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Abstract: A Multi Secret Image sharing scheme can share several secret images among certain
participators securely. Boolean-based secret sharing schemes are one kind of secret sharing method
with light-weighted computation compared to the previous complex algebraic-based methods,
which can realize the sharing of multi secret images. However, the existing Boolean-based multi
secret sharing schemes are mostly restricted to the particular case of (2, n) and (n, n), only few
Boolean-based multi secret sharing schemes study the general access structure, and the shares are
mostly meaningless. In this paper, a new Boolean-based multi secret sharing scheme with the general
access structure is proposed. All the shares are meaningful, which can avoid attracting the attention
of adversaries, and the secret images can be recovered in a lossless manner. The feasibility of the
scheme is proven, the performance is validated by the experiments on the gray images, and the
analysis of the comparison with other methods is also given out.
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1. Introduction

The secret sharing scheme was firstly proposed by Shamir [1] and Blakley [2] in 1979. Unlike the
traditional encryption methods such as RSA which encrypt a piece of original plaintext into a piece
of ciphertext, in the secret sharing scheme, the secret information is split into several pieces called
shares using the secret sharing method and distributed between a group of participants, and only
the participants in the qualified set can retrieve the secret information. Secret sharing can be used
in many fields, such as the key management [3], access control [4], intelligent transportation [5],
distributed computing in the cloud [6], and so forth. Recently, a new kind of secret division and sharing
method called cognitive cryptography [7–10] was developed; it is a novel approach with the individual
biometric features of each participator, which is an innovative solution in the sharing process allowing
the owner of one share to be verified using the biometric feature, and can improve the security of the
secret sharing.

In 1994, Shamir developed Visual Cryptography (VC) [11] which can encrypt binary images
into several shares with random black and white pixels. The basic idea of VC is to use different
binary matrices to represent the black and white pixel; the shares are generated based on the binary
matrices by each pixel and printed on the transparencies, and the secret image can be recovered by
simply overlapping the transparencies and can be recognized by the Human Vision System (HVS).
The advantage of VC is that is can easily recover the secret image without any compute device, but it
also has the disadvantage of pixel expansion which means the size of the shares is always much bigger
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than the original secret image, and another drawback is the low contrast, which means the recovered
image is always has low recovery quality.

To deal with the problem of pixel expansion, probabilistic Visual Cryptography [12] was firstly
proposed by Yang. With this method, the size of the share can be reduced to be the same as the secret
image, but the quality of the recovered image is still low. Another secret sharing method which is based
on the random grid [13] also can deal with the pixel expansion problem, but it is in fact equivalent to
the probabilistic Visual Cryptography, so the quality of the recovered image is also poor.

Another way to overcome the problem of VC is polynomial-based Image Secret Sharing (ISS) [14],
which introduced the Lagrange polynomial method into the image sharing. The pixel value of the
shares is generated by the polynomial, and the secret is recovered by the polynomial interpolation.
It overcomes the pixel expansion problem; the shares are even smaller than the secret image, and the
recovered image is mostly the same as the secret image. However, the drawback is its highly complex
computation due to the polynomial operation.

Boolean-based Image Secret sharing can achieve a better tradeoff between the pixel expansion,
image quality, and the computation complex. In 2006, Wang et al. [15] proposed two XOR-based Image
Secret Sharing Schemes for a single secret image; one is a probabilistic (2, n) threshold scheme for
the binary image, and the other is a deterministic (n, n) threshold scheme for the gray-scale image.
The size of the shares is the same as the secret image, and the recovered secret image is the same as
the original secret image. Some other Boolean-based Image Secret sharing schemes are developed
in [16–20], all these schemes have no or little pixel expansion, and the decryption is easy.

To realize sharing several secret images simultaneously, multi secret sharing schemes are developed.
Some works focus on the particular (n, n) or the (k, n) threshold multi secret sharing scheme, only a
few works focus on the multi secret sharing with the general access structure. The literature on the
multi secret sharing schemes is covered in Section 2.

2. Related Work

Multi secret sharing schemes can share many secret images at one time. There are many kinds
of the multi secret sharing scheme using different methods. In [21], the paradigm of the multi secret
sharing was given out by Padiya et al. and the genetic method was developed as a kind of encryption.
Weir et al. [22] proposed a scheme based on Visual Cryptography method, but the quality of the
recovered secret images was very poor. Aarti et al. [23] used the extended Visual Cryptography method
and mixing method to realize multi secret sharing.

Another way to construct the multi secret sharing is to use the matrix methods. Wang et al. [24]
used the matrix projection methods to share multi secret images, and Fereshte et al. [25] used matrix
multiplication method to realize the construction.

Some other research has been developed based on the polynomial methods or modulo method.
Yang et al. [26] used the Lagrange interpolation polynomial method to share multi secret images, while
Adachi et al. [27] constructed a (t, n) multi secret sharing scheme by Hermite interpolation, which can
analyze the image more precisely than the Lagrange interpolation, but is more complex. Harn et al. [28]
used another polynomial method which is the bivariate polynomial to share the multi secrets which can
generate keys between the pair of the share owners. Chang et al. [29] applied the Chinese remainder
method and the Lagrange Interpolation method in the sharing. Deshmukh et al. [30] realized the multi
secret sharing combining with XOR operation. Mohit et al. [31] used the additive modulo method to
realize the (n, n + 1) multi secret sharing scheme.

The researchers mentioned above constructed multi secret sharing schemes based on the different
methods. Different kinds of schemes have their advantage, but they each also have some drawbacks.
For example, the schemes based on the visual cryptography have the advantage of low computation
complexity, but they always suffer from the problem of the poor recovery quality and the pixel
expansion. The schemes based on the algebraic methods such as matrix methods, polynomial methods,
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and Chinese remainder method can get much better recovery quality, but they always have the
disadvantage of the high computation complexity.

Boolean-based multi secret sharing schemes are the new method of multi secret sharing using
simple Boolean operations with high recovered quality and no pixel expansion. Some research focused
on the threshold scheme. Chen [32] gave out the first Boolean-based multi secret sharing scheme; all the
shares are random, and it has (n + 1, n + 1) threshold which means all the n + 1 shares are necessary in
the recovery of the n secret images. Later, Chen [33] proposed (n, n) multi secret sharing based on
XOR operation and bit shift method. Yang et al. [34] constructed an n out of n multi secret sharing
scheme, where no information can be recovered when there are less than n participants. Chen et al. [35]
proposed a novel multi secret sharing scheme using Boolean operation and the hash method which can
share different sizes of secret images. Deshmukh [36] proposed the (n, n) multi secret sharing scheme
based on the XOR operation and modulo operation. Kabirirad et al. [37] developed a scheme with the
random shares with low complexity based on Boolean operations. Prasetyo and Guo [38] proposed a
multi secret sharing scheme based on the XOR and the Chinese remainder method which can share n
secret images using n shares.

Some other research works focus on the secret sharing scheme with the general access structure.
There are several works about sharing one secret with the general access structure [39,40]. Only a
few works concern the multi secret sharing scheme with the general access structure. Das [41]
proposed a multi secret sharing scheme with general access through the hash method. Yan [42]
proposed the progressive sharing with general access structure using the Boolean operation. In 2019,
Nag [43] proposed a multi secret sharing scheme with general access based on the Boolean operation;
the shares are meaningless, and the concept of the public share is introduced, which come from the
idea in [44]—the public share having high privilege participates in the recovery together with the
owners’ meaningless shares, which does not violate the basic principle of secret sharing. Meghrajani et
al. [45] shared multi secret sharing using Boolean operation using the public share. In 2020, Chen [46]
proposed a multi secret sharing scheme with the general access structure, which does not need to
collect all the shares, and where the defined qualified participators can recover the secret images,
and the shares are meaningless.

From the literature survey, we notice that there are many multi secret sharing schemes with
different characteristics, but there is no multi secret sharing scheme with the general access structure
that can recover the secret exactly and at the same time the shares are all meaningful. As such, in this
paper, we propose a multi secret image sharing scheme with general access structure and meaningful
shares based on the Boolean operation.

3. Preliminary

3.1. General Access Structure

Suppose there are N participators, O = {1, 2, 3, . . . , N}, which is the identity number of the
participators, each participator will own one share, OW = {OWi} is the owners of the shares, i ∈ [1, n].

Suppose the qualified part is Pqual, Pqual = {QS1, QS2, . . . , QSn}, where QSi is the ith qualified
subset i ∈ [1, n], QSi = {i1, i2, . . . , it}, which means the ith qualified subset QSi consists of the t
owners whose identity number is i1, i2, . . . , it, so the OWi1 , OWi2 , . . . , OWit can recover the ith secret.
The forbidden part is P f orbid, P f orbid = {FS1, FS2, . . . , FSm}, where FSi is the ith forbidden subset i ∈ [1, m],
FS j =

{
j1, j2, . . . , jr

}
, which means the j1th, j2th, . . . , jrth owner are forbidden to recover the secret.

Pqual and P f orbid is not empty, Pqual ⊂ 2O, P f orbid ⊂ 2O, and Pqual ∩ P f orbid = ∅.
Denote P0 as the set of the minimum qualified set:

P0 =
{
Q ∈ Pqual : Q′ < Pqual,∀Q′ ⊂ Q

}
(1)

As such, each element of Pqual is the minimum qualified subset.
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The element C in O is called as the valid element, when there is at least one qualified subset
concluding this element, i.e., {

D|D∪ {C} ∈ Pqual, D < Pqual
}
, ∅ (2)

In this paper, we suppose all the elements or owners are valid, there is no element not participating
in the sharing.

3.2. Relationship between the Operation on GF(2m) and Bit-Wise XOR Operation

As we know, the pixels of the image can be expressed by m bits. For example, the pixels of the
black-and-white image are expressed by 1 bit, and the pixels of the 256 gray level image are always
expressed by 8 bits. For the 256 gray level image, the gray value is in fact isomorphic to the element
over GF(28). Thus, the operations of the pixels of the images are executed on the GF(28). The operation
on the Galois field can be found in [47].

In this paper, the additional operation on the GF(2m) is used in the secret sharing process and the
recovery process, and the addition operation on the different elements is in fact the XOR operation of
the coefficients of the polynomials for the different elements; so, for the pixel of m bits, the addition
operation between the images is equivalent to the m bit-wise XOR operation.

Suppose there are two images X and Y which are m gray level and the size of each image
A × B, the pixel value in the rowth row and the colth column of OSi is pxX

(row,col), which is integer,

pxX
(row,col) ∈ [0, 2m

− 1], row ∈ [1, A], and col ∈ [1, B]. As each pixel of the image X can be turned into

log2 m bits, suppose pxX
(row,col) =

{
bx1, bx2, . . . , bxlog2 m

}
, similarly, each pixel of the image Y can be

expressed by pxY
(row,col) =

{
by1, by2, . . . , bylog2 m

}
, so the addition operation between the pixel of the

image X and Y in the same position is defined as below,

pxX
(row,col) ⊕ pxY

(row,col) =
{
bx1, bx2, . . . , bxlog2 m

}
⊕

{
by1, by2, . . . , bylog2 m

}
=

{
bx1 ⊕ by1, bx2 ⊕ by2, . . . , bxlog2 m ⊕ bylog2 m

} (3)

And the image X can be expressed by the matrix MXA×B.

MXA×B =


pxX

(1,1)
. . . pxX

(1,B)
. . . pxX

(row,col) . . .

pxX
(A,1)

. . . pxX
(A,B)

 (4)

The image Y can be expressed by the matrix MYA×B.

MYA×B =


pxY

(1,1)
. . . pxY

(1,B)
. . . pxY

(row,col) . . .

pxY
(A,1)

. . . pxY
(A,B)

 (5)

As such, the addition of the image X and Y can be expressed by the XOR between the matrix
MXA×B and MYA×B,

MXA×B ⊕ MYA×B =


pxX

(1,1)
. . . pxX

(1,B)
. . . pxX

(row,col) . . .

pxX
(A,1)

. . . pxX
(A,B)

 ⊕


pxY
(1,1)

. . . pxY
(1,B)

. . . pxY
(row,col) . . .

pxY
(A,1)

. . . pxY
(A,B)


=


pxX

(1,1)
⊕ pxY

(1,1)
. . . pxX

(1,B)
⊕ pxY

(1,B)
. . . pxX

(row,col) ⊕ pxY
(row,col) . . .

pxX
(A,1)

⊕ pxY
(A,1)

. . . pxX
(A,B) ⊕ pxY

(A,B)


(6)
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For each pxX
(row,col) ⊕ pxY

(row,col), row ∈ [1, A], and col ∈ [1, B], the addition is executed as the
definition above.

4. Proposed Scheme

4.1. Multi Secret Sharing Process

Suppose there are m secret gray images to be shared, the secret images are OS1, OS2, . . . OSn.
All the secret images are 256 gray level and share the same size. There are n participators and n
qualified subsets, The qualified part is Pqual, Pqual = {QS1, QS2, . . . , QSn}, where QSi is the ith qualified
subset i ∈ [1, n], and the ith qualified subset QSi have access to recover the ith secret image OSi.
QSi = {i1, i2, . . . , it}means that the i1th, i2th, . . . , itth participators can be recover the secret image OSi.
Moreover, the forbidden part is P f orbid, P f orbid = {FS1, FS2, . . . , FSm}.

In the multi secret sharing process the universal shares and the personal shares of the same size as
the secret images will be generated. The personal shares are owned by the individual owners and
the universal shares are kept by the committee members with high privilege. In the recovery process,
the personal owners and the committee members with universal shares will participate in the recovery.
The process about the secret sharing process is described as Algorithm 1.

Algorithm 1: The secret sharing process of the proposed scheme.

Input: The secret images OS1, OS2, . . . , OSn; for the general access structure, the qualified part is Pqual,
Pqual = {QS1, QS2, . . . , QSn}, and the forbidden part is P f orbid, P f orbid = {FS1, FS2, . . . , FSm}

Output: The personal shares PS1, PS2, . . . , PSn; the universal shares US1, US2, . . . , USn.
Step 1: Suppose the size of each secret image OSi is A × B, the pixel value in the rowth row and the colth
column of OSi is pxOi

(row,col)
, and pxOi

(row,col)
is integer, pxOi

(row,col)
∈ [0, 255], row ∈ [1, A], and col ∈ [1, B].

As each pixel can be expressed into an element with 8 bits in GF(28),
suppose pxOi

(row,col)
= {bo1, bo2, bo3, bo4, bo5, bo6, bo7, bo8}, split the bits of each pixel into the 4 MSB bits and the

4 LSB bits, pxOMi
(row,col)

= {bo1, bo2, bo3, bo4}, and pxOLi
(row,col)

= {bo5, bo6, bo7, bo8}. Thus, the MSB part of the

secret image OSi can be regarded as the matrix SMi
A×B

.

SMi
A×B =


pxOMi

(1,1)
. . . pxOMi

(1,B)
. . . pxOMi

(row,col)
. . .

pxOMi
(A,1)

. . . pxOMi
(A,B)

 (7)

And the LSB part of the secret image OSi can be regarded as the matrix SLi
A×B

.

SLi
A×B =


pxOLi

(1,1)
. . . pxOLi

(1,B)
. . . pxOLi

(row,col)
. . .

pxOLi
(A,1)

. . . pxOLi
(A,B)

 (8)

Step 2: Select n gray images {PO1, PO2, . . . , POn} from a mass of images randomly which are the same size
and the same gray level with the secret images, and select another n gray images {UO1, UO2, . . . , UOn} from a
mass of images randomly which are the same size and the same gray level with the secret images, {UO1, UO2,
. . . , UOn} need to be different with {PO1, PO2, . . . , POn}.
Step 3: Find out the essential id for each qualified subset QSi in Pqual by Algorithm 2, i ∈ [1, n],
QSi = {i1, i2, . . . , it}, the essential id is specific element of the set QSi, denote it as idi.
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Step 4: For the images {PO1, PO2, . . . , POn}, for each image POi with the size A × B, suppose the pixel value in
the rowth row and the colth column of POi is pxPi

(row,col)
, and pxPi

(row,col)
is the integer, pxPi

(row,col)
∈ [0, 255],

row ∈ [1, A], and col ∈ [1, B]. Each pixel can be expressed as pxPi
(row,col)

=
{
bp1, bp2, bp3, bp4, bp5, bp6, bp7, bp8

}
,

separate 4 MSB bits and the 4 LSB bits of each pixel, pxPMi
(row,col)

=
{
bp1, bp2, bp3, bp4

}
, and

pxPLi
(row,col)

=
{
bp5, bp6, bp7, bp8

}
. Thus, the matrix of the MSB is denoted as PMi

A×B
.

PMi
A×B =


pxPMi

(1,1)
. . . pxPMi

(1,B)
. . . pxPMi

(row,col)
. . .

pxPMi
(A,1)

. . . pxPMi
(A,B)

 (9)

And the matrix about LSB is denoted as SLi
A×B

.

PLi
A×B =


pxPLi

(1,1)
. . . pxPLi

(1,B)
. . . pxPLi

(row,col)
. . .

pxPLi
(A,1)

. . . pxPLi
(A,B)

 (10)

Step 5: For the images {UO1, UO2, . . . , UOn}, suppose the pixel value in the rowth row and the colth column of
POi is pxUi

(row,col)
, and pxUi

(row,col)
is integer, pxUi

(row,col)
∈ [0, 255], row ∈ [1, A], and col ∈ [1, B]. Each pixel can

be expressed as pxUi
(row,col)

= {bu1, bu2, bu3, bu4, bu5, bu6, bu7, bu8}, separate 4 MSB bits and the 4 LSB bits of

each pixel, pxUMi
(row,col)

= {bu1, bu2, bu3, bu4}, and pxULi
(row,col)

= {bu5, bu6, bu7, bu8}. The matrices are

denoted as the UMi
A×B for the MSB part and ULi

A×B for the LSB part.

UMi
A×B =


pxUMi

(1,1)
. . . pxUMi

(1,B)
. . . pxUMi

(row,col)
. . .

pxUMi
(A,1)

. . . pxUMi
(A,B)

 (11)

And the matrix of LSB SLi
A×B

is as below.

ULi
A×B =


pxULi

(1,1)
. . . pxULi

(1,B)
. . . pxULi

(row,col)
. . .

pxULi
(A,1)

. . . pxULi
(A,B)


Step 6: For the secret image OSi and the qualified subset is QSi = {i1, i2, . . . , it}, perform the following
operation about the MSB part of the secret image OSi:

TUi
A×B =

∑
SMi

A×B + PMi1
A×B + PMi2

A×B + . . .+ PMit
A×B + UMi

A×B (12)

The addition operation is defined as in Section 3.2. Suppose TUi
A×B is shown as below,

TUi
A×B =


pxTUi

(1,1)
. . . pxTUi

(1,B)
. . . pxTUi

(row,col)
. . .

pxTUi
(A,1)

. . . pxTUi
(A,B)

 (13)

Apply the Arnold transform [48] method to each matrix TUi
A×B to realize the element scrambling, and the

scrambled matrix is denoted as ETUi
A×B,

ETUi
A×B =


pxETUi

(1,1)
. . . pxETUi

(1,B)
. . . pxETUi

(row,col)
. . .

pxETUi
(A,1)

. . . pxETUi
(A,B)

 (14)

Perform another operation for the LSB part of the secret image OSi:



Mathematics 2020, 8, 1582 7 of 28

TPidi
A×B =

∑
SLi

A×B + PM
ig1
A×B + . . .+ PM

igt−1
A×B + UMi

A×B (15)

where
{
ig1 , . . . , igt−1

}
= GPi, GPi = {GPi|GPi ∪ idi = QSi, idi < GPi }, QSi = {i1, . . . it}. Suppose TPidi

A×B is shown
as below,

TPidi
A×B =


pxTPi

(1,1)
. . . pxTPi

(1,B)
. . . pxTPi

(row,col)
. . .

pxTPi
(A,1)

. . . pxTPi
(A,B)

 (16)

Apply the Arnold transform method to each matrix TPidi
A×B to realize the element scrambling, and the

scrambled matrix is denoted as ETPidi
A×B,

ETPidi
A×B =


pxETPi

(1,1)
. . . pxETPi

(1,B)
. . . pxETPi

(row,col)
. . .

pxETPi
(A,1)

. . . pxETPi
(A,B)

 (17)

Step 7: For the images {UO1, UO2, . . . , UOn}, replace the 4 LSBs of each pixel of UOi with the element of
ETUi

A×B in the same position, which means join each element pxUMi
(row,col)

of UMi
A×B and pxETUi

(row,col)
of

TUi
A×B together, and get the pixel matrix expression USi

A×B of USi,

USi
A×B =


pxUMi

(1,1)
∪ pxETUi

(1,1)
. . . pxUMi

(1,B)
∪ pxETUi

(1,B)
. . . pxUMi

(row,col)
∪ pxETUi

(row,col)
. . .

pxUMi
(A,1)

∪ pxETUi
(A,1)

. . . pxUMi
(A,B)

∪ pxETUi
(A,B)

 (18)

Suppose pxUMi
(row,col)

= {bu1, bu2, bu3, bu4}, and pxTUi
(row,col)

= {btu1, btu2, btu3, btu4}, so

pxUMi
(row,col)

∪ pxTUi
(row,col)

= {bu1, bu2, bu3, bu4} ∪ {btu1, btu2, btu3, btu4}

= {bu1, bu2, bu3, bu4, btu1, btu2, btu3, btu4}
(19)

The renewed images are the universal shares {US1, US2, . . . , USn}.

Step 8: For the images {PO1, PO2, . . . , POn}, replace the 4 LSBs of each pixel of POi with the element of
ETPi

A×B in the same position, which means join each element pxPMi
(row,col)

of PMi
A×B and pxETPi

(row,col)
of

ETPi
A×B together, and get the pixel matrix expression PSi

A×B of PSi,

PSi
A×B =


pxPMi

(1,1)
∪ pxETPi

(1,1)
. . . pxPMi

(1,B)
∪ pxETPi

(1,B)
. . . pxPMi

(row,col)
∪ pxETPi

(row,col)
. . .

pxPMi
(A,1)

∪ pxETPi
(A,1)

. . . pxPMi
(A,B)

∪ pxETPi
(A,B)

 (20)

The element joint operation is the similar as the last step, and the renewed images are the personal shares
{PS1, PS2, . . . , PSn}.
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Algorithm 2: The essential id selection process for the qualified subset of the general access.

Input: The general access structure, the qualified part is Pqual, Pqual = {QS1, QS2, . . . , QSn}, where QSi is the ith
qualified subset i ∈ [1, n], QSi = {i1, i2, . . . , it}, {i1, i2, . . . , it} ∈ {1, 2, . . . , n}.
Output: The essential id EID = {id1, id2, . . . , idn}

Step 1: For each qualified subset QSi, i ∈ [1, n], QSi = {i1, i2, . . . , it}, denote the essential id of the set QSi as idi.
Construct the vector of length n where all the elements are 0, set the i1th, i2th, . . . , itth elements according to
{i1, i2, . . . , it} to be 1, the vector is denoted as Vi. As such, the vector Vi is the logical presentation of the
qualified subset QSi.
Step 2: Regard the vector Vi as the ith row of the matrix QM, so the matrix QM is the presentation of the
qualified access subsets.
Step 3: QM1 is the start point of the searching, and QM1 = QM.

For k = 1: n, calculate the hamming weights of each column and row of the matrix QMk, the hamming
wights of the columns are denoted as {hmc1, hmc2, . . . , hmcn}, and the hamming weights of the rows are
denoted as {hmr1, hmr2, . . . , hmrn}, search for the smallest hamming weight of the column vector. There are
different cases.

Case 1: If the smallest hamming weight of the column is 1 and unique, the non-zero element is the (sr, sc)
element in the matrix QM, it shows that the essential id for the srth qualified subset QSsr is sc.

Case 2: If the smallest hamming weight is not 1 and unique, compare the rows’ hamming weights of the
non-zero elements, select the element (sr, sc) which has the smallest hamming weight; if the rows’ hamming
weights are the same, select the element in which the row number is smaller, so the essential id for the srth
qualified subset QSsr is sc.

Case 3: If the smallest hamming weight is not 1 and not unique, compare all the rows’ hamming weights
of the non-zero elements in the different columns, select the element (sr, sc) which has the smallest hamming
weight; if the rows’ hamming weights are the same, select the element in which the row number is smallest, so
the essential id for the srth qualified subset QSsr is sc.
Step 4: Set all the elements of the srth row and the scth column to be zero, QMk is renewed as QMk+1.
Step 5: For the renewed matrix QMk+1, execute the same operations as in Step 3 to fix the essential id for the
other row, it is stopped when all the essential id for all the rows are fixed.
Step 6: The final essential id is denoted as EID = {id1, id2, . . . , idn}, which means the idith element is the
essential element for the ith qualified subset QSi.

Some observations and details for the steps are given below:
In step 1, as each pixel of the 256 gray secret image OSi is expressed by 8 bits in the computer

science, so the secret image OSi can be regarded as the matrix Mi
A×B

from the point of the mathematics,
where the element is the bit expression of pixel value in GF(28). If we divide the pixel into 4 MSBs and
4 LSBs part, the secret image OSi can be regarded as the combination of matrix SMi

A×B
about the MSB

part and SLi
A×B

about the LSB part, and all the elements of SMi
A×B

and SLi
A×B

is in GF(24).
In step 2, the n gray images {PO1, PO2, . . . , POn} are the prepared images for the personal shares,

and the n gray images {UO1, UO2, . . . , UOn} are the prepared images for the universal shares; they are
all selected randomly from a mass of images, so it is hard to predict which one is selected.

In step 3, the essential id is determined by Algorithm 2, the essential id idi = ic for
QSi = {i1, i2, . . . , it} must be the id of the essential participator for the qualified subset QSi, and the
essential id for the different qualified subset is different. For the essential id idi for QSi and id j for QS j,
idi , id j, if j , i.

In steps 4 and 5, the images {PO1, PO2, . . . , POn} and the images {UO1, UO2, . . . , UOn} are divided
into MSB and LSB part. PMi

A×B for the MSB part and PLi
A×B for the LSB part of POi, UMi

A×B for the
MSB part and ULi

A×B for the LSB part of UOi are generated from the point of matrix.
In step 6, in Equation (12), there are three parts taking part in the addition computation to generate

TUi
A×B, the first part is the MSB part of the secret image SMi

A×B
, the second part is PM

i j

A×B ( j ∈ {1, . . . , t})
which are the MSB part of the images {POi1, POi2, . . . , POit} according to the qualified subset QS j,
the third part is UMi

A×B which is the MSB part of UOi. A similar operation is executed as shown

in Equation (15) to get TPidi
A×B,where the set GPi is in fact the subset of QSi removing the element
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idi. The Arnold transform method is applied to TUi
A×B and TPidi

A×B to scramble the pixels, which is
important for enhancing the security. If A = B, the image is square, we can use the transform in [48]
directly, if A , B, the image is not square, it needs to be extended to be square by supplying some zero
pixel. Then, the Arnold transform method is carried out.

In step 7, the 4 LSBs of the each pixel of UOi are replaced by the elements of ETUi
A×B, and the

renewed image is the final universal share USi. The idith personal share PSidi can be obtained as shown
in Equation (15) by replacing the LSBs of PSidi bythe elements of ETPidi

A×B.
Then the generated personal share PSi is distributed to the owner OWi, and the universal shares

USi are kept by the committee members having high privilege.
The example 1 is an example of the secret sharing process and the size of the image is small for

the convenience to show the sharing process using the matrices.

Example 1.

Suppose there are 4 participants, the qualified part Pqual = {QS1, QS2, QS3, QS4}, and QS1 = {1, 2, 3},
QS2 = {1, 4}, QS3 = {2, 4}, QS4 = {3, 4}. The secret images with 256 gray level are OS1, OS2, OS3, OS4,
and the size of the secret image is 2 × 2. As such, the participants in QSi have access to recover the
secret image OSi.

The secret sharing process is described below:

• For the secret images, suppose the matrices of the pixel value is shown as below:(
154 35
69 247

)(
227 141
165 46

)(
142 64
237 37

)(
118 148
49 97

)
• For each QSi, there is one corresponding essential id idi and universal share, so we take the

generation of the personal share PSid1 and the universal US1 for example. First, turn the pixel
value of the first secret image OS1 into 8 bits, to get:

OM1
2×2 =

(
10011010 00100011
01000101 11110111

)
(21)

• Divide the MSB part and the LSB part of OM1
2×2, So SMi

A×B
about the MSB parts and SLi

A×B
about

LSB is shown below:

SM1
2×2 =

(
1001 0010
0100 1111

)
(22)

SL1
2×2 =

(
1010 0011
0101 0111

)
(23)

• Select 4 gray images randomly {PO1, PO2, PO3, PO4} with the same size as the secret image from a
set of thousands of images, and select another 4 gray images randomly {UO1, UO2, UO3, UO4}
with the same size as the secret image.

• Find out the essential id for the qualified subset based on Algorithm 2, the essential id for the
qualified subsets is {id1, id2, id3, id4} = {2, 1, 4, 3}.

• For the image {PO1, PO2, PO3, PO4}, suppose PMi
2×2 is the matrix for the MSB part of POi. As such,

the matrices of the MSB parts of the images are as below:

PM1
2×2 =

(
0101 1100
0110 1001

)
(24)

PM2
2×2 =

(
1110 1000
1010 0010

)
(25)
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PM3
2×2 =

(
0100 0110
0111 1100

)
(26)

PM4
2×2 =

(
1100 0110
0101 0111

)
(27)

• For the image UO1, the matrix UM1
2×2 of the MSB parts is as below:

UM1
2×2 =

(
0111 1000
1001 0101

)
(28)

• Thus, according to Equation (15) we can get TU1
2×2:

TU1
2×2 =

∑
SM1

2×2 + PM1
2×2 + PM2

2×2 + PM3
2×2 + UM1

2×2

=

(
1001 0010
0100 1111

)
+

(
0101 1100
0110 1001

)
+

(
1110 1000
1010 0010

)
+

(
0100 0110
0111 1100

)
+

(
0111 1000
1001 0101

)
=

(
0001 1000
0110 1101

) (29)

• Apply the Arnold transform method to each matrix TU1
2×2 to realize the element scrambling,

and the scrambled matrix is denoted as ETU1
2×2,

ETU1
2×2 =

(
1101 0001
1000 0110

)
(30)

• Similarly, we can get:

TPid1
2×2 = TP2

2×2 =
∑

SL1
2×2 + PM1

2×2 + PM3
2×2 + UM1

2×2 =

(
0101 1110
1100 0110

)
(31)

• Apply the Arnold transform method to each matrix TP2
2×2 to realize the element scrambling,

and the scrambled matrix is denoted as ETP2
2×2,

ETP2
2×2 =

(
0110 0101
1110 1100

)
(32)

• So, for the image UO1, replace the 4 LSBs of each pixel with the element in ETU1
2×2 to obtain the

matrix of the universal share US1 as below:

Ug1
2×2 =

(
01111101 10000001
10011000 01010110

)
(33)

• The pixel presentation matrix is:

UG1
2×2 =

(
125 129
152 86

)
(34)
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• For the images {PO1, PO2, PO3, PO4}, select the essential id id1 for the qualified subset QS1

(the algorithm about the essential id for the qualified subset is shown in Algorithm 2), as id1 = 2,
so for the image PO2, replace the 4 LSBs with ETPid1

2×2, id1 = 2 to get one personal share PS2.

PS2
2×2 =

(
11100110 10000101
10101110 00101100

)
(35)

PG2
2×2 =

(
230 133
174 44

)
(36)

• The other universal shares UO2, UO3, UO4 and the personal shares PO1, PO3, PO4 can be obtained
in the same way.

In the following, the definition of the essential id for the qualified subset and the algorithm for the
determination of the essential id is given out.

As described in the beginning of Section 4.1, the number of the minimal qualified subset is
the same as the number of the participants, so each participant is in one minimal qualified subset.
The essential id idi for the subset QSi is defined as the representative element id in QSi, for each
qualified subset, there is one essential id and it is different from the essential id of other subsets; that is,
the idi for the subset QSi is not equal to the id j for the subset QS j, idi , id j if i , j. Thus, the id of each
participator can be assigned as the essential id for one minimal qualified subset, and each essential
id can be assigned to one secret image according to one qualified subset. The algorithm about the
selection of the essential id is described below.

In step 1, the qualified subset QSi = {i1, i2, . . . , it}means that the i1th, i2th, . . . , itth participators
have the ability to recovery the ith secret image, so the vector Vi is in fact the logical express of the
qualified subset.

In step 2, the matrix QM is the binary matrix presentation of the general access structure, and the
ith row is according to the ith qualified subset QSi, and the jth column is corresponding to the jth
participator, so the (i, j) element of QM is not zero shows that the jth participator takes part in the
recovery the ith secret image.

In step 3, the essential id for each qualified subset is determined according to the comparison of
the column hamming weights and the row hamming weights, and the matrix is renewed continuously
in the iteration. After step 5, we can get the final essential id for all the qualified subsets.

The following is the example of the determination process of the essential id.

Example 2.

Suppose there are 4 participants, the qualified part Pqual = {QS1, QS2, QS3, QS4}, and QS1 = {1, 2, 3},
QS2 = {1, 4}, QS3 = {2, 4}, QS4 = {3, 4}.

• The vectors of the QSi are shown as below:

V1 = [1, 1, 1, 0]

V2 = [1, 0, 0, 1]

V3 = [0, 1, 0, 1]

V4 = [0, 0, 1, 1]

(37)

• As such, the matrix QM of the qualified access is shown as below:

QM =


1 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1

 (38)
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• Let QM1 = QM as the start point, calculate the hamming weight of each column,
{hmc1, hmc2, hmc3, hmc4} = {2, 2, 2, 3}, and the hamming weight of each row is {hmr1, hmr2, hmr3, hmr4}
= {3, 2, 2, 2}. As 2 is the smallest column hamming weight and not unique, compare all the {1, 2, 3}
rows’ hamming weights, {hmr1, hmr2, hmr3, hmr4} = {3, 2, 2, 2}, since the element (2, 1) element has
the row number that is smallest in the rows with a smaller row hamming weight of 2, the essential
id for the qualified subset QS2 is 1;

• Then all the elements in the 2th row and the 1th column are set to be zero, the renewed matrix
QM2 is as below:

QM2 =


0 1 1 0
0 0 0 0
0 1 0 1
0 0 1 1

 (39)

• Compare the hamming weight of the non-zero columns in QM2, {hmc2, hmc3, hmc4} = {2, 2, 2}, as all
the columns hamming weight is the same, so compare the row hamming weight, {hmr1, hmr3, hmr4}
= {2, 2, 2}, so select the (1, 2) element whose row number is smallest in the rows with hamming
weight 2, which means the essential id for the qualified subset QS1 is 2;

• Then, the 1th row and the 2rd column is set to be zero, the renewed matrix QM3 is as blow:

QM3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 1

 (40)

• The hamming weight of the non-zero columns {hmc3, hmc4} = {1, 2}, the smallest rows’ hamming
weight is 1 and unique, so select the element (4, 3), the essential id for the qualified subset QS4 is 3;

• Then the 4th row and the 3th column is set to be zero, the renewed matrix QM4 is as blow:

QM4 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (41)

• Thus, it is easy to confirm the essential id for the qualified subset QS3 is 4;
• At last, we can obtain the essential id EID = {id1, id2, . . . , idn} = {2, 1, 4, 3}.

4.2. Secret Recovery Process

In the secret sharing process, the personal shares {PS1, PS2, . . . , PSn} are distributed to the personal
owners and the universal shares {US1, US2, . . . , USn} are kept by the privileged committee members.
As per the definition of the general access structure, the qualified owners can recover the ith secret
image use the personal shares {PSi1, PSi2, . . . , PSit} according to the qualified subset QSi, i ∈ [1, n],
QSi = {i1, i2, . . . , it}. The recovery process is shown in Algorithm 3.
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Algorithm 3: The secret recovery process of the proposed scheme.

Input: The personal shares PS1, PS2, . . . , PSn; the universal shares US1, US2, . . . , USn.; the general access
structure, the qualified part is Pqual, and the forbidden part is P f orbid.
Output: The secret images RS1, RS2, . . . , RSn

Step 1: Take the recovery of the ith secret image as the example. Retrieve the universal image UOi from the
committee after verification, or else the committee members can participate in the recovery taking the
universal share UOi. Extract the 4 LSBs of the each pixel to get the matrix ETUi

A×B over GF(24), and 4 MSBs of
the pixels of UOi form the matrix UMi

A×B;
Step 2: Collect the qualified personal shares {PSi1, PSi2, . . . , PSit} based on the qualified subset QSi, i ∈ [1, n],
QSi = {i1, i2, . . . , it}. For each qualified personal share, extract the 4 MSBs of each pixel of the share, as in

Algorithm 1. Obtain the matrix PM
i j

A×B over GF(24), j ∈ [1, t], as QSi = {i1, i2, . . . , it}, so we can get the matrices{
PMi1

A×B, PMi2
A×B, . . . , PMit

A×B

}
;

Step 3: Apply the Arnold inverse transform on ETUi
A×B to get TUi

A×B, and perform the following operation:

SMi
A×B =

∑
TUi

A×B + PMi1
A×B + PMi2

A×B + . . .+ PMit
A×B + UMi

A×B (42)

SMi
A×B is shown as below:

SMi
A×B =


pxSMi

(1,1)
. . . pxSMi

(1,B)
. . . pxSMi

(row,col)
. . .

pxSMi
(A,1)

. . . pxSMi
(A,B)

 (43)

where pxSMi
(row,col)

= {bm1, bm2, bm3, bm4}.

Step 4: Calculate the essential id idi for the qualified set QSi using Algorithm 2, and extract the 4 LSBs of each
pixel in the idith personal share to get the matrix ETPidi

A×B, and apply the Arnold inverse transform on ETPidi
A×B

to get TPidi
A×B;

Step 5: From the construction of TPidi
A×B, perform the following operation to get SLi

A×B:

SLi
A×B =

∑
TPidi

A×B + PM
ig1
A×B + . . .+ PM

igt−1
A×B + UMi

A×B (44)

where
{
ig1 , . . . , igt−1

}
= GP, GP = {GP|GP∪ idi = QSi, idi < GP }, QSi = {i1, . . . it} and SLi

A×B is shown as below:

SLi
A×B =


pxSLi

(1,1)
. . . pxSLi

(1,B)
. . . pxSLi

(row,col)
. . .

pxSLi
(A,1)

. . . pxSLi
(A,B)

 (45)

where pxSLi
(row,col)

= {bl1, bl2, bl3, bl4}.

Step 6: For each element in matrix SMi
A×B and SLi

A×B, join the element of the matrix SMi
A×B and the element of

the matrix SLi
A×B in the same position to form a new matrix RMi

A×B
:

RMi
A×B =


pxSMi

(1,1)
∪ pxSLi

(1,1)
. . . pxSMi

(1,B)
∪ pxSLi

(1,B)
. . . pxSMi

(row,col)
∪ pxSLi

(row,col)
. . .

pxSMi
(A,1)

∪ pxSLi
(A,1)

. . . pxSMi
(A,B)

∪ pxSLi
(A,B)

 (46)

where pxSMi
(row,col)

∪ pxSLi
(row,col)

= {bm1, bm2, bm3, bm4, bl1, bl2, bl3, bl4}.

Step 7: Transform each element of the matrix RMi
A×B

into the decimal number, which is the pixel value of the
ith recovered secret image RSi which is 256 gray level. For example, if the element of RMi

A×B
is

{bm1, bm2, bm3, bm4, bl1, bl2, bl3, bl4}, the pixel value is in fact{
27
· bm1 + 26

· bm2 + 25
· bm3 + 24

· bm4 + 23
· bl1 + 22

· bl2 + 21
· bl3 + 20

· bl4
}
. Finally, we can get the

recovered ith secret image, and the recovery of other secret images can be realized in the same manner.
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In step 1 and 2, we collect the qualified personal shares responding to QSi, and the universal share
is also collected. The matrices of the shares are divided into the MSB part and the LSB part, and the
recovery can be realized by Equations (42) and (44). The example is shown as below.

Example 3.

As shown in example 1, in the secret sharing process, the personal shares {PS1, PS2, PS3, PS4}
are distributed to the personal owners and the universal shares {US1, US2,US3, US4} are kept by
the committee members with high privilege. The qualified access is Pqual = {QS1, QS2, QS3, QS4},
and QS1 = {1, 2, 3}, QS2 = {1, 4}, QS3 = {2, 4}, QS4 = {3, 4}, which is the same as the sharing process.
The secret image recovery process is shown as below, take the recovery of the first secret image
for example.

Get the according universal share UO1, change the pixel expression value into the bits expression.

UG1
2×2 =

(
125 129
152 86

)
(47)

Ug1
2×2 =

(
01111101 10000001
10011000 01010110

)
(48)

Split each pixel into 2 parts, so the matrix about MSB and LSB is as shown below:

UM1
2×2 =

(
0111 1000
1001 0101

)
(49)

ETU1
2×2 =

(
1101 0001
1000 0110

)
(50)

Apply the Arnold inverse transform on ETUi
A×B to get TUi

A×B, and TU1
A×B =

(
0001 1000
0110 1101

)
.

As the qualified subset QS1 = {1, 2, 3}, collect the 1st, 2nd, and 3rd personal shares, and obtain the
matrices of MSBs:

PM1
2×2 =

(
0101 1100
0110 1001

)
(51)

PM2
2×2 =

(
1110 1000
1010 0010

)
(52)

PM3
2×2 =

(
0100 0110
0111 1100

)
(53)

Thus, we can get SM1
2×2 based on the Equation (42).

SM1
2×2 =

∑
TU1

2×2 + PM1
2×2 + PM2

2×2 + PM3
2×2 + UM1

2×2

=

(
0001 1000
0110 1101

)
+

(
0101 1100
0110 1001

)
+

(
1110 1000
1010 0010

)
+

(
0100 0110
0111 1100

)
+

(
0111 1000
1001 0101

)
=

(
1001 0010
0100 1111

) (54)
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Additionally, as the essential id id1 = 2, extract the 4 LSBs of the 2nd personal share to

get ETP2
2×2 =

(
0110 0101
1110 1100

)
. Apply the Arnold inverse transform on ETP2

2×2 to get TP2
2×2,

and TP2
2×2 =

(
0101 1110
1100 0110

)
, and we can get SL1

2×2 based on Equation (44).

SL1
2×2 =

∑
TP2

2×2 + PM1
2×2 + PM3

2×2 + UM1
2×2 =

(
1010 0011
0101 0111

)
(55)

Then, join the element of the matrix SM1
2×2 and the element of the matrix SL1

2×2 in the same
position to get the bits expression of the first secret RS1,

OM1
2×2 =

(
10011010 00100011
01000101 11110111

)
(56)

Finally, transform the element of OM1
2×2 into a decimal number to obtain the pixel value matrix of

the first secret image:

RS1 =

(
154 35
69 247

)
(57)

The other secret images can be recovered in the same way according to their qualified subsets.

5. Proof and Analysis

5.1. Correctness Proof

Theorem 1. The secret images can be successfully recovered by the personal shares in the qualified subset inPqual
and the universal shares.

In other words, we need to prove that each secret image OSi can be recovered by the personal
shares according to the qualified subset QSi, QSi = {i1, i2, . . . , it} and the universal share USi, i ∈ [1, n].

As shown in the secret sharing process, all the images are turned into the matrix form after
transforming the pixel between 0 to 255 into the element with 8 bits in GF(28) from the point of
mathematics. The matrix OMi

A×B
about the secret image OSi is divided into two matrix SMi

A×B
about

the MSB part and SLi
A×B

about the LSB part. Thus, in the recovery process we need to recover the
two matrices.

Each of the prepared random selected images POi corresponding to QSi = {i1, i2, . . . , it} are also
divided into two parts in the same way as the secret image. The MSB matrices are denoted as the

PM
i j

A×B, and the LSB matrices are PL
i j

A×B, j ∈ [1, n]. The matrix PM
i j

A×B of the MSB part will participate
in the sharing, and the LSB space is reserved.

Another prepared image for the universal share UOi is also divided into UMi
A×B and

ULi
A×B respectively.

The matrices’ computation for the secret image and the prepared images for the personal shares
and the universal share are shown as below in Equation (12),

TUi
A×B =

∑
SMi

A×B + PMi1
A×B + PMi2

A×B + . . .+ PMit
A×B + UMi

A×B

Then the Arnold transform is applied on TUi
A×B and the scrambling matrix ETUi

A×B is generated.
Based on the basic idea that the LSBs have the little effect on the image quality, the LSBs of the UOi can
be replaced by ETUi

A×B and will not effect on the meaning of the image, so we can get the universal
share USi.
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Another operation for the LSB part of the secret image is executed as below in Equation (15):

TPidi
A×B =

∑
SLi

A×B + PM
ig1
A×B + . . .+ PM

igt−1
A×B + UMi

A×B

where
{
ig1 , . . . , igt−1

}
= GP, GP = {GP|GP∪ idi = QSi, idi < GP }, QSi = {i1, . . . it}.

And the matrix TPidi
A×B is scrambled into ETPidi

A×B by the Arnold transform.
From the definition of the essential id, each QSi has an only essential id, and the idi for the QSi

is different from the others; if i , j, idi , id j, then each QSi has a different essential idi, so for each

qualified subset, the 4-bits elements of TPidi
A×B can be used to replace the LSBs of the idith image in

{PO1, PO2, . . . , POn}, so we can get the final idith personal share PSidi .
In the recovery process, the owners of personal shares of QSi = {i1, i2, . . . , it} participate in the

recovery, they offer the personal shares PSi1, PSi2, . . . , PSit, and the corresponding universal share USi
is obtained from the universal panel, so we can get the matrices PMi1

A×B, PMi2
A×B, . . . , PMit

A×B from PSi1,
PSi2, . . . , PSit, and TUi

A×B, UMi
A×B can be obtained from the USi.

As shown in Equation (12), the share generation can be expressed as follows:

0 =
∑

TUi
A×B + SMi

A×B + PMi1
A×B + PMi2

A×B + . . .+ PMit
A×B + UMi

A×B (58)

Move SMi
A×B to another side of the equation to get the expression of SMi

A×B as shown below:

SMi
A×B =

∑
TUi

A×B + PMi1
A×B + PMi2

A×B + . . .+ PMit
A×B + UMi

A×B (59)

In fact, Equation (59) used in the recovery, by which we can retrieve the MSB part of the secret
image of OSi.

As in Equation (15), the share generation can be expressed as below:

0 =
∑

TPidi
A×B + SLi

A×B + PM
ig1
A×B + . . .+ PM

igt−1
A×B + UMi

A×B (60)

Move SLi
A×B to another side of the equation to get the expression of SLi

A×B as shown below:

SLi
A×B =

∑
TPidi

A×B + PM
ig1
A×B + . . .+ PM

igt−1
A×B + UMi

A×B (61)

where
{
ig1 , . . . , igt−1

}
= GP, GP = {GP|GP∪ idi = QSi, idi < GP }, QSi = {i1, . . . it}.

In fact, Equation (44) is used in the recovery, by which we can retrieve the LSB part of the secret
image of OSi.

Combining the SMi
A×B and SLi

A×B together, we can get the exact pixel value of the secret image,
and the secret image RSi is recovered, which is the same as the original secret image OSi.

5.2. Security Analysis

In this section, we will discuss the security of the proposed multi secret sharing scheme through
theoretical analyses.

Theorem 2. The personal are meaningful and the security of the share are reasonably good.

Regarding the personal shares, they are generated by the prepared meaningful images
{PO1, PO2, . . . , POn} which are selected randomly from lots of images. Although all the shares
are not meaningless shares in which the pixels values are random, they still have strong randomness,
so it is hard to know which images will be selected from a set of images.
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From the point of the visual assessment, the replacement of LSBs has little influence on the visual
quality of the image; the change is so minuscule it can barely be detected by the human visual system.
An example of the original image and the modified image of 4 LSBs is shown in Figure 1.
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Figure 1. The figures of the original image and the modified image: (a) the original gray image with
256 gray level; (b) the modified image with the replacement of the 4 LSBs.

From the comparison in Figure 1, we can see that the modified image is still a meaningful image
that looks like a nature image and it is almost the same as the original image.

The high security of the personal shares can be ensured by two aspects.
Firstly, the personal shares with 4 LSBs replaced by the elements in the matrix ETPi

A×B are
meaningful as the nature images, so they can avoid attracting any adversary’s attention more so than
the random meaningless shares.

Secondly, from the point of the computation analysis, the MSBs of the personal share are the
original bits of the original image, and the LSBs are ETPi

A×B which is the random permutation result of

TPi
A×B, TPidi

A×B =
∑

SLi
A×B + PM

ig1
A×B + . . .+ PM

igt−1
A×B + UMi

A×B; if one participant intends to analyze the
single personal share to get some information about SLi

A×B, from the generation of TPi
A×B, he needs

to get the MSB information {PMi2
A×B, . . . , PMit

A×B} about the other qualified personal shares and the
MSB information {UMi

A×B} about the according universal share. Without the help of this information,

only use {TPidi
A×B, PMidi

A×B}, the single personal share cannot retrieve the secret information, so it is not
possible to analyze the content or the bits of the single personal share to get any information about the
secret image. Furthermore, the result of Equation (15) is permuted and embedded; the embedded bits
are scrambled, and it is hard to get the original bits because it is not known which transform is used.

Theorem 3. The universal shares are meaningful, and the security of the shares are reasonably good.

For the universal shares, they still have strong randomness because the prepared images
{UO1, UO2, . . . , UOn} are selected randomly from lots of images. Also, the universal share UOi
is still meaningful image as a nature image and is almost the same as the original image USi, i ∈ [1, n].

The high security of the universal shares can be ensured by three point.
First, the universal shares are kept by the committee members with high privilege, who are

trusted. The universal share for each qualified subset only can be used after the authentication, or in
the recovery where the committee members take the universal share and participate in the recovery.

Secondly, the universal share looks like the nature image, which can avoid attracting the adversary’s
attention more so than the random meaningless shares.

Thirdly, from the point of the computation analysis, the LSBs of the pixels are ETUi
A×B

which is the random permutation result of TUi
A×B. They are scrambled and it is hard
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to get the original bits because the transform is unknown. From the generation of
TUi

A×B, TUi
A×B =

∑
SMi

A×B + PMi1
A×B + PMi2

A×B + . . .+ PMit
A×B + UMi

A×B, the MSB part SMi
A×B the

MSB information {PMi1
A×B, PMi2

A×B, . . . , PMit
A×B} about the other qualified personal shares and the

MSB information {UMi
A×B} about the according universal share take part in the generation. If one

committee member intends to analyze the single universal share to get some information about SMi
A×B,

from the generation of TUi
A×B, he can get the MSB information {UMi

A×B} about the universal share,

he still needs to get the MSB information {PMi1
A×B, PMi2

A×B, . . . , PMit
A×B} about the qualified personal

shares. Without the information of personal share, he can only use {TUi
A×B, UMi

A×B} about the single
universal share and cannot retrieve the secret information. It is established that even the qualified
subset is very simple. Since there must be an essential id idi for the qualified subset QSi, there is at
least one matrix PMidi

A×B and the UMi
A×B participating in the generation of TUi

A×B, so TUi
A×B , SMi

A×B.
After applying the Arnold transform to TUi

A×B, the embedded bits are the scrambling bits, so the MSB
bits of the secret images will not be revealed directly and are hard to be calculated.

It is also not possible to use different universal shares to reveal some information about the secret
images, because each TUi

A×B is scrambling by the Arnold transform and XOR. Two or more universal
shares only can get some useless random permutation result on ETUi

A×B.

Theorem 4. The shares of the part of each subset QSi cannot reveal the information about the secret image.

Suppose the qualified subset is QSi = {i1, i2, . . . , it}, and the subset of QSi is {i1, i2, . . . , iw},
where w < t, {i1, i2, . . . , iw} ⊂ {i1, i2, . . . , it}. From the definition of the minimum qualified subset,
∀Q′ ⊂ Q, and Q ∈ Pqual, Q′ < Pqual. As the Pqual is the minimum qualified subset, for any part of the
subset of the qualified subset QSi, it is not possible to be a qualified access.

From the generation equation of the personal shares for the subset QSi = {i1, i2, . . . , it},
TUi

A×B =
∑

SMi
A×B + PMi1

A×B + PMi2
A×B + . . .+ PMit

A×B + UMi
A×B, we can derive that, for the

{i1, i2, . . . , iw}, where w < t, SMi
A×B ,

∑
TUi

A×B + PMi1
A×B + PMi2

A×B + . . .+ PMiw
A×B; thus, it cannot

recover the secret image OSi for {i1, i2, . . . , iw}, where w < t for the secret image.

Theorem 5. The shares according to the forbidden subset FSi cannot reveal any information about the
secret image.

From the definition of the forbidden subset, P f orbid = {FS1, FS2, . . . , FSm}, where FSi is the ith
forbidden subset i ∈ [1, m], FS j =

{
j1, j2, . . . , jr

}
, which means the j1th, j2th, . . . , jrth owner is forbidden

from recovering the secret, so we can know that the shares in the forbidden subset obviously cannot
retrieve any information about the secret images.

6. Experiments

In this part, some experiments about the performance of the sharing and the recovery are given to
evaluate the proposed multi secret sharing scheme with general access structure.

6.1. Secret Sharing and Recovery

Suppose there are 4 secret images with 256 gray level {OS1, OS2, OS3, OS4} to be shared, there
are 4 participators OW = {OW1, OW2, OW3, OW4}, the qualified part Pqual = {QS1, QS2, QS3, QS4},
and QS1 = {1, 2, 3}, QS2 = {1, 4}, QS3 = {2, 4}, QS4 = {3, 4} as shown in Example 2.

The secret images are shown in Figure 2.
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Select the essential id of the qualified subsets, {id1, id2, id3, id4} = {2, 1, 4, 3}.
Transform the secret images {OS1, OS2, OS3, OS4} and the randomly selected images

{PO1, PO2, PO3, PO4} and {UO1, UO2, UO3, UO4} into the matrix format over GF(28), get the matrix
SMi

A×B
about the MSB part of the secret image OSi, the matrix SLi

A×B
about the LSB part of the secret

image OSi, the matrix PMi
A×B about the MSB part of the image POi, the matrix UMi

A×B about the MSB
part of the secret image USi, i ∈ [1, 4], and execute the additional operation as per Equations (12) and
(15) to get TUi

A×B and TPidi
A×B. After the Arnold transform and the bits replacement in Algorithm 1,

we can get the final personal shares {PS1, PS2, PS3, PS4} and the universal shares{US1, US2, US3, US4},
which are shown in Figures 5 and 6.
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The universal shares are shown in Figure 6.
The personal shares are distributed to the owners; each owner OWi owns a personal share PSi,

and the universal shares USi are kept by the committee members with high privilege.
In the recovery process, each secret image can be recovered based on the qualified subset.

To recover the ith secret image, the owners according to the qualified subset QSi offer their share images
{PSi1, PSi2, . . . , PSit}, and retrieve the universal share UOi after the verification, or the committee
members participate in the recovery by taking the universal share UOi and execute the matrix operation
as shown in Algorithm 3. The retrieved secret images are shown in Figure 7a–d. Figure 7a is the
recovered 1th secret image QS1 used the personal shares{PS1, PS2, PS3} and the universal share US1,
Figure 7b is the recovered 2th secret image QS2 used the personal shares{PS1, PS4} and the universal
share US2, Figure 7c is the recovered 3th secret image QS3 used the personal shares{PS2, PS4} and the
universal share US3, Figure 7d is the recovered 4th secret image QS4 used the personal shares{PS3, PS4}
and the universal share US4.
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the qualified subset QS3; (d) the recovered secret image RS4 by the qualified subset QS4.

From the experiments results, we can see that all the personal share images and the universal
share images are meaningful and look like the nature image, and the recovered secret image is exactly
the same as the original secret image.

6.2. Analysis about the Experiments

Although all the shares and the recovered secret image can be recognized easily by the human
visual system, we still evaluate the performance of the quality of the shares and the recovered secret
images by quantitative analysis. To measure the quality of the share images and the recovered images,
the peak signal-to-noise rate (PSNR) is used. The PSNR can evaluate the quality of the modified image
compared to the original image, and in general the quality of the image is better if the PSNR is higher.

PSNR = 10 log10(
2552

MSE
)dB (62)
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where MSE is the mean-square error of the image with the size of row× col. Suppose the pixel value of
the modified image and the original image are p(i, j) and P(i, j) respectively, MSE can be expressed as:

MSE =
1

row× col

row∑
i=1

col∑
j=1

(P(i, j) − p(i, j))2 (63)

The PSNR of the personal share images in the experiments are shown in Table 1.

Table 1. The quality evaluation of the personal shares by peak signal-to-noise rate (PSNR).

The Personal Share PSNR

PS1 31.62 dB
PS2 32.02 dB
PS3 31.84 dB
PS4 30.58 dB

Moreover, the PSNR of the universal share images in the experiment are shown in Table 2.

Table 2. The quality evaluation of the universal shares by PSNR.

The Universal Share PSNR

US1 31.83 dB
US2 31.84 dB
US3 31.75 dB
US4 31.63 dB

From the result we can see that the PSNR value of the shares which the 4 LSBs are replaced is
about 32 dB. From the point of image process, if PSNR is bigger than 30 dB, we generally consider the
quality is good enough to be recognized, and there is tiny difference between the original prepared
images and the generated personal share images as shown in Figures 3 and 5, and the original images
and the universal shares is also almost looks like the same as shown in Figures 4 and 6.

The quality of the recovered secret images are shown as the Table 3.

Table 3. The quality evaluation of the recovered secret images by PSNR.

The Recovered Secret Images PSNR

RS1 ∞

RS2 ∞

RS3 ∞

RS4 ∞

From Table 3, we can see that all the PSNR of the recovered secret images result is ∞; this is
because that the recovered secret images can be exactly the same as the original secret images from the
theoretical analysis and the experiment results, which means there is no lossless in the recovery as
shown in Figure 7.

In the secret sharing scheme, to measure the correlation between the secret image and the share
image, we use the SSIM (structural similarity index measure) [49] to evaluate the similarity between the
different images. SSIM uses the structure combined with the luminance and the contrast to measure the
similarity. The value of SSIM is between 0 to 1, and the lower SSIM means that there is less similarity.
In this part, we evaluate the similarity between the secret images and all the personal and universal
shares. The result is shown in Table 4.
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Table 4. The structural similarity index measure (SSIM) between the secret images and the shares.

PS1 PS2 PS3 PS4 US1 US2 US3 US4

OS1 0.0421 0.0591 0.0528 0.0231 0.0560 0.0620 0.0543 0.0602
OS2 0.0163 0.0250 0.0342 0.0196 0.0280 0.0776 0.0322 0.0261
OS3 0.0678 0.0782 0.0874 0.0406 0.0992 0.0715 0.0882 0.0842
OS4 0.0816 0.0679 0.0811 0.0445 0.0758 0.0693 0.0841 0.0883

From the table, we can observe that the similarity between the secret images and the share images
are very low and close to 0, so the shares have nearly no similarity with the secret images.

7. Discussion

There are different methods to construct the different kinds of multi secret sharing schemes with
different properties; as such, in this part we will compare our proposed scheme with the typical multi
secret sharing schemes from the secret image type, the pixel expansion, access type, the operation type,
meaningful share, and lossless recovery.

The secret image type means that the secret images can be binary or gray or color image; the pixel
expansion means if the size of the share is bigger than the size of the secret image; access type
means that the access is the threshold access or the general access; the operation means that the
mathematics computation methods are used in the schemes; meaningful share determines if the shares
are meaningful or not; and the lossless recovery determines if the quality of the recovered secret images
is lossless or not. The comparison is shown in Table 5.

Table 5. The comparison about the different multi secret sharing schemes.

The Schemes Secret Image Pixel
Expansion Access Type Operation Meaningful

Share
Lossless
Recovery

Weir, J [22] Binary yes (n, n) OR no no (low
quality)

Chang C C [29] Gray or color no (k, n)
Chinese remainder

mathod and Lagrange
interpolation

no yes

Rajput M [31] Gray or color no (n, n+1) Additive Modulo(256) no no
Chen [32] Binary or gray no (n+1, n+1) XOR no yes
Chen [33] Gray no (n, n) XOR no yes

Yang C N [34] Gray no (n, n) XOR and bit shift no yes
Chen C C [35] Gray (different size) no (n, n) XOR and hash no yes

Deshmukh M [36] Gray no (n, n) XOR and arithmetic
modulo no yes

Kabirirad S [37] Gray no (n, n) XOR no yes

Nag A [43] Gray no General
access XOR no yes

Chen T [46] Gray no General
access XOR no yes

Proposed scheme Gray or color no General
access XOR yes (good

enough) yes

From the comparison of the schemes we can see that, compared with the multi secret sharing
schemes based on the visual cryptography, our proposed multi image secret sharing scheme has better
performance in terms of the pixel expansion, recovery quality, secret image type, meaningful share,
and more general access. It is not like visual cryptography, which does not need any external device
and the secret is obtained by overlapping the printed transparent shares. The proposed scheme need
to execute the Boolean operations for the pixels of the images with the help of the computers, so it
is more complex than the visual cryptography method. Compared with the multi secret sharing
schemes based on the polynomial or other algebraic method, it also has the advantages of more
simple computation, meaningful share, and more general access. Compared with other Boolean based
multi secret sharing schemes, our method can realize more flexible general access not restricted on



Mathematics 2020, 8, 1582 26 of 28

the fixed (n, n) or other threshold, and all the shares are meaningful which is not achieved in other
methods. Moreover, the quality of the share images is higher than 30 dB which is good enough,
the recovery is lossless and is exactly the same as the original secret images. In this paper, we focus
on describing the construction of the sharing and recovery process from the point of mathematics
operation. However, there are still some point in the proposed scheme that can be improved for
example, the 4 LSBs of the original prepared images are replaced in the generation of personal shares
and the universal share. In the future we can use some method to reduce the embedded data and
obtain a better steganography method to make the embedding more unnoticeable.

8. Conclusions

In this paper, we proposed a multi secret sharing scheme with the general access structure based
on the Boolean operation. There is no pixel expansion as in visual cryptography, and the recovery
is lossless. Also, there is no distortion in the recovered secret images, and one secret image can be
recovered by the owners in the qualified subset, or all the secret images can be recovered by all the
owners. All the shares including the personal shares and the universal shares are meaningful and the
quality is good enough which will not attract the attention of any adversaries. Furthermore, our scheme
can be easily extended to the color images, which will be the focus of our future work.
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