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Abstract: The probabilistic dual hesitant fuzzy sets (PDHFSs), which are able to consider multiple 
membership and non-membership degrees as well as their probabilistic information, provide 
decision experts a flexible manner to evaluate attribute values in complicated realistic multi-
attribute decision-making (MADM) situations. However, recently developed MADM approaches 
on the basis of PDHFSs still have a number of shortcomings in both evaluation information 
expression and attribute values integration. Hence, our aim is to evade these drawbacks by 
proposing a new decision-making method. To realize this purpose, first of all a new fuzzy 
information representation manner is introduced, called q-rung probabilistic dual hesitant fuzzy 
sets (q-RPDHFSs), by capturing the probability of each element in q-rung dual hesitant fuzzy sets. 
The most attractive character of q-RPDHFSs is that they give decision experts incomparable degree 
of freedom so that attribute values of each alternative can be appropriately depicted. To make the 
utilization of q-RPDHFSs more convenient, we continue to introduce basic operational rules, 
comparison method and distance measure of q-RPDHFSs. When considering to integrate attribute 
values in q-rung probabilistic dual hesitant fuzzy MADM problems, we propose a series of novel 
operators based on the power average and Muirhead mean. As displayed in the main text, the new 
operators exhibit good performance and high efficiency in information fusion process. At last, a new 
MADM method with q-RPDHFSs and its main steps are demonstrated in detail. Its performance in 
resolving practical decision-making situations is studied by examples analysis. 

Keywords: q-rung dual hesitant fuzzy sets; q-rung probabilistic dual hesitant fuzzy sets; power 
Muirhead mean; multi-attribute decision-making 

 

1. Introduction 

Multi-attribute decision-making (MADM), whose main purpose is to get the rank of candidates 
based on a set of principles and decision experts’ opinions, is a promising research field, which has 
extensively gained many interests [1–5]. Nevertheless, decision makers (DMs) feel it is becoming 
increasingly difficult and complicated to evaluate the performance of all the possible alternatives and 
appropriately determine the most satisfactory one in MADM issues. One of the primary reasons is 
the extensive existence of uncertainty and indeterminacy in decision-making process. For the sake of 
more convenient expressions of evaluation information, a large number of researchers have made 
great efforts to probe theories and tools to assistant DMs. One of the most advantageous theories is 
hesitant fuzzy sets (HFSs) [6], which remind scholars and scientists the importance and necessity to 
consider both vagueness and DMs’ hesitancy in one framework. The peculiarity and characteristics 
of HFS make it well-known and its applications in MADM approaches have soon been proven to be 
promising and potential [7–10]. Later on, scholars focused on extensions of the classical HFSs, and 
dual hesitant fuzzy set (DHFS) [11] is one of the most representative. The superiorities of DHFSs are 
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reflected in two aspects, viz., they interpret fuzzy information from both positive and negative points, 
and efficiently represent DMs’ high hesitancy. Soon afterwards, MADM methods based on 
aggregation operators (AOs) and information measures of DHFSs, as well as extensions of classical 
decision methods into dual hesitant fuzzy environment, have become an active research area.  

Dual hesitant fuzzy MADM methods provide DMs convenient manners to choose a wise 
alternative, however, as discussed in many publications, they still have limitations and shortcomings. 
For example, Hao et al. [12] pointed out one defect of DHFSs in depicting fuzzy information. In the 
opinions of Hao et al. [12], each member in dual hesitant fuzzy element (DHFE) has the same 
importance, which is counterintuitive and inconsistent with actual situations to a certain degree. 
Actually, the importance or DMs’ preferred intensity of each element in evaluation values should be 
counted and some similar researches have been done on the basis of this perspective. For instance, 
by considering the frequency or probability of each linguistic term in hesitant fuzzy linguistic term 
set, Pang et al. [13] introduced the probabilistic linguistic term sets. Analogously, Zhao et al. [14] 
proposed the probabilistic hesitant fuzzy sets by adding the probabilistic value of each membership 
degrees (MDs) in hesitant fuzzy elements. To evade the flaw of DHFSs, Hao et al. [12] continued to 
propose the probabilistic DHFSs (PDHFSs) by adding corresponding probability of each member in 
DHFEs. As an attractive extension of DHFSs, PDHFSs can describe DMs’ assessment values more 
accurately and comprehensively, as they denote not only the MDs and non-membership degrees 
(NMDs), but also the corresponding probabilistic information. In Hao et al.’s [12] publication, authors 
investigated operations, comparison principle and AOs of PDHFSs as well as a novel decision 
method to facilitate their applications in realistic MADM problems. It is necessary to point out that 
Hao et al.’s [12] MADM method still have drawbacks, which limit its use in solving practical MADM 
issues and these flaws are still existing, although some improved decision approaches have been 
proposed. Generally speaking, the shortcomings of Hao et al.’s [12] method are two-folds. First, 
PDHFSs have drawbacks in presenting complex DMs’ evaluation information and there exist many 
situations that cannot be adequately handled by PDHFSs. For instance, the restriction of PDHFSs is 
that the sum of MD and NMD should be less than one and if such sum is greater than one, then 
PDHFS is powerless. The second drawback is that the information integration methods proposed by 
Hao et al. [12] fail to handle complicated realistic situations, such as wherein attributes are correlated.  

Based on the above analysis, our motivations and goals are to avert aforementioned 
shortcomings by proposing a novel MADM method. To this end, we first propose a new technique 
to overcome the drawback of PDHFSs in denoting fuzzy decision information. The q-rung dual 
hesitant fuzzy sets (q-RDHFSs) [15], as a new extension of Yager’s [16] q-rung orthopair fuzzy sets (q-
ROFSs), allow multiple MDs and NMDs, which is similar to DHFSs. However, q-RDHFSs are more 
powerful than DHFSs, as they inherit the remarkable advantage of q-ROFSs, i.e., permitting the sum 
of qth power of MD and qth power of NMD to be less than or equal to one. This character makes q-
ROFSs and q-RDHFSs to be promising theories or tools, which has been widely noticed by scientists 
[17–29]. Therefore, aiming at the drawback of PDHFSs, we extend q-RDHFSs to q-rung probabilistic 
dual hesitant fuzzy sets (q-RPDHFSs) by taking the probability of each member in q-rung dual 
hesitant fuzzy element (q-RDHFE) into consideration. The q-RPDHFSs are parallel to PDHFS but are 
more powerful and useful, as they have a much laxer constraint, making the describable information 
space larger. Additionally, owing to the ability of denoting MDs, NMDs as well as their probabilities 
simultaneously, q-RPDHFSs also exhibit advantages over q-RDHFSs. To circumvent the second 
defect of Hao et al.’s [12] method, we provide a series of compound AOs of q-rung probabilistic dual 
hesitant fuzzy elements (q-RPDHFEs). Absorbing the advantages of power average operator [30] and 
Muirhead mean [31], the power Muirhead mean (PMM), originated by Li and her colleagues [32], has 
been proved to have flexibility and advantages in information fusion process [33–35]. Naturally, the 
characteristics of PMM motivate us to extend it to q-RPDHFSs to introduce some novel powerful 
hybrid AOs. Hence, we generalize PMM into q-rung probabilistic dual hesitant fuzzy environment 
to propose some new AOs for q-RPDHFEs. In this paper, we further illustrate why our AOs can 
overcome the second flaw of Hao et al.’s [12] method.  
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The novelties and contributions of this work are presented as follows. (1) A new information 
representation model, called q-RPDHFSs, was proposed. This contribution makes it easier and more 
convenient to depict DMs’ complex and fuzzy assessment information in decision-making problems. 
(2) The operations, score function, accuracy function, comparison method and distance measure of q-
RPDHFSs were presented and discussed. (3) Novel efficient AOs were put forward, which effectively 
aggregate integrate attribute values under q-RPDHFSs. (4) A new MADM method was developed to 
judge the best alternative in q-RPDHFSs. (5) Some actual MADM examples were provided to show 
the effectiveness of our new method. The structure of the rest of this paper is as follows. Section 2 
recalls basic concepts. Section 3 proposes the q-RPDHFSs and introduces their related notions, such 
as operational rules, comparison method, distance measure, etc. Section 4 presents some AOs of q-
RPDHFEs and discusses their properties. Section 5 presents a new MADM method under q-
RPDHFSs. Section 6 conducts numerical experiments to show the performance of the new MADM 
method. Conclusions are provided in Section 7. 

2. Preliminaries 

In this section, the concepts of q-RDHFSs, PMM and power dual Muirhead mean (PDMM) 
operators are briefly reviewed, which are the theoretical basis of the proposed method. We extend q-
RDHFSs to q-RPDHFSs by taking probabilities into consideration and develop some new AOs by 
applying PMM and PDMM to q-RPDHFSs in the following Sections 3 and 4, respectively. 

2.1. q-Rung Dual Hesitant Fuzzy Sets  

Definition 1 [15]. Let X be a fixed set, a q-rung dual hesitant fuzzy set (q-RDHFS) A defined on X is given 
as follows  

( ) ( ){ }, ,A x h x g x x X= ∈ , (1) 

where ( )h x  and ( )g x  are two sets of some values in the interval [0,1], denoting the possible MDs and 

NMDs, respectively. In addition, ( )h x  and ( )g x  should satisfy the following condition 

0 , 1μ ν≤ ≤ , ( ) ( ) 1
q q

μ ν+ ++ ≤ , (2) 

where 1q ≥ , denoting the rung of the set A, ( )h xμ ∈ , ( )g xν ∈ , ( ) { }maxh xμμ μ+
∈=   and 

( ) { }maxg xνν ν+
∈=  . For convenience, the ordered pair ( ) ( ) ( )( ),e x h x g x=  is called a q-RPDHFE by Xu et 

al. [15], which can be denoted by ( ),e h g=  for simplicity. It is noted that the rung q increases, the information 

space that the set A can describe increases.  

Xu et al. [15] proposed a method to rank any two q-RDHFEs.  

Definition 2 [15]. Let ( ),e h g=  be a q-RDHFE, the score function of e is defined as 

( ) 1 1
# #

qq

h g
S e

h gμ ν
μ ν

∈ ∈

  
= −        

  , (3) 

and the accuracy function of e is defined as 

( ) 1 1
# #

qq

h g
H e

h gμ ν
μ ν

∈ ∈

  
= +        

  , (4) 

where #h and #g denote the numbers of the elements in h and g respectively. For any two q-RDHFEs 
( )1 1 1,e h g=  and ( )2 2 2,e h g= , then 
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(1) If ( ) ( )1 2S e S e> , then 1 2e e> ; 

(2) If ( ) ( )1 2S e S e= , then 

     if ( ) ( )1 2H e H e> , then 1 2e e> ; 

     if ( ) ( )1 2H e H e= , then 1 2e e= . 

Xu et al. [15] also provided some operations of q-RDHFEs.  

Definition 3 [15]. Let ( ),e h g= , ( )1 1 1,e h g=  and ( )2 2 2,e h g=  be any three q-RDHFEs and λ  be a 

positive real number, then  

(1) ( ){ } { }
1 1 1 1 2 2 2 2

1/

1 2 , , , 1 2 1 2 1 2,
qq q q q

h g h ge e μ ν μ ν μ μ μ μ ν ν∈ ∈ ∈ ∈
 ⊕ = + − 
 

 ; 

(2) { } ( ){ }1 1 1 1 2 2 2 2

1/

1 2 , , , 1 2 1 2 1 2,
qq q q q

h g h ge e μ ν μ ν μ μ ν ν ν ν∈ ∈ ∈ ∈
 ⊗ = + − 
 

 ; 

(3) ( ) { }
1/

, 1 1 ,
q

q
h ge

λ λ
μ νλ μ ν∈ ∈

     = − −   
     

 ; 

(4) { } ( )
1/

, , 1 1
q

q
h ge

λλ λ
μ ν μ ν∈ ∈

     = − −        
 . 

2.2. Power Muirhead Mean Operators  

Definition 4 [32]. Let ( )1,2,...,ja j n=  be a collection of crisp numbers and ( )1 2, , n
nL l l l R= ∈  be a 

vector of parameters. Then, the PMM is defined as follows:  

( ) ( )( )( ) ( )

( )( )
1

1

1 2
1

1

11, ,...,
! 1

nj
j

j

n

l
l

n j jL
n n

S j
j

j

n T a a
PMM a a a

n T a

ϑ ϑ

ϑ

=

∈ =

=

     +  =   
 + 
   

∏


,  (5) 

where ( ) ( )
= ≠

= 
1,

,
n

j i j
i i j

T a Sup a a , ( )( )1,2,...,j j nϑ =  represents any permutation of ( )1,2,...,n , nL  denotes 

all possible permutations of ( )1,2,...,n , n is the balancing coefficient, and ( ),i jSup a a  denotes the support for 

ia  from ja , satisfying the following properties 

(1) ( ) ∈   , 0,1i jSup a a ; 

(2) ( ) ( )=, ,i j j iSup a a Sup a a ; 

(3) If ( ) ( ), ,i j s td a a d a a< , then ( ) ( )>, ,i j j iSup a a Sup a a , where ( ),i jd a a is the distance between ia and ja . 

Liu et al. [36] continued to introduce the power dual Muirhead mean (PDMM) operator, which 
is a combination of the power geometric (PG) [37] operator and the dual Muirhead mean (DMM) [38] 
operator.  

Definition 5 [36]. Let ( )1,2,...,ja j n=  be a set of crisp numbers and ( )1 2, , n
nL l l l R= ∈  be a vector of 

parameters. Then, the PDMM is defined as follows:  
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( ) ( )

( )( )( )
( )( )

1

1
!1

1

1 2
1

1

1, ,...,

j

n

j
j

n

nn T a

T an
L

n j jn
jS

j
j

PDMM a a a l a
l

ϑ

ϑ
θ

=

+

+

=∈

=

 
 

 
=  

 
  
 

∏


, (6) 

where ( ) ( )
1,

,
n

j i j
i i j

T a Sup a a
= ≠

=  , ( )( )1,2,...,j j nϑ =  represents any permutation of ( )1,2,...,n , nL  denotes 

all possible permutations of ( )1,2,...,n , n is the balancing coefficient, and ( ),i jSup a a  denotes the support for 

ia  from ja , satisfying the properties in Definition 4.  

3. q-Rung Probabilistic Dual Hesitant Fuzzy Sets  

In this section, we propose the concept of q-RPDHFSs. In order to do this, we first briefly 
introduce the motivations of proposing q-RPDHFSs and explain why we need q-RPDHFSs. Then the 
definition, operational rules, comparison method and distance measure of q-RPDHFSs are further 
introduced.  

3.1. Motivations of Proposing q-RPDHFSs 

In actual MADM problems, it is highly necessary to comprehensively express DMs’ evaluation 
information before determining the best alternatives. In other word, depicting DMs’ evaluation 
values accurately and appropriately is a precondition, which makes the final decision consequences 
reliable and reasonable. As fuzziness and vagueness extensively exist in realistic decision-making 
issues, DMs usually express their assessment with the help of fuzzy sets. In addition, sometimes it is 
also needful to consider the probabilities of fuzzy values to more precisely denote attribute values 
provided by decision experts. We provide the following example to better demonstrate this 
phenomenon. 

Example 1. The library of a university plans to purchase a batch of books. The library invites three decision 
experts to evaluate the performance of a potential book vendor under the attribute “reputation”. Each DM is 
required to use several values to denote the MDs and NMDs of his/her evaluation value. The assessment 
information provided by the three DMs is listed in Table 1. 

Table 1. The evaluation information provided by DMs in Example 1. 

 Possible MDs Possible NMDs 
The first DM 0.4, 0.5, 0.6 0.1, 0.2, 0.3 
The second DM 0.2, 0.3, 0.5 0.1, 0.2 
The third DM 0.1, 0.4 0.2, 0.3, 0.5 

If we integrate each DM’s evaluation values in the form of DHFEs, then it can be denoted as 
{{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, {0.1, 0.2, 0.3, 0.5}}. However, it is noted that the multiple appearances of the 
MDs 0.4 and 0.5, and the NMDs 0.1, 0.2, and 0.3 are ignored, which implies that some fundamental 
information is lost. If we denote the group’s overall evaluation value by PDHFE, then it can be 
expressed as {{0.1|0.125, 0.2|0.125, 0.3|0.125, 0.4|0.25, 0.5|0.25, 0.6|0.125}, {0.1|0.25, 0.2|0.375, 
0.3|0.25, 0.5|0.125}}. It is noted that when using PDHFE to express the evaluation value of the group, 
not only each MD and NMD, but also their corresponding probabilistic information is taken into 
account, which indicates the superiority of PDHFE. This example reveals the advantage of PDHFSs 
over DHFS. Nevertheless, PDHFSs still have shortcomings. If the third DM would like to employ {0.4, 
0.6} to denote his/her preferred MDs, then the overall evaluation value cannot be handled by PDHFSs 
as 0.6 + 0.5 = 1.1 > 1. This example reveals the shortcomings of PHFSs and PDHFSs is they fail to deal 
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with situations in which the sum of MD and NMD is greater than one. Hence, to circumvent such 
drawback and more accurately describe groups’ evaluation opinions, it is necessary to propose a new 
fuzzy information expression tool. Motivated by the q-RDHFSs, which have the character that the 
sum of qth power of MD and qth power of NMD is greater than one, we extend q-RDHFSs to q-
RPDHFSs, which consider both the multiple MDs and NMDs, and their probabilistic information. 
The definition as well as some related notions of q-RPDHFSs are presented in the following 
subsections.  

3.2. The Definition of q-RPDHFSs 

Motivated by DHFSs, PDHFSs and q-RDHFS, we present the definition of q-RPDHFSs. 

Definition 6. Let X be a fixed set, a q-rung probabilistic dual hesitant fuzzy set (q-RPDHFS) D defined on X 
is given by the following mathematical symbol 

( ) ( ) ( ) ( ){ }, ,D x h x p x g x t x x X= ∈ , (7) 

where ( ) ( )h x p x  and ( ) ( )g x t x  are two series of possible elements, ( )h x  and ( )g x  denote the possible 

MDs and NMDs of the element x X∈  to the set D, respectively. ( )p x  and ( )t x  are the probabilistic 

information for the MDs and NMDs, respectively. In addition, the elements ( )h x , ( )g x , ( )p x  and ( )t x  

satisfying the following conditions: 

0 , 1,μ ν≤ ≤ ( ) ( )0 1
q q

μ ν+ +≤ + ≤ ,  (8) 

and 
##

1 1
0,1 , 0,1 , 1, 1

gh

i i i i
i i

p t p t
= =

∈   ∈   = =      ,  (9) 

where ( )h xμ ∈ , ( )g xν ∈ , ( ) { }maxh xμμ μ+
∈=  , ( ) { }maxg xνν ν+

∈=  , ( )ip p x∈  and ( )it t x∈ . The 

symbols #h and #g represent the total numbers of elements in ( ) ( )h x p x  and ( ) ( )g x t x , respectively. For 

convenience, ( ) ( ) ( ) ( )( ),h x p x g x t xα =  is called a q-rung probabilistic dual hesitant fuzzy element (q-

RPDHFE), which can be denoted by ( ),h p g tα =  for simplicity.  

Remark 1. Especially, if all the probability values are equal in p and t, then the q-RPDHFS reduces to the q-
RDHFS. In addition, when q = 1, the q-RPDHFS reduces to PDHFS proposed by Hao et al. [12]. If q = 2, then 
the probabilistic dual Pythagorean hesitant fuzzy sets (PDPHFSs) are obtained. In other word, the PDHFSs and 
PDPHFSs are special cases of our proposed q-RPDHFSs and q-RPDHFS is a generalized form of PDHFS and 
PDPHFS. 

In Example 1, when the third DM uses {0.4, 0.6} to denote his/her preferred MDs, then the overall 
evaluation values of the group can be expressed as d = {{0.2|0.125, 0.3|0.125, 0.4|0.25, 0.5|0.25, 
0.6|0.25}, {0.1|0.25, 0.2|0.375, 0.3|0.25, 0.5|0.125}}, which is a q-RPDHFE, as 0.62 + 0.52 = 0.61 < 1. This 
example implies that the proposed q-RPDHFSs are more powerful and flexible and have a lager range 
of applications than PDHFSs. In addition, compared with the traditional q-RDHFSs, q-RPDHFSs can 
more comprehensively express DMs’ evaluation opinions.  
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3.3. Basic Operational Rules of q-RPDHFEs 

In this subsection, we introduce some basic operations of q-RPDHFEs and discuss their 
properties.  

Definition 7. Let ( )1 11 1 1,h gh p g tα = , ( )2 22 2 2,h gh p g tα =  and ( ),h gh p g tα =  be any three q-

RPDHFEs, and λ  be a possible real number, then 

(1) ( ){ } ( ){ }1 1 1 1 2 2 2 2 1 2 1 2

1/

1 2 , , , 1 2 1 2 1 2,
qq q q q

h g h g p p t tμ ν μ ν μ μ ν να α μ μ μ μ ν ν∈ ∈ ∈ ∈
 ⊕ = + − 
 

 ; 

(2) ( ){ } ( ){ }1 1 1 1 2 2 2 2 1 2 1 2

1/

1 2 , , , 1 2 1 2 1 2| , |
qq q q q

h g h g p p t tμ ν μ ν μ μ ν να α μ μ ν ν ν ν∈ ∈ ∈ ∈
 ⊗ = + − 
 

 ; 

(3) ( ) { }
1/

, 1 1 ,
q

q
h g p t

λ λ
μ ν μ νλα μ ν∈ ∈

     = − −   
     

 ; 

(4) { } ( )
1/

, , 1 1
q

q
h g p t

λλ λ
μ ν μ να μ ν∈ ∈

     = − −   
     

 . 

Example 2. Let { } { }{ }1 = 0.2 0.3 ,0.5 0.7 , 0.3 0.6 ,0.5 0.4α , { } { }{ }2 0.3 0.1,0.8 0.9 , 0.5 0.8 ,0.6 0.2α =  and 

{ } { }{ }0.3 0.6 ,0.8 0.4 , 0.5 0.5 ,0.6 0.5α =  be three q-RPDHFEs (q = 3), then 

{ } { }{ }α α⊕1 2 = 0.83 0.63,0.80 0.27 ,0.53 0.07 ,0.33 0.03 , 0.3 0.08 ,0.25 0.32 ,0.18 0.12 ,0.15 0.48 , 

{ } { }{ }1 2 = 0.4 0.63 ,0.16 0.27 ,0.15 0.07 ,0.06 0.03 , 0.68 0.08 ,0.62 0.32 ,0.62 0.12 ,0.53 0.48α α⊗ , 

{ } { }{ }2 0.91 0.4 ,0.38 0.6 , 0.36 0.5 ,0.25 0.5α = , 

{ } { }{ }2 0.64 0.4 0.09 0.6 , 0.73 0.5 0.62 0.5α = ， ， . 

Based on Definition 7, we can obtain the following theorem.  

Theorem 1. Let ( )1 11 1 1,h gh p g tα = , ( )2 22 2 2,h gh p g tα =  and ( )α =
3 33 3 3,h gh p g t  be any three q-

RPDHFEs, and 1 2, , 0λ λ λ > , then 

(1) 1 2 2 1α α α α⊕ = ⊕ ; 

(2) ( ) ( )1 2 3 1 2 3α α α α α α⊕ ⊕ = ⊕ ⊕ ; 

(3) ( )1 2 1 2=λ α α λα λα⊕ ⊕ ; 

(4) 1 2 2 1α α α α⊗ = ⊗ ; 

(5) ( ) ( )1 2 3 1 2 3α α α α α α⊗ ⊗ = ⊗ ⊗ ; 

(6) ( )1 2 1 2

λ λ λα α α α⊗ = ⊗ ; 

(7) λ λ λ λα α α+ = ⊗1 2 1 2
1 1 1 . 

Proof.  

(1) ( ){ } ( ){ }μ ν μ ν μ μ ν να α μ μ μ μ ν ν α α∈ ∈ ∈ ∈
 ⊕ = + − = ⊕ 
 


1 1 1 1 2 2 2 2 1 2 1 2

1/

1 2 , , , 1 2 1 2 1 2 2 1,
qq q q q

h g h g p p t t . 

(2) ( ) ( ){ }μ ν μ μ μ
μ ν
μ ν

α α α μ μ μ μ μ μ μ μ μ μ μ μ∈ ∈
∈ ∈
∈ ∈

⊕ ⊕ = + + − − − +



1 1 1 1 1 2 3
2 2 2 2
3 3 3 3

1/

1 2 3 , , 1 2 3 1 2 1 3 2 3 1 2 3
, ,
,

,
qq q q q q q q q q q q q

h g
h g
h g

p p p  

( ){ }} ( )ν ν νν ν ν α α α= ⊕ ⊕
1 2 31 2 3 1 2 3|t t t . 
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(3) ( ) ( ) ( ) ( ){ }λ λ λ
μ ν μ ν μ μ ν νλ α α μ μ ν ν∈ ∈ ∈ ∈

     ⊕ = − − −   
     


1 1 1 1 2 2 2 2 1 2 1 2

1/

1 2 , , , 1 2 1 21 1 1 ,
q

q q
h g h g p p t t

( ) ( ){ } ( ) ( ){ }λ λλ λ
μ ν μ ν μ ν μ νμ ν μ ν∈ ∈ ∈ ∈

              = − − ⊕ − −        
               

 
1 1 1 1 1 1 2 2 2 2 2 2

1/ 1/

, 1 1 , 2 21 1 , 1 1 ,
q q

q q
h g h gp t p t

2 1λα λα= ⊕ .  

(4) ( ){ } ( ){ }μ ν μ ν μ μ ν να α μ μ ν ν ν ν α α∈ ∈ ∈ ∈
 ⊗ + − = ⊗ 
 


1 1 1 1 2 2 2 2 1 2 1 2

1/

1 2 , , , 1 2 1 2 1 2 2 1= ,
qq q q q

h g h g p p t t . 

(5) ( ) ( ){ }{μ ν μ μ μ
μ ν
μ ν

α α α μ μ μ∈ ∈
∈ ∈
∈ ∈

⊗ ⊗ = 
1 1 1 1 1 2 3
2 2 2 2
3 3 3 3

1 2 3 , , 1 2 3
, ,
,

,h g
h g
h g

p p p  

( ){ } ( )ν ν νν ν ν ν ν ν ν ν ν ν ν ν α α α+ + − − − + = ⊗ ⊗
1 2 3

1/

1 2 3 1 2 1 3 2 3 1 2 3 1 2 3

qq q q q q q q q q q q q t t t .  

(6) ( ) ( ){ } ( ) ( )λ λλ λ
μ ν μ ν μ μ ν να α μ μ ν ν∈ ∈ ∈ ∈

     ⊗ = − − −   
     


1 1 1 1 2 2 2 2 1 2 1 2

1/

1 2 , , , 1 2 1 2, 1 1 1
q

q q
h g h g p p t t

( ){ } ( ) ( ){ } ( )λ λλ λ
μ ν μ ν μ ν μ νμ ν μ ν∈ ∈ ∈ ∈

              = − − ⊗ − −                       
 

1 1 1 1 1 1 2 2 2 2 2 2

1/ 1/

, 1 1 , 2 2, 1 1 , 1 1
q q

q q
h g h gp t p t

1 2
λ λα α= ⊗ .  

(7) ( ){ } ( )λ λλ λλ λ
μ ν μ να μ ν

+++
∈ ∈

     = − −   
     

 1 21 21 2

1 1 1 1 1 1

1/

1 , 1 1, 1 1
q

q
h g p t

( ) ( ){ } ( ) ( )λ λλ λ λ λ
μ ν μ νμ μ ν ν α α∈ ∈

     = − − − = ⊗   
     

 1 21 2 1 2

1 1 1 1 1 1

1/

, 1 1 1 1 1 1, 1 1 1
q

q q
h g p t .  

□ 

3.4. Comparison Method of q-RPDHFEs 

Definition 8. Let ( ),h p g tα =  be a q-RPDHFE, the score function ofα is defined as 

( )
##

1 1
i j

gh
q q
i j v

i h j g
S p tμ

μ ν
α μ ν

= ∈ = ∈

= −  , (10) 

and the accuracy function of α  is defined as 

( )
##

1 1
i j

gh
q q
i j v

i h j g
H p tμ

μ ν
α μ ν

= ∈ = ∈

= +   (11) 

For any two q-RPDHFEs ( )1 11 1 1,h gh p g tα =  and ( )2 22 2 2,h gh p g tα = ,  

(1) If ( ) ( )1 2S Sα α> , then 1 2α α> ; 

(2) If ( ) ( )1 2S Sα α= , then 

     if ( ) ( )1 2H Hα α> , then 1 2α α> ; 

     if ( ) ( )1 2H Hα α= , then 1 2α α= . 

Example 3. Let = {{0.3|0.6, 0.5|0.4}, {0.2|0.3, 0.5|0.7}} and  = {{0.3|0.1, 0.7|0.3, 0.8|0.6}, {0.4|0.6, 
0.5|0.2, 0.6|0.2}} be two q-RPDHFEs (q = 2), then according to Definition 8, we have  

( ) ( ) ( )2 2 2 2
1 0.3 0.6 0.5 0.4 0.2 0.3 0.5 0.7 0.033S α = × + × − × + × = − , 

( ) ( ) ( )2 2 2 2
1 0.3 0.6 0.5 0.4 0.2 0.3 0.5 0.7 0.341H α = × + × + × + × = , 
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( ) ( ) ( )2 2 2 2 2 2
2 0.3 0.1 0.7 0.3 0.8 0.6 0.4 0.6 0.5 0.2 0.6 0.2 0.32S α = × + × + × − × + × + × =  

( ) ( ) ( )2 2 2 2 2 2
2 0.3 0.1 0.7 0.3 0.8 0.6 0.4 0.6 0.5 0.2 0.6 0.2 0.758H α = × + × + × + × + × + × = . 

Hence, we can obtain 2 1α α> . 

3.5. Distance between Two q-RPDHFEs 

In this subsection, we propose the distance between any two q-RPDHFEs and discuss its 
properties.  

Definition 9. Let ( )1 11 1 1,h gh p g tα =  and ( )2 22 2 2,h gh p g tα =  be any two q-RPDHFEs, then the distance 

measure between 1α  and 2α  is defined as 

( ) ( )( ) ( )
( )( ) ( )

( )( ) ( )
( )( ) ( )

1 2 1 2

##

1 2 1 2 1 2
1 1

1,
# # i i j j

gh q q q qi i j j

i j
d p p t t

h g σ σ σ σ

σ σ σ σ

μ μ ν ν
α α μ μ ν ν

= =

 
= − + −  +  

  , (12) 

where ( )
1 1

i hσμ ∈ , ( )
1 1

j gσν ∈ , ( )
2 2

i hσμ ∈ , ( )
2 2

j gσν ∈ . ( )σμ1
i  and ( )σμ2

i  are the ith largest values of 1h  and 2h , 
( )σν 1

j  and ( )σν 2
j  are the jth largest values of 1g  and 2g . The symbol #h denotes the number of values in h1 

and h2, and #g represents the number of values in g1 and g2.  

Remark 2. From Definition 9, we can find out that when calculating the distance between two q-RPDHFEs, 
they must have the same numbers of MDs and NMDs. However, this requirement cannot be always met. Hence, 
to operate correctly, the shorter q-RPDHFEs should be extended by adding some values until the numbers of 
the MDs and NMDs of the two q-RPDHFEs are equal. In the following, we present a principle to extend the 
short q-RPDHFEs. Let 

( ) ( )
( )

( )
( )

( )
( ){ } ( )

( )
( )

( )
( )

( ){ }1 1
1 2 # 1 2 #1 1

1 1 1 1 1 1

1 2 # 1 2 #
1 1 1 1 1 1 1 1 1, , ,..., , , ,...,h g

h gh g p p p t t tσ σ σ σ σ σ

σ σ σ σ σ σ

μ μ μ ν ν ν
α μ μ μ ν ν ν = =  

 
, (13) 

and 

( ) ( )
( )

( )
( )

( )
( ){ } ( )

( )
( )

( )
( )

( ){ }σ σ σ σ σ σ

σ σ σ σ σ σ

μ μ μ ν ν ν
α μ μ μ ν ν ν = =  

 
2 2

1 2 # 1 2 #2 2
2 2 2 2 2 2

1 2 # 1 2 #
2 2 2 2 2 2 2 2 2, , ,..., , , ,...,h g

h gh g p p p t t t

 
(14) 

If 1 2# #h h<  and 2 1# #g g< , then we have two methods to extend 1α  and 2α . First, we assume DMs are 

optimistic to their evaluations, then we can extend 1α  and 2α  to 

( )
( )

( )
( )

( )
( ) ( ) ( ) ( )

( )
( )

( )
( )

( )
( ){ }

σ σ

σ σ

σ σ σ

μ μσ σ σ σ

μ μ

σ σ σ

ν ν ν

μ μ μ μ
α

ν ν ν

  
    − + − + ′ ′= =   
 
 
 

# #1 1
1 11 1

1 2
1 1

1
1 2 # 1

1 1 1

1 2 # #
1 1 1 1

2 1 2 1
1 1 1

1 2 #
1 1 1

, ,..., ,..., ,
# # 1 # # 1,

, ,...,

h h

g

h h

g

p p
p p

h h h hh g

t t t

, (15) 

and 

( )
( )

( )
( )

( )
( )

( ){ }
( )

( )
( )

( )
( ) ( ) ( ) ( )

σ σ σ

σ σ

σ σ

σ σ σ

μ μ μ

ν νσ σ σ σ

ν ν

μ μ μ

α
ν ν ν ν

 
 
 ′ ′= =       − + − +   

2
1 2 # 2

2 2 2

# #2 2
2 22 2

1 2
2 2

1 2 #
2 2 2

2 2 2
1 2 # #

2 2 2 2
1 2 1 2

, ,..., ,

,
, ,..., ,....,

# # 1 # # 1

h

g g

h

g g

p p p

h g t t
t t

g g g g

, (16) 

respectively, where ′ =1 2# #h h  and ′ =2 1# #g g . If DMs are pessimistic to their evaluations, then we can 

extend 1α  and 2α  to 
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( )
( ) ( ) ( ) ( ) ( )

( )
( )

( )

( )
( )

( )
( )

( )
( ){ }

σ σ

σ σ

σ σ σ

μ μσ σ σ σ

μ μ

σ σ σ

ν ν ν

μ μ μ μ
α

ν ν ν

  
    − + − + ′ ′= =   
 
 
 

1 1
1 1 1

2 # 1
1 1

1
1 2 # 1

1 1 1

1 1 2 #
1 1 1 1

2 1 2 1
1 1 1

1 2 #
1 1 1

,...., , ,..., ,
# # 1 # # 1,

, ,...,

h

g

h

g

p p
p p

h h h hh g

t t t

, (17) 

and 

( )
( )

( )
( )

( )
( )

( ){ }
( ) ( ) ( ) ( ) ( )

( )
( )

( )

σ σ σ

σ σ

σ σ

σ σ σ

μ μ μ

ν νσ σ σ σ

ν ν

μ μ μ

α
ν ν ν ν

 
 
 ′ ′= =       − + − +   

2
1 2 # 2

2 2 2

1 1
2 2 2

2 # 2
2 2

1 2 #
2 2 2

2 2 2
1 1 2 #

2 2 2 2
1 2 1 2

, ,..., ,

,
,..., , ,...,

# # 1 # # 1

h

g

h

g

p p p

h g t t
t t

g g g g

,  
(18) 

respectively, where ′ =1 2# #h h  and ′ =2 1# #g g . In addition, from Definition 8 we can find out that the score 
and accuracy values are invariable. In this paper, we assume DMs are optimistic to their evaluation values and 
we always take the first method to extend q-RPDHFEs. To better illustrate this method, we provide the 

following example. Let { } { }{ }1 0.1 0.4 ,0.2 0.6 , 0.6 0.7 ,0.7 0.2 ,0.9 0.1α =  and 

{ } { }{ }2 0.3 0.5 ,0.4 0.2 ,0.6 0.1,0.8 0.2 , 0.7 0.4.0.8 0.6α =  be two q-RPDHFEs (q = 4), then we can extend 

1α  and 2α  to { } { }{ }1 ' 0.1 0.4 ,0.2 0.2 ,0.2 0.2 ,0.2 0.2 , 0.6 0.7 ,0.7 0.2 ,0.9 0.1α =  and 

{ } { }{ }2 0.3 0.5 ,0.4 0.2 ,0.6 0.1,0.8 0.2 , 0.7 0.4.0.8 0.3 ,0.8 0.3α ′ = . Then, according to Equation (12), the 

distance between 1α  and 2α  is  

( )1 2,d α α =
4 4 4 4 4 4 4 4

4 4 4 4 4 4

0.1 0.4 0.3 0.5 0.2 0.2 0.4 0.2 0.2 0.2 0.6 0.1 0.2 0.2 0.8 0.21
4 3 0.6 0.7 0.7 0.4 0.7 0.2 0.8 0.3 0.9 0.1 0.8 0.3

 × − × + × − × + × − × + × − ×
 
 + × − × + × − × + × − × 

= 0.1384. 

Theorem 2. Let 1α  and 2α  be two q-RPDHFEs, then the distance between 1α  and 2α  satisfies the 
following conditions: 

(1) ( )1 20 , 1d α α≤ ≤ ; 

(2) ( ) ( )1 2 2 1, ,d dα α α α= ; 

(3) ( )1 2, 0d α α = , if and only if 1 2α α= . 

Proof.  

(1) Since ( ) ( )
( ) ( )

1 2
1 20 , , , 1i i

i i p pσ σ

σ σ

μ μ
μ μ≤ ≤ , then we have ( )( ) ( )

( )( ) ( )
1 2

1 20 1i i

q qi ip pσ σ

σ σ

μ μ
μ μ≤ − ≤ . Hence, we 

can further obtain ( )( ) ( )
( )( ) ( )

1 2

#

1 2
1

0 #i i

h q qi i

i
p p hσ σ

σ σ

μ μ
μ μ

=

≤ − ≤ . Similarly, we can get 

( )( ) ( )
( )( ) ( )

1 2

#

1 2
1

j j

g q qj j

j
t tσ σ

σ σ

ν ν
ν ν

=

− . Therefore, we can derive ( )1 20 , 1d α α≤ ≤ . 

(2) From Definition 9, we have 

( ) ( )( ) ( )
( )( ) ( )

( )( ) ( )
( )( ) ( )

1 2 1 2

##

1 2 1 2 1 2
1 1

1,
# # i i j j

gh q q q qi i j j

i j
d p p t t

h g σ σ σ σ

σ σ σ σ

μ μ ν ν
α α μ μ ν ν

= =

 
= − + −  +  

  , 

and 

( ) ( )( ) ( )
( )( ) ( )

( )( ) ( )
( )( ) ( )

2 1 2 1

##

2 1 2 1 2 1
1 1

1,
# # i i j j

gh q q q qi i j j

i j
d p p t t

h g σ σ σ σ

σ σ σ σ

μ μ ν ν
α α μ μ ν ν

= =

 
= − + −  +  

  . 
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Hence, ( ) ( )1 2 2 1, ,d dα α α α= . 

(3) If 1 2α α= , then it is easy to get ( )1 2, 0d α α = . If ( )1 2, 0d α α = , then from Definition 9, we can 

obtain ( )( ) ( )
( )( ) ( )

1 2
1 2i i

q qi ip pσ σ

σ σ

μ μ
μ μ=  and ( )( ) ( )

( )( ) ( )
1 2

1 2j j

q qj jt tσ σ

σ σ

ν ν
ν ν= . From Definition 8, we can 

easily get ( ) ( )1 2S Sα α=  and ( ) ( )1 2H Hα α= . Thus, we can derive 1 2α α= . □ 

4. Some Aggregation Operators for Q-RPDHFEs and Their Properties 

In this section, we extend PMM and PDMM to q-RPDHFSs and propose new AOs for q-
RPDHFEs. We also investigate desirable properties of the proposed AOs.  

4.1. The q-Rung Probabilistic Dual Hesitant Fuzzy Power Muirhead Mean (q-RPDHFPMM) Operator 

Definition 10. Let ( )( ), 1,2,...,
j jj j h j gh p g t j nα = =  be a collection of q-RPDHFEs, and 

( )1 2, , n
nL l l l R= ∈  be a vector of parameters. Then, the q-rung probabilistic dual hesitant fuzzy power 

Muirhead mean (q-RPDHFPMM) operator is defined as follows 

( ) ( )( )( ) ( )

( )( )
1

1

1 2 1

1

11, , ,
! 1

nj
j

j

n

l
l

n j jL
n nS j

j
j

q
n

RPDHFPMM
n T

T

ϑ ϑ

ϑ

α α
α α α

α

=

∈ =

=

     +  = ⊕ ⊗  
 + 
   

−


 , (19) 

where 

( ) ( )
1,

,
n

j i j
i i j

T Supα α α
= ≠

=  , ( ) ( ), 1 ,i j i jSup dα α α α= − ,  (20) 

( )( )1,2,...,j j nϑ =  represents any permutation of ( )1,2,...,n , nS  denotes all possible permutations of 

( )1,2,...,n , n is the balancing coefficient, and ( ),i jSup α α  denotes the support for iα  from jα , satisfying 

the following properties 

(1) ( )α α ∈   , 0,1i jSup ; 

(2) ( ) ( )α α α α=, ,i j j iSup Sup ; 

(3) If ( ) ( ), ,i j s td dα α α α≤ , then ( ) ( )α α α α≥, ,i j j iSup Sup , where ( ),i jd α α  is the distance between 

iα  and jα .  

In order to simplify Equation (19), we assume 

( )
( )( )

1

1

1

j
j n

j
j

T

T

α
δ

α
=

+
=

+
, 

(21) 

then Equation (19) can be written as 

( ) ( ) ( )( ) 1

1

1 2 1

1, , ,
!

nj
j

j
n

n l
L l

n j jS j
q RPDHFPMM n

n ϑ ϑϑ
α α α δ α

=∈ =

 = ⊕ ⊗ 
 

−  ,  (22) 

where 0 1jδ≤ ≤  and 
1

n
jj

δ
= . 
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Theorem 3. Let ( )( ), 1,2,...,
j jj j h j gh p g t j nα = =  be a collection of q-RPDHFEs, and ( )1 2, , n

nL l l l R= ∈  

be a vector of parameters. The aggregated value using the q-RPDHFPMM operator is still a q-RPDHFE and 

( )1 2, , ,L
nq RPDHFPMM α α α =−   

( ) ( ) ( ) ( ) ( )( ) ( )

( )

1
11/1/ !

,
1 1

1 1 1 1 ,

n

j
j

j
j

j j j j j
n n

lqnln nn
q

h g j
S j S j

p
ϑ

ϑ ϑ ϑ ϑ ϑ

δ

μ ν μϑ
ϑ ϑ

μ
=

∈ ∈
∈ = ∈ =

         − − − −             
 

∏ ∏ ∏∏  

( )
( )( ) ( )

1

1/
11/ !

1 1
1 1 1 1

n

i
ii

j

j
n n

q
ln

n nlqn

j
S j S j

tϑ

ϑ

δ

νϑ
ϑ ϑ

ν
=

∈ = ∈ =

          − − − −             

∏ ∏ ∏∏  

(23) 

Proof. According to Definition 7, we get 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( )

1/

, 1 1 ,
j j

j j j j j j

qn n
q

h gj j j jn p t
ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ

δ δ

μ ν μ νϑ ϑ ϑ ϑδ α μ ν∈ ∈

       = − −    
       

 , 

then, 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )
( )( ) ( )

1//

, 1 1 | , 1 1
i ij j j

j j j j j j

ql q ll n qnq
h gj j j jn p t

ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ

δ δ

μ ν μ νϑ ϑ ϑ ϑδ α μ ν∈ ∈

         = − − − −     
         



. 

Therefore, 

( ) ( )( )1

jn l

j jj
n ϑ ϑδ α

=
⊗ =  

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )
( )( ) ( )

1/

,
1 1 1 1

1 1 , 1 1
j jj j

j j j j j j

ql qn n n nln nq
h g j j

j j j j
p t

ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ

δ δ

μ ν μ νϑ ϑμ ν∈ ∈
= = = =

         − − − −                
∏ ∏ ∏ ∏ ， 

and 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1

,1 1 1
1 1 1 1

j
j j

j j j jn
n n

q
ln nn l n

q
h gj j jS j S j S j

n p
ϑ

ϑ ϑ ϑ ϑ ϑ

δ

μ ν μϑ ϑ ϑϑ ϑ ϑ
δ α μ∈ ∈∈ = ∈ = ∈ =

     ⊕ ⊗ = − − − −         
∏ ∏ ∏∏

( )
( )( ) ( )

1

1 1
1 1

j
j

j
n n

q
n nlqn

vj
S j S j

tϑ

ϑ

δ

ϑ
ϑ ϑ

ν
∈ = ∈ =

   − −   
    
∏ ∏ ∏∏  

. 
Thus, 

( ) ( )( ) 1

1

1

1
!

nj
j

j
n

n l
l

j jS j
n

n ϑ ϑϑ
δ α

=∈ =

 ⊕ ⊗ = 
 

 

( ) ( ) ( ) ( ) ( )( ) ( )

( )

11/ !

,
1 1

1 1 1 1 ,
j

j

j j j j j
n n

qnln nn
q

h g j
S j S j

p
ϑ

ϑ ϑ ϑ ϑ ϑ

δ

μ ν νϑ
ϑ ϑ

μ∈ ∈
∈ = ∈ =

      − − − −          

∏ ∏ ∏∏  
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( )
( )( ) ( )

1 !1

1 1
1 1

i
j

j
n n

nq
n nlqn

j
S j S j

tϑ

ϑ

δ

νϑ
ϑ ϑ

ν
∈ = ∈ =

     − −         

∏ ∏ ∏∏  

Finally, we can obtain 

( ) ( )( ) 1

1

1

1
!

nj
j

j
n

n l
l

j jS j
n

n ϑ ϑϑ
δ α

=∈ =

 ⊕ ⊗ = 
 

 

( ) ( ) ( ) ( ) ( )( ) ( )

( )

1
111 !

,
1 1

1 1 1 1 ,

n

j
j

j
j

j j j j j
n n

lqnln nn
q

h g i
S j S j

p
ϑ

ϑ ϑ ϑ ϑ ϑ

δ

μ ν μϑ
ϑ ϑ

μ
=

∈ ∈
∈ = ∈ =

         − − − −             
 

∏ ∏ ∏∏  

( )
( )( ) ( )

1

1
11 !

1 1
1 1 1 1

n

j
jj

j

j
n n

q
ln

n nlqn

j
S j S j

tϑ

ϑ

δ

νϑ
ϑ ϑ

ν
=

∈ = ∈ =

          − − − −             

∏ ∏ ∏∏ . 

□ 
In addition, the q-RPDHFPMM operator has the property of boundedness. 

Theorem 4. (Boundedness) Let ( )( ), 1,2,...,
j jj j h j gh p g t j nα = =  be a collection of q-RPDHFEs, if 

{ } { }{ } { } { }{ }xm ain , maxmin m
s ss s

h gh gp t
α αα αα −  =  

 
, 

and  

{ } { }{ } { } { }{ }nm iax , minmax m
s ss s

h gh gp t
α αα αα +  =  

 
, 

then 

( ) ( ) ( )1 2, , ,L L L
nq RPDHFPMM q RPDHFPMM q RPDHFPMMα α α α α +−− ≤ − ≤ − . (24) 

Proof. For each element in the q-RPDHFE, we have { }min
s s

hα αμ≤  and { }max
s s

gα αν ≤ . Then 

( )( ) ( )
1

111 !

1
1 1 1 1

n

j
j

j
j

n

lqnln n
q

i
S j

ϑδ

ϑ
ϑ

μ
=

∈ =

      − − − −          

∏ ∏  

{ }( ) ( ) { }
1

111 !

1
1 1 1 1 min min

n

j
j

j
j

s s
n

lqnlnn q

S j
h h

ϑδ

α α
ϑ

=

∈ =

        ≥ − − − − =              

∏ ∏  

and 



Mathematics 2020, 8, 1574 14 of 34 

 

( )
( )( ) 1

1
11 !

1
1 1 1 1

n

j
jj

j

n

q
ln

n lqn

j
S j

ϑδ

ϑ
ϑ

ν
=

∈ =

      − − − − ≤       
 

∏ ∏ s 

{ }( ) ( ) { }
1

1
11 !

1
1 1 max max1 1

n

j
jj

j

n
ss

q
lnln qn

S j
g g

ϑ

ϑ
α

δ

α

=

∈ =

       − − − − ≤         
 

∏ ∏  

. 

For the probabilities, it is easy to get 
( ) { }{ }

1
min

j s
n

n

h
S j

p p
αϑμ

ϑ∈ =

≥∏ ∏ ∏∏  and 

( ) { }{ }
1

max
j s

n

n

h
S j

t p
αϑν

ϑ∈ =

≤∏∏ ∏∏ . In addition, according to Theorem 3, we have 

( )α− =− Lq RPDHFPMM  

{ }( ) { }
1

111 !

1
1 1 1 1 min min ,

n

j
j

j
j

s s

lqnln n

h
j

h p
α

δ

α

=

=

         − − − −             
 

∏ ∏ ∏∏  

{ }( ) { }
1

1
11 !

1
1 1 1 1 max max

n

j
jj

j

s s

q
lnln qn

g
j

g t
α

δ

α

=

=

           − − − −              

∏ ∏ ∏∏  

According to the score function, we have 

( ) ( )1 2, , ,L L
nq RPDHFPMM q RPDHFPMMα α α α−− ≤ −  . 

Similarly, we have 

( ) ( )1 2, , ,L L
nq RPDHFPMM q RPDHFPMM αα α α +− ≤ − , 

and so that the proof of Theorem 4 is completed. □ 

From Definition 10, we can find out that the proposed q-RPDHFPMM operator is a generalized 
AO. Hence, it is interesting and necessary to study the special cases of the q-RPDHFPMM operator 
with respect to its contained parameters, which are presented as follows.  

Case 1. If ( )1,0,0,...,0L = , then the q-RPDHFPMM operator reduces to the q-rung probabilistic dual 

hesitant fuzzy power average (q-RPDHFPA) operator, i.e., 

( ) ( )1,0,0,...,0
1 2, , , nq RPDHFPMM α α α =−   

( )δ δ
μ ν μ νμ ν∈ ∈

= = = =

          = − −    
          

∏ ∏ ∏ ∏j j

j j j j j j

q
n n n n

q
h g j j

j j j j
p t

1

,
1 1 1 1

1 1 ,  

( )1 21
, , ,

n

j j nj
q RPDHFPAδ α α α α

=
= −⊕ =   

(25) 
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In this case, if ( )α α = >, 0i jSup s  for all ( ), 1,2,...,i j n i j= ≠ , then the q-RPDHFPMM operator 

reduces to the q-rung probabilistic dual hesitant fuzzy average (q-RPDHFA) operator i.e., 

( ) ( )1,0,0,...,0
1 2, , , nq RPDHFPMM α α α =−   

( )
1

1 1
,

1 1 1 1
1 1 ,

j j j j j j

q
n n n nn nq

h g j j
j j j j

p tμ ν μ νμ ν∈ ∈
= = = =

          = − −                
∏ ∏ ∏ ∏  

( )1 21

1 , , ,
n

j nj
q RP

n
DHFAα α α α

=
= −⊕ =   

(26) 

Case 2. If ( )1,1,0,0,...,0L = , then the q-RPDHFPMM operator reduces to the q-rung probabilistic dual 

hesitant fuzzy power Bonferroni mean (q-RPDHFPBM) operator, i.e., 

( ) ( )1,1,0 ,0 ,...,0
1 2, , , nq RPDHFPMM α α α =−   

( ) ( )
1 21

1
( 1)

, , ,
, 1, , 1,

1 1 1 1 1 1 ji

i i j j i i j j

q
n nnn n nq q

h h g g i j
i j i j i j i j

p
δδ

μ μ ν ν μ μ
−

∈ ∈ ∈ ∈
= ≠ = ≠

          = − − − − − −             

∏ ∏

( )( )( ) ( )

11
1 2

1

, 1, , 1,
1 1 1 1 1 ji

i j

q

n n
qn n nqn

i j
i j i j i j i j

t tδδ
ν νν ν −

= ≠ = ≠

        − − − − −      
   

∏ ∏  

( ) ( ) ( )( ) ( )
1
2

1 2
1,

1

1

,

1 , , ,
1

n

i i j j ni j
i j

q RPDHFPBn
n

Mn
n

δ α δ α α α α
=

≠

 
 = ⊕ ⊗ =

 

−
−

  

(27) 

In this case, if ( ), 0i jSup sα α = >  for ( ), 1,2,...,i j n i j= ≠ , then the q-RPDHFPMM operator 

reduces to the q-rung probabilistic dual hesitant fuzzy Bonferroni mean (q-RPDHFBM) operator, i.e., 

( ) ( )1,1,0 ,0 ,...,0
1 2, , , nq RPDHFPMM α α α =−   

( )
( )

1 21
1

, , ,
, 1 , 1,

1 1 ,
i i j j i i j j i j

q

n n
n nq

h h g g i j
i j i j i j
i j

p pμ μ ν ν μ μμ μ
−

∈ ∈ ∈ ∈
= = ≠

≠

         − −            

∏ ∏  

( )
( )

11 21
1

, 1 , 1,
1 1

i j

q

n n
n n

q q q q
i j i j

i j i j i j
i j

t tν νν ν ν ν
−

= = ≠
≠

              − − + −               

∏ ∏  

( ) ( ) ( )1
1,1

1
2

2, 1

1 , , ,
1

n

i j ni j
i j

q RPDHFBM
n n

α α α α α
=

≠

 
 = ⊕ ⊗ =
 −

−


  

(28) 
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Case 3. If ( )1,1,...,1,0,0,...,0
k n k

L
−

=


, then q-RPDHFPMM operator reduces to the q-rung probabilistic dual 

hesitant fuzzy power Maclaurin symmetric mean (q-RPDHFPMSM) operator, i.e., 

( ) ( )1,1,...,1,0,0 ,...,0
1 2, , ,

k n k

nq RPDHFPMM α α α
−

−


  

( )
1 2 1 2

1
1

1

,
1 ... 1 1 ... 1

1 1 1 1 ,
k

i nj

i i i i j ij j j j j
k k

k
q

k kn C
q

h g i
i i i n j i i i n j

p
δ

μ ν μμ∈ ∈
< < < < ≤ = < < < < ≤ =

 
          = − − − −                 

∏ ∏ ∏ ∏  

( )
1 2 1 2

1
1

1

1 ... 1 1 ... 1
1 1 1 1

k
nij

j ij
k k

q
k

qk kCn

i
i i i n j i i i n j

t
δ

νν
≤ < < < ≤ = ≤ < < < ≤ =

 
            − − − −                 

∏ ∏ ∏ ∏  

( ) ( ) ( )
1 2

1

1 21 ... 1

1 , , ,
j j

k

k
n

i i nk i i i n j
n

kq RPDHFP Sn
C

M Mδ α α α α
≤ < < < ≤ =

 
= ⊕ ⊗ = 


−


  

(29) 

In this case, if ( ) ( ), 0i jSup t tα α = >  for ( ), 1,2,...,i j n i j= ≠ , then the q-RPDHFPMM operator 

reduces to the q-rung probabilistic dual hesitant fuzzy Maclaurin symmetric mean (q-RPDHFMSM) 
operator, i.e., 

( ) ( )α α α
−

=−


1,1,...,1,0 ,0,...,0
1 2, , ,

k n k

nq RPDHFPMM  

μ ν μμ∈ ∈
< < < < ≤ = < < < < ≤ =

             − −                 

∏ ∏ ∏ ∏
1 2 1 2

11
1

,
1 ... 1 1 ... 1

1 1 ,

k
n

i i i i j ij j j j j
k k

kq
C

q
k k

h g i
i i i n j i i i n j

p  

( )
1 2 1 2

11
1

1 ... 1 1 ... 1
1 1 1 1

k
n

j ij
k k

qk
C

k k
q
i

i i i n j i i i n j
tνν

< < < < ≤ = ≤ < < < ≤ =

          − − − −                 

∏ ∏ ∏ ∏  

( ) ( )
1 2

1

1 21 ... 1

1 , , ,
j

k

k
n

i nk i i n j

k

i
n

q RPDHFMSM
C

α α α α
≤ < < < ≤ =

 
= ⊕ ⊗ =  


−


  

(30) 

Case 4. If ( )1,1,...,1L =  or ( )1 ,1 ,...,1L n n n= , then the q-RPDHFPMM operator reduces to the 

following form 

( ) ( ) ( ) ( )11,1,...,1 1 ,1 ,...,1
1 2 1
, ,...,

n nor n n n
n j jj

q RPDHF nPMM α α α δ α
=
⊗− =  

( ) ( )
1/1/ 1/

,
1 1 1 1

1 1 , 1 1j j

j j j j j j

qqn n
n n n nn qnq

h g j j
j j j j

p t
δ δ

μ ν μ νμ ν∈ ∈
= = = =

              = − − − −                       

∏ ∏ ∏ ∏  
(31) 
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In this case, if ( ) ( ), 0i jSup t tα α = >  for ( ), 1,2,...,i j n i j= ≠ , then q-RPDHFPMM operator 

reduces to the q-rung probabilistic dual hesitant fuzzy geometric (q-RPDHFG) operator, i.e., 

( ) ( ) ( )1,1,...,1 1 ,1 ,...,1
1 2, ,...,or n n n

nq RPDHFPMM α α α− =  

( )
1

11
,

1 1 1 1
, 1 1

j j j j j j

q
n n n nnn q

h g j j
j j j j

p tμ ν μ νμ ν∈ ∈
= = = =

        = − −             
∏ ∏ ∏ ∏  

( )1
1 21
, ,...,

n
n

j nj
q RPDHFGα α α α

=
= ⊗ = −  

(32) 

Case 5. If q = 2, then the q-RPDHFPMM operator reduces to the following form probabilistic dual Pythagorean 
hesitant fuzzy power Muirhead mean (PDPHFPMM) operator, i.e., 

( )2 1 2, , , n
L
qq RPDHFPMM α α α= =−   

( ) ( ) ( ) ( ) ( )( ) ( )

( )

1
11 21 !

2
,

1 1
1 1 1 1 ,

n

j
j

j
j

j j j j j
n n

l
nln nn

h g j
S j S j

p
ϑ

ϑ ϑ ϑ ϑ ϑ

δ

μ ν μϑ
ϑ ϑ

μ
=

∈ ∈
∈ = ∈ =

         − − − −             
 

∏ ∏ ∏∏  

( )
( )( ) ( )

1

1/2
11 !

2

1 1
1 1 1 1

n

j
jj

j

j
n n

ln
n nln

j
S j S j

tϑ

ϑ

δ
νϑ

ϑ ϑ
ν

=

∈ = ∈ =

          − − − −             

∏ ∏ ∏∏  

( ) ( )( ) ( )1

1

1 21

1 , ,...,
!

nj
j

j
n

n l
Ll

nj jS j
n PDPHFPMM

n ϑ ϑϑ
δ α α α α

=∈ =

 = ⊕ ⊗ = 
 

 

(33) 

Case 6. If q = 1, then the q-RPDHFPMM reduces to the probabilistic dual hesitant fuzzy power Muirhead 
mean (PDHFPMM) operator i.e., 

( )1 1 2, , , n
L
qq RPDHFPMM α α α= =−   

( ) ( ) ( ) ( ) ( )( ) ( )

( )

1
11 !

,
1 1

1 1 1 1 ,

n

j
jj

j

j j j j j
n n

lnln nn

h g j
S j S j

p
ϑ

ϑ ϑ ϑ ϑ ϑ

δ

μ ν μϑ
ϑ ϑ

μ
=

∈ ∈
∈ = ∈ =

       = − − − −           

∏ ∏ ∏∏  

( )
( )( ) ( )

1
11 !

1 1
1 1 1 1

n

j
jj

j

j
n n

ln
n nln

j
S j S j

tϑ

ϑ

δ

νϑ
ϑ ϑ

ν
=

∈ = ∈ =

       − − − −        
  

∏ ∏ ∏∏  

( ) ( )1

1

1 21

1 , ,...,
!

n
j j

j
n

n l Ll
njS j

PDHFMM
n ϑϑ

α α α α
=∈ =

 = ⊕ ⊗ = 
 

 

(34) 

4.2. The q-Rung Probabilistic Dual Hesitant Fuzzy Power Weighted Muirhead Mean (q-RPDHFPWMM) 
Operator 
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Definition 11. Let ( )( ), 1,2,...,
j jj j h j gh p g t j nα = =  be a collection of q-RPDHFEs, ( )1 2, , n

nL l l l R= ∈  

be a vector of parameters and ( )1 2, ,...,
T

nw w w w=  be the corresponding weight vector, satisfying 0 1jw≤ ≤  

and 
1

1
n

j
j

w
=

= . The q-rung probabilistic dual hesitant fuzzy power weighted Muirhead mean (q-

RPDHFPWMM) operator is expressed as  

( ) ( ) ( )( )( )
( )( ) ( )

1

1

1 2 1

1

11, ,...,
! 1

nj
j

j

n

l
l

n j jL
n jnS j

j j
j

w T
q RPDHFPWMM n

n w T

ϑ ϑ

ϑϑ

α
α α α α

α

=

∈ =

=

     +  − = ⊕ ⊗  
 + 
   


, (35) 

where 

( ) ( )
1,

,
n

j i j
i i j

T Supα α α
= ≠

=  , ( ) ( ), 1 ,i j i jSup dα α α α= −  (36) 

( ),i jd α α  is the distance between iα  and jα , ( )( )1,2,...,j j nϑ =  represents any permutation of ( )1,2,...,n

, nS  denotes all possible permutations of ( )1,2,...,n , n is the balancing coefficient, and ( ),i jSup α α  denotes 

the support for iα from jα , satisfying the properties in Definition 10. Similarly, let 

( )( )
( )( )

1

1

1

j j

j n

j j
j

w T

w T

α
ξ

α
=

+
=

+
,  (37) 

then Equation (35) can be written as 

( ) ( ) ( )( ) 1

1

1 2 1

1, ,...,
!

nj
j

j
n

n l
L l

n j jS j
q RPDHFPWMM n

n ϑ ϑϑ
α α α ξ α

=∈ =

 − = ⊕ ⊗ 
 

, (38) 

where 0 1jξ≤ ≤  and 
1

1n
jj

ξ
=

= . 

Theorem 5. Let ( )( ), 1,2,...,
j jj j h j gh p g t j nα = =  be a collection of q-RPDHFEs, and ( )1 2, , n

nL l l l R= ∈  

be a vector of parameters. The aggregated value using q-RPDHFPWMM operator is still a q-RPDHFE and 

( )1 2, , ,L
nq RPDHFPWMM α α α =−   

( ) ( ) ( ) ( ) ( )( ) ( )

( )

1
11/1/ !

,
1 1

1 1 1 1 ,

n

j
j

j
j

j j j j j
n n

lqnln nn
q

h g j
S j S i

p
ϑ

ϑ ϑ ϑ ϑ ϑ

ξ

μ ν μϑ
ϑ ϑ

μ
=

∈ ∈
∈ = ∈ =

         − − − −             
 

∏ ∏ ∏∏  

( )
( )( ) ( )

1

1/
11/ !

1 1
1 1 1 1

n

i
ii

j

j
n n

q
ln

n nlqn

j
S j S j

tϑ

ϑ

ξ
νϑ

ϑ ϑ
ν

=

∈ = ∈ =

          − − − −             

∏ ∏ ∏∏  

(39) 



Mathematics 2020, 8, 1574 19 of 34 

 

The proof of Theorem 5 is similar to that of Theorem 3, which is mitted here. In addition, it is 
easy to prove that the q-RPDHFPWMM operator has the property of boundedness, but does not have 
the properties of monotonicity and idempotency.  

4.3. The q-Rung Probabilistic Dual Hesitant Fuzzy Power Dual Muirhead Mean (q-RPDHFPDMM) Operator 

Definition 12. Let ( )( ), 1,2,...,
j jj j h j gh p g t j nα = =  be a collection of q-RPDHFEs, and 

( )1 2, , n
nL l l l R= ∈  be a vector of parameters. Then q-rung probabilistic dual hesitant fuzzy power dual 

Muirhead mean (q-RPDHFPDMM) operator is expressed  

( ) ( )
( )( )( ) ( )( )1

1
!1 1

1 2 1

1

1, ,...,
n

jj j

n

n nn T TL
n j jn S j

j
j

q RPDHFPDMM l
l

ϑα α

ϑϑ
α α α α =

+ +

∈ =

=

 − = ⊗ ⊕ 
 

, (40) 

where 

( ) ( )
1,

,
n

j t j
t t j

T Supα α α
= ≠

=   ( ) ( ), 1 ,i j i jSup dα α α α= − ,  (16) 

and ( )( )1,2,...,j j nϑ =  is any permutation of (1, 2, …, n), nS  is the collection of all permutations of (1, 2, 

…, n), and n is the balancing coefficient. ( ),i jd α α  is the distance between iα  and jα , and ( ),i jSup α α  

denotes the support for iα from jα , satisfying the properties presented in Definition 10. To simplify Equation 

(40), we denote 

( )
( )( )1

1

1
j

j n
jj

T

T

α
τ

α
=

+
=

+
,  (17) 

then (40) can be written as 

( ) ( )
( )

1
!

1 2 1

1

1, ,..., j

n

n nnL
n j jn S j

j
j

q RPDHFPDMM l
l

ϑτ

ϑϑ
α α α α

∈ =

=

 − = ⊗ ⊕ 
 

,  (18) 

where 0 1jτ≤ ≤  and 
1

1n
jj

τ
=

= . 

Theorem 6. Let ( )( ), 1,2,...,
j jj j h j gh p g t j nα = =  be a collection of q-RPDHFEs, and ( )1 2, , n

nL l l l R= ∈  

be a vector of parameters. The aggregated value using q-RPDHFPDMM operator is still a q-RPDHFE and 

( )1 2, ,...,L
nq RPDHFPDMM α α α− =  

( ) ( ) ( ) ( ) ( )
( )( ) ( )

1

11
1
!

,
1 1

1 1 1 1 ,

n

jj
jj

j j j j j
n n

q

ll nn nqn

h g j
S j S j

pϑ

ϑ ϑ ϑ ϑ ϑ

τ

μ ν μϑ
ϑ ϑ

μ
=

∈ ∈
∈ = ∈ =

              − − − −             
   
   

∏ ∏ ∏∏  
(19) 
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( )( ) ( )

( )

1

1
11

!

1 1
1 1 1 1

n

j
j j

j

j
n n

q
l

l nn nn
q

j
S j S j

t
ϑ

ϑ

τ

νϑ
ϑ ϑ

ν
=

∈ = ∈ =

 
               − − − −                  

∏ ∏ ∏∏  

The proof of Theorem 6 is similar to that of Theorem 3, which is mitted here. In addition, it is 
easy to prove that the q-RPDHFPDMM operator has the property of boundedness, but does not have 
the properties of monotonicity and idempotency. 

In the followings, we discuss some special cases of the q-RPDHFPDMM operator with respect 
to its contained parameters. 

Case 7. If ( )1,0,0,...,0L = , then the q-RPDHFPDMM operator reduces to the q-rung probabilistic dual 

hesitant fuzzy power geometric (q-RPDHFPG) operator, i.e., 

( ) ( )1,0, ,0
1 2, , , nq RPDHFPDMM α α α =−    

( )
1

,
1 1 1 1

, 1 1 jj

j j j j j j

q
n n n n

q
h g j j

j j j j
p v t

ττ
μ ν μ νμ∈ ∈

= = = =

        = − −             
∏ ∏ ∏ ∏  

( )1 21
, , ,j

n

j nj
q RPDHFPGτα α α α

=
= −⊗ =   

(20) 

In this case, if ( )sup , 0i j sα α = >  for all ( ), 1,2,...,i j n i j= ≠ , then the q-RPDHFPDMM operator 

reduces to the q-RPDHFG operator, which is shown as Equation (32).  

Case 8. If ( )1,1,0,0,...,0L = , then the q-RPDHFPDMM operator reduces to the q-rung probabilistic dual 

hesitant fuzzy power geometric Bonferroni mean (q-RPDHFPGBM) operator, i.e., 

( ) ( )1,1,0 ,0 ,...,0
1 2, , , nq RPDHFPDMM α α α =−   

( )( )( )
1

1 ( 1)
2

, , ,
, 1 , 1,

1 1 1 1 1 ,ji

i i j j i i j j i j

qn n

n n
nqnq

h h g g i j
i j i j i j
i j

p pττ
μ μ ν ν μ μμ μ

−

∈ ∈ ∈ ∈
= = ≠

≠

 
        − − − − −           

∏ ∏  

( ) ( )

1
1

1 ( 1)
2

, 1 , 1,
1 1 1 1 1 1 1 1 ji

i j

q
n n

n nnnq q
i j

i j i j i j
i j

t t
ττ

ν νν ν

−

= = ≠
≠

 
                 − − − − − − − −                     
 

∏ ∏  

( )
( )

( )
1

1
1,1

1 2, 1

1 , ,...,
2

ji

n nn nn
i j ni j

i j

q RPDHFPGBMττα α α α α
−

=
≠

 
 = ⊗ ⊕ = −
 
 

 

(21) 

In this case, if ( ), 0i jSup sα α = > for ( ), 1,2,...,i j n i j= ≠ , then the q-RPDHFPDMM operator 

reduces to the q-rung probabilistic dual hesitant fuzzy geometric Bonferroni mean (q-RPDHFGBM) 
operator, i.e., 
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( ) ( )1,1,0 ,0 ,...,0
1 2, , , nq RPDHFPDMM α α α =−   

( )( )( )

1
1 ( 1)
2

, , ,
, 1 , 1,

1 1 1 1 1 ,
i i j j i i j j i j

qn n

n n
q q

h h g g i j
i j i j i j
i j

p pμ μ ν ν μ μμ μ

−

∈ ∈ ∈ ∈
= = ≠

≠

 
        − − − − −           

∏ ∏  

( )

1
1

1 ( 1)
2

, 1 , 1,
1 1 1 1

i j

q
n n

n n
q q
i j

i j i j i j
i j

t tν νν ν

−

= = ≠
≠

 
              − − − −               
 

∏ ∏  

( )
( )

( )
1

1
1,1

1 2, 1

1 , ,...,
2

n nn

i j ni j
i j

q RPDHFGBMα α α α α
−

=
≠

 
 = ⊗ ⊕ = −
 
 

 

(22) 

Case 9. If ( )1,1,...,1 ,0,0,...,0
k n k

L
−

=


, then q-RPDHFPDMM operator reduces to the q-rung probabilistic dual 

hesitant fuzzy power dual Maclaurin symmetric mean (q-RPDHFPDMSM) operator, i.e., 

( ) ( )1,1,...,1,0 ,0 ,...,0
1 2, , ,

k n k

nq RPDHFPDMM α α α
−

−


  

( )
1 1

1
1

1

,
1 1 1 1

1 1 1 1 ,

k
nk

n

ij

i i i i j ij j j j j
k k

q
C

C
k kqn

h g i
i i n j i i n j

p
τ

μ ν μμ∈ ∈
≤ < < ≤ = ≤ < < ≤ =

        = − − − −             

∏ ∏ ∏ ∏
 

  

( )
1 1

1
1

1 ... 1 1 ... 1
1 1 1 1

k
n

ij

j ij
k k

qk
C

k kn
q
i

i i n j i i n j
t

τ

νν
≤ < < ≤ = ≤ < < ≤ =

       − − − −             

∏ ∏ ∏ ∏  

( ) ( )
1

1

1 21 ... 1

1 , , ,
k
n

ij

j
k

Ck n

i n
k

i i n j
q RPDHFPDMS

k
M

τ
α α α α

≤ < < ≤ =
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(23) 

In this case, if ( ), 0i jSup sα α = >  for ( ), 1,2,...,i j n i j= ≠ , then the q-RPDHFPDMM operator 

reduces to the q-rung probabilistic dual hesitant fuzzy dual Maclaurin symmetric mean (q-
RPDHFDMSM) operator, i.e., 

( ) ( )1,1,...,1,0 ,0 ,...,0
1 2, , ,

k n k

nq RPDHFPDMM α α α
−

−


  

( )
1 1

1
1

1

,
1 1 1 1

1 1 1 1 ,

k
nk

n

i i i i j ij j j j j
k k

q
C

C
k k

q
h g i

i i n j i i n j
pμ ν μμ∈ ∈

≤ < < ≤ = ≤ < < ≤ =

        = − − − −             

∏ ∏ ∏ ∏
 

  
(24) 
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Case 10. If ( )1,1,...,1L =  or ( )1 ,1 ,...,1L n n n= , then the q-RPDHFPDMM operator reduces to the 

following form 

( ) ( ) ( ) τα α α α
=

=− ⊕ 1/ ,1/ , ,1/ 1,1, ,1
1 2 1

1, ,..., j
n

nn n n or
n jj

q
n

RPDHFPDMM  

( ) ( )
11 1/

,
1 1 1 1

1 1 , 1 1 jj

j j j j j j

qn qn
n n n nnqn q

h g j j
j j j j

p t
ττ

μ ν μ νμ ν∈ ∈
= = = =

             = − − − −                        

∏ ∏ ∏ ∏  
(25) 

In this case, if ( ) ( ), 0i jSup t tα α = >  for ( ), 1,2,...,i j n i j= ≠ , then q-RPDHFPDMM operator 

reduces to the q-RPDHFA operator, which is shown as Equation (25). 

Case 11. If q = 2, then the q-RPDHFPDMM operator reduces to the probabilistic dual Pythagorean hesitant 
fuzzy power dual Muirhead mean (PDPHFPDMM) operator, i.e., 

( )2 1 2, , , n
L
qq RPDHFPDMM α α α= =−   

( ) ( ) ( ) ( ) ( )
( )( ) ( )

1

1 21
1
!2

,
1 1

= 1 1 1 1 ,

n

jj
jj

j j j j j
n n

ll nn nn

h g j
S j S j

pϑ

ϑ ϑ ϑ ϑ ϑ

τ

μ ν μϑ
ϑ ϑ

μ
=

∈ ∈
∈ = ∈ =

              − − − −             
   
   

∏ ∏ ∏∏  

( )( ) ( )

( )

1

1
1 21

!
2

1 1
1 1 1 1

n

j
j j

j

j
n n

l
l nn nn

j
S j S j

t
ϑ

ϑ

τ

νϑ
ϑ ϑ

ν
=

∈ = ∈ =

 
               − − − −                       

∏ ∏ ∏∏  

( )
( ) ( )

1
!

1 21

1

1 , , ,j

n

n nn L
j njn S j

j
j

l PDPHFPDMM
l

ϑτ

ϑϑ
α α α α

∈ =

=

 = ⊗ ⊕ = 
 

  

(26) 

Case 12. If q = 1, then the q-RPDHFPDMM reduces to the probabilistic dual hesitant fuzzy power dual 
Muirhead mean (PDHFPDMM) operator, i.e., 

( )1 1 2, , , n
L
qq RPDHFPDMM α α α= =−   (27) 
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4.4. The q-Rung Probabilistic Dual Hesitant Fuzzy Power Weighted Dual Muirhead Mean (q-
RPDHFPWDMM) Operator 

Definition 13. Let ( )( ), 1,2,...,
j jj j h j gh p g t j nα = =  be a collection of q-RPDHFEs, ( )1 2, , n

nL l l l R= ∈  

be a vector of parameters and ( )1 2, ,...,
T

nw w w w=  be the corresponding weight vector, satisfying that 

0 1jw≤ ≤  and 
1

1
n

j
j

w
=

= . The q-rung probabilistic dual hesitant fuzzy power weighted dual Muirhead mean 

(q-RPDHFPWDMM) operator is expressed as 

( ) ( )
( ) ( )( )( ) ( )( )1

1
!1 1

1 2 1

1

1, ,...,
n

j jj j j

n

n nnw T w TL
n j jn S j
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j

q RPDHFPWDMM l
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ϑ ϑα α

ϑϑ
α α α α =

+ +

∈ =

=

 − = ⊗ ⊕ 
 

, (28) 

where 

( ) ( )
1,

,
n

j t j
t t j

T Supα α α
= ≠

=   ( ) ( ), 1 ,i j i jSup dα α α α= − ,  (29) 

and ( )( )1,2,...,j j nϑ =  is any permutation of (1, 2, …, n), nS  is the collection of all permutations of (1, 2, 

…, n), and n is the balancing coefficient. ( ),i jd α α  is the distance between iα  and jα , and ( ),i jSup α α  

denotes the support for iα  from jα , satisfying the properties presented in Definition 10. Similarly, we assume 

( )( )
( )( )1

1

1

j j

j n
j jj

w T

w T

α
η

α
=

+
=

+
,  (30) 

thus (53) can be written as 

( ) ( )
( )

1
!

1 2 1

1

1, ,..., j
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n nnL
n j jn S j

j
j

q RPDHFPWDMM l
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=
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, (31) 

where 0 1jη≤ ≤  and 
1

1n
jj

η
=

= . 
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Theorem 7. Let ( )( ), 1,2,...,
j jj j h j gh p g t j nα = =  be a collection of q-RPDHFEs, and ( )1 2, , n

nL l l l R= ∈  

be a vector of parameters. The aggregated value using q-RPDHFPWDMM operator is still a q-RPDHFE and 

( )1 2, ,...,L
nq RPDHFPWDMM α α α−  

( ) ( ) ( ) ( ) ( )
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1
11 !

,
1 1

1 1 1 1 ,
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∈ = ∈ =

              − − − −                 
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ln nn
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S j S j
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ϑ

ϑ
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ϑ ϑ
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=

∈ = ∈ =

             − − − −                
 

∏ ∏ ∏∏  

(32) 

The proof of Theorem 7 is similar to that of Theorem 3, which is mitted here. In addition, it is 
easy to prove that the q-RPDHFPWDMM operator has the property of boundedness, but does not 
have the properties of monotonicity and idempotency.  

5. A Novel MADM Approach Based on Q-RPDHFEs 

This section gives a MADM method under q-RPDHFSs on the basis of the aforementioned AOs. 
We assume the alternative set is denoted as { }1 2, , ..., mX x x x= , and the attribute set is denoted as 

{ }1 2, ,..., nG G G G= . The weight vector of attributes is ( )1 2, ,...,
T

nw w w w= , satisfying 0 1jw≤ ≤  and

1
1n

jj
w

=
= . When evaluating the performance of alternative ( )1,2,...,ix i m=  under attribute

( )1,2,...,jG j n= , each DM provides his/her preferred MDs and NMDs and based on DMs’ preferred 

degrees and the probabilistic values, the overall evaluation value can be denoted by

( )| , |ij ij ij ij ijh p g qα = , which is a q-RPDHFE. Finally, a q-rung probabilistic dual hesitant fuzzy matrix 

can be obtained, which can be denoted as ( )ij m n
A α

×
= . Based on the proposed AOs, we put forward 

a new MADM method, which consists of the following steps 
Step 1. Normalize the decision matrix. In real MADM problems, attributes can be generally 

divided into two types: benefit attribute and cost attribute. Therefore, the decision matrix should be 
normalized in the following method 

( )
( )

1

2

| , |

| , |
ij ij ij ij j

ij

ij ij ij ij j

h p g t G I

g t h p G I
α

 ∈= 
∈

, (33) 

where 1I  and 2I  represent the benefit-type attribute and the cost-type attribute respectively. 

Step 2. Calculate the support ( ),ij isSup α α  by 

( ) ( )( ), 1 , 1,2,..., ; , 1,2,..., ;ij is ij isSup d i m j s n j sα α α α= − = = ≠ , (34) 

where ( ),ij isd α α  is the distance between the two q-PRDHFEs ijα  and isα . 

Step 3. Compute the overall supports ( )ijT α  by 
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( ) ( )
1;

,
n

ij ij is
j j s

T Supα α α
= ≠

=  . (35) 

Step 4. Compute the power weight ijξ  associated with the q-PRDHFE ijα  by 

( )( )
( )( )

1

1

1

j ij

ij n

j ij
j

w T

w T

α
ξ

α
=

+
=

+
.  (36) 

Step 5. Utilize the q-RPDHFPWMM operator 

( )1 2, ,...,L
i i i inq RPDHFPWMMα α α α−= ,  (37) 

or the q-RPDHFPWDMM operator 

( )1 2, ,...,L
i i i inq RPDHFPWDMMα α α α−= ,  (38) 

to determine the collective overall preference value ( )1,2,...,i i mα =  of alternatives ( )1,2,...,ix i m= . 

Step 6. According to Definition 8, calculate the score function ( )iS α  and accuracy function 

( )iH α  of the overall preference value ( )1,2,...,i i mα = . 

Step 7. Order the alternatives { }1 2, ,..., mx x x  and select the optimal alternative(s). 

6. Numerical Example 

In recent years, more and more enterprises have shown their interests in the issue of investment 
evaluation in order to achieve long-term stable development. To help them grasp investment 
opportunities and assess investment project properly, we apply the q-RPDHFS theory to the investment 
evaluation process and demonstrate the validity of the newly proposed approach, and details are 
presented in Example 4. 

Example 4. After preliminary analysis, four possible investment alternatives are taken into account, they are 
denoted by { }1 2 3 4, , ,x x x x . In this paper, we consider three commonly used attributes in investment evaluation 

decision: (1) G1 the quality of product and service; (2) G2 social and environmental impacts; (3) G3 economic 

benefits. The weight vector of the attributes is ( )0.3,0.2,0.5
T

w = .The DMs are required to use the q-RPDHFEs 

to assess the four alternatives’ performance from three aspects respectively. The decision matrix 
4 3ijA α
×

 =    is 

shown in Table 2. 
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Table 2. The decision matrix A given by the domain expert. 

 G1 G2 G3 

x1 { } { }{ }0.7 0.2 ,0.6 0.2 ,0.5 0.6 , 0.2 1   { } { }{ }0.7 , 0.5|1½1  { } { }{ }0.21 , 0.21½ ½  

x2 { } { }{ }0.1 1 , 0.4 1  { } { }{ }0.3 , 0.71½1 ½  { } { }{ }0.71 , 0.30.5,0.20.5½ ½ ½  

x3 { } { }{ }0.6 1 , 0.5 1  { } { }{ }0.6 , 0.21½1 ½  { } { }{ }0.11 , 0.71½ ½  

x4 { } { }{ }0.05 0.7 ,0.2 0.3 , 0.5 1  { } { }{ }0.31 , 0.60.5,0.50.5½ ½ ½  { } { }{ }0.81 , 0.51½ ½  

6.1. The Procedure of Choosing the Optimal Alternative 

Step 1. Because all the attributes are benefit type, there is no need to standardize the original 
decision matrix.  

Step 2. Compute the support for isα  from ( )1,2,3,4; , 1,2,3;if i s f s fα = = ≠ , which can be 

denoted by s
fSup for convenience, and we can obtain 

( )1 2
2 1 = 0.9317,0.8475,0.9415,0.9825Sup Sup=  

( )1 3
3 1 = 0.9553,0.8705,0.7835,0.8302Sup Sup=  

( )2 3
3 2 = 0.7740,0.7862,0.7250,0.8232Sup Sup=  

Step 3. Calculate the ( )ijT α  according to Equation (54) and we have 

1.8870 1.7057 1.7293
1.7180 1.6337 1.6567
1.7250 1.6665 1.5085
1.8127 1.8057 1.6533

T

 
 
 =
 
 
  

 

Step 4. Compute the power weights ijξ  of the q-RPDHFEs ijα  and we have 

ξ

 
 
 =
 
 
  

0.3125 0.1952 0.4923
0.3053 0.1972 0.4974
0.3138 0.2047 0.4815
0.3089 0.2054 0.4851

 

Step 5. Employ the q-RPDHFPWMM operator (q = 3 and ( )= 1,1,1L ) to aggregate attribute 

values and we can obtain the comprehensive evaluation values of alternatives. As the aggregation 
results are very complicated, we omit them here. 

Step 6. Calculate the scores ( )( )1,2,3,4iS iα =  of alternatives base on Definition 8 and we can 

obtain 

( )1 0.0373S α = −  ( )2 0.2261S α = −  ( )3 0.1033S α = −  ( )4 0.1563S α = −  

Step 7. Therefore, the ranking result is 1 3 4 2x x x x   . So 1x  is the best investment 
alternative. 

In Step 5, if we use the q-RPDHFPWDMM operator to aggregate attributes, then the score values 
of alternatives are (q = 3 and ( )= 1,1,1L ) 

( )1 0.2632S α =  ( )2 0.0421S α =  ( )3 0.1607S α =  ( )4 0.0481S α =  

Therefore, the ranking result is 1 3 4 2x x x x    and the best investment alternative is also 1x . 
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6.2. Sensitivity Analysis 

In this subsection, we conduct sensitivity analysis by studying the impact of L and q on the score 
values and the ranking orders of alternatives. 

6.2.1. The Effect of the Parameter Vector L  

We assign different parameter vectors to L in the q-RPDHFPWMM and q-RPDHFPWDMM 
operator, and present the score values of alternatives and ranking orders in Tables 3 and 4.  

As seen from Table 3, different scores and ranking orders are obtained with different parameter 
vectors L in q-RPDHFPWMM. For convenience, we employ the symbol ( )1,2,3l ln n =  to denote the 

number of related parameters in parameter vector L. When 1ln = , along with the increase of the 

value in L, the score values of alternatives also increase. In addition, when 1ln =  the ranking order 

of alternatives is different from others (when 2,3ln = ). This is because when 1ln = , our method 

does not consider the interrelationship among attributes. When 2,3ln = , the interrelationship 

among attributes is taken into account. Moreover, we can find out that when 2ln = , the ranking 

results is different from that when 3ln = . This is because when 2ln = , the interrelationship among 

any two attributes is considered and when 3ln = , the interrelationship among all the three attributes 
is reflected. As seen from Table 4, we can also find the similar phenomena. However, in the q-
RPDHFPWDMM, when 1ln = , the score values become smaller with the increase of the value in L, 
which is opposite to the property of the q-RPDHFPWMM. 

Table 3. The score values and ranking orders with different L in the q-RPDHFPWMM. 

L 
Score Values 

Ranking Results ( )1S α  ( )2S α  ( )3S α  ( )4S α  

( )= 1,0,0L  0.1275 0.1493 0.0032 0.1664 4 2 1 3x x x x    

( )= 2,0,0L  0.1552 0.2401 0.0289 0.2792 4 2 1 3x x x x    

( )= 5,0,0L  0.1922 0.3426 0.0586 0.4061 4 2 1 3x x x x    

( )= 10,0,0L  0.2159 0.3922 0.0806 0.4759 4 2 1 3x x x x    

( )= 1,1,0L  0.0674 −0.1077 −0.0342 −0.1035 1 3 4 2x x x x    

( )= 1, 2,0L  0.0922 −0.0581 −0.0125 −0.0515 1 3 4 2x x x x    

( )= 1, 3,0L  0.1130 0.0030 0.0034 0.0161 1 4 3 2x x x x    

( )= 2,2,0L  0.1015 −0.0794 −0.0040 −0.0842 1 3 2 4x x x x    

( )= 1,1,1L  −0.0373 −0.2261 −0.1033 −0.1563 1 3 4 2x x x x    

( )= 2,2,2L  −0.0353 −0.2261 −0.1033 −0.1507 1 3 4 2x x x x    

( )= 3,3,3L  −0.0335 −0.2261 −0.1033 −0.1493 1 3 4 2x x x x    

( )= 1, 2, 3L  0.0034 −0.1781 −0.0719 −0.1261 1 3 4 2x x x x    

Table 4. The score values and ranking orders with different L in the q-RPDHFPWDMM. 

L 
Score Values 

Ranking Results ( )1S α  ( )2S α  ( )3S α  ( )4S α  

( )= 1,0,0L  0.0115 −0.0709 −0.2017 −0.1002 1 2 4 3x x x x    

( )= 2,0,0L  −0.0057 −0.0999 −0.2659 −0.1064 1 2 4 3x x x x    

( )= 5,0,0L  −0.0317 −0.1468 −0.3547 −0.1223 1 4 2 3x x x x    
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( )= 10,0,0L  −0.0466 −0.1721 −0.3997 −0.1381 1 4 2 3x x x x    

( )= 1,1,0L  0.2047 0.0199 0.0657 0.0107 1 3 2 4x x x x    

( )= 1, 2,0L  0.1814 0.0020 0.0171 −0.0010 1 3 2 4x x x x    

( )= 1, 3,0L  0.1514 −0.0218 −0.0383 −0.0162 1 4 2 3x x x x    

( )= 2,2,0L  0.1893 0.0093 0.0234 0.0028 1 3 2 4x x x x    

( )= 1,1,1L  0.2632 0.0421 0.1607 0.0481 1 3 4 2x x x x    

( )= 2,2,2L  0.2632 0.0394 0.1607 0.0467 1 3 4 2x x x x    

( )= 3,3,3L  0.2611 0.0374 0.1607 0.0454 1 3 4 2x x x x    

( )= 1, 2, 3L  0.2363 0.0257 0.1089 0.0329 1 3 4 2x x x x    

6.2.2. Sensitivity Analysis of q 

We assign different q to solve the same MADM problem and the decision results by using the q-
RPDHFPWMM and q-RPDHFPWDMM operators are presented in Tables 5 and 6, respectively.  

Table 5. Effect of the parameter q on the score values and ranking results utilizing the q-RPDHFPWMM. 

Parameter q 
Score Values 

Ranking Results ( )1S α  ( )2S α  ( )3S α  ( )4S α  

q = 3 −0.0373 −0.2261 −0.1033 −0.1563 1 3 4 2x x x x    

q = 5 −0.0112 −0.0276 −0.1158 −0.0593 1 3 2 4x x x x    

q = 7 −0.0086 −0.0738 −0.0098 −0.0279 1 3 4 2x x x x    

q = 10 −0.0040 −0.0370 −0.0022 −0.0091 3 1 4 2x x x x    

Table 6. Effect of the parameter q on the score values and ranking results utilizing the q-RPDHFPWDMM. 

Parameter q 
Score Values 

Ranking Results ( )1S α  ( )2S α  ( )3S α  ( )4S α  

q = 3 0.2632 0.0421 0.1607 0.0481 1 3 4 2x x x x    

q = 5 0.1421 0.0131 0.0750 0.0347 1 3 4 2x x x x    

q = 7 0.0849 0.0053 0.0432 0.0228 1 3 4 2x x x x    

q = 10 0.0408 0.0017 0.0180 0.0013 1 3 2 4x x x x    

From Tables 5 and 6, we can see that the scores of the overall values are different by assigning 
different values of parameter q in the q-RPDHFPWMM and q-RPDHFPWDMM operator. However, 
no matter what the parameter q is, x1 and x3 are the best and second-best alternatives, respectively. In 
addition, as the parameter q increases, the score values of alternatives become smaller. Hence, how 
to choose a proper value of q is important for the decision results. In reference 15, Xu et al. gave a 
principle for choosing an appropriate value of q for dealing with MADM problems based on q-
RDHFSs, i.e., the value of q should be taken as the smallest integer that can make the sum of qth 
power of maximum element in membership degree set and qth power of maximum value in non-
membership degree set no larger than one. As q-RPDHFSs are an extension of the q-RDHFSs, we can 
use the same principle for determining the value of q, when handling MADM problems under q-

RPDHFSs. For instance, a group of DMs use { } { }{ }α = 0.1 0.2 ,0.5 0.5 ,0.8 0.3 , 0.4 0.6 ,0.7 0.4 , which is 

a q-RPDHFE to denote their evaluation value, then as 0.82 + 0.72 = 1.13 > 1 and 0.83 + 0.73 = 0.855 < 1, 
the value of q can be chosen as 3.  



Mathematics 2020, 8, 1574 29 of 34 

 

6.3. Validity Test  

To further illustrate the correctness and effectiveness of our proposed method, we employ 
existing MADM method and our new decision-making method to solve the same example and 
analyze the decision results. Here, we compare our method with that proposed by Hao et al.’s [12] 
based on the probabilistic dual hesitant fuzzy weighted average (PDHFWA) operator. It is noted that 
Hao et al.’s [12] method employs PDHFSs to describe DMs’ evaluation information. In addition, our 
method can also deal with decision-making problems where DMs’ evaluation values are in the form 
of q-RPDHFEs. To make the decision results comparative, we modify Example 2 by employing 
PDHFSs to describe attribute values.  

Example 5. In this example, DMs utilize PDHFEs to denote their evaluation values and the new decision 

matrix is presented in Table 7. The weight vector of attributes is still ( )0.3,0.2,0.5
T

w = .  

We use Hao et al.’s [12] and our MADM methods to solve Example 5 and present the decision 
results in Table 8.  

Table 7. The probabilistic dual hesitant fuzzy decision matrix. 

 G1 G2 G3 

x1 { } { }{ }0.7 0.2 0.60.2 0.50.6 , 0.21½ , ½ , ½ ½   { } { }{ }0.7 , 0.21½1 ½  { } { }{ }0.21 , 0.21½ ½  

x2 { } { }{ }0.1 , 0.41½1 ½  { } { }{ }0.3 , 0.71½1 ½  { } { }{ }0.71 , 0.30.5,0.20.5½ ½ ½  

x3 { } { }{ }0.31 , 0.51½ ½  { } { }{ }0.6 , 0.21½1 ½  { } { }{ }0.11 , 0.71½ ½  

x4 { } { }{ }0.050.7 0.20.3 , 0.51½ , ½ ½  { } { }{ }0.31 , 0.60.5,0.40.5½ ½ ½  { } { }{ }0.81 , 0.11½ ½  

Table 8. The score values and ranking results of Example 5 by utilizing different methods. 

Method 
Score Values 

Ranking Results ( )1S α  ( )2S α  ( )3S α  ( )4S α  

Hao et al.’s [12] method based on 
the PDHFWA 0.2526 0.1540 −0.2022 0.3732 4 1 2 3x x x x    

Our method based on the q-
RPDHFPWMM ( 1q = , ( )= 1,0,0L ) 0.2574 0.1535 −0.2095 0.3497 4 1 2 3x x x x    

As we can see from Table 8, the ranking order produced by Hao et al.’s [12] MADM method is 
the same as that obtained by our method, which illustrates the validity of our method. 

6.4. Advantages and Superiorities Analysis 

We try to investigate the advantages of our method and in order to do this, we use our method 
and some existing MADM methods to solve numerical examples and conduct comparative analysis. 
These methods include Hao et al.’s [12] method based on the PDHFWA and Xu et al.’s [15] under q-
RDHFSs.  

6.4.1. Its Efficiency in Reducing the Negative Influence of DMs’ Unduly High or Low Evaluation 
Values 

It is mentioned that as our method is based on the PA operator, it has the ability of reducing the 
negative influence of DMs’ extreme evaluation values on the results. Hence, the decision result 
derived by our method is more reasonable and reliable. To illustrate this characteristic, we provide 
the following example.  
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Example 6. In real MADM problems, DMs may be prejudiced over some attributes of certain alternatives and 
they may express unduly high or low evaluation values. For instance, in Example 6, a few DMs have prejudice 

over G3 of x4 and give low value of MD. So the evaluation value 43α  changes from { } { }{ }0.8 1 , 0.1 1  to 

{ } { }{ }0.8 0.5 ,0.1 0.5 , 0.1 1  and the new decision matrix is shown in Table 9.  

Table 9. The decision matrix of Example 6. 

 G1 G2 G3 

x1 { } { }{ }0.7 0.2 0.60.2 0.50.6 , 0.21½ , ½ , ½ ½  { } { }{ }0.7 , 0.21½1 ½  { } { }{ }0.21 , 0.21½ ½  

x2 { } { }{ }0.1 , 0.41½1 ½  { } { }{ }0.3 , 0.71½1 ½  { } { }{ }0.71 , 0.30.5,0.20.5½ ½ ½  

x3 { } { }{ }0.31 , 0.51½ ½  { } { }{ }0.6 , 0.21½1 ½  { } { }{ }0.11 , 0.71½ ½  

x4 { } { }{ }0.050.7 0.20.3 , 0.51½ , ½ ½  { } { }{ }0.31 , 0.60.5,0.40.5½ ½ ½  { } { }{ }0.80.5,0.10.5 , 0.11½ ½ ½  

Then we use Hao et al.’s [12] decision-making method based on the PDHFWA operator and our 
method based on the q-RPDHFPWMM operator to solve Example 6 and present the decision results 
in Table 10. 

Table 10. The score values and ranking results utilizing different methods in Example 6. 

Method 
Score Values 

Ranking Results ( )1S α  ( )2S α  ( )3S α  ( )4S α  

Hao et al.’s [12] method based on the 
PDHFWA 0.2526 0.1540 −0.2022 0.1468 1 2 4 3x x x x    

Our method based on the q-
RPDHFPWMM ( 1q = , ( )= 1,0,0L ) 0.2574 0.1535 −0.2095 0.1597 1 4 2 3x x x x    

As we can see from Table 10, the ranking result derived by Hao et al.’s [12] is changed from 

4 1 2 3x x x x    to 1 2 4 3x x x x   , but ours is 1 4 2 3x x x x   . Further, due to the bias of some 
DMs, the ranking of x4 dropped from the first to the third in Hao et al.’s [12] method, but only to the 
second in our method. This is a good example of the strength of our approach for reducing the 
negative effect of extreme values on the result. 

6.4.2. The Ability of Flexibly Capturing the Interrelationship among Attributes 

It is well-known that in most real MADM problems, there exists interrelationship among 
attributes. Additionally, such kind of interrelationship usually exists among multiple attributes. In 
order word, usually multiple attributes are correlated. Hence, to obtain reasonable decision results, 
it is necessary to take the interrelationship among multiple attributes into account. For example, in 
Example 4, when ( )= 1,1,0L , then our method takes the interrelationship between any two attributes 

into consideration. When ( )= 1,1,1L , then the interrelationship among all the three attributes is 

captured. If there is indeed no interrelationship between attributes, then we can set ( )= 1,0,0L . Hao 

et al.’s [12] method is based on the simple weighted average operator, which fails to handle MADM 
problems where attributes are dependent. This character reveals that Hao et al.’s [12] method is 
insufficient or inadequate to handle most real MADM problems. Hence, our method is more 
powerful and flexible than Hao et al.’s [12].  
  



Mathematics 2020, 8, 1574 31 of 34 

 

6.4.3. More Liberty that it Provides for DMs 

The proposed q-RPDHFS is an extension of q-RDHFS. Hence, q-RPDHFS takes the constraint of 
q-RDHFS, i.e., the sum of qth power of MD and qth power of NMD is less than or equal to one. 
Compared with the PDHFS, the constraint of q-RPDHFS is much laxer. As mentioned in Section 3, 
PDHFS is only a special case of q-RPDHFS. When DMs employ PDHFSs to express their evaluation 
values, some important decision information may be lost, which may further result in unreasonable 
decision results. However, our method gives DMs enough freedom to comprehensively provide their 
evaluation information. To better illustrate this advantage, we use Example 4 to elaborate. In Table 
2, DMs’ assessments are expressed as q-RPDHFEs. Hao et al.’s [12] method based on PDHFS fails to 
handle Example 4, for the sum of MD and NMD is greater than one in some assessment values such 

as { } { }{ }12 0.7 , 0.5 1α = 1 , { } { }{ }31 0.6 1 , 0.5 1α = and { } { }{ }43 0.8 1 , 0.5 1α = . However, our method 

based on q-RPDHFPWMM or q-RPDHFPWDMM is still effective and the ranking order is 

1 3 4 2x x x x   , as mentioned in Section 6.1. 

6.4.4. The Ability of Taking the Probabilistic Information of DMs’ Evaluation Values into Account 

Our method is based on q-RPDHFS, which can be regarded as an extension of the classical q-
RDHFS. We generalize q-RDHFS to q-RPDHFS by taking the probabilistic information of each MD 
and NMD into account. Hence, our method can also solve the MADM problems under q-RDHFSs. In 
this subsection, we attempt to illustrate the advantage of our proposed method over that developed 
by Xu et al. [15]. In order to do this, we provide the following example.  

Example 7. In Example 4, if the probabilistic information of evaluation values is ignored, then a new original 
decision matrix is obtained, which is shown in Table 11. It is noted the decision matrix is a q-rung dual hesitant 
fuzzy decision matrix. Then, we apply Xu et al.’s [15] MADM method to solve this example and present the 
results in Table 12 (without loss of generality, we assume q = 3 and s = t = 1). As mentioned above, our method 
can also deal with MADM problems wherein attribute values are provided in the form of q-RDHFEs. Hence, 
we use our method to solve Example 7 and the decision results are also presented in Table 12.  

As seen in Table 12, the method introduced by Xu et al. [15] and our proposed method produce 
the same ranking order 1 3 4 2x x x x   . However, when the probabilistic information of DMs’ 
evaluation values is considered in our proposed method, then a different ranking order is obtained, 
i.e.,   1 3 2 4x x x x . This example demonstrates the powerfulness and flexibility of our proposed 
method. First, similar to Xu et al.’s [15] method, our MADM method can also solve decision-making 
problems when DMs use q-RDHFSs to express their evaluations. Second, our method can consider 
probabilistic information of DMs’ evaluation values. Actually, as mentioned in Introduction, it is 
usually necessary to consider the probabilistic information of the corresponding evaluation values in 
order to comprehensively depict DMs’ assessments. Hence, our proposed method is more powerful 
than Xu et al.’s [15] approach.  

Table 11. The decision matrix based on q-RDHFEs. 

 G1 G2 G3 

x1 { } { }{ }0.7,0.6,0.5 , 0.2   { } { }{ }0.7 , 0.5  { } { }{ }0.2 , 0.2  

x2 { } { }{ }0.1 , 0.4  { } { }{ }0.3 , 0.7  { } { }{ }0.7 , 0.3,0.2  

x3 { } { }{ }0.6 , 0.5  { } { }{ }0.6 , 0.2  { } { }{ }0.1 , 0.7  

x4 { } { }{ }0.05,0.2 , 0.5  { } { }{ }0.3 , 0.6,0.5  { } { }{ }0.8 , 0.5  
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Table 12. The score values and ranking results utilizing Xu et al.’s [15] and our methods. 

Method 
Score Values 

Ranking Results ( )1S α  ( )2S α  ( )3S α  ( )4S α  

Xu et al.’s [15] method based on 
the q-RDHFWHM 0.1559 −0.0072 0.1282 0.1230 1 3 4 2x x x x    

Our method based on the q-
RPDHFPWMM 

(without probabilities) 
0.0797 −0.1077 −0.0342 −0.1010 1 3 4 2x x x x    

Our method based on the q-
RPDHFPWMM 

(with probabilities) 
0.0674 −0.1077 −0.0342 −0.1085   1 3 2 4x x x x  

7. Conclusions 

This paper demonstrated a novel MADM method, which can be used to solve practical decision-
making problems effectively. The main contributions of this paper are three-fold. Firstly, we 
proposed a novel tool, called q-RPDHFSs to more accurately and effectively depict DMs’ complicated 
evaluation information. Compared with q-RDHFSs, our proposed q-RPDHFSs more effectively deal 
with DMs’ fuzzy judgements as they not only describe the MD and NMD, but also depict their 
corresponding probabilistic information. Compared with the PDHFSs, the q-RPDHFSs are more 
powerful as they provide DMs more freedom to express their evaluation values. Due to this 
characteristic, in the framework of q-RPDHFSs, DMs can fully express their evaluations, which leads 
to less information loss. Secondly, a series of AOs of q-RPDHFEs were developed, which are useful 
to aggregate attribute values given in the form of q-rung probabilistic dual hesitant fuzzy 
information. The advantages of superiorities of our proposed AOs are obvious, as they not only 
reduce the negative effect of DMs’ unduly high or low evaluation values on the final decision results, 
but also reflect the interrelationship among any numbers of attributes. Thirdly, a new MADM method 
was originated to help DMs to choose the optimal alternatives. Through numerical examples, the 
effectiveness of our method has been clearly illustrated. By comparative analysis, the advantages of 
our method are that it not only provides DMs great freedom to express their decision information, 
but also produces reasonable and reliable decision results. These characteristics make our method 
more suitable to deal with MADM problems in actual life.  

In the further, we plan to continue our research from three aspect. Firstly, we shall study new 
applications of our decision-making method in more practical MADM problems, such as selection 
real estate investment [39], medicine selection [40], best research topic selection [41], evaluation of 
outsourcing for information systems [42], etc. Secondly, we will study more AOs of q-RPDHFEs and 
propose corresponding MADM methods. Thirdly, we shall continue to investigate extensions of q-
RPDHFSs, such as interval-valued q-RPDHFSs, complex q-RPDHFSs, complex interval-valued q-
RPDHFSs, etc.  
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