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Abstract: The ACE algorithm is a candidate of the Lightweight Cryptography standardization process
started by the National Institute of Standards and Technology (NIST) of the USA that passed the
first round and successfully entered the second round. It is designed to achieve a balance between
hardware cost and software efficiency for both authenticated encryption with associated data (AEAD)
and hashing functionalities. This paper focuses on the impossible differential attack against the
ACE permutation, which is the core component of the ACE algorithm. Based on the method of
characteristic matrix, we build an automatic searching algorithm that can be used to search for
structural impossible differentials and give the optimal permutation for ACE permutation and other
SPN ciphers. We prove that there is no impossible differential of ACE permutation longer than 9 steps
and construct two 8-step impossible differentials. In the end, we give the optimal word permutation
against impossible differential cryptanalysis, which is π′ = (2, 4, 1, 0, 3), and a safer word XOR
structure of ACE permutation.

Keywords: ACE; impossible differential cryptanalysis; NIST lightweight cryptography

1. Introduction

In 2015, to standardize lightweight cryptographic algorithms that are used in some specific
situations where current standard is not applicable, the National Institute of Standards and Technology
(NIST) of the USA started the Lightweight Cryptography (LWC) standardization process. NIST held
two workshops in 2015 and 2016 and published the Federal Register Notice in 2018, announcing the
final Submission Requirements and Evaluation Criteria for the Lightweight Cryptography Standardization
Process and calling for nominations, which are cryptographic algorithms that provide authenticated
encryption with associated data (AEAD) and optional hashing functionalities.

By the end of submission deadline, NIST received 57 submission packages. Among them, 56 were
accepted as first round candidates in April 2019, which marks the beginning of the first round of
the standardization process [1]. Due to the large number of submissions and the short timeline of
the process, NIST has decided to eliminate some of the algorithms from consideration early in the
first evaluation phase in order to focus analysis on the more promising submissions. In August 2019,
NIST announced the 32 candidates that will be moving on to the second round.

ACE is one of the 32 candidates designed by Aagaard et al. of Department of Electrical and
Computer Engineering of University of Waterloo [2]. It is designed to achieve a balance between
hardware cost and software efficiency for both authenticated encryption with associated data (AEAD)
and hashing functionalities, also providing sufficient security margins. In the submission package
of ACE, designers analysis its security, primarily focusing on the diffusion behavior, expected
upper bounds on the probabilities of differential and linear characteristics, algebraic properties and
self-symmetry-based distinguishers. In this paper, we focus on the security margin of ACE against
impossible differential cryptanalysis, which are not considered by any designers and attackers so far.
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Impossible differential cryptanalytic method is a variant of differential cryptanalysis [3]. It can be
used to build impossible differential distinguishers, distinguishing ciphers from random permutation.
Impossible distinguishers can be further used to distinguish correct round keys, which can be
used to recover the secret keys. The concept of impossible differential was proposed respectively
by Knudsen [4] and Biham et al. [5] When studying the security of DEAL, Knudsen found that
if the round function in the Feistel-structure cipher is bijective, then there will be a natural 5-round
impossible differential of the cipher. In EUROCRYPTO 1999, Biham et al. proposed the concept of
impossible differential in their study of Skipjack and then describe the miss-in-the-middle method of
finding impossible differentials in FSE 1999 [6]. Impossible differential cryptanalysis has been used to
attack many well-known iterative block ciphers with very good results (see e.g., [7–13]). Impossible
differential distinguishers are generally of higher rounds than other distinguishers, i.e., compared
to other cryptanalytic methods, impossible differential cryptanalysis can always be used to attack
more rounds (or steps in this paper). For instance, the 3-round Feistel structure with a bijective
round function has a provable security against differential cryptanalysis and linear cryptanalysis [14],
but there is a 5-round impossible differential characteristic for it [4].

In this paper, we focus on the impossible differential cryptanalysis against ACE permutation,
the core component of ACE algorithm, which are not considered by any designers and attackers so far
as we know. The contribution of this paper are as follows:

(1) We use the method of characteristic matrix [15] and propose that the theoretical security margin
of ACE permutation against impossible differential cryptanalysis is of 9 steps.

(2) We build an automatic algorithm that can be used to automatically search structural impossible
differentials and apply it on ACE, giving that the actual security margin of ACE permutation
against impossible differential cryptanalysis is of 8 steps.

(3) We further improve our algorithm that can search for impossible differentials for all possible
word permutations and XOR structures, giving an optimal permutation π′ = (2, 4, 1, 0, 3) and
an optimal XOR structure.

The automatic algorithm in this paper can further be used for other ciphers whose S-boxes
are bijective and permute sub-blocks of states. We separate the step function into two parts
(“XOR” and “Pbox”) and begin the automatic algorithm with the characteristic matrices of these
two parts. Designers and attackers can use the algorithm by respectively entering the characteristic
matrices of “XOR” and “Pbox”. For designers, they can further fix one part and traverse all the
possibilities of the other part, by traversing all the possible characteristic matrix of the other part,
and search for the longest impossible differentials of each, giving the optimal choice of component
against impossible differential cryptanalysis.

This paper is organized as follows. In Section 2, we describe the concrete components of ACE
permutation and the methodology of impossible differential cryptanalysis. In Section 3, we prove the
security margin of ACE permutation, give two 8-step impossible differentials of it and present our
automatic algorithm. In Section 4, by an improved algorithm, we search for the impossible differentials
of all possible word permutations and test the security of other word XORing structures. Section 5
concludes the paper.

2. Preliminary

2.1. The ACE Permutation

The ACE permutation is an iterative permutation with 320-bit input and a 320-bit output after
iterating the step function for s = 16 times. During the encryption/decryption process, the 320-bit
value is arranged as the state. Each 320-bit state is divided into five 64-bit words, written as A, B, C,
D, E, in every step. The step function of ACE consists of a nonlinear function and a linear function.
The nonliniear function SB-64 is applied on even indexed words respectively (i.e., A, C and E),
where comes the permutation name. The step function is shown in Figure 1.
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Figure 1. ACE Step Function.

2.1.1. The Nonlinear Function SB-64

In ACE, the designers take the unkeyed 8-round Simeck block cipher with block size 64 as the
nonlinear function. The Simeck block cipher uses Feistel structure, hence the reduced-round version of
it is nonlinear and bijective, which meets the basic requirement of an S-box. The nonlinear function,
or the S-box of ACE permutation, is denoted by SB-64. The details of SB-64 are shown in Figure 2.

Let rc = (q7, q6, ..., q0), where qj ∈ {0, 1} and o ≤ j ≤ 7. SB-64 iterate the Simeck-64 block cipher
for 8 rounds, with round constant γj = 131||qj taking place of key addition.

x1 x0

f(5, 0, 1)

7 1 0, , ,  

32 32
32

Figure 2. Simeck Box (SB-64).

2.1.2. Round and Step Constants

As Figure 1 shows, the step function of ACE is parameterized by (rci
0, rci

1, rci
2) and (sci

0, sci
1, sci

2).
For j = 0, 1, 2, rci

j and sci
j are both of 8-bit length, which are called round constant(of Speck-64) and

step function(of ACE). The hexadecimal values of the round constant and step constant are shown
in Table 1.

Table 1. Step and round constants of ACE.

Step i Step Constants (sci
0, sci

1, sci
2) Round Constants (rci

0, rci
1, rci

2)

0–3
(50, 28, 14), (5c, ae, 57),
(91, 48, 24), (8d, c6, 63)

(07, 53, 43), (0a, 5d, e4),
(9b, 49, 5e), (e0, 7f, cc)

4–7
(53, a9, 54), (60, 30, 18),
(68, 34, 9a), (e1, 70, 38)

(d1, be, 32), (1a, 1d, 4e),
(22, 28, 75), (f7, 6c, 25)

8–11
(f6, 7b, bd), (9d, ce, 67),
(40, 20, 10), (4f, 27, 13)

(62, 82, fd), (96, 47, f9),
(71, 6b, 76), (aa, 88, a0)

12–15
(be, 5f, 2f), (5b, ad, d6),
(e9, 74, ba), (7f, 3f, 1f)

(2b, dc, b0), (e9, 8b, 09),
(cf, 59, 1e), (b7, c6, ad)

2.1.3. The Linear Function

The linear function of ACE permutation consists of two parts: a word permutation and
a word XORing. We denote word permutation by π. As Figure 1 shows, the origin word permutation
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is π = {3, 2, 0, 4, 1}, i.e., after applying π, the state A ‖ B ‖ C ‖ D ‖ E will be transformed to
D ‖ C ‖ A ‖ E ‖ B. Designers choose it as the linear layer for differential cryptanalysis’s sake.
This word permutation generates the largest number of active S-boxes per step.

2.2. Impossible Differential

Contrary to differential cryptanalysis, impossible differential cryptanalysis does not use high
probability differential characteristics to attack ciphers and recover secret keys. Instead, it uses
differential characteristics of probability 0 (i.e., impossible differential characteristics).

Definition 1 ([3]). Let f denote a function on Abel group A. If for α ∈ A, for an arbitrary x ∈ A, there is
f (x + α)− f (x) 6= β, then (α 9 β) is called a impossible differential of function f .

For instance, we denote an S-box on F4 below:

x 00 01 10 11

S(x) 10 11 01 00

When the input difference is 01, we can compute directly: S(00) ⊕ S(00⊕ 01) = 01, S(01) ⊕
S(01⊕ 01) = 01, S(10)⊕ S(10⊕ 01) = 01, S(11)⊕ S(11⊕ 01) = 01. Then 01 9 10, 01 9 11 are called
an impossible differential of this S-box.

Definition 2 ([3]). For an iterative block cipher, let α0 denote the difference ∆Xof input X and X∗, αr denote
the corresponding r-th round difference ∆C of output C and C∗. If Pr(∆C = αr|∆X = α0) = 0, then α0 9 αr

is called an r round impossible differential of the cipher.

The miss-in-the-middle method is one of the most efficient methods. For an iterative block cipher,
let α→ γ1 be a differential of probability 1 from the encryption side, and γ2 ← β be a differential of
probability 1 from the decryption side. If γ1 6= γ2, then we can deduce that α 9 β is an impossible
differential of the cipher. For different ciphers, the way to find contradiction in the middle is different,
which requires more study on the structure of the cipher itself. In this paper, we focus on structural
impossible differential characteristics, which we denote by impossible differential in the next sections.

3. Impossible Differential Cryptanalysis of ACE

In this section, we propose our results of impossible differential cryptanalysis against ACE
permutation. We prove that there will not be impossible differentials of ACE longer than 10 rounds
and then find two 8-round impossible differentials of ACE. We also introduce an automatic algorithm
searching for impossible differentials, which can be used in the cryptanalysis in other ciphers. Using the
automatic algorithm, we conclude this section that the longest step of impossible differentials of ACE
is 8 step, i.e., for ACE, there will not be impossible differentials longer than 9 steps.

3.1. Impossible Differential of ACE

Let F denote an iterative block cipher, and the internal state of encryption/decryption is divided
into n sub-blocks. We assume that for one round of encryption, the input is denoted as (x0, x1, ..., xn−1)
and the output is denote as (y0, y1, ..., yn−1).

Definition 3 ((Characteristic Matrix) [15]). (1) The encryption characteristic matrix A is an n× n matrix.
The (i, j) entry of A is set to 1 in the case that yi is affected by xj. Otherwise, the (i,j) entry is set to 0.
(2) The decryption characteristic matrix B is an n× n matrix. The (i, j) entry of B is set to 1 if xi is affected by
yj. Otherwise, the (i, j) entry is set to 0.
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Definition 4 ([15]). Given n× n characteristic matrix(encryption or decryption) X = (xij)n×n, Y = (yij)n×n,
we define: X ·Y = (zij)n×n, where zij = xi0 · y0j|xi1 · y1j| · · · |xi,(n−1) · y(n−1),j.

The definition of the multiplication between two characteristic matrices implies the transmission
of effect. For two characteristic matrices X and Y, let X · x = y, Y · y = z, where x =(x0, x1, ..., xn−1),
y =(y0, y1, ..., yn−1) and z =(z0, z1, ..., zn−1). If the (m, n) entry of Y is 1, then zm would be affected by
yn. If the (n, l) entry of X is 1, then yn would be affected by xl . On the basis of these two deductions,
it is apparent that after two-step encryption/ decryption, zm would be affected by xl . On the contrary,
if the (m, n) entry of Y or the (n, l) entry of X is zero (either one of them or both of them), then zm

would not be affected by xl . In general, zm might be affected by all the n sub-blocks of y whereas xl
might affect all the n sub-blocks of y. As long as there is one sub-block of y that delivers the effect of xl
to zm, despite other sub-blocks, zm would definitely be affected by xl , which explains the reason it is
Bitwise-OR that is used in the multiplication between two characteristic matrices.

The diffusion property of a cipher can be observed through characteristic matrix. An r round
encryption procedure can be denoted by the characteristic matrix to the power of r. If after r round’s
encryption, every element of characteristic matrix turns to 1, we can deduce that each sub-block can
affect 5 sub-blocks after r rounds, i.e., a difference in one sub-block could lead to differences in every 5
sub-blocks after r rounds.

Definition 5. Given a state difference a = (a0, a1, ..., an−1), the corresponding difference vector
α = (α0, α1, ..., αn−1) is defined as follows:

αi =


0 i f ai = 0

1 i f ai is active

n ∈ Z, n ≥ 2 i f ai is uncertain

The diffusion property of one round encryption/decryption can be described by left multiplying
the difference vector by characteristic matrix, i.e., the state difference vector α = (α0, α1, ..., αn−1)

becomes A · α/B · α after one round of encryption/decryption. For multi-round (e.g., r-round)
encryption/decryption, the state difference vector will become A · (A · (A · · · (A · α)))/B · (B ·
(B · · · (B · α))).

The multiplication between a characteristic matrix and a state difference vector implies the
transformation of difference. For α0 and α1 of ACE permutation, sub-block α1

1 and α1
2 are respectively

affected only by one sub-block of α0 (α0
2 and α0

0), whereas α1
0, α1

3 and α1
4 are affected by more

than one sub-blocks of α0, i.e., if the second and third sub-block of α0 are active (α0
1 = α0

2 = 1),
the second sub-block of α1 is active (α1

1 = 1) with probability 1 whereas the fifth sub-block is uncertain.
In other words, once a sub-block of the state is affected by more than 1 sub-blocks of the state of the
previous round which are all active, then this sub-block will be uncertain. Hence, we use the real
number addition in this case so that we can observe the active sub-blocks by the value of difference
vector’s entries.

Definition 6. Given n× n characteristic matrices(encryption or decryption) X, Y and a state difference vector
α = (α0, α1, ..., αn−1), there is: X · α = δ, where δi = ∑n−1

k=0 xik · αk

Theorem 1. If the encryption/decryption characteristic matrix of a cipher reaches all-one (all the entries of the
matrix become 1) after r iterations, the cipher reaches structural total diffusion in the encryption/ decryption
direction within r rounds.

Proof. The iteration of characteristic matrix is denoted by the power of the matrix, and the addition in
the matrix multiplication is defined as Bitwise-OR. If the entries of the encryption characteristic matrix
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after r iterations are all equal to 1, then any sub-block of an arbitrary input difference can affect all the
n sub-blocks. The property of decryption characteristic matrix is of the same reason.

Theorem 2. For ACE, there will not be structural impossible differential characteristics longer than 10 steps.

Proof. The encryption characteristic matrix of ACE permutation is


0 0 0 1 1
0 0 1 0 0
1 0 0 0 0
1 0 0 0 1
0 1 1 0 0

, which we

denote as A. This matrix reaches all-one after 5 rounds of iteration. The structure of decryption
permutation is depicted in Figure 3, from which we know the decryption characteristic matrix of ACE

is


0 0 1 0 0
0 1 0 0 1
0 1 0 0 0
1 0 1 1 0
0 0 1 1 0

, denoted by B. B reaches all-one after 5 rounds of iteration as well. Let α→ γ1 be

a differential of probability 1 from the encryption direction and γ2 ← β be a differential of probability
1 from the decryption direction. If the i-th sub-block of γ1 is active whereas the i-th sub-block of γ2

is 0, then there is γ1 6= γ2 with probability 1. Then α 9 β is an impossible differential. For ACE
permutation, there will not be zero difference after 5 rounds in the encryption/decryption direction,
which means there will not be contradiction in the middle.

Aⁱ Bⁱ Cⁱ Dⁱ Eⁱ 

Ai+1  Bi+1  Ci+1  Di+1  Ei+1  

SB-64 SB-64 SB-64
0

irc 1

irc 2

irc

56

01 || isc 56

11 || isc 56

21 || isc

Figure 3. ACE Inverse Step Function.

Theorem 3. (0, 0, 0, α, 0) → (β, 0, 0, 0, 0) and (0, α, 0, 0, 0) → (β, 0, 0, 0, 0) are two 8-step impossible
differentials of ACE.

Proof. The transformation of encryption/decryption characteristic matrix of ACE is depicted
in Figure 4. We can see that the (0, 0) entry of decryption characteristic matrix remains zero one step
before all-one. For encryption characteristic matrix, it is the (1, 3) entry that remains zero, i.e., b0

0 cannot
affect b4

0 and a0
3 cannot affect a4

1. If we set b0
0 active and the sub-blocks of b0 except b0

0 to zero, denoting
it by (β, 0, 0, 0, 0), then after 4 steps, the output difference will be (0, ?, ?, ?, ?). Similarly, we set a0

3 active
and the sub-blocks of a0 except a0

3 to zero, denoting it by (0, 0, 0, α, 0). The differential characteristic
from (0, 0, 0, α, 0) is depicted below:

(0, 0, 0, α, 0)→ (α, 0, 0, 0, 0)→ (0, 0, α1, α1, 0)→ (α1, α2, 0, 0, α2)→ (α3, 0, α4, ?, α2) (1)
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It is obvious that (α3, 0, α4, ?, α2) has a contradiction with (0, ?, ?, ?, ?) in the first sub-block,
then (0, 0, 0, α, 0)→ (β, 0, 0, 0, 0) is an 8-step impossible differential of ACE. The proof of (0, α, 0, 0, 0)→
(β, 0, 0, 0, 0) is of the same method.

(a) 

(b) 

Figure 4. Characteristic matrix’s transformation. White box denotes an entry equaled to 1, while black
box denotes an entry equaled to 0. (a) The transformation of ACE’s encryption characteristic matrix;
(b) The transformation of ACE’s decryption characteristic matrix.

3.2. An Automatic Impossible Differential Characteristic Searching Tool

In this section, we propose our automatic impossible differential searching algorithm. By this
algorithm, one can both get the number of the longest impossible differential and the actual
differential characteristic.

From Section 3.1 we know that there are three circumstances of the sub-blocks of state
difference: zero, active and uncertain. In these three circumstances, the value of the corresponding
state difference vector’s sub-block are 0, 1 and n. The two intermediate state difference r1 and r2 are
unequal with probability 1 when there is i such that the i-th sub-block of one is active while the i-th
block of the other is zero. Equally, considering the corresponding difference vectors, this means the
i-th sub-block of one equals to 1, whereas the i-th sub-block of the other equals to 0.

Theorem 4. For two intermediate difference vector γ1 and γ2, the existence of an i-th sub-block of γ1 + γ2

equaled to 1 implies the existence of an impossible differential.

The proof of Theorem 4 is simple. Because the i-th sub-block of γ1 + γ2 equals to 1 if and only if
the i-th sub-block of γ1/γ2 equals to 1 and the i-th sub-block of γ2/γ1 equals to 0. Both two occasions
imply a contradiction in the middle round.

According to Theorem 4, we can tell the existence of impossible differential by observing the sum
of two intermediate difference vectors. If there is a sub-block of the sum vector equaled to 1, then there
is a contradiction in the middle, which leads to an impossible differential. If not, it means there is no
contradiction and no structural impossible differentials.

Theorem 5. For ACE, there is no impossible differential longer than 9 steps.

Theorem 5 can be proved by practical computer experiment. Using the automatic searching
algorithm, we find no 9-step structural impossible differential for ACE permutation. This is the security
margin of ACE permutation against impossible differential cryptanalysis. If taking more details of
ACE permutation into consideration, such as the details of SB-64,we may get impossible differentials
longer than that. Algorithm 1 provides the pseudo-code of the automatic algorithm for searching
m + n step impossible differentials.
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Algorithm 1 Automatic algorithm for searching m + n step impossible differentials.

Input: The encryption characteristic matrix A; The decryption characteristic matrix B; The step number
m from the encryption direction; The step number n from the decryption direction;

Output: The (m + n)-step impossible differential
1: for all possible input difference vector α, output difference vector β do
2: for i=1 to m do

α = A× α;
3: end for
4: for j=1 to m do

β = B× β;
5: end for
6: if α + β have a sub-block equaled to 1 then

return α 9 β
7: end if
8: end for

4. Security of ACE Permutation

In this section, we use our algorithm to automatically try every possible word permutation
and search for their longest impossible differentials. We give the safest word permutation against
impossible differential attack using the improved automatic algorithm. Then we change the structure of
word XORing and search for the longest impossible differentials of them. By our automatic algorithm,
we give the optimal word permutation, which is π′ = (2, 4, 1, 0, 3), and a safer word XOR structure
of ACE.

4.1. Security of Word Permutations

The step function of ACE consists of word permutation and word XORing. Hence, the characteristic
matrix can also be divided to the multiplication of two matrices, and the multiplication rule is the same as
the self-multiplication of characteristic matrix.

According to Definition 4, we divide the encryption/decryption characteristic matrix into
“XOR” matrix and “Pbox” matrix. We fix “XOR” and traverse all possible “Pbox”. Within every
possible “Pbox”, we search for the longest impossible differential, obtaining the optimal word
permutation π′ = (2, 4, 1, 0, 3) who has the minimum length of impossible differentials. Algorithm 2
depicts the pseudo-code of the automatic algorithm searching for the safest permutation.

Algorithm 2 Automatic algorithm searching for the safest permutation.

Input: The XOR matrix S; The step number r
Output: The characteristic matrix P of the safest permutation “Pbox”

1: for all characteristic matrix of a permutation do S = P× S, inverseS = inverseS× inverseP;

2: for all input difference vector α, output difference vector β do
3: for i=1 to m do

α = S× α;
4: end for
5: for j=1 to m do

β = inverseS× β;
6: end for
7: if α + β does not have any sub-block equaled to 1 then
8: // For this permutation, the algorithm do not have m + n-step impossible differentials

return P
9: end if

10: end for
11: end for
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4.2. Security of XOR Structures

Different XOR structures will bring different diffusion property of the cipher. If chosen improperly,
it may give chance for people to attack the cipher. Hence, in this section, we change the structure of
XORing in ACE and test the security margin of them, to see if the original one is the safest.

In ACE, the state is divided into five words. The three of them will be transformed by SB-64 and
they are structural equivalent. In this section, we consider the cases that the transformed three words
being XORed to another three words and give three XOR structures that are safer than the original one
as Figure 5 shows.

Aⁱ Bⁱ Cⁱ Dⁱ Eⁱ 

SB-64

Ai+1  Bi+1  Ci+1  Di+1  Ei+1  

= 3 2 0 4 1 （ ，，，，）

SB-64

SB-64

Aⁱ Bⁱ Cⁱ Dⁱ Eⁱ 

SB-64
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SB-64
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(a) (b) (c)

Figure 5. Three new ways of XOR. (a) structure; (b) structure; (c) structure.

To test the diffusion property and security margin against impossible differential cryptanalysis,
we depict the decryption algorithm corresponding to the three cases in Figure 6 and analyze their
properties prospectively.
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Figure 6. The inverse structure of three new ways of XOR. (a) structure; (b) structure; (c) structure.

(1) The encryption characteristic matrix of (a) structure is


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

. It reaches all-one in 5

steps whereas the decryption characteristic matrix of structure (a), which is


1 1 1 1 0
0 1 1 1 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

, reaches

all-one in 4 steps. This means there is also no 9-step impossible differential for (a) structure. By using
the automatic algorithm, we search for all the possibilities, finding no 8-step impossible differential
but one 7-step impossible differential of (a) structure.
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(1) The encryption characteristic matrix of (b) structure is


1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
1 0 0 1 1
1 0 0 0 1

. It reaches all-one in 5

steps whereas the decryption characteristic matrix of structure (b), which is


1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
1 0 0 0 1

, reaches

all-one in 4 steps. This means there is no 9-step impossible differential for (b) structure. By using the
automatic algorithm, we search for all the possibilities, finding no 8-step impossible differential but
several 7-step impossible differentials of (b) structure.

(3) The encryption characteristic matrix of (c) structure is


1 0 0 0 1
1 1 0 0 1
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

. It reaches all-one in

only 3 steps whereas the decryption characteristic matrix of structure (c), which is


1 0 0 0 1
1 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

,

reaches all-one in 6 steps. This means there is also no 9-step impossible differential for (c) structure. By
using the automatic algorithm, we search for all the possibilities and find several 8-step impossible
differential of (c) structure.

We conclude and compare these three new structures in Table 2, where m denotes the step number
of reaching all-one from the encryption direction and n denotes the step number of reaching all-one
from the decryption direction.

Table 2. Properties of structures.

Structure m n Theoretical Longest Impossible Differentials Actual Longest Impossible Differentials (Number)

a 5 4 8 steps 7 steps (1)
b 5 4 8 steps 7 steps (6)
c 3 6 8 steps 8 steps (2)

ACE 5 5 9 steps 8 steps (2)

In Table 2, it is depicted that structure (a) reaches all-one after 5 steps from the encryption direction.
From the decryption direction, structure (a) reaches all-one after 5 steps. This implies that the longest
impossible differential of structure (a) may be of 8 steps. However, by using the automatic algorithm,
we search for all the possibilities, finding no 8-step impossible differential but one 7-step impossible
differential. For structure (b), it reaches all-one after 5 and 4 steps from the encryption direction and
decryption direction respectively while the longest impossible differential of it is of 7 steps. As for
structure (c), it reaches all-one after 3 and 6 steps from the encryption direction and decryption direction
respectively while the longest impossible differential of it is of 8 steps.

From Table 2, we can observe that structure (a), (b) and (c) all have better diffusion property
than ACE. Structure (a) and (b) both have higher security margin than (c) and ACE while the
(a) structure have the least amount of 7-step impossible differentials, then we can conclude that
among them, structure (a) is the optimal XOR structure for ACE permutation against impossible
differential cryptanalysis.
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5. Conclusions

In this paper, we focused on the impossible differential attack against ACE permutation, which
is the core component of ACE algorithm. We used the method of characteristic matrix and built an
automatic algorithm that can be used to search for the longest structural impossible differentials.
We gave the security margin of ACE permutation against impossible differential cryptanalysis,
which is 10, and searched the impossible differentials of ACE permutation, proving that ACE
permutation does not have impossible differentials longer than 9 steps. We further improved
our algorithm to search for impossible differentials for all possible word permutations and give
a safer permutation π′ = (2, 4, 1, 0, 3). This improved algorithm can be used by designers to choose
permutation with highest security margin against impossible differential cryptanalysis.
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Abbreviations

Notation Description
word a 64-bit binary string
step one round of ACE
s number of steps
SB-64 nonlinear function of ACE permutation
A encryption characteristic matrix of ACE permutation
B decryption characteristic matrix of ACE permutation
ai the state difference in the i-th step of encryption
bi the state difference in the i-th step of decryption
αi the difference vector of ai

βi the difference vector of bi

αi
j, βi

j, ai
j and bi

j the j-th sub-block of αi, βi, ai and bi
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