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Abstract: In this study, we investigate generalized quasi-Einstein normal metric contact pair
manifolds. Initially, we deal with the elementary properties and existence of generalized
quasi-Einstein normal metric contact pair manifolds. Later, we explore the generalized quasi-constant
curvature of normal metric contact pair manifolds. It is proved that a normal metric contact pair
manifold with generalized quasi-constant curvature is a generalized quasi-Einstein manifold. Normal
metric contact pair manifolds satisfying cyclic parallel Ricci tensor and the Codazzi type of Ricci
tensor are considered, and further prove that a generalized quasi-Einstein normal metric contact
pair manifold does not satisfy Codazzi type of Ricci tensor. Finally, we characterize normal metric
contact pair manifolds satisfying certain curvature conditions related toM-projective, conformal,
and concircular curvature tensors. We show that a normal metric contact pair manifold with
generalized quasi-constant curvature is locally isometric to the Hopf manifold S2n+1(1)× S1.

Keywords: generalized quasi-Einstein; contact pairs; generalized quasi-constant curvature;
M-projective curvature tensor

1. Introduction

An Einstein manifold is a Riemannian manifold (M, g), which is defined by the Ricci tensor
Ric = λg for a non-zero constant λ. Since Einstein manifolds have important differential geometric
properties and have significant physical applications therefore they are studied by geometers in a
broad perspective. A Riemannian manifold M is called a quasi-Einstein manifold if the Ricci curvature
tensor satisfies

Ric(X1, X2) = λg(X1, X2) + βω(X1)ω(X2)

for all X1, X2 ∈ Γ(TM), where λ, β are scalars and ω is a non-zero 1−form [1]. Quasi-Einstein
manifolds are generalizations of Einstein manifolds . In the contact geometry, η−Einstein manifolds
can be consider as a particular case of quasi-Einstein manifolds. When quasi-umbilical hypersurfaces
were considered exact solutions of the Einstein field equations, the notion of quasi-Einstein manifold
aroused [2]. As an example of quasi-Einstein manifolds, we can mention the Robertson-Walker
space-times [2]. For more details on such manifolds, we refer to the reader [2–4].

The generalization of quasi-Einstein manifolds has been presented in the different perspectives.
Chaki gave one of them in [5], and another was presented by Catino [6]. Catino generalized a
quasi-Einstein manifold as a generalization of the concepts of Ricci solitons and quasi-Einstein
manifolds. The third definition of generalized quasi-Einstein manifolds was given by De and Ghosh [7].
A Riemannian manifold (M, g) is called a generalized quasi-Einstein manifold if its Ricci tensor has
following form:

Ric(X1, X2) = λg(X1, X2) + βω(X1)ω(X2) + µη(X1)η(X2)
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where ω, η are two non-zero 1− forms and λ, β, µ are certain non-zero scalars [7]. The unit and
orthogonal vector fields ξ1 and ξ2 corresponding to the 1−forms ω and η are defined by g(X1, ξ1) =

ω(X1), g(X2, ξ2) = η(X1), respectively [7]. The geometric properties of generalized quasi-Einstein
manifolds have been studied in [7–11]. A generalized quasi-Einstein manifold, in addition to its
geometrical features, has remarkable physical applications in general relativity [12–14]. Complex
η−Einstein manifolds could be considered as a special case of generalized quasi-Einstein manifolds
(see [15]).

In [16], Bande and Hadjar defined a new contact structure on an (m = 2p + 2q + 2)−dimensional
differentiable manifold M with two 1−forms α1, α2. This structure was initially studied by Blair,
Ludden and Yano [17] as the name of bicontact manifolds. Bande and Hadjar considered a special
type of f−structure with complementary frames related to these contact forms and they obtained
associated metric. A differentiable manifold with this structure is called a metric contact pair (MCP)
manifold. Riemannian geometry of MCP manifolds is given in [18,19].

This paper is on applications of generalized quasi-Einstein manifolds in contact geometry.
We consider the generalized quasi-Einstein normal metric contact pair manifolds. After presenting
definitions and basic properties, we examine the existence of such manifolds. Also, we present
a characterization of generalized quasi-Einstein normal metric contact pair manifolds. Moreover,
we consider the notion of generalized quasi-constant curvature for normal metric contact pair
manifolds and we obtain some results on the sectional curvature. We investigate a generalized
quasi-Einstein normal metric contact pair manifold under some conditions for Ricci tensor. We prove
that a generalized quasi-Einstein normal metric contact pair manifold does not satisfy Codazzi type of
Ricci tensor. Finally, we characterize normal metric contact pair manifolds satisfying certain curvature
conditions related toM-projective, conformal, and concircular curvature tensors. We show that a
normal metric contact pair manifold with generalized quasi-constant curvature is locally isometric to
the Hopf manifold S2n+1(1)× S1.

2. Preliminaries

Contact pairs were defined by Bande and Hadjar [16] in 2005, for details see [16,18,19]. In this
section, we give some fundamental facts about contact metric pair manifolds. Also, we present some
general facts and results on generalized quasi-Einstein manifolds.

Definition 1. Let M be an (m = 2p + 2q + 2) -dimensional differentiable manifold and α1, α2 be two 1-forms
on M. If the following properties are satisfied then, the pair of (α1, α2) is called a contact pair of type (p, q)
on M:

• α1 ∧ (dα1)
p ∧ α2 ∧ (dα2)

q 6= 0,
• (dα1)

p+1 = 0 and (dα2)
q+1 = 0,

where p, q are positive integers. Then, (M, α1, α2) is known as a contact pair manifold [16].

The kernels of 1−forms α1 and α2 define two subbundles of TM as D1 = {X : α1(X) = 0, X ∈
Γ(TM)} and D2 = {X : α2(X) = 0, X ∈ Γ(TM)}. Also, we have two characteristic foliations of M,
denoted by F1 = D1 ∩ kerdα1 and F2 = D2 ∩ kerdα2 respectively. F1 and F2 are completely integrable
and their leaves are equipped with a contact form induced by α2 (respectively, α1). On the other hand,
the tangent bundle of M can be split as TM = TF1 ⊕ TF2 [19]. The horizontal sub-bundleH of TM
can be defined asH = kerα1 ∩ kerα2.

In the contact geometry, we have the characteristic vector field associated with the contact form.
Similarly, for a contact pair (α1, α2) of type (p, q) we have two vector fields Z1 and Z2, which are
uniquely determined by the following equations:

α1(Z1) = α2(Z2) = 1, α1(Z2) = α2(Z1) = 0,

iZ1 dα1 = iZ1 dα2 = iZ2 dα2 = 0,
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where iX is the contraction with the vector field X [16].
Two sub-bundles of TM are defined as follows

TGi = kerdαi ∩ kerα1 ∩ kerα2, i = 1, 2.

Then, we have
TF1 = TG1 ⊕RZ2, and TF2 = TG2 ⊕RZ1.

Therefore, we get TM = TG1 ⊕ TG2 ⊕ RZ1 ⊕ RZ2. The horizontal sub-bundle can be written
as H = TG1 ⊕ TG2. Also, we write V = RZ1 ⊕RZ2, and V is called the vertical sub-bundle of TM.
Consequently, the tangent bundle of M is given by TM = H⊕V [18].

Let X be an arbitrary vector field on M. We can write X = XH + XV , where XH, XV horizontal
and vertical component of X, respectively. We call a vector field X as a horizontal vector field if
X ∈ Γ(H), and a vertical vector field if X ∈ Γ(V).

Similar to almost complex structures, in the 1960s, almost contact structures were defined with
tensorial viewpoint [20]. On a contact pair manifold M, an almost contact pair structure has been
defined as follow by Bande and Hadjar [18].

Definition 2. An almost contact pair structure on an (m = 2p + 2q + 2)−dimensional differentiable manifold
M is a triple α1, α2, φ, where (α1, α2) is a contact pair and φ is a (1, 1) tensor field such that:

φ2 = −I + α1 ⊗ Z1 + α2 ⊗ Z2, φZ1 = φZ2 = 0. (1)

The rank of φ is (2p + 2q) and α1(φ) = α2(φ) = 0 [18].

Definition 3. φ is known as decomposable i.e., φ = φ1 + φ2, if TFi is invariant under φ [18].

If φ is decomposable, then (αi, Zi, φ) induces an almost contact structure on Fj for
i 6= j, i, j = 1, 2 [16]. The decomposability of φ does not satisfy for every almost contact pair structure.
An example was given in [16], which has an almost contact pair structure, but φ is not decomposable.
In this study, we assume that φ is decomposable.

Definition 4. Let (α1, α2, Z1, Z2, φ) be an almost contact pair structure on a Riemannian manifold (M, g).
The Riemannian metric g is called [18]

• compatible if g(φX1, φX2) = g(X1, X2)− α1(X1)α1(X2)− α2(X1)α2(X2) for all X1, X2 ∈ TM,
• associated if g(X1, φX2) = (dα1 + dα2)(X1, X2) and g(X1, Zi) = αi(X1), for i = 1, 2 and for all

X1, X2 ∈ Γ(TM).

4−tuple (α1, α2, φ, g) is called a metric almost contact pair structure on a manifold M and g is an
associated metric with respect to contact pair structure (α1, α2, φ). We recall (M, φ, Z1, Z2, α1, α2, g) is a
metric almost contact pair manifold.

We have the following properties for a metric almost contact pair manifold M [16]:

g(Zi, Zj) = δij, ∇Zi Zj = 0, ∇Zi φ = 0, ∇XZ1 = −φ1X, ∇XZ2 = −φ2X

and for every X tangent to Fi i = 1, 2.
Another major notion for an almost contact manifold is normality. Bande and Hadjar [19] studied

on this notion for a metric almost contact pair manifold. They define two almost complex structures
on M as [19]:

J = φ− α2 ⊗ Z1 + α1 ⊗ Z2, T = φ + α2 ⊗ Z1 − α1 ⊗ Z2.

Definition 5. A metric almost contact pair manifold is said to be normal if J and T are integrable [19].
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Theorem 1. J and T are integrable if the following equation is satisfied;

[φ, φ](X1, X2) + 2dα1(X1, X2)Z1 + 2dα2(X1, X2)Z2 = 0,

for all X1, X2 ∈ Γ(TM) [19].

From the following theorem, we have the covariant derivation of φ for a normal metric contact
pair manifold

Theorem 2. Let (M, φ, Z1, Z2, α1, α2, g) be a normal metric contact pair manifold. Then we have

g((∇X1 φ)X2, X3) =
2

∑
i=1

(dαi(φX2, X1)αi(X3)− dαi(φX3, X1)αi(X2)) (2)

for all X1, X2, X3 arbitrary vector fields on M [18].

We use the following statements for the Riemann curvature;

R(X1, X2)X3 = (∇2
X1,X2

−∇2
X2,X1

)X3 , where ∇2
X1,X2

X3 = ∇X1∇X2 X3 −∇∇X1 X2 X3

for all X1, X2, X3, X4 ∈ Γ(TM). Also, it is well known that R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4) [20].

Lemma 1. Let (M, φ, Z1, Z2, α1, α2, g) be a normal metric contact pair manifold. Then we have

R(X1, Z)X2 = −g(φX1, φX2)Z, (3)

R(X1, X2, Z, X3) = dα1(φX3, X1)α1(X2) + dα2(φX3, X1)α2(X2)

−dα1(φX3, X2)α1(X1)− dα2(φX3, X2)α2(X1),
(4)

R(X1, Z)Z = −φ2X1. (5)

where X1, X2, X3 ∈ Γ(TM) and Z = Z1 + Z2 for Reeb vector fields Z1, Z2 [21].

Consider an orthonormal basis of M by

S = {e1, e2, ..., ep, φe1, φe2, ..., φep, ep+1, ep+2, ..., ep+q, φep+1, φep+2, ..., φep+q, Z1, Z2}.

Then for all X1 ∈ Γ(TM), we get the Ricci curvature of M as

Ric(X1, Z) =
2p+2q

∑
i=1

dα1(φEi, Ei)α1(X) + dα2(φEi, Ei)α2(X)

where Ei ∈ S.

Lemma 2. Let (M, φ, Z1, Z2, α1, α2, g) be a normal metric contact pair manifold. Then Ricci curvature of M
satisfies [21]

Ric(X1, Z) = 0, for X1 ∈ Γ(H), (6)

Ric(Z, Z) = 2p + 2q. (7)

Ric(Z1, Z1) = 2p, Ric(Z2, Z2) = 2q, Ric(Z1, Z2) = 0. (8)
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In [7], De and Ghosh presented a theorem for the existence of a generalized quasi-Einstein
Riemannian manifold.

Theorem 3. A Riemannian manifold is a generalized quasi-Einstein manifold, if the Ricci tensor Ric satisfies
the relation

Ric(X2, X3)Ric(X1, X4)− Ric(X1, X3)Ric(X2, X4) = γ[g(X2, X3)g(X1, X4)

−g(X1, X3)g(X2, X4)]
(9)

where γ is a non-zero scalar [7].

The notion of quasi-constant curvature was defined by Chen and Yano [22]. De and Ghosh
generalized this notion for a Riemannian manifold.

Definition 6. Let M be a normal metric contact pair manifold. Then, M is called a normal metric contact pair
manifold of generalized quasi-constant curvature if the Riemannian curvature tensor of M satisfying;

R(X1, X2, X3, X4) = A[g(X2, X3)g(X1, X4)− g(X1, X3)g(X2, X4)]

B[g(X1, X4)α1(X2)α1(X3)− g(X1, X3)α1(X2)α1(X4)

+g(X2, X3)α1(X1)α1(X4)− g(X2, X4)α1(X1)α1(X3)]

C[g(X1, X4)α2(X2)α2(X3)− g(X1, X3)α2(X2)α2(X4)

+g(X2, X3)α2(X1)α2(X4)− g(X2, X4)α2(X1)α2(X3)]

(10)

for all X1, X2, X3, X4 ∈ Γ(TM), where A, B and C are scalar functions [7].

Definition 7. Let M be a normal metric contact pair manifold. Then, is called a manifold satisfies cyclic
parallel Ricci tensor if we have

(∇X1 Ric)(X2, X3) + (∇X2 Ric)(X3, X1) + (∇X3 Ric)(X1, X2) = 0

for all X1, X2, X3Γ(TM) [20].

Definition 8. Let M be a normal metric contact pair manifold. Then, M is called a manifold satisfies Codazzi
type of Ricci tensor if

(∇X1 Ric)(X2, X3)− (∇X2 Ric)(X1, X3) = 0

for all X1 X2 vector fields on M [20].

Conformal and concircular curvature tensors on contact manifolds have been studied in [23–25].
M-projective curvature tensor on manifolds with different structures studied by many authors [26–28].
These curvature tensors on a normal metric contact pair manifold are defined as below:

Definition 9. Let M be an (m = 2p + 2q + 2)−dimensional normal metric contact pair manifold. Then,

• M-projective curvature tensor of M is given by [29] ,

W(X1, X2)X3 = R(X1, X2)X3 − 1
2(m−1) [Ric(X2, X3)X1

−Ric(X1, X3)X2 + g(X2, X3)QX1 − g(X1, X3)QX2]
(11)
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• conformal curvature tensor C of M is given by [20],

C(X1, X2)X3 = R(X1, X2)X3

+
scal

(m− 1)(m− 2)
(g(X2, X3)X1 − g(X1, X3)X2)

+
1

m− 2
(g(X1, X3)QX2 − g(X2, X3)QX1

+Ric(X1, X3)X2 − Ric(X2, X3)X1)

• concircular curvature tensor Z of M is given by [20],

Z(X1, X2)X3 = R(X1, X2)X3 −
scal

m(m− 1)
[g(X2, X3)X1 − g(X1, X3)X2]

for X1, X2, X3 ∈ Γ(TM), where Q is Ricci operator is given by Ric(X1, X2) = g(QX1, X2) and scal is the
scalar curvature of M.

3. Generalized Quasi-Einstein Normal Contact Pair Manifolds

In this section, we present the definition of generalized quasi-Einstein normal metric contact pair
manifold. We also present some theorems on the existence and characterizations of generalized
quasi-Einstein normal metric contact pair manifold.

Definition 10. Let M be a normal metric contact pair manifold. Then, M is called generalized quasi-Einstein
normal metric contact pair manifold if the Ricci curvature of M has the following form;

Ric(X1, X2) = λg(X1, X2) + βα1(X1)α1(X2) + µα2(X1)α2(X2)

for functions λ, β, µ on M and all X1, X2 ∈ Γ(TM).

If we set X1 = X2 = Z1 and X1 = X2 = Z2, respectively, we obtain β = 2p− λ and µ = 2q− λ.
Thus, the Ricci curvature of generalized quasi-Einstein normal metric contact pair manifold is given by

Ric(X1, X2) = λg(X1, X2) + (2p− λ)α1(X1)α1(X2) + (2q− λ)α2(X1)α2(X2) (12)

for all X1, X2 ∈ Γ(TM). Therefore, the scalar curvature is

scal = 2(λ + 1)(p + q). (13)

Let X be an arbitrary vector field on M. We can write X = XH + XV . Since the Ricci curvature is
a linear tensor we have

Ric(X1, X2) = Ric(XH1 , XH2 ) + Ric(XV1 , XV2 ).

Considering the decomposition of tangent bundle mentioned above (see [24] for details), we get

Ric(XV1 , XV2 ) = 2pα1(X1)α1(X2) + 2qα2(X1)α2(X2).

Thus, we reach following useful result.

Proposition 1. A normal metric contact pair manifold is a generalized quasi-Einstein manifold if and only if
the horizontal bundle is Einstein, that is for a function λ on M, we have Ric(XH1 , XH2 ) = λg(XH1 , XH2 ).
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Assume that (9) is satisfied on a normal metric contact pair manifold M. By setting X1 = X4 = Z
and X2, X3 ∈ Γ(H), then from (6), we have

Ric(X2, X3) =
2γ

m− 2
g(X2, X3).

Thus, from the Proposition1 M is a generalized quasi-Einstein manifold. Using (13), we get
γ = 1

2 (scal −m + 2) and hence we state;

Corollary 1. Let M be normal metric contact pair manifold with scalar curvature scal 6= m− 2. If we have
the relation

Ric(X2, X3)Ric(X1, X4)− Ric(X1, X3)Ric(X2, X4) =
1
2
(scal −m + 2)[g(X2, X3)g(X1, X4)

−g(X1, X3)g(X2, X4)]

on M for all X1, X2, X3, X4 ∈ Γ(TM), then M is a generalized quasi-Einstein manifold.

Let π be a plane section in TQ M for any Q ∈ M. The sectional curvature of π is given as
Sec(π) = Sec(u ∧ v), where u, v orthonormal vector fields . For any (p + q)-dimensional subspace
L ⊂ TQ M, 2 ≤ p + q ≤ m, its scalar curvature scal(L) is denoted by

scal(L) = ∑
1≤i,j≤p+q

Sec(Ei ∧ Ej) (14)

where E1, ..., En is any orthonormal basis of L [30]. When L = TQ M, the scalar curvature is just the
scalar curvature scal(Q) of M at Q ∈ M.

The characterizations of Einstein [31,32], quasi-Einstein [33] and generalized quasi-Einstein [11,34]
manifolds have been obtained by using the sectional curvature of subspaces of tangent bundle.
Analogous to the proof of the Theorem 2.2 of [11], we have following assertion immediately.

Theorem 4. An (m = 2p + 2q + 2)−dimensional normal metric contact pair manifold is a generalized
quasi-Einstein manifold if and only if there exist a function λ on M satisfying

scal(P) + p + q− λ = sec(P⊥), Z1, Z2 ∈ TQP⊥

scal(N) + p + q = sec(N⊥), Z1, Z2 ∈ TQN⊥

scal(R) + q− p = sec(P⊥), Z1 ∈ TQR, Z2 ∈ TQR⊥

where (p + q + 1)−plane sections P, R and (p + q)−plane section N; P⊥, N⊥ and R⊥ denote the orthogonal
complements of P, N and R in TQ M, respectively.

We consider the normal metric contact pair manifold is of generalized quasi-constant curvature.
In the following proposition, we derive some relations on sectional curvature of M.

Proposition 2. Let M be a normal metric contact pair manifold of generalized quasi-constant curvature. Then,
we have the following:

• the sectional curvature of horizontal bundle is A,
• the sectional curvature of plane section spanned by X ∈ Γ(H) and Z is 2A + B + C,
• the sectional curvature of plane section spanned by X ∈ Γ(H) and Z1, Z2 is A+ B and A+C, respectively.
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Proof. Let take X1 = X4 = X, X2 = X4 = X′, where X, X′ unit and mutually orthogonal horizontal
vector fields. Then from (10), we obtain

sec(X, X′) = A[g(X′, X′)g(X, X)− g(X, X′)g(X′, X)]

= A

For X1 = X4 = X, X2 = X4 = Z for unit horizontal vector field X, we get

sec(X, Z) = A[g(Z, Z)g(X, X)− g(X, X′)g(X′, X)− g(X, Z)g(Z, X)]

+B(g(X, X)α1(Z)α1(Z) + Cg(X, X)α2(Z)α2(Z)

= 2A + B + C

Similarly, we can derive the other assertions.

From above proposition , we get

Corollary 2. In a normal metric contact pair manifold of generalized quasi-constant curvature, we have

sec(X, Z) = sec(X, Z1) + sec(X, Z2)

for any horizontal and unit vector field X.

Theorem 5. A normal metric contact pair manifold of generalized quasi-constant curvature is a generalized
quasi-Einstein manifold with coefficients λ = A(m− 1) + B + C, β = B(m− 2), and µ = C(m− 2).

Proof. Let M be a normal metric contact pair manifold of generalized quasi-constant curvature.
Consider an orthonormal basis of M as

S = {e1, e2, ..., ep, φ1e1, φ1e2, ..., φ1ep, ep+1, ep+2, ..., ep+q, φ2ep+1, φ2ep+2, ..., φ2ep+q, Z1, Z2}.

By taking sum of (10) from i = 1 to i = 2p + 2q + 2 for X2 = X3 = Ei ∈ S, we obtain

2p+2q+2

∑
i=1

R(X1, Ei, Ei, X4) =
2p+2q+2

∑
i=1

{A[g(Ei, Ei)g(X1, X4)− g(X1, Ei)g(Ei, X4)]

B[g(X1, X4)α1(Ei)α1(Ei)− g(X1, Ei)α1(Ei)α1(X4)

+g(Ei, Ei)α1(X1)α1(X4)− g(Ei, X4)α1(X1)α1(Ei)]

C[g(X1, X4)α2(Ei)α2(Ei)− g(X1, Ei)α2(Ei)α2(X4)

+g(Ei, Ei)α2(X1)α2(X4)− g(Ei, X4)α2(X1)α2(Ei)]}.

For 1 ≤ i ≤ 2p + 2q since αj(Ei) = 0, j = 1, 2 and ∑
2p+q+2
i=1 g(X1, Ei)g(Ei, X2) = g(X1, X2) we get

Ric(X1, X4) = [A(m− 1) + B + C]g(X1, X4) + B(m− 2)α1(X1)α1(X4)

+C(m− 2)α2(X1)α2(X4)

which completes the proof.

4. Normal Metric Contact Pair Manifold Satisfying Certain Conditions on Ricci Tensor

De and Mallick[9] proved that a generalized quasi-Einstein Riemann manifold satisfies cyclic
parallel Ricci tensor if generators of the manifolds are Killing vector fields. As we know that the
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characteristic vector fields of a normal metric contact pair manifold Z1, Z2 are Killing vector fields [35].
Thus, by easy computations, we get

(∇X1 α1)X2 + (∇X2 α1)X1 = 0, (∇X1 α2)X2 + (∇X2 α2)X1 = 0 (15)

for all X1, X2 ∈ Γ(TM). On the other hand, we have

(∇X1 Ric)(X2, X3) = ∇X1 Ric(X2, X3)− Ric(∇X1 X2, X3)− Ric(X2,∇X1 X3)

for all X1, X2, X3 ∈ Γ(TM) [20]. Then, from (12) we obtain

(∇X1 Ric)(X2, X3) = X1[λ]g(φX2, φX3)

+(2p− λ)[
(
(∇X1 α1)X3

)
α1(X3) +

(
(∇X1 α1)X2

)
α1(X2)]

(2q− λ)[
(
(∇X1 α1)X3

)
α2(X2) +

(
(∇X1 α1)X2

)
α2(X3)]

(16)

where X1[λ] is the derivation of λ in the direction of X1. Thus, from (15), we obtain

(∇X1 Ric)(X2, X3) + (∇X2 Ric)(X3, X1) + (∇X3 Ric)(X1, X2)

= X1[λ]g(φX2, φX3) + X2[λ]g(φX3, φX1) + X3[λ]g(φX1, φX2).

As a consequence , we can state the following theorem.

Theorem 6. Let M be a generalized quasi-Einstein normal metric contact pair manifold. If λ is constant then
M satisfies cyclic parallel Ricci tensor.

In [9], it has been proved that if a generalized quasi-Einstein Riemann manifold satisfies Codazzi
type of Ricci tensor, then the associated 1-forms are closed.

Suppose that Ricci tensor Ric of a normal metric contact pair manifold M is Codazzi type. Then,
from (15) and (16) we obtain

(2p− λ)[((∇X1 α1)X2 − (∇X2 α1)X1)α1(X3)

+((∇X1 α1)X3α1(X2) + (∇X2 α1)X3α1(X1))]

+(2q− λ)[((∇X1 α1)X2 − (∇X2 α1)X1)α2(X3)

+((∇X1 α1)X3α2(X2) + (∇X2 α1)X3α2(X1))] = 0.

Let take X3 = Z1, then we get

(2p− λ)((∇X1 α1)X2 − (∇X2 α1)X1) = 0

which implies λ = 2p or (∇X1 α1)X2 − (∇X2 α1)X1 = 0. If λ = 2p then the manifold is not generalized
quasi-Einstein, so this case is not possible. In the other case we obtain

0 = (∇X1 α1)X2 − (∇X2 α1)X1 = dα1(X1, X2) = 0

and so α1 is closed. Similarly, by choosing X3 = Z2 we obtain α2 is closed. As we know contact pairs
(α1, α2) are not closed. So, our assumption is not valid. Finally, we conclude that

Theorem 7. A generalized quasi-Einstein normal metric contact pair manifold does not satisfy Codazzi type of
Ricci tensor.
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5. Normal Metric Contact Pair Manifold Satisfying Certain Curvature Conditions

Curvature tensors give us many geometric properties of contact manifolds. Some properties of
normal metric contact pair manifold satisfying certain conditions of curvature tensors were given
in [21,24]. In this section, we examine theM-projective curvature tensor W , conformal curvature
tensor C and concircular curvature tensor Z on a normal metric contact pair manifold.

From (11), we have

W(X1, Z)Z =
m

2m− 1
X1 −

1
m− 1

QX1 (17)

W(X1, X2)Z = R(X1, X2)Z (18)

W(X1, Z)X2 =

[
(2m− 1)(m− 2)

2(m− 1)
g(X1, X2) +

1
2(m− 1)

Ric(X1, X2)

]
Z (19)

for X1, X2, X3 ∈ Γ(H). Also, since Ric(X1, X2) = g(QX1, X2), where Q is the Ricci operator, we have

W(X1, X2, X3, X4) = R(X1, X2, X3, X4)− 1
2(m−1) [Ric(X2, X3)g(X1, X4)

−Ric(X1, X3)g(X2, X4) + g(X2, X3)Ric(X1, X4)

−g(X1, X3)Ric(X2, X4)].
(20)

for all X1, X2, X3 ∈ Γ(M). M is calledM-projectively flat ifW vanishes identically on M.

Theorem 8. A generalized quasi-Einstein normal metric contact pair manifold isM-projectively flat if and
only if it is of generalized quasi-constant curvature.

Proof. Suppose that M is a generalized quasi-Einstein manifold. Then, from (12) and (11) we have

W(X1, X2, X3, X4) = R(X1, X2, X3, X4)

− λ
m−1 [g(X2, X3)g(X1, X4)− g(X1, X3)g(X2, X4)]

− 2p−λ
2(m−1) [g(X1, X4)α1(X2)α1(X3)− g(X1, X3)α1(X2)α1(X4)

+g(X2, X3)α1(X1)α1(X4)− g(X2, X4)α1(X1)α1(X3)]

− 2q−λ
2(m−1) [g(X1, X4)α2(X2)α2(X3)− g(X1, X3)α2(X2)α2(X4)

+g(X2, X3)α2(X1)α2(X4)− g(X2, X4)α2(X1)α2(X3)].

(21)

Thus, it is seen that M isM-projectively flat if and only if M is of generalized quasi-constant
curvature with coefficients A = λ

m−1 , B = 2p−λ
2(m−1) and C = 2q−λ

2(m−1) .

The Riemann manifolds satisfying R(X1, X2) · R = 0 are called semi-symmetric, where R(X1, X2)

acts on R as a derivation. Semi-symmetric contact manifolds were studied by Perrone [36]. Similarly,
ifW(X1, X2) · R = 0 then M is calledM-projectively semi-symmetric. W(X1, X2) · R is defined as

(W(X1, X2) · R)(X3, X4)X5 =W(X1, X2) · R(X3, X4)X5 − R(W(X1, X2), X3, X4)X5

−R(X3,W(X1, X2)X4)X5 − R(X3, X4)W(X1, X2)X5
(22)

for all X1, X2, X3, X4, X5 ∈ Γ(TM). Also, we have

(W(X1, X2) · Ric)(X3, X4) = −Ric(W(X1, X2), X3)− Ric(X3,W(X1, X2)X4). (23)

IfW(X1, X2) · Ric = 0 then M is calledM-projectively Ricci semi-symmetric.

Theorem 9. A normal metric contact pair manifold isM-projectively semi-symmetric if and only if M is a
generalized quasi-Einstein manifold.
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Proof. From (22) and using (17)–(19) we obtain

(W(X1, Z) · R)(X3, X4)X5 = KR(X1, X3, X4, X5)Z + LR(X3, X4, X5, QX1)Z

−(Kg(X1, X3) + LRic(X1, X3))g(X4, X5)Z

+(Kg(X1, X5) + LRic(X1, X5))R(X3, X4)Z

where K = (2m−1)(m−2)
2(m−1) and L = 1

2(m−1) .
Let take X1, X3, X5 horizontal vector fields and X4 = Z, from (3)–(7), we get

(W(X1, Z) · R)(X3, Z)X5 = −(Kg(X1, X5) + LRic(X1, X5))X3.

Thus, we conclude that (W(X1, Z) · R)(X3, X4)X5 = 0 if and only if horizontal bundle of M is
Einstein. From Proposition 1, we obtain

Ric(X1, X5) = −
K
L

g(X1, X5) + (2p +
K
L
)α1(X1)α1(X5) + (2q +

K
L
)α2(X1)α2(X5) (24)

Therefore, the manifold is a generalized quasi-Einstein.

Theorem 10. An (m = 2p + 2q + 2)-dimensional normal metric contact pair manifold satisfiesW · Ric = 0
if and only M is generalized quasi-Einstein manifold.

Proof. For X1, X3, X4 ∈ Γ(TM) from (23) we get

(W(X1, Z) · Ric)(X3, X4) = −Ric([Kg(X1, X3) + LRic(X1, X3)]Z, X4)

−Ric(X3, [Kg(X1, X4) + LRic(X1, X4)]Z).

Let take X1, X4 vector fields and X3 = Z from (6), (7), we obtain

(W(X1, Z) · Ric)(X3, X4) = −(2p + 2q)[Kg(X1, X4) + LRic(X1, X4)].

Therefore, (W(X1, Z) · Ric)(X3, X4) = 0 if and only if horizontal bundle is Einstein.
From Proposition (1) we get (24), which completes the proof.

Blair, Bande and Hadjar [21] studied on conformal flatness of normal metric contact pair manifolds
and they proved following theorem.

Theorem 11. A conformally flat normal metric contact pair manifold is locally isometric to the Hopf manifold
S2q+1(1)× S1 [21].

Thus, we get following results, for a generalized quasi-Einstein normal metric contact pair manifold.

Theorem 12. Let M be a generalized quasi-Einstein normal metric contact pair manifold. If M is of generalized
quasi-constant curvature with coefficients A = λm−m+2

(m−1)(m−2) , B = 2p−λ
m−2 and C = 2q−λ

m−2 , then it is locally

isometric to the Hopf manifold S2q+1(1)× S1.
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Proof. Let M be a generalized quasi-Einstein normal metric contact pair manifold. Then, we have

C(X1, X2, X3, X4) = R(X1, X2, X3, X4)

+
scal

(m− 1)(m− 2)
[g(X2, X3)g(X1, X4)− g(X1, X3)g(X2, X4)]

− 2λ

m− 2
[g(X2, X3)g(X1, X4)− g(X1, X3)g(X2, X4)]

−2p− λ

m− 2
[g(X1, X4)α1(X2)α1(X3)− g(X1, X3)α1(X2)α1(X4)

+g(X2, X3)α1(X1)α1(X4)− g(X2, X4)α1(X1)α1(X3)]

−2q− λ

m− 2
[g(X1, X4)α2(X2)α2(X3)− g(X1, X3)α2(X2)α2(X4)

−g(X2, X4)α2(X1)α2(X3)].

Suppose that M is of generalized quasi-constant curvature with coefficients A = λm−m+2
(m−1)(m−2) , B =

2p−λ
m−2 and C = 2q−λ

m−2 . Then, we get C = 0 which means that M is conformally flat. Thus, the Theorem
6.4 M is locally isometric to the Hopf manifold S2q+1(1)× S1.

By using the definition ofM-projective curvature tensor and conformal curvature tensor, we have

C(X1, X2)X3 = 2(m−1)
m−2 W(X1, X2)X3 − m

m−2 R(X1, X2, )X3

+ scal
(m−1)(m−2) [g(X2, X3)X1 − g(X1, X3)X2].

(25)

Let M be a M-projectively flat normal metric contact pair manifold , then, from (25), M is
conformally flat if and only if

R(X1, X2, )X3 =
scal

m(m− 1)
[g(X2, X3)X1 − g(X1, X3)X2],

which means M is concircular flat. Finally, we conclude that

Theorem 13. Let M beM-projectively flat normal metric contact pair manifold. If M is also concircularly flat
then it is locally isometric to Hopf manifold S2q+1(1)× S1.
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