (1− βt)ξ1
∂3F
∂η2∂τ

= 0.

(29)

Along with the subjected boundary restrictions, which are
∂F
∂η

(0, τ) = λ, F(0, τ) = S1, θ(0,τ) = 1 at η = 0,

∂2F
∂η2

(η, τ)→ 0,
∂F
∂η

(η, τ)→ 0, θ(η, τ)→ 0 as η→∞.
(30)

To investigate the stability process of the steady flow outcomes F(η) = F0(η) and θ(η) = θ0(η)

satisfying the boundary value problem (10), (11) and (12), we can write (see Weidman et al. [24]) F(η, τ) = F0(η) + e−ετH(η, τ)

θ(η, τ) = θ0(η) + e−ετG(η, τ)
(31)
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where ε is an unknown eigenvalue parameter, F(η, τ) and θ(η, τ) are small relative to F0(η) and θ0(η).
Substituting Equation (31) into Equations (28) to (29), we get the following linearized problem:{

ξ2 +
ξ2

γ

}∂4H
∂η4

+
2

η+ W
∂3H
∂η3 −

1

(η+ W)2
∂2H
∂η2 +

1

(η+ W)3
∂H
∂η

−
ξ1W
η+ W

(
F0
′′
∂H
∂η

+ F0
′
∂2H
∂η2 − F0

∂3H
∂η3 − F0

′′′H
)
+

ξ1W

(η+ W)2

(
F0
′′H − 2F0H − F0

∂2H
∂η2

)
−

ξ1W

(η+ W)3

(
F0
∂H
∂η

+ HF0
′

)
−Mξ3

(
1

(η+ W)

∂H
∂η

+
∂2H
∂η2

)
−

B
η+ W

ξ1

(
∂H
∂η

+
η

2
∂2H
∂η2

)
−

B
2
ξ1

(
3
∂2H
∂η2 + η

∂3H
∂η3

)
+

(1− βt)
η+ W

ξ1

(
ε
∂H
∂η
−
∂2H
∂η∂τ

)
+(1− βt)ξ1

(
ε
∂2H
∂η2 −

∂3H
∂η2∂τ

)
= 0.

(32)

(
ξ4 +

4
3

Rd

){
∂2G
∂η2 +

1
(η+ W)

∂G
∂η

}
+ ξ5Pr


W

(η+ W)

(
F0
∂G
∂η

+ Hθ0
′

)
− B

η

2
∂G
∂η

+

(1− βt)
(
εG−

∂G
∂τ

)
+

A1
∂H
∂η

+ B1G = 0,

(33)

along with the subjected boundary restrictions, which are follow as:
∂H
∂η

(0, τ) = 0, H(0, τ) = 0, G(0,τ) = 0,

∂2H
∂η2

(η, τ)→ 0,
∂H
∂η

(η, τ)→ 0, G(η, τ)→ 0 as η→∞.
(34)

Furthermore, we tested the process of the stability analysis of the time-independent flow outcomes
such as F0(η) and θ0(η) by setting the dimensional new variable τ = 0 in Equations (32) to (33),
along with the boundary conditions (34), and hence H = H0(η) and G = G0(η) involved in the
aforesaid reference equations, which demonstrates the initial decay or growth of the outcomes (31).
Due to this fact, we have to tackle the following linear eigenvalue problem{

ξ2 +
ξ2

γ

}H0
′′′′ +

2
η+ W

H0
′′′
−

1

(η+ W)2 H0
′′ +

1

(η+ W)3 H0
′

−
ξ1W
η+ W

(F0
′′H0

′ + F0
′H0

′′
− F0H0

′′′
− F0

′′′H0) +
ξ1W

(η+ W)2
(F0

′′H0 − 2F0H0 − F0H0
′′ )

−
ξ1W

(η+ W)3
(F0H0

′ + H0F0
′) −Mξ3

(
1

(η+ W)
H0
′ + H0

′′

)
−

B
η+ W

ξ1

(
H0
′ +

η

2
H0
′′

)
−

B
2
ξ1(3H0

′′ + ηH0
′′′ ) +

ξ1εH0
′

η+ W
+ ξ1εH0

′′ = 0.

(35)

(
ξ4 +

4
3

Rd

){
G0
′′ +

G0
′

(η+ W)

}
+ ξ5Pr

(
W

(η+ W)
(F0G0

′ + H0θ0
′ ) − B

η

2
G0
′ + εG0

)
+

A1H0
′ + B1G0 = 0,

(36)

along with the subjected boundary restrictions, which are follow as H0
′(0) = 0, H0(0) = 0, G0(0) = 0,

H0
′′ (η)→ 0, H0

′(η)→ 0, G0(η)→ 0 as η→∞.
(37)
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It should be specified here that for the particular involved dimensional constraints that have
fixed values in the problem, the stability of the time-independent flow solutions F0(η) and θ0(η) are
determined by the smallest eigenvalue ε. Thus, in accordance with Zaib et al. [25], and Rosca and
Pop [27], where they have investigated the relaxing boundary condition on H0(η) or G0(η) to determine
the possible range of all eigenvalues. Hence, in this problem, we relax the condition that H0

′′ (η)→ 0
as η→∞ , and for a fixed value of ε, Equations (35) to (36) along with the new boundary condition
H0
′′′ (η) = 1 are to be solved.

Moreover, outcomes of the eigenvalue problem (35), (36) and (37) give an infinite number of
eigenvalues ε1 < ε2 < ε3 < ε4 < . . . . . . . . . , obtained when the boundary condition H0

′′ (η)→ 0 as
η→∞ is satisfied. It is worth mentioning that the smallest eigenvalue ε1 can take positive or negative
values. Thus, for the case of the shrinking sheet (λ < 0) where dual solutions of Equations (10) to
(11) subject to the boundary condition (12) exist, the solutions (35) to (36) go to F0(η) and θ0(η) when
ε1 > 0 and τ→∞ (steady-state solution), so that there is an initial decay and the first branch solution
is stable and physically realizable. However, for ε1 < 0, there is an initial growth of disturbances, so
that the lower branch solution blows up when τ→∞ and, therefore, this solution is not stable and
hence not physically realizable.

5. Results and Discussion

In this section, the outcomes are managed through conveying the values of emerging constraints
as M = 0.01, W = 0.5, Rd = 02, λ = −2, S1 = 2.2, φ = 0.03, γ = 0.1, A1 = B1 = 0.5 except the
values mentioned in the portraits, whereas the value of the Prandtl number is considered as 21 [28,29],
keeping in mind that the base liquid is blood. Table 1 describes the thermo-physical properties of
blood and nanoparticles. Table 2 conveys the appraisal of the present solutions for skin factor with
varied values of W through the accessible results of [30,31]. In addition, Figure 2 is portrayed to check
the current numerical method graphically with the outcomes of [31] in the limited case and found an
excellent synchronization between the current and available graphical outcomes. It established an
admirable concurrence through their consequences. In the illustrations, the dashed red lines imply
the lower branch (LBS) solution, and solid green lines define the upper branch (UBS) solution. In the
entire graphs, θ(η) and F′(η) stimulate the temperature and velocity fields.
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Table 1. Thermophysical properties of blood and gold nanoparticle [32].

Thermophysical Properties Blood Gold

cp(J/kgK) 3617 129

ρ
(
kg/m3

)
1050 19,300

σ(S/m) 1090 4.1 × 106

k(W/mK) 0.52 318

Table 2. Present outcomes comparison of the skin factor when γ→∞, S1 = M = 0,φ = 0 .

W Sanni et al. [30] Abass et al. [31] Current Results

5.0 1.15076 1.1576 1.1507664

10.0 1.0734 1.0735 1.0734886

20.0 1.0355 1.0356 1.0356098

30.0 1.0235 1.0235 1.0235311

40.0 1.0176 1.0176 1.0175866

50.0 1.0140 1.0141 1.0140492

100.0 1.0070 1.0070 1.0070384

200.0 1.0036 1.0036 1.0035642

1000.0 1.0008 1.0008 1.0007993

∞ 1.0000 1.0000 1.0000000

5.1. Velocity Distribution Behavior

Here, the variations of emerging parameters S1, W,λ,γ, M and as well as φ on F′(η) are analyzed.
In this regard, Figures 3–8 are prepared. Figure 3 depicts the trend of F′(η) for diverse values of S1.
This Figure perceives that the velocity augments with S1 in the UBS and shrinks in the LBS. Physically,
the confrontation in the blood flow is happening due to viscosity, which can be managed through the
suction. Elevating the suction leads to the drag force reduction in the surface. The effect of W on the
flow velocity profile is presented in Figure 4. The liquid velocity is enhanced due to greater values
of W in both the UBS and LBS. Physically, the values of W permit us to envisage that less kinematic
viscous difficulty will have occurred for an increased curvature parameter. Therefore, the blood flow
moves smoothly. The impact of M on F′(η) can be observed in Figure 5. The fluid velocity F′(η)
decays with uplifting values of M in both results. Physically, a greater amount of magnetic field
generates a type of resistive force in the flow, which behaves against the flow path. Because of this,
the blood velocity is superior. This also discloses an imperative inspection that the blood motion
in a moving vessel of blood can be regulated through concerning an external magnetic field and
varying the strength of the pertained field. The impact of the Casson parameter γ on F′(η) is sketched
in Figure 6. It is transparent to observe the behavior of liquid velocity, which is augmented owing
to γ in the UBS and during the LBS, and which consequently shrinks the velocity boundary-layer.
Physically, the augmenting in the Casson constraint leads to a fall in the blood plasticity, and as an
output, the thickness of the velocity boundary shrinks. Figure 7 suggests that the velocity is elevating
the function of the nanoparticle volume fraction in both results and, as a consequence, the thickness of
the velocity boundary decelerates. Physically, an augmentation in the volume nanoparticle fraction
leads to an improvement in the viscosity of blood, which in turn the shrinks the velocity thickness of
the boundary-layer. The influence of the shrinking parameter λ on the velocity profile F′(η) is shown in
Figure 8. The velocity gradient and also the thickness of the momentum boundary layer is decelerated
in the UBS and accelerated in the LBS as we boost up the values of the shrinking parameter. Moreover,
the gap between the curves in the UBS is lesser as compared to the solution curves in the LBS.
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5.2. Temperature Profiles Behavior

Figures 9–17 explored the behavior of the thermal field due to change in S1, W, M,γ,φ, Rd,λ, A1

and B1. Figure 9 is set to scrutinize the impact of suction S1 on θ(η). The results explain that the
temperature of the liquid and thermal boundary decline due to S1 in the UBS and LBS. Physically,
the suction generates less resistance in the blood flow, which releases the energy amount due to friction,
and consequently, the temperature of blood declines. The stimulus of the curvature parameter W on
θ(η) is depicted in Figure 10. It is marked that the distribution of the temperature field is a declining
function of W in both solutions. Physically, the decrease in temperature distribution happens due
to the translation of a curved surface to a planner surface. The influence of M on θ(η) is illustrated
via Figure 11. The temperature depicts a diminishing behavior due to M in the UBS and depicts an
uplifting trend in the LBS. Physically, because of the existence of the Lorentz force, less heat energy is
generated in the flow, which consequently reduces the blood temperature. Figure 12 explains that due
to the Casson parameter, the temperature distribution diminishes in the UBS and LBS. The impact
of φ on θ(η) is shown in Figure 13. It is transparent from this profile that the temperature uplifts
due to φ in both results. The reason behind this is that the gold nanomaterial upsurges the thermal
conductivity, which eventually improves the temperature. Figure 14 demonstrates that the temperature
is an uplifting function of radiation in the UBS and LBS. The excess of thermal radiation can be
explained by the fact that extra heat is captivated through the liquid, and gradually increases the
temperature distribution. The influence of the heat phenomenon of source/sink on θ(η) is depicted in
Figures 15 and 16. The company of heat source (A1 > 0, B1 > 0) boosts up additional energy within
the boundary-layer, which eventually leads to an improvement of the temperature of the liquid
(Figure 15), whilst the heat sink (A1 < 0, B1 < 0) sucks up the heat energy from the boundary-layer,
which ultimately diminishes the temperature (see Figure 16). Figure 17 portrays the deviation of the
shrinking parameter λ on the field of temperature distribution θ(η) against the similarity variable η.
The thermal boundary layer and the temperature distribution upsurge in the UBS as well as in the LBS
owing to the company of the shrinking parameter.Mathematics 2020, 8, x FOR PEER REVIEW 17 of 29 
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5.3. The Behavior of the Skin Factor and Local Heat Transfer Rate

The graphical solutions for the skin friction and rate of heat transfer under the deviation of
distinct constraints W,γ,φ against λ (stretched/shrinking parameter) are illustrated in Figures 18–23.
Figure 18 explains that the solution of the upper branch classifies an improvement in the friction
factor due to W; however, the solution of the lower branch sights the decrement in friction factor.
This behavior can suggest the flow via severance where the pattern of small wake could diminish
the surface shear-stress with the curvature parameter. Hence, the amount of friction factor declines.
Figure 19 displays that the heat transfer rate upsurges with W in the dashed and solid solutions.
Moreover, the results of the local heat transfer rate are optimistic for the heat conductivity to be
transferred from a hot surface to a cold solution. Multiple results exist in the region of λc < λ ≤ −3.88009,
a single result for λ = λc and no results for λ < λc. It is transparent from these portraits that the
critical values |λc| augment identifying that the curvature parameter impediments the separation.
Figure 20 depicts that, owing to the Casson parameter γ, the friction factor initially decreases and
then climbs in the UBS after a certain value of λ and declines in the dashed LBS. However, the heat
transfer rate (Figure 21) upsurges owing to γ in the stable outcomes and shrinks in the unstable
outcomes. These sketches also suggest that the company of the Casson parameter diminished the
BLF separation. Figures 22 and 23 illustrate the deviation of φ against λ on the skin friction and the
rate of heat transfer. The behavior of the skin factor (Figure 21) initially decreases and then uplifts
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an improve from 0.02 onward during the upper solution, and decays throughout the lower solution.
The explanation is that the thermal conductivity of the gold nanoparticle gets higher, and there is a
suspension of additional particles in the blood flow. A similar trend is scrutinized for the heat transfer
rate, as depicted in Figure 23.
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6. Conclusions

In the current exploration, the problem of magneto radiative blood flow comprising gold particles
via a moving curved/flat sheet with a non-uniform heat sink/source has been examined. The leading
PDEs are renovated into nonlinear ODEs utilizing appropriate variables and then worked out through
the bvp4c solver. The finishing remarks with regard to the current research are listed as follows:

• The velocity gradient uplifts owing to S1 in the UBS and diminishes in the LBS; however,
the temperature field declines in both branches of outcomes.

• θ(η) reduces due to W in both the lower and upper solutions, while F′(η) upsurges.
• The magnetic number can be exercised to control the blood flow as well as the temperature by

regulating the magnetic intensity.
• Uplifting curvature leads to an enhancement in the heat transfer in both solutions and leads to an

increase in the skin factor behavior in the UBS.
• Due to φ and γ, the skin factor behavior of the flow of fluid in the beginning decelerates and then

uplifts after a certain value of λ.
• The nanoparticle volume fraction accelerates the viscosity of blood as well as the thermal conductivity.
• The Casson gold blood parameter shrinks the thickness of the velocity boundary-layer owing to

rapid enhancement in the plastic dynamics’ viscosity.
• The radiation parameter augments the temperature distribution in both solutions.
• The heat source upsurges the temperature of the fluid, while the heat sink decelerates the

temperature in both solutions.
• The Casson gold blood parameter in the UBS accelerates the heat transfer and, on the other hand,

the LBS is decline.
• The heat transfer rate initially upsurges and then declines due toφ in the case of the UBS, whilst the

reverse behavior is noted in the LBS.
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Nomenclature

a1 positive constant
A1, B1 space and temperature-dependent heat source/sink
B0 the intensity of the magnetic field
CF skin friction coefficients
cp specific heat
F dimensionless velocities
k∗ mean proportion constant
kn f nanofluid thermal conductivity
M magnetic parameter
Nus Nusselt number
p pressure
Pr Prandtl number
q′′′ erratic heat sink/source
qr radiative heat flux
qw wall heat flux
R radius
Rd radiation parameter
ra modified space variable
Res local Reynolds number
S1 suction
T1 temperature
T∞ free-stream temperature
Tw wall temperature
v0 mass-flux velocity
(u1, v1) velocity components
(r, s) curvilinear coordinates
W curvature parameter
Greek symbols
γ Casson parameter
λ stretching/shrinking parameter
µn f nanofluid dynamic viscosity
φ volume fractions of nanoparticle
θ dimensionless temperature
Γ time constant
ν f kinematic viscosity of a base fluid
ρn f nanofluid density(
ρcp

)
n f heat capacitance of nanofluid

σ∗ Stefan–Boltzmann constant
σn f the electrical conductivity of nanofluid
τs shear stress
ψ stream function
η similarity variable
Subscripts
s1 solid nanoparticle
Nf nanofluid
F base fluid
Superscripts
‘ derivative w.r.t. η
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