
mathematics

Article

Coinductive Natural Semantics for Compiler
Verification in Coq †

Angel Zúñiga 1,* and Gemma Bel-Enguix 2

1 Posgrado en Ciencia e Ingeniería de la Computación, Instituto de Investigaciones en Matemáticas Aplicadas
y en Sistemas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico

2 Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
gbele@iingen.unam.mx

* Correspondence: zuniga@ciencias.unam.mx
† This paper is an extension of: Zúñiga, A.; Bel-Enguix, G. A Correct Compiler from Mini-ML to a Big-Step

Machine Verified Using Natural Semantics in Coq. In Proceedings of the XVIII Jornadas de PROgramación y
LEnguajes (PROLE 2018), Seville, Spain, 17–19 September 2018.

Received: 4 July 2020; Accepted: 9 September 2020; Published: 12 September 2020
����������
�������

Abstract: (Coinductive) natural semantics is presented as a unifying framework for the verification
of total correctness of compilers in Coq (with the feature that a verified compiler can be obtained).
In this way, we have a simple, easy, and intuitive framework; to carry out the verification of a compiler,
using a proof assistant in which both cases are considered: terminating and non-terminating
computations (total correctness).

Keywords: natural semantics; big-step semantics; coinduction; compiler verification; total correctness;
Mini-ML; SECD machine; Coq proof assistant

MSC: 68Q55; 68N20; 68Q60; 68N15; 68N18; 03B35

1. Introduction

This paper tackles the problem of compiler verification in proof assistants. At present, a number
of long-term projects deals with several aspects of this issue, for instance, CompCert C [1–5],
CertiCoq [6], and IRIS [7]. In this work, we address specifically the verification of total correctness
of compilers of functional languages in Coq. Here, we refer to total correctness in the sense of
Leroy [8] and Gregoire and Leroy [9], that is total correctness means: correctness of terminating and
non-terminating computations.

In the literature, ad-hoc verifications are traditionally used; meaning, verifications that employ
more than one distinct formalism.

This situation calls for a solution that abstracts away everything needed in a single unifying
framework that simplifies (and perhaps, it could even make possible to automate) this task. By unifying
framework we mean a single formalism able to define each of the components of a compiler,
namely: source language semantics, intermediate language semantics, abstract machine semantics,
and translations. In fact, in this work we offer (coinductive) natural semantics as a simple, easy and
intuitive unifying framework to carry out (total correctness) compiler verification in Coq. Whenever
we use ‘framework’, and we are referring to the (coinductive) natural semantics unifying framework
as presented in this work (and only to it), we mean ‘unifying framework’. In this manner, we remark
that only one formalism, (coinductive) natural semantics, is sufficient to conduct this task as opposed
to usual verifications in the literature where more than one distinct formalism are needed in order to
accomplish the same goal (see Section 1.1 for a discussion of the related work). In our preliminary

Mathematics 2020, 8, 1573; doi:10.3390/math8091573 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6133-3883
https://orcid.org/0000-0002-1411-5736
http://dx.doi.org/10.3390/math8091573
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/9/1573?type=check_update&version=2

Mathematics 2020, 8, 1573 2 of 55

work [10] we only address correctness for termination. In this extended and improved version, as the
main novelty, we also tackle correctness for non-termination (which is the most challenging one).

Natural semantics, as introduced by Kahn [11], was initially a unifying framework. Indeed,
since its inception [11], natural semantics has been able to express: source language semantics,
intermediate languages semantics, abstract machine semantics and translations. Despeyroux [12] also
showed how natural semantics allows proof of the correctness of the translations. Based on the work of
Kahn and Despeyroux, Boutin [13] formalized a compiler from Mini-ML to the CAM in Coq (although
it is not possible to obtain a verified compiler from his formalization).

It is folklore that natural semantics, as originally introduced by Kahn [11], is unqualified to express
non-terminating computations (the articles of Kahn, Despeyroux, and Boutin, only address the case of
terminating computations). More precisely, Despeyroux made a preliminary attempt to cover infinite
computations but it is based on denotational semantics instead of natural semantics per se. However,
since the introduction of coinductive natural semantics by Leroy [14] and Leroy and Grall [15] it is a
well-known practice to use a coinductively defined natural semantics to deal with non-terminating
program behavior. Leroy [14] and Leroy and Grall [15] advance coinductive natural semantics as a
formalism to express non-terminating computations; however, they do not use coinductive natural
semantics as a unifying framework in the original sense of Kahn, but they use it only to specify the
source language (a high-level language). Specifically, they make an ad-hoc formalization in which
in addition, they use small-step semantics in (what was later called) the Modern SECD (MSECD)
machine [8] and a function to define the compilation.

The main idea of this work is to extend natural semantics so that it becomes a simple, easy,
and intuitive unifying framework for verifying total correctness of compilers in Coq (with the ability
that you can get a verified compiler that can be used in real life).

The strategy for carrying out this extension is as follows: until now, taking as reference the work of
Boutin, natural semantics can be used for formalizing the correctness of a compiler in Coq (only for the
termination case and a verified compiler cannot be obtained). The first thing we will do is to show how,
from a natural semantics specification, one can obtain, either an interpreter (Section 2.1) or a compiler
(Section 2.3.1) sound and complete regarding the natural semantics specification. Then, for natural
semantics to be able to express non-terminating computations, we will use Leroy’s coinductive natural
semantics. However, this semantics has only been used in the source language, in addition, we will
show how to use coinductive natural semantics to specify non-terminating computations in an abstract
machine (Section 3.3). We will also show that an interpreter, which was previously obtained from
natural semantics, is sound and complete regarding its corresponding coinductive natural semantics
specification (Section 3.1), that is, for the non-termination criteria (and not only for the termination
case). In this way, we are ready to formulate and prove the correctness (semantic preservation) of a
compiler, both for the termination case (Section 2.3.2), and, for the non-termination case (Section 3.3.2),
completely in terms of (coinductive) natural semantics.

To illustrate the use of (coinductive) natural semantics as a framework, we mechanized a compiler
from Mini-ML to a big-step version of the Modern SECD machine. We were interested in showing that
in particular, (coinductive) natural semantics can express translations among high-level languages,
as well as translations from a high-level language to machine code (a low-level language). Therefore,
our compiler is composed of two phases (see Figure 1): translation of Mini-ML with named variables
(MiniML) to Mini-ML in de Bruijn notation (MiniMLdB), as an instance of the first one, and generation
of code of the (big-step version of the) Modern SECD machine from Mini-ML in de Bruijn notation
(Sections 2.3 and 3.3), as an instance of the second one. In this work, we will concentrate on the code
generation phase which is the most interesting one.

Mathematics 2020, 8, 1573 3 of 55

MiniML
↓

Translation to de Bruijn notation
↓

MiniMLdB

↓

Compilation
↓

Machine code

(a)

Machine code
↓

Big-Step MSECD
(interpreter)

↓

Result

(b)

Figure 1. Compiler architecture. (a) Compilation; (b) Execution.

Traditionally, in the literature small-step semantics is used in the machine. That is why,
as an alternative target machine, we offer the original small-step semantics Modern SECD machine
(Sections 2.2 and 3.2) extended to support all Mini-ML features, in particular, with native recursion
support, mainly to compare it with our solution, in which a big-step machine is used, i.e., our Modern
SECD machine big-step version.

1.1. Related Work

Since CompCert C [1–5] project’s inception led by Leroy, there has been great progress in the
literature dedicated to compiler verification using proof assistants, Coq in particular. In this work,
we address specifically functional programming languages verification. In principle, verification of
functional programming languages to abstract machines.

An unusual technique exposed by Hardin et al. [16] to carry out the verification of a functional
language to an abstract machine is to use small-step semantics, both in the source language and in
the abstract machine, together with a decompilation function and a measure to establish correctness.
The idea of this technique is to perform a bottom-up simulation in which every machine transition
corresponds to zero or one source level reductions. The machine states are mapped back to source
level expressions using a decompilation function. More precisely, if from a machine state s a state s′

is reached via a machine transition s → s′, and e is the source language expression corresponding to
the state s via decompilation, then there exists an expression e′ corresponding to s′ via decompilation,
such that e = e′ or e reduces to e′ via source language small-step semantics e → e′. When a machine
performs a transition from a state to another and the decompilation of both states corresponds to the
same expression in the source language, the machine performs a silent transition. To guarantee that
there are not infinitely many silent machine transitions, a measure defined on the machine states is
used, i.e., if s → s′ and the decompilation of s and s′ corresponds to the same expression e, then s
measure is greater than that of s′.

Gregoire and Leroy [9] and Gregoire [17] use this technique to verify a compiler from a strong
reduction lambda calculus to an abstract machine in Coq; more precisely, to verify the correctness of a
compiler from the Calculus of Inductive Constructions (CIC) to a variant of the ZAM machine [18]
(adapted to support weak symbolic reduction), obtaining a compiler-based verified implementation to
evaluate Coq terms. In addition, they show that this compiler-based implementation is more efficient
than the original Coq interpreter as expected. More recently, Kunze et al. [19] employ a very similar
technique to verify the correctness of a compiler from a call-by-value lambda calculus to an abstract
machine in Coq.

However, Leroy [8,14] and Leroy and Grall [15] point out that a correctness proof using this
technique is difficult, and also that the definition of a decompilation is complicated, hard to reason
about, and hard to extend (especially for optimizing compilation phases). In consequence, they propose

Mathematics 2020, 8, 1573 4 of 55

a solution based on big-step semantics. In fact, they state that proving semantic preservation for
compilers both for terminating and diverging programs using big-step semantics is the original
motivation of their work.

The Leroy [14] and Leroy and Grall [15] technique consists of using (coinductive) big-step
semantics in the source language but small-step semantics in the machine. In this way, for the
termination case, if a source language expression e evaluates to v via big-step semantics e ⇒ v,
then reducing the machine code c via transitive closure of small-step semantics +→ , takes the machine
to a state with vm at the top of the stack, where c corresponds to e compilation and vm is the machine
value corresponding to v. For the non-termination case, if e diverges using coinductive big-step
semantics, then c also diverges in the machine. Leroy and Grall mention that their technique provides
a simpler way to prove semantics preservation, in particular for the non-termination case.

Currently, it is well known [14,15,20,21] that big-step semantics are easier and more convenient
for compiler correctness proofs, and also for efficient interpreters [21]. Thus, we have on one hand
that Leroy and Grall main motivation is to use big-step semantics for compiler correctness proofs,
and on the other that big-step semantics has proved to be easier and more convenient for compiler
correctness proofs. Our aim is to take big-step semantics to its deepest consequences exploiting it
where it has proved to be useful. This is why we propose (coinductive) natural semantics as framework
for compiler verification.

(Coinductive) natural semantics as framework for compiler verification in Coq as proposed in
this paper is a technique very similar in spirit to that of Leroy and Grall, but going further since not
only (coinductive) big-step semantics is used in the source language but also in the target machine
(let us recall that Leroy and Grall employ small-step semantics in the machine). Furthermore, to the
best of the author’s knowledge, it is the first time that coinductive natural semantics is proposed and
used to define computations that do not terminate in an abstract machine. In this way, we obtain a
fully-based (coinductive) natural semantics technique for a functional language to an abstract machine
compiler correctness verification in Coq.

Establishing correctness is even easier, intuitive and simple since natural semantics are also used
in the machine. If a source language expression e is evaluated to a value v via source language natural
semantics e⇒ v, then c is evaluated to a final machine state with vm at the top of the stack via machine
natural semantics s ⊢ c⇒ vm ⋅ s; where c is the compilation of e via natural semantics e ⇓ c, and vm is the
compilation of v via natural semantics v ⇓ vm, and s is any machine stack. If e diverges via coinductive
natural semantics e ∞⇒ , then c also diverges via machine coinductive natural semantics s ⊢ c ∞⇒ .
We can note here, how only (coinductive) natural semantics is sufficient to establish correctness; we do
not need to use any other distinct formalism.

A potential use of this framework is to take it as basis to verify a conventional compiler to abstract
machine implementation of (the core of) a realistic functional language such as OCaml. The official
INRIA OCaml implementation comes with two compilers [22], the first one generates code of the
ZAM machine, and the second one generates C-- code. We speculate that this framework can also
be used as basis to verify the compiler that generates C-- since Dargaye [23] already uses big-step
semantics (although not as unifying framework and only tackling terminating computations) to verify
a compiler from Mini-ML to Cminor (an early intermediate language of the CompCert C compiler).
The idea of generating Cminor (or some other Compcert C intermediate language) code instead of C--
is immediate since, in this way, we can connect the compiler’s back-end to CompCert C and obtain as
final result verified assembly code. This use takes more relevance if we take into account that Coq itself
is an OCaml program (even though some portions of Coq are verified in Coq [24–26], the extracted
verified OCaml code will eventually run on an OCaml implementation).

Another line of work is dedicated to systematically derive an abstract machine from a lambda
calculus [27–33]. The general idea in these works is from a lambda calculus to carry out a series
of transformations until the desired abstract machine is obtained. One of the most exploited
transformations in some of these works is refocusing [34], although a great variety of transformations

Mathematics 2020, 8, 1573 5 of 55

are used. The compilation correctness is a direct consequence of the correctness of the transformations.
Some of them, in addition, address Coq formalization [29–33]. The closest works to ours are those
which starting from a natural semantics of a lambda calculus derive an abstract machine [27,30].
Specifically, the most similar work in nature to ours is [30]. In [30], the STG machine is derived from
natural semantics of a lazy lambda calculus and the derivation is formalized in Coq. However, in [30]
only the case for terminating computations is tackled.

In all these works, the emphasis is on the corresponding machine derivation. In contrast,
in a functional language implementation the target abstract machine is usually designed by hand
and only then (if any) proved correct w.r.t source lambda calculus semantics (see, for example, [18]).
Hence, (coinductive) natural semantics as framework as presented in this paper is best suited to verify
functional languages implementations (which targets abstract machines), since it assumes that the
target machine (and intermediate languages) are given (not to be derived).

Moreover, if for some reason (for example, semantic justification of the target abstract machine) it
is considered relevant to systematically derive the target abstract machine from the source calculus,
we conjecture that the corresponding derivation can also be carried out in our (coinductive) natural
semantics framework. This is because each transformation which leads to the derived machine
could be seen as an (intermediate) translation and be defined in natural semantics. Also, the input
and output language of each transformation could be seen as an (intermediate) language and its
corresponding semantics be defined in natural semantics. Certainly, the derived abstract machine
would be a big-step machine.

Other works tackle the verification of a small functional language in Coq, but to the authors’
knowledge none of them use (coinductive) natural semantics as unifying framework; instead, they use
ad-hoc verifications. For instance, Chlipala [35] offers a compiler from a small impure functional
language to an idealized assembly language. He starts from de Bruijn notation and employs natural
semantics for the source and target languages, but not to specify the compilation, his effort only cover
terminating computations. Benton and Hur [36] deal with the compilation of a small typed functional
language to the SECD machine, but they use denotational semantics for the source language and
small-step semantics for the target machine. In addition, Benton and Hur employ a biorthogonality
step-indexed logical relation to establish correctness. As mentioned before, Dargaye [23] develops a
compiler from Mini-ML to C minor, but it is not designed to be a standalone general-purpose Mini-ML
implementation. Instead, it was conceived to work only on the code generated by the Coq extraction
mechanism. The Coq extraction mechanism generates code of a real-life functional language, by default
OCaml, but it is also able to generate Scheme and Haskell code. This is why in Dargaye’s work, it only
makes sense to cover terminating computations since the Coq’s calculus, the Calculus of Inductive
Constructions, is strongly normalizing [37], meaning in Coq all computations must terminate. For this
reason, all extracted code from Coq should be terminating, while in Coq this property is ensured by
Coq’s type checker [26]; the code generation translation performed by the Coq extraction mechanism
is not verified, although some efforts are conducted in this direction [6,24,25,38–40].

The CertiCoq project [6,40,41] aims to provide a verified extraction pipeline from the core language
of Coq, Gallina, to machine language. Therefore, in CertiCoq it also only makes sense to cover
terminating computations. This fact is explicitly stated in [6]: ‘... we can restrict our reasoning to
terminating programs since Coq is strongly normalizing. This way we avoid backward simulations
(forward simulations proofs are much simpler) and avoid proving preservation of divergence’.
Similarly, Savary Bélanger [40] indicates: ‘In CertiCoq, we are only concerned with terminating
programs: Gallina is strongly normalizing, and our proof of correctness ensures that programs do not
acquire non-terminating behaviors along the way’.

Instead of producing machine code directly, CertiCoq generates C light (a CompCert C
intermediate language) code. Hence, it uses CompCert C as verified compiler back-end to produce
machine language. This way, CertiCoq compiler performs a series of phases from Galllina to Cligth.
In CertiCoq, (intermediate) languages semantics and proofs of correctness are based on big-step

Mathematics 2020, 8, 1573 6 of 55

semantics (for terminating computations). However, big-step semantics is refined with other notions
such as step-indexed logical relations and context-based semantics [40,42] to account for additional
properties, for instance, compositionality. In addition, the idea of adapting this technique to be useful
for general-purpose programming languages is barely mentioned in [40]. Albeit, for this purpose,
Savary Bélanger [40] suggests to employ small-step semantics. For their part, Paraskevopoulou and
Appel [42], in order to prove closure conversion correctness, they already extend this technique to cover
non-termination computations under certain conditions. Closure conversion is a phase performed
by CertiCoq.

Our (coinductive) natural semantics framework is best suited to verify usual functional language
to abstract machine implementations since it accounts for both terminating and non-terminating
computations (total correctness). In addition, it can express terminating and non-terminating
computations in an abstract machine. In contrast, by design [6] CertiCoq only covers terminating
evaluations on one hand, and on the other it targets C light which is why no abstract machine is
used. This situation reflects the fact that our (coinductive) natural semantics framework and CertiCoq
pursuit different goals. Although our (coinductive) natural semantics framework is a framework to
conduct total correctness compiler verification in Coq, CertiCoq is a verified compiler (from Coq’s core
calculus to Clight). Hence, it is not an explicit CertiCoq main objective to offer an infrastructure to
perform compiler verification [6], even although, the infrastructure and techniques developed to verify
the CertiCoq compiler could be adapted to be used to verify other compilers as well.

Step-indexed logical relations as shown by Ahmed [43] serve to establish contextual equivalence
between programs. We remark that step-indexed logical relations provide a way to deal with two
compiler problems in particular; specifically, compositionality and secure compilation.

In [44], Ahmed and Blume show how to use step-indexed logical relations together with small-step
semantics to deal with a notion of secure compilation. Ahmed and Blume demonstrate their method,
applying it to a typed closure conversion transformation. Patrignani et al. [45] offer a recent survey of
the formal approaches and techniques used in secure compilation. Certainly, this survey includes in
particular works that employ step-indexed logical relations. Abate et al. [46] study generalizations of
trace-based compiler correctness criteria including some which accounts for secure compilation.

To account for compositionality, Perconti and Ahmed [47] propose the use of a language
in which all languages involved in a compilation pipeline can be embedded. Then, using a
step-indexed logical relation and small-step semantics compositional compiler correctness is
established in terms of the combined language. For their part, Neis et al. [48] introduce parametric
inter-language simulations (PILS) as a technique particularly suited to compositional compiler
verification for higher-order imperative languages. In particular, they demonstrate their technique
with Pilsner, a verified compositional compiler from a ML-like language to an assembly-like language.
Patterson and Ahmed [49] provide a framework for expressing different notions of compiler correctness,
especially those which consider compiler compositionality.

Dreyer et al. [50], in order to avoid tedious, error-prone and obscuring step-indexed arithmetic,
instead of using explicit indices, they propose to ‘hide’ indices, internalizing them into a logic. The idea
is to replace indices with a modal operator, this way obtaining a modal logic which they name LSLR.
In particular, this idea is reused in IRIS. IRIS [7,51–53] is a concurrent separation logic framework
implemented and verified in Coq. In this regard, Krebbers et al. [53] comment: ‘We also show that
the step-indexed “later” modality of Iris is an essential source of complexity, in that removing it leads
to a logical inconsistency’. Recently, Linn Georges et al. [54] formalize a capability machine in IRIS.
As Linn Georges et al. [54] point out, capability machines are promising targets for secure compilers.
Hence, the idea to extend IRIS to be used as secure compiler framework is imminent; in particular,
to verify secure compilers from high-level concurrent languages to capability machines. However,
to the authors’ knowledge, IRIS has never been used in this manner. A very similar goal is pursued
by Cuellar et al. [55] and Cuellar [56] but extending CompCert C. To this end, they introduce the

Mathematics 2020, 8, 1573 7 of 55

Concurrent Permission Machine (CPM). Certainly, C (with concurrency) is the source language in
these works.

In retrospective, on one hand step-indexed logical relations have proved to be useful, in particular
in secure compilation, compiler compositionality and concurrency; on the other hand, natural semantics
has proved to be easier and more convenient than other formalisms (for instance, small-step semantics)
for compiler correctness proofs. Hence, we speculate that both natural semantics and step-indexed
logical relations can be combined in a single formalism that has the best properties of each one of them.
In other words, we envisage the ambitious goal of reaching a single formalism that features secure
compilation, compositional compilation, concurrency and be simple, easy and intuitive as possible.

Currently, our (coinductive) natural semantics framework does not account for secure compilation,
compositionality nor concurrency. However, we conjecture that step-indexed logical relations can be
adopted in it to address some or even all these features. The price paid for this effort would be to
deal with the known complexity of step-indexed logical relations (although it could be ameliorated,
for instance, by internalizing the indices in a natural semantics modal logic). At present, our
(coinductive) natural semantics framework is simple, easy and intuitive.

The following are related semantics: coinductive big-step operational semantics [14,15],
trace-based coinductive operational semantics [57], pretty-big-step semantics [20] and flag-based
big-step semantics [21].

The only one of these works that presents the verification of the correctness of a compiler is
Leroy’s (an ad-hoc verification). This means that (coinductive) natural semantics is not used in any of
them as a unifying framework for the verification of compiler correctness. Specifically, it is not used in
the definition of the semantics of the machine (nor in that of its interpreter), it is not used to define the
translations, and it is not used (both in the source language and in the target language) to establish,
nor to prove the correctness of the translations. What it does, in each of them, is to present a natural
semantics with coinduction of a high-level language (which would usually correspond to the source
language in a compiler) and it is this aspect that we review next.

Leroy [14] first expresses finite computations with natural semantics ‘evaluation’ and infinite
computations ‘divergence’ with coinductive natural semantics, separately; this solution is clear and
clean. After, he offers an alternative solution in which one finite and infinite computations are expressed
in a single coinductive natural semantics ‘coevaluation’; however, this semantics does not behave well
in the sense that on one hand, there are infinite computations that it is not able to express, and on
the other, there are infinite computations that are evaluated to any value v. Nakata and Uustalu [57]
remark that this behavior appears accidental and undesired.

Nakata and Uustalu [57] define a coinductive natural semantics of the While language that
expresses finite and infinite computations; the careful and ad-hoc design of semantics follows, and
within it that of small-step semantics. Additionally, Nakata and Uustalu define an interpreter using
the trace monad and they show that it is correct regarding such semantics. Nakata and Uustalu’s
work [57] is the only one of the related works presented here in which an interpreter is presented.

Charguéraud [20] introduces pretty-big-step semantics, a semantics based on ‘coevaluation’ of
Leroy. Unfortunately, pretty-big-step semantics inherits the not well behavior of ‘coevaluation’. In turn,
Bach Poulsen and Mosses [21] define flag-based big-step semantics based on pretty-big-step semantics.
Unfortunately, flag-based big-step semantics, through pretty-big-step semantics, also inherits the not
well behavior of ‘coevaluation’.

In this work, we present (coinductive) natural semantics as a framework for the verification of
total correctness of compilers in Coq. Once we have a simple, easy, clear, and intuitive solution for
this task, we can seek to improve it in the future. In particular, we use a natural parameter in the
interpreters to bound the recursion. Recently, Leroy [58] has defined an interpreter of While using the
partiality monad in Coq; we plan to adopt the partiality monad in our Mini-ML compiler and in the
framework in general to avoid the use of this parameter.

Mathematics 2020, 8, 1573 8 of 55

On the other hand, we can seek to reach a single coinductive natural semantics ‘ co⇒ ’ able to express
terminating computations, as well as non-terminating computations. Charguéraud [20] mentions that
in principle, this semantics can be used directly to prove total correctness of the translations; however,
he points out that the conclusion in the correctness theorem is usually of the form ∃v′.(v ≈ v′)∧ (c co⇒ v′),
and that the current support of coinduction in Coq only allows using coinductive predicates in the
conclusion. In particular, it does not allow using the existential quantifier ‘∃’ or the connective ‘∧’
when a proof is done by coinduction. Bach Poulsen and Mosses [21] run a similar criticism to the
current coinduction support in Coq. Fortunately, our (coinductive) natural semantics is ideal here
since, when using (inductive) natural semantics ‘⇒’ to express finite computations and coinductive
natural semantics ‘ ∞⇒ ’ to express infinite computations (separately), the proof of the termination case
where the conclusion requires an ∃ and an ∧ can be done by induction, whereas, in this way, in the
case of non-termination, in the conclusion neither the ∃ nor the ∧ is required, only the coinductive
predicate ∞⇒ is used, so it can be proved by coinduction (with the current support of Coq).

Even then, it would be possible to aim at having a single semantics in order to have a more concise
definition. If so, the framework could automate the translation from it to the two separated semantics
(⇒ and ∞⇒); also, the framework could establish and prove the equivalence between the first one and
the union of the last two semantics. Having arrived at these two semantics, the current results of the
framework can be used.

The central problem is that (to the authors’ knowledge) to date, there is not a single coinductive
natural semantics in the literature that expresses finite and infinite computations, and that it does
behave well. The first author, based on Leroy’s ‘coevaluation’, has succeeded in defining a single
coinductive natural semantics (of the pure lambda calculus extended with constants) that expresses
terminating and non-terminating computations, and that it does behave well in Coq. Also, he has
proved the equivalence of this semantics with the union of the two semantics (⇒ and ∞⇒) that express,
respectively, finite and infinite computations separately. Apparently, this result is sound [59] and we
plan to present it in future works.

To continue, it would be possible to deal with the problem of decreasing the number of rules
necessary in a coinductive natural semantics definition. This is the main goal of pretty-big-step
semantics and flag-based big-step semantics. To this end and going further, we envisage that
the results in this work and those of pretty-big-step semantics and flag-based big-step semantics
(future work and perhaps other works as well) can be integrated in a coinductive natural semantics
framework having all the desired properties of each of them. In other words, it is our intention
that the resulting coinductive natural semantics framework synthesizes all the major advances in
natural semantics.

1.2. Contributions

Our main general and specific contributions are:

• The (coinductive) natural semantics as a framework for the verification of total correctness of
compilers in Coq. Such that a working standalone verified compiler, meaning, a compiler sound
and complete regarding (coinductive) natural semantics specification and correct regarding
semantic preservation of the specified translation can be obtained as a final product

• A systematic method to obtain either a sound or complete interpreter (Sections 2.1 and 3.1) or
compiler (Section 2.3.1), as applicable, from a (coinductive) natural semantics specification

• The use of coinductive natural semantics to specify non-terminating computations in an abstract
machine (Section 3.3)

• A compiler from Mini-ML to a big-step version of the Modern SECD machine including its total
correctness verification in Coq (Sections 2.1, 2.3, 3.1 and 3.3)

• An extended version of the original small-step semantics Modern SECD machine which includes
native recursion support (Sections 2.2 and 3.2)

Mathematics 2020, 8, 1573 9 of 55

• A big-step version of the Modern SECD machine including its formalization in Coq (Sections 2.3
and 3.3)

• A coinductive natural semantics specification of non-terminating computations of Mini-ML
(extended version of Leroy’s specification of the pure lambda calculus with constants, Section 3.1)

• A coinductive natural semantics specification of non-terminating computations of the big-step
Modern SECD machine (Section 3.3)

• An algorithm to translate from (an abstract representation of) the (coinductive) natural semantics
specification of a total correct compiler to its corresponding formalization in Coq (Section 4)

The strategy for the presentation is, first, to tackle the termination case using natural semantics
(Section 2), and then the non-termination case using coinductive natural semantics (Section 3).
During this work, the method that we use is to present each of the compiler’s components together
with their corresponding Coq formalization; in this way, it is intended that when our compiler is
finished, we will have the necessary intuition behind the algorithm to go from a total correct compiler
in abstract to Coq (Section 4). Finally, (Section 5), we present our conclusions.

2. Natural Semantics

We will first tackle, in this section, the case in which the computations are finite (terminating)
using natural semantics.

2.1. MiniMLdB

To begin with, we introduce the source language, Mini-ML, in de Bruijn notation, which is
essentially the pure lambda calculus extended with naturals, Booleans, arithmetic and comparison
operators, local definitions, conditionals and native recursion by means of a fixed point operator.
Its abstract syntax is the following:

d ∶∶= n Naturals
∣ b Booleans
∣ d ⋆ d with ⋆ ∈ {+,−,∗,=} Primitive operators
∣ i Nameless variables (de Bruijn index)
∣ if d then d else d Conditionals
∣ let d in d Local definition
∣ λ.d Abstraction
∣ µ.λ.d Fixed point
∣ d d Application

Before carrying out the coding of our definitions in Coq, it is important to highlight some of
its features. Coq is based on the Calculus of Inductive Constructions, i.e., a lambda calculus with a
sophisticated and expressive type system. Since it is a lambda calculus, it can be used as a logic, but also
as a programming language, i.e., we can prove propositions, but also write programs. This distinction
is made explicit by using the types Prop and Set respectively. Roughly, it can be said that when a term
in Coq has type Prop, it is used as logic, and if a term has type Set, then it is used as programming
language. In fact, this explicit syntactic distinction between Prop and Set was introduced by the Coq
extraction mechanism [60] to distinguish between those terms with computational content and those
without it (Paulin-Mohring [60] calls ‘Spec’ what would later be called ‘Set’). In this way, if a term in
Coq has a Set type, the extraction mechanism can generate a program written in a general-purpose
programming language, such as OCaml, related to this term, in contrast to a term with a Prop type
from which is not possible to extract any program at all.

The abstract syntax of MiniMLdB can be coded in Coq as first order abstract syntax using an
Inductive definition with type Set as follows:

Mathematics 2020, 8, 1573 10 of 55

Inductive MML_dB_exp: Set :=
| Const_dB : nat → MML_dB_exp
| ...
| Letm_dB: MML_dB_exp→ MML_dB_exp→ MML_dB_exp
| ...
| Lam_dB: MML_dB_exp→ MML_dB_exp
| Mu_dB: MML_dB_exp→ MML_dB_exp
| App_dB: MML_dB_exp→ MML_dB_exp→ MML_dB_exp.

For conciseness, throughout this article, we will show only the essentials parts of the formalization.
The full formalization can be consulted in [61].

Hence, the Coq extraction mechanism can be used with the following command:

Extraction MML_dB_exp.

which gives as a result:

type mML_dB_exp =
| Const_dB of nat
| ...
| Letm_dB of mML_dB_exp * mML_dB_exp
| ...
| Lam_dB of mML_dB_exp
| Mu_dB of mML_dB_exp
| App_dB of mML_dB_exp * mML_dB_exp

This way, we can notice how an Inductive definition with type Set in Coq corresponds to an ADT
in OCaml, in this case to the abstract syntax of MiniMLdB written in OCaml.

To define the natural semantics of MiniMLdB, we first need to define its values by means of
environments and closures.

v ∶∶= n Numbers
∣ b Booleans
∣ (λ.d)[Ω] Closures
∣ (µ.λ.d)[Ω] Recursive closures

Ω ∶∶= [] Empty environment
∣ v ⋅Ω

The environments serve as (implicit) associations from variables (represented by de Bruijn indices)
to values. In this manner, as expressed by the predicate Ω ⊢ i z→ v, the value of a variable represented
by the index i is at the ith position in the environment (a sequence of values).

v ⋅Ω ⊢ 0z→ v
Ω ⊢ i z→ v

w ⋅Ω ⊢ S i z→ v

The natural semantics of MiniMLdB is inductively defined by the predicate:

Ω ⊢ d⇒ v

which can be read as follows: in the environment Ω, the expression d is evaluated to the value v.
The Ω environment is supposed to contain the value of the free variables in d. The natural

semantics of MiniMLdB is defined as follows:

Mathematics 2020, 8, 1573 11 of 55

Ω ⊢ n⇒ n Ω ⊢ b⇒ b
Ω ⊢ d1 ⇒ n1 Ω ⊢ d2 ⇒ n2

Ω ⊢ d1 ⋆ d2 ⇒ n1 ⋆ n2

Ω ⊢ i z→ v
Ω ⊢ i⇒ v

Ω ⊢ d1 ⇒ v1 v1 ⋅Ω ⊢ d2 ⇒ v
Ω ⊢let d1 in d2 ⇒ v

Ω ⊢ d1 ⇒ true Ω ⊢ d2 ⇒ v
Ω ⊢ if d1 then d2 else d3 ⇒ v

Ω ⊢ d1 ⇒ f alse Ω ⊢ d3 ⇒ v
Ω ⊢ if d1 then d2 else d3 ⇒ v

Ω ⊢ λ.d⇒ (λ.d)[Ω] Ω ⊢ µ.λ.d⇒ (µ.λ.d)[Ω]

Ω ⊢ d1 ⇒ (λ.d)[Ω1] Ω ⊢ d2 ⇒ v2 v2 ⋅Ω1 ⊢ d⇒ v
Ω ⊢ d1 d2 ⇒ v

Ω ⊢ d1 ⇒ (µ.λ.d)[Ω1] Ω ⊢ d2 ⇒ v2 v2 ⋅ (µ.λ.d)[Ω1] ⋅Ω1 ⊢ d⇒ v
Ω ⊢ d1 d2 ⇒ v

A natural semantics definition can be seen as an inductive logical proposition; hence, it can be
encoded in Coq as an Inductive definition with type Prop. This way the MiniMLdB semantics can be
written as follows:

Inductive MML_dB_NS : MML_dB_env→ MML_dB_exp→ MML_dB_val→ Prop :=
| MML_dB_NS_Const: ∀ O: MML_dB_env, ∀ n: nat,

MML_dB_NS O (Const_dB n) (Num_dB n)
| ...
| MML_dB_NS_Let: ∀ O: MML_dB_env, ∀ d1 d2: MML_dB_exp, ∀ v1 v2: MML_dB_val,

MML_dB_NS O d1 v1 →
MML_dB_NS (v1:: O) d2 v2 →
MML_dB_NS O (Letm_dB d1 d2) v2

| ...
| MML_dB_NS_Lam: ∀ O: MML_dB_env, ∀ d: MML_dB_exp,

MML_dB_NS O (Lam_dB d) (Clos_dB d O)

| MML_dB_NS_Mu: ∀ O: MML_dB_env, ∀ d: MML_dB_exp,
MML_dB_NS O (Mu_dB d) (Closr_dB d O)

| MML_dB_NS_App: ∀ O O1: MML_dB_env, ∀ d1 d2 d: MML_dB_exp, ∀ v v2: MML_dB_val,
MML_dB_NS O d1 (Clos_dB d O1) →
MML_dB_NS O d2 v2 →
MML_dB_NS (v2:: O1) d v →
MML_dB_NS O (App_dB d1 d2) v

| MML_dB_NS_Appr: ∀ O O1: MML_dB_env, ∀ d1 d2 d: MML_dB_exp, ∀ v v2: MML_dB_val,
MML_dB_NS O d1 (Closr_dB d O1) →
MML_dB_NS O d2 v2 →
MML_dB_NS (v2::(Closr_dB d O1):: O1) d v →
MML_dB_NS O (App_dB d1 d2) v.

A natural semantics definition, in general, is a relation; therefore, no determinism is the general
case. Then, in case a definition of this kind is deterministic, a lemma that expresses this property must
be formally established in the same way we do it for the MiniMLdB semantics:

Mathematics 2020, 8, 1573 12 of 55

Lemma MML_dB_NS_deterministic:
∀ O, ∀ d, ∀ v1, MML_dB_NS O d v1 →

∀ v2, MML_dB_NS O d v2 →
v1 = v2.

If a relation is deterministic, then it can be stated as a function. Consequently, it can be encoded as
function in a programming language. In particular, in Coq, we can write a recursive function employing
Fixpoint. For instance, the function corresponding to MiniMLdB natural semantics is written as follows:

Fixpoint MML_dB_NS_interpreter (depthR:nat)(O: MML_dB_env) (d: MML_dB_exp)
: option MML_dB_val :=
match depthR with
| 0 ⇒ None
| S m ⇒ match d with

| Const_dB n ⇒ Some (Num_dB n)
| ...
| Letm_dB d1 d2 ⇒
match (MML_dB_NS_interpreter m O d1) with

| Some v1 ⇒ MML_dB_NS_interpreter m (v1::O) d2
| _ ⇒ None

end
| ...
| Lam_dB d ⇒ Some (Clos_dB d O)
| Mu_dB d ⇒ Some (Closr_dB d O)
| App_dB d1 d2 ⇒
match (MML_dB_NS_interpreter m O d1) with

| Some (Clos_dB d O1) ⇒
match MML_dB_NS_interpreter m O d2 with

| Some v2 ⇒ MML_dB_NS_interpreter m (v2::O1) d
| _ ⇒ None

end
| Some (Closr_dB d O1) ⇒
match MML_dB_NS_interpreter m O d2 with

| Some v2 ⇒ MML_dB_NS_interpreter m (v2::(Closr_dB d O1):: O1) d
| _ ⇒ None

end
| _ ⇒ None

end
end

end.

Please note that this function is actually an interpreter. To guarantee termination, we added
the natural parameter depthR which indicates the recursion depth (depthR is also called ‘fuel’ by
some authors, see, for example [24,25,62,63]). This is because the CIC is strongly normalizing [37],
which means, from a programming-language perspective, that all the calculations must terminate.
In Coq, this means that all functions must be total and terminating.

From a verification perspective, a logical proposition serves as a formal specification that a
program must comply. In this case, the logical proposition is the Inductive definition in Prop whereas
the program is the interpreter in Set. Then, to verify that our interpreter is sound with respect to the
MiniMLdB natural semantics, we must prove the following lemma:

Mathematics 2020, 8, 1573 13 of 55

Lemma MML_dB_NS_interpreter_soundness:
∀ O, ∀ d, ∀ v, MML_dB_NS O d v →

∃ n, MML_dB_NS_interpreter n O d = Some v.

Conversely, i.e., to verify that our interpreter is complete with respect to MiniMLdB natural
semantics, we must prove this lemma:

Lemma MML_dB_NS_interpreter_completeness: ∀ n, ∀ O, ∀ d, ∀ v,
MML_dB_NS_interpreter n O d = Some v →
MML_dB_NS O d v.

Now we write factorial of 5 in MiniMLdB as a program example:

Definition example :=
(App_dB (Mu_dB (If_dB (Eq_dB (Var_dB 0) (Const_dB 0))

(Const_dB 1)
(Times_dB (Var_dB 0)

(App_dB (Var_dB 1)
(Minus_dB (Var_dB 0) (Const_dB 1)))))) (Const_dB 5)).

then, we can evaluate it in our MiniMLdB interpreter, inside Coq, as follows:

Compute (MML_dB_NS_interpreter 19 nil example).

obtaining just the expected result:

= Some (Num_dB 120) : option MML_dB_val

Next, we can use the extraction mechanism as follows:

Extraction MML_dB_NS_interpreter.

so, in this way, we obtain a verified interpreter, sound and complete with respect to MiniMLdB natural
semantics in OCaml, ready to be used in real life.

let rec mML_dB_NS_interpreter depthR o d =
match depthR with
| O → None
| S m →

(match d with
| Const_dB n → Some (Num_dB n)
| ...
| Letm_dB (d1, d2) →

(match mML_dB_NS_interpreter m o d1 with
| Some v1 → mML_dB_NS_interpreter m (Cons (v1, o)) d2
| None → None)

| ...
| Lam_dB d0 → Some (Clos_dB (d0, o))
| Mu_dB d0 → Some (Closr_dB (d0, o))
| App_dB (d1, d2) →

Mathematics 2020, 8, 1573 14 of 55

(match mML_dB_NS_interpreter m o d1 with
| Some m0 →

(match m0 with
| Clos_dB (d0, o1) →

(match mML_dB_NS_interpreter m o d2 with
| Some v2 → mML_dB_NS_interpreter m (Cons (v2, o1)) d0
| None → None)

| Closr_dB (d0, o1) →
(match mML_dB_NS_interpreter m o d2 with

| Some v2 →
mML_dB_NS_interpreter m (Cons (v2, (Cons ((Closr_dB (d0, o1)),
o1)))) d0

| None → None)
| _ → None)

| None → None))

The reader may question the ‘double’ task of maintaining both definitions, Prop and Set. On one
hand, if we stay in the logical part, in Prop, a verified compiler cannot be obtained to be used
in real life, while on the other hand, definitions using the Set type forces us to work with total
terminating functions.

Let us recall that natural semantics is, in general, inherently relational and, non-deterministic;
therefore, to write a natural semantics definition as a function we must ensure that it is total and
deterministic. Although for some particular cases this is true, we think that if a natural semantics
definition is written directly as a function, the essence of natural semantics vanishes.

Also, Coq automatically generates inductive principles from inductive definitions, which is not
the case for functions. These induction principles are useful as they can be used through the induction

tactic while doing a proof. In some scenarios, this is an advantage, especially, of course, when a proof
is done by induction.

Regarding the remarks above, we give definitions in Prop to retain the essence of natural semantics
and to take advantage of the inductive principles generated by Coq. Also, we give the corresponding
definitions in Set, mainly to obtain verified implementations.

2.2. Modern SECD Machine

Leroy [8,14] introduces the Modern SECD, a machine based on Landin’s SECD [64] with two main
differences: the first one is that it does not use a Dump; instead, it makes use of frames in the stack to
support function calls; the second one is that it uses de Bruijn indices to access the environment.

The original Modern SECD only offers natural constants, local definitions, abstraction and
application support. Due to this, we offer an extended version of the MSECD to support Booleans,
arithmetic and comparison operators, conditionals, and native recursion by means of recursive
closures. It is worth mentioning that we made the conditionals support based on Henderson’s
SECD presentation [65].

The instructions of the extended MSECD are the following:

Mathematics 2020, 8, 1573 15 of 55

i ∶∶= IConst n Push the natural n
∣ IConstb b Push the Boolean b
∣ IAdd Perform an addition
∣ ISub Perform a subtraction
∣ IMul Perform a multiplication
∣ IEq Perform an equality comparison
∣ IAcc i Push the value of the variable number (de Bruijn index) i
∣ ISel c c Select a conditional branch
∣ IJoin Rejoin the main control (return from conditional)
∣ ILet Add the value of a local definition variable to the environment
∣ IEndLet Remove the value of a local definition variable from the environment
∣ IClos c Push a closure with code c
∣ IClosrec c Push a recursive closure with code c
∣ IApp Perform a function application
∣ IRet Return from function

Notice the distinction between ‘i’ and ‘i’, the former denotes a machine instruction, whereas the
latter denotes a de Bruijn index.

The code is defined as an instruction sequence:

c ∶∶= [] Empty code
∣ i ⋅ c

The values of the machine and its environment are defined as follows:

vm ∶∶= n Naturals
∣ b Booleans
∣ c[∆] Closures
∣ c[∆]rec Recursive closures

∆ ∶∶= [] Empty environment
∣ vm ⋅∆

Besides these values, the frames should be able to be stored in the stack. Therefore, the stack
values and the stack of the machine are defined as follows:

vs ∶∶= vm Machine values
∣ (c, ∆) Stack Frames

s ∶∶= [] Empty stack
∣ vs ⋅∆

A MSECD machine configuration is a triplet (c, ∆, s) where c is a code, ∆ is a machine environment,
and s is a stack.

The MSECD small-step semantics is a transition relation from a configuration (ci, ∆i, si) to the
next (ci+1, ∆i+1, si+1) denoted by: (ci, ∆i, si)→ (ci+1, ∆i+1, si+1).

Next, we present the MSECD small-step semantics, shown in Table 1.

Mathematics 2020, 8, 1573 16 of 55

Table 1. MSECD small-step semantics.

Current Next

Code Environment Stack Code Environment Stack

(IConst n) ⋅ c ∆ s c ∆ n ⋅ s
(IConstb b) ⋅ c ∆ s c ∆ b ⋅ s

IAdd ⋅ c ∆ n2 ⋅ n1 ⋅ s c ∆ n1 + n2 ⋅ s
ISub ⋅ c ∆ n2 ⋅ n1 ⋅ s c ∆ n1 − n2 ⋅ s
IMul ⋅ c ∆ n2 ⋅ n1 ⋅ s c ∆ n1 ∗ n2 ⋅ s
IEq ⋅ c ∆ n2 ⋅ n1 ⋅ s c ∆ n1 = n2 ⋅ s

(IAcc i) ⋅ c [v0, . . . , vi , . . . , vn] = ∆ s c ∆ vi ⋅ s
ILet ⋅ c ∆ v ⋅ s c v ⋅∆ s

IEndLet ⋅ c v ⋅∆ s c ∆ s
(ISel c1 c2) ⋅ c ∆ true ⋅ s c1 ∆ (c, []) ⋅ s
(ISel c1 c2) ⋅ c ∆ f alse ⋅ s c2 ∆ (c, []) ⋅ s

IJoin ⋅ c ∆ v ⋅ (cb, []) ⋅ s cb ∆ v ⋅ s
(IClos c1) ⋅ c ∆ s c ∆ c1[∆] ⋅ s
(IClosrec c1) ⋅ c ∆ s c ∆ c1[∆]rec ⋅ s

IApp ⋅ c ∆ v ⋅ c1[∆1] ⋅ s c1 v ⋅∆1 (c, ∆) ⋅ s
IApp ⋅ c ∆ v ⋅ c1[∆1]rec ⋅ s c1 v ⋅ c1[∆1]rec ⋅∆1 (c, ∆) ⋅ s
IRet ⋅ c ∆ v ⋅ (c1, ∆1) ⋅ s c1 ∆1 v ⋅ s

To codify this semantics in Coq, we write:

Inductive MSECD_SS: conf → conf→ Prop :=
| MSECD_SS_IConst: ∀ n: nat, ∀ c: code, ∀ D: env, ∀ s: stack,

MSECD_SS (IConst n:: c, D, s) (c, D, Val (MInt n):: s)
| ...

| MSECD_SS_ILet: ∀ c: code, ∀ D: env, ∀ v: val, ∀ s: stack,
MSECD_SS (ILet:: c, D, Val v:: s) (c, v:: D, s)

| MSECD_SS_IEndLet: ∀ c: code, ∀ D: env, ∀ v: val, ∀ s: stack,
MSECD_SS (IEndLet:: c, v:: D, s) (c, D, s)

| ...

| MSECD_SS_IClos: ∀ cc c: code, ∀ D: env, ∀ s: stack,
MSECD_SS (IClos cc:: c, D, s) (c, D, Val (MClos cc D):: s)

| MSECD_SS_IClosr: ∀ cc c: code, ∀ D: env, ∀ s: stack,
MSECD_SS (IClosr cc:: c, D, s) (c, D, Val (MClosr cc D):: s)

| MSECD_SS_IApp: ∀ c c1: code, ∀ D D1: env, ∀ s: stack, ∀ v: val,
MSECD_SS (IApp:: c, D, Val v:: Val (MClos c1 D1):: s) (c1, v:: D1, SFrame c D:: s)

| MSECD_SS_IAppr:∀ c c1:code, ∀ D D1: env, ∀ s: stack, ∀ v: val,
MSECD_SS (IApp:: c, D, Val v:: Val (MClosr c1 D1):: s) (c1, v::(MClosr c1 D1):: D1, SFrame c D:: s)

| MSECD_SS_IReturn: ∀ c c1: code, ∀ D D1: env, ∀ v: val, ∀ s: stack,
MSECD_SS (IRet:: c, D, Val v:: SFrame c1 D1 :: s) (c1, D1, Val v:: s).

Let m1, m2 and m3 be MSECD machine configurations, the transitive closure of the small-step
semantics is defined inductively as follows:

m1 → m2

m1
+→ m2

m1 → m2 m2
+→ m3

m1
+→ m3

Mathematics 2020, 8, 1573 17 of 55

In Coq, this transitive closure is written as follows:

Inductive TC_MSECD_SS: conf → conf→ Prop :=
| TC_MSECD_SS_SS:
∀ m1 m2, MSECD_SS m1 m2 →

TC_MSECD_SS m1 m2

| TC_MSECD_SS_Transitivity:
∀ m1 m2, MSECD_SS m1 m2 →
∀ m3, TC_MSECD_SS m2 m3 →

TC_MSECD_SS m1 m3.

2.2.1. Compilation

Leroy [14] defines the compilation from the pure lambda calculus extended with constants to
MSECD machine code as a function. Here, we extend his work to all the MiniMLdB language constructs:

JnK = IConst n

JbK = IConstb b

Jd1 ⋆ d2K = Jd1K ⋅ Jd2K ⋅ IOp

J i K = IAcc i

Jlet d1 in d2K = Jd1K ⋅ ILet ⋅ Jd2K ⋅ IEndLet

Jif d1 then d2 else d3K = Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin)

Jλ.dK = IClos (JdK ⋅ IRet)

Jµ.λ.dK = IClosrec (JdK ⋅ IRet)

Jd1 d2K = Jd1K ⋅ Jd2K ⋅ IApp

2.2.2. Correctness

The correctness of this compilation can be established by semantic preservation for which it is
necessary to extend the compilation to values and environments of the machine, as shown below:

JnK = n JbK = b J(λ.d)[Ω]K = (JdK ⋅ IRet)[JΩK]

J(µ.λ.d)[Ω]K = (JdK ⋅ IRet)[JΩK]rec Jv1 . . . vnK = Jv1K . . . JvnK

In this way, if an expression d is evaluated to a value v in an Ω environment, it is expected
that its compilation JdK is evaluated to JvK in the JΩK environment. However, to prove this result,
it is necessary to strengthen the hypothesis (we will see, in Section 2.3.2 that this is not necessary when
natural semantics is used). Here, to strengthen the hypothesis is to concatenate any code c at the
end of compilation JdK, so when the evaluation of JdK finishes, it is expected that JvK is at the top of
the stack, and the code c remains to evaluate. This is formally expressed in the following theorem
formulated by Leroy [14]:

Theorem 1. If Ω ⊢ d⇒ v, then (JdK ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s) for all codes c and stacks s.

Proof outline. The proof is conducted by induction on the derivation of Ω ⊢ d ⇒ v. The base
cases where d is a natural, a Boolean, a nameless variable, an abstraction, or a fixed point (recursive
abstraction) are straightforward since the corresponding JdK compilation is a single machine instruction
whose evaluation is performed by a single machine step→ that mimics the MiniMLdB d evaluation.

For the inductive cases where d is an arithmetic or comparison expression, a conditional, a local
definition, or an application the proof follows the structure of the derivation Ω ⊢ d⇒ v. The key idea

Mathematics 2020, 8, 1573 18 of 55

is to use the +→ transitivity together with the induction hypothesis, while evaluating the intermingled
single instructions which appear in JdK by performing the corresponding→machine step.

The complete proof can be consulted in Appendix A. This theorem is written in Coq as follows:

Theorem compile_eval:
∀ O, ∀ d, ∀ v, MML_dB_NS O d v →

∀ c, ∀ s, TC_MSECD_SS ((compile d)++c, compile_env O,s)
(c, compile_env O, (Val (compile_value v):: s)).

2.3. Big-Step MSECD Machine

This section introduces our big-step version of the Modern SECD machine. This machine is
strongly based on our extended version of the original small-step semantics MSECD. Unlike the
small-step MSECD, due to the high-level of abstraction of natural semantics, it is not necessary to use
stack frames at all, and therefore the return instructions are also unnecessary (IRet which works for
returning from a function call, nor IJoin that works for returning from a conditional). Having said this,
we can affirm that the use of natural semantics directly impacts the machine design, specifically the
machine’s components.

The instructions of the big-step MSECD machine, as well as its code, are the following:

i ∶∶= IConst n Naturals
∣ IConstb b Booleans
∣ IAdd Addition
∣ ISub Subtraction
∣ IMul Multiplication
∣ IEq Equality comparison
∣ IAcc i Variable value access (de Bruijn index)
∣ ISel c c Conditionals
∣ ILet Local definitions
∣ IEndLet
∣ IClos c Abstraction
∣ IClosrec c Recursion abstraction
∣ IApp Application

c ∶∶= [] Empty code
∣ i ⋅ c

The values and environments of the machine are defined as follows:

vm ∶∶= n Naturals
∣ b Booleans
∣ c[∆] Closures
∣ c[∆]rec Recursive closures

∆ ∶∶= [] Empty environment
∣ vm ⋅∆

Given the fact that the frames disappear, it is not necessary to define stack values. Due to this,
the stack directly becomes a sequence of machine values:

s ∶∶= [] Empty stack
∣ vm ⋅ s

The predicate ∆ ⊢ i z→ v expresses that v is the value of the variable represented by the de Bruijn
index i in the machine environment ∆.

Mathematics 2020, 8, 1573 19 of 55

v ⋅∆ ⊢ 0z→ v
∆ ⊢ i z→ v

w ⋅∆ ⊢ S i z→ v

A state is a pair (∆, s) where ∆ is a machine environment and s a stack.
The machine natural semantics is defined by the following two mutually dependent predicates:

∆, s ⊢ c⇒ (∆ f , s f) ∆1, s1 ⊢ i⇒ (∆2, s2)

the first one for machine code, which can be read as follows: if the machine is in a state (∆, s), and a
code c is given, evaluating c takes it to the state (∆ f , s f). The second one for instructions, which can be
read as follows: if the machine is in a state (∆1, s1) and an instruction i is given, evaluating i takes it to
the state (∆2, s2). However, the entry point for the semantics should be the predicate for code.

The environment ∆ is supposed to contain the value of the free variables (represented by IAcc i
instructions) in c, whereas the environment ∆1 are supposed to contain the value of the free variable in
i (if i is an instruction IAcc i). The natural semantics of the machine is the following:

∆, s ⊢ []⇒ (∆, s)
∆, s ⊢ i⇒ (∆1, s1) ∆1, s1 ⊢ c⇒ (∆2, s2)

∆, s ⊢ i ⋅ c⇒ (∆2, s2)

∆, s ⊢ IConst n⇒ (∆, n ⋅ s) ∆, s ⊢ IConstb b⇒ (∆, b ⋅ s)

IOp ∈ {IAdd, ISub, IMul, IEq}, ⋆ ∈ {+,−,∗,=} resp.
∆, n2 ⋅ n1 ⋅ s ⊢ IOp ⇒ (∆, n1 ⋆ n2 ⋅ s)

∆ ⊢ i z→ v

∆, s ⊢ IAcc i⇒ (∆, v ⋅ s)

∆, s ⊢ c1 ⇒ (∆1, s1)

∆, true ⋅ s ⊢ ISel c1 c2 ⇒ (∆1, s1)

∆, s ⊢ c2 ⇒ (∆1, s1)

∆, f alse ⋅ s ⊢ ISel c1 c2 ⇒ (∆1, s1)

∆, v ⋅ s ⊢ ILet ⇒ (v ⋅∆, s) v ⋅∆, s ⊢ IEndLet ⇒ (∆, s)

∆, s ⊢ IClos c⇒ (∆, c[∆] ⋅ s) ∆, s ⊢ IClosrec c⇒ (∆, c[∆]rec ⋅ s)

v ⋅∆1, s ⊢ c⇒ (∆2, v1 ⋅ s1)

∆, v ⋅ c[∆1] ⋅ s ⊢ IApp ⇒ (∆, v1 ⋅ s1)

v ⋅ c[∆1]rec ⋅∆1, s ⊢ c⇒ (∆2, v1 ⋅ s1)

∆, v ⋅ c[∆1]rec ⋅ s ⊢ IApp ⇒ (∆, v1 ⋅ s1)

The coding of the natural semantics of the machine is similar to that of the natural semantics
of MiniMLdB (only, it is necessary to use a mutually dependent definition in Coq, in correspondence
with the mutually dependent predicates of the machine natural semantics). The same applies for the
interpreter and its respective lemmas of soundness and completeness regarding the machine natural
semantics. The formalization details can be consulted at [61].

We highlight that the machine natural semantics has the property enunciated in the following
lemma:

Lemma 1. Let ∆, ∆1, ∆2 be machine environments; s, s1, s2 stacks; c1, c2 machine codes. If

∆, s ⊢ c1 ⇒ (∆1, s1), ∆1, s1 ⊢ c2 ⇒ (∆2, s2)
then

∆, s ⊢ c1 ⋅ c2 ⇒ (∆2, s2)

Mathematics 2020, 8, 1573 20 of 55

Proof outline. By induction on the derivation ∆, s ⊢ c1 ⇒ (∆, s1). The base case is when c1 is the
empty code c1 = [] which follows simply by hypothesis. The inductive case is when c1 is not empty
c1 ≠ [] which is proved by applying the induction hypothesis and by⇒ definition.

This lemma is useful to prove compilation correctness (Section 2.3.2). A detailed proof can be
seen in Appendix A.

2.3.1. Compilation

Using natural semantics, the compilation from MiniMLdB to code of the big-step Modern SECD
machine is defined by the following predicate:

d ⇓ c

meaning, the MiniMLdB expression d is compiled into the machine code c.

n ⇓ IConst n b ⇓ IConstb b
d1 ⇓ c1 d2 ⇓ c2 ⋆ ∈ {+,−,∗,=}, IOp ∈ {IAdd, ISub, IMul, IEq} resp.
d1 ⋆ d2 ⇓ c1 ⋅ c2 ⋅ IOp

i ⇓ IAcc i
d1 ⇓ c1 d2 ⇓ c2

let d1 in d2 ⇓ c1 ⋅ ILet ⋅ c2 ⋅ IEndLet
d1 ⇓ c1 d2 ⇓ c2 d3 ⇓ c3

if d1 then d2 else d3 ⇓ c1 ⋅ ISel c2 c3

d ⇓ c
λ.d ⇓ IClos c

d ⇓ c
µ.λ.d ⇓ IClosrec c

d1 ⇓ c1 d2 ⇓ c2

d1 d2 ⇓ c1 ⋅ c2 ⋅ IApp

Regarding the Coq encoding of this compilation, it is analogous to the MiniMLdB semantics,
meaning, it is done with an Inductive definition with Prop type:

Inductive Compilation_NS: MML_dB_exp→ code→ Prop :=
| Compilation_NS_Const: ∀ n: nat,

Compilation_NS (Const_dB n) (IConst n:: nil)
| ...

| Compilation_NS_Let:
∀ d1, ∀ c1, Compilation_NS d1 c1 →
∀ d2, ∀ c2, Compilation_NS d2 c2 →

Compilation_NS (Letm_dB d1 d2) (c1 ++ILet:: c2 ++IEndLet:: nil)
| ...

| Compilation_NS_Lam:
∀ d, ∀ c, Compilation_NS d c →

Compilation_NS (Lam_dB d) (IClos c:: nil)

| Compilation_NS_Mu:
∀ d, ∀ c, Compilation_NS d c →

Compilation_NS (Mu_dB d) (IClosr c:: nil)

| Compilation_NS_App:
∀ d1, ∀ c1, Compilation_NS d1 c1 →
∀ d2, ∀ c2, Compilation_NS d2 c2 →

Compilation_NS (App_dB d1 d2) (c1 ++c2 ++IApp:: nil).

and the corresponding function is written as follows:

Mathematics 2020, 8, 1573 21 of 55

Fixpoint Compilation_NS_compiler (d:MML_dB_exp) : code :=
match d with
| Const_dB n ⇒ IConst n::nil
| ...
| Letm_dB d1 d2 ⇒ Compilation_NS_compiler d1 ++ILet::Compilation_NS_compiler d2 ++IEndLet::nil
| ...
| Lam_dB d ⇒ IClos (Compilation_NS_compiler d)::nil
| Mu_dB d ⇒ IClosr (Compilation_NS_compiler d)::nil
| App_dB d1 d2 ⇒ Compilation_NS_compiler d1 ++Compilation_NS_compiler d2 ++IApp::nil
end.

It is noteworthy how this time, instead of the function being an interpreter, it is a compiler, since
it translates an expression instead of evaluating it. Also, it is not necessary to add a natural parameter
to bound the recursion, given that the translation is decidable. This fact is guaranteed in Coq by using
structural recursion (based on syntax) on the expression d.

The following lemma expresses that the compiler is sound regarding the natural semantics
definition of the compilation:

Lemma Compilation_NS_compiler_soundness:
∀ d: MML_dB_exp, ∀ c: code,
Compilation_NS d c →
Compilation_NS_compiler d = c.

Conversely, the next lemma expresses that the compiler is complete regarding the natural
semantics definition of the compilation:

Lemma Compilation_NS_compiler_completeness:
∀ d: MML_dB_exp, ∀ c: code,
Compilation_NS_compiler d = c →
Compilation_NS d c.

2.3.2. Correctness

To establish the correctness, we extend the compilation to values and environments once more,
so after that we can formulate semantic preservation.

n # n b # b
d ⇓ c Ω £ ∆
(λ.d)[Ω] # c[∆]

d ⇓ c Ω £ ∆
(µ.λ.d)[Ω] # c[∆]rec

[] £ []

v # vm Ω £ ∆
v ⋅Ω £ vm ⋅∆

To formulate correctness, we expect that if a nameless expression d is evaluated to a value v in
an environment Ω; moreover, if c is the code resulting of the d compilation, and ∆ is the resulting
compilation of Ω; then, it must exist a machine value vm that corresponds to the compilation of v and,
when c is evaluated starting with the machine in a state (∆, s), for any stack s, the evaluation takes the
machine to the state (∆, vm ⋅ s). Now, the correctness theorem is enunciated.

Theorem 2 (Correctness for termination). Let Ω be a nameless environment, ∆ a machine environment,
d a nameless expression, c a machine code, v a nameless value. If

Ω ⊢ d⇒ v, d ⇓ c, Ω £ ∆

Mathematics 2020, 8, 1573 22 of 55

then there exists a machine value vm such that v # vm and for all stack s,

∆, s ⊢ c⇒ (∆, vm ⋅ s)
Proof outline. We proceed by induction on the derivation of Ω ⊢ d ⇒ v. The base cases where d is
a natural, a Boolean, a nameless variable, an abstraction, or a fixed point (recursive abstraction) are
straightforward. In these cases, we exhibit a vm such that v # vm, since c is the result of d compilation,
c is a single machine instruction hence ∆, s ⊢ c⇒ (∆, vm ⋅ s) follows simply by definition.

For the inductive cases where d is an arithmetic or comparison expression, a conditional, a local
definition, or an application, the main idea is to use the induction hypothesis in tandem with Lemma 1.
In such way the machine evaluation follows the structure of the Ω ⊢ d⇒ v derivation and the proof is
simple and intuitive.

The complete proof can be consulted in Appendix A. This theorem is written as follows in Coq:

Theorem Compilation_NS_correctness:
∀ O, ∀ d, ∀ v, MML_dB_NS O d v →

∀ c, Compilation_NS d c →
∀ D, Compilation_NS_env O D →
∃ mv, Compilation_NS_val v mv ∧

∀ s, BSMSECD_NSC (D, s) c (D, mv:: s).

We can immediately notice that due to the unifying use of natural semantics to define each
of the compiler’s components: source language, compilation and machine; the source language is
mapped down, in a transparent way, to the target language (in this case, machine code) by means of the
compilation. In this manner, to establish the correctness turns out to be easier, clearer, simpler and more
intuitive than using an ad-hoc solution. For instance, in this case, it was unnecessary to previously
define a closure of a relation, and it was also unnecessary to strengthen the hypothesis to prove
the correctness theorem compared to the use of a function to define the compilation and small-step
semantics in the machine.

3. Coinductive Natural Semantics

In this section, we will address the case in which the computations do not terminate, for which
we will use coinductive natural semantics.

3.1. MiniMLdB

In general, coinduction allows us to reason on infinite structures. In this way, taking into account
the natural semantics design, we can employ a coinductive definition to express infinite evaluations of
a language, in this case of MiniMLdB. Following Leroy [14], we define the coinductive natural semantics
for divergence (infinite evaluations) by the following predicate:

Ω ⊢ d ∞⇒

which can be read: in the Ω environment, the evaluation of the expression d diverges, is infinite, or,
non-terminate.

That is, the infinite evaluations of MiniMLdB are defined by the coinductive interpretation of the
following rules:

Ω ⊢ d1
∞⇒

Ω ⊢ d1 ⋆ d2
∞⇒

Ω ⊢ d1 ⇒ n1 Ω ⊢ d2
∞⇒

Ω ⊢ d1 ⋆ d2
∞⇒

Mathematics 2020, 8, 1573 23 of 55

Ω ⊢ d1
∞⇒

Ω ⊢let d1 in d2
∞⇒

Ω ⊢ d1 ⇒ v1 v1 ⋅Ω ⊢ d2
∞⇒

Ω ⊢let d1 in d2
∞⇒

Ω ⊢ d1
∞⇒

Ω ⊢ if d1 then d2 else d3
∞⇒

Ω ⊢ d1 ⇒ true Ω ⊢ d2
∞⇒

Ω ⊢ if d1 then d2 else d3
∞⇒

Ω ⊢ d1 ⇒ f alse Ω ⊢ d3
∞⇒

Ω ⊢ if d1 then d2 else d3
∞⇒

Ω ⊢ d1
∞⇒

Ω ⊢ d1 d2
∞⇒

Ω ⊢ d1 ⇒ (λ.d)[Ω1] Ω ⊢ d2
∞⇒

Ω ⊢ d1 d2
∞⇒

Ω ⊢ d1 ⇒ (µ.λ.d)[Ω1] Ω ⊢ d2
∞⇒

Ω ⊢ d1 d2
∞⇒

Ω ⊢ d1 ⇒ (λ.d)[Ω1] Ω ⊢ d2 ⇒ v2 v2 ⋅Ω1 ⊢ d ∞⇒

Ω ⊢ d1 d2
∞⇒

Ω ⊢ d1 ⇒ (µ.λ.d)[Ω1] Ω ⊢ d2 ⇒ v2 v2 ⋅ (µ.λ.d)[Ω1] ⋅Ω1 ⊢ d ∞⇒

Ω ⊢ d1 d2
∞⇒

Adopting the Leroy [14] convention, double horizontal lines denote coinductive interpretation,
whereas single horizontal lines denote inductive interpretation.

The coinduction support in Coq is based on the work of Giménez [66]. In particular, Coq has
native support of coinductive definitions. Likewise, a natural semantics definition can be encoded
in Coq as an Inductive definition with type Prop, a coinductive natural semantics definition can
be encoded in Coq as a CoInductive definition with type Prop. Hence, the MiniMLdB semantics for
divergence can be written in Coq as follows:

CoInductive MML_dB_CNS: MML_dB_env→ MML_dB_exp→ Prop :=
| ...

| MML_dB_CNS_LetL:
∀ O, ∀ d1, MML_dB_CNS O d1 →

∀ d2, MML_dB_CNS O (Letm_dB d1 d2)

| MML_dB_CNS_LetR:
∀ O, ∀ d1, ∀ v1, MML_dB_NS O d1 v1 →

∀ d2, MML_dB_CNS (v1:: O) d2 →
MML_dB_CNS O (Letm_dB d1 d2)

| ...

| MML_dB_CNS_AppL:
∀ O, ∀ d1, MML_dB_CNS O d1 →

∀ d2, MML_dB_CNS O (App_dB d1 d2)

| MML_dB_CNS_AppR:
∀ O O1, ∀ d1 d, MML_dB_NS O d1 (Clos_dB d O1) →

∀ d2, MML_dB_CNS O d2 →
MML_dB_CNS O (App_dB d1 d2)

| MML_dB_CNS_AppRr:
∀ O O1, ∀ d1 d, MML_dB_NS O d1 (Closr_dB d O1) →

∀ d2, MML_dB_CNS O d2 →
MML_dB_CNS O (App_dB d1 d2)

| MML_dB_CNS_AppF:
∀ O O1, ∀ d1 d, MML_dB_NS O d1 (Clos_dB d O1) →
∀ d2, ∀ v2, MML_dB_NS O d2 v2 →

Mathematics 2020, 8, 1573 24 of 55

MML_dB_CNS (v2:: O1) d →
MML_dB_CNS O (App_dB d1 d2)

| MML_dB_CNS_AppFr:
∀ O O1, ∀ d1 d, MML_dB_NS O d1 (Closr_dB d O1) →

∀ d2, ∀ v2, MML_dB_NS O d2 v2 →
MML_dB_CNS (v2:: (Closr_dB d O1):: O1) d →
MML_dB_CNS O (App_dB d1 d2).

In the same manner as shown earlier in Section 2.1, where we verified that our interpreter
MML_dB_NS_interpreter is sound regarding MiniMLdB natural semantics ; here, we must verify that it
is sound regarding MiniMLdB coinductive natural semantics for non-termination, meaning, we must
prove the next lemma:

Lemma MML_NS_interpreter_soundness_non_termination:
∀ O, ∀ d, MML_dB_CNS O d →

∀ n, MML_dB_NS_interpreter n O d = None.

This lemma states that if the evaluation of d does not terminate, whatever the n value of the
fuel is, the interpreter will necessarily, eventually, run out of fuel (None means that the interpreter
runs out of fuel).

Conversely, to verify that our interpreter is complete regarding MiniMLdB coinductive natural
semantics, we must prove this lemma:

Lemma MML_NS_interpreter_completeness_non_termination: ∀ n, ∀ O, ∀ d,
MML_dB_NS_interpreter n O d = None →
not (∃ v, MML_dB_NS O d v) ∨
(∃ m, m > n ∧ ∃ v, MML_dB_NS_interpreter m O d = Some v).

This lemma says that if the interpreter runs out of fuel, then, there is not a finite evaluation of
d or, in fact, it exists a finite evaluation of d, but more fuel is needed for the interpreter to be able to
compute it. The proof of this lemma in Coq requires classic reasoning.

3.2. Modern SECD Machine

Let us now see how to express non-terminating computations in a machine. Leroy [14] uses
small-step semantics to express infinitely many transitions in the MSECD. He defines the transition
relation ‘ ∞→ ’ coinductively as follows:

m1 → m2 m2
∞→

m1
∞→

This relation can be written in Coq in the following manner:

CoInductive transinf: conf → Prop :=
| transinf_intro: ∀ m1 m2,

MSECD_SS m1 m2 →
transinf m2 →
transinf m1.

Mathematics 2020, 8, 1573 25 of 55

However, by using this definition directly, it is not possible to prove the correctness of the
compilation in the case of non-termination. The reason is that the Coq coinduction mechanism imposes
the guard condition. The guard condition requires (at least) one rule (a constructor) of a coinductive
definition to be used before the coinduction hypothesis is employed during a proof by coinduction.
The solution offered by Leroy [14] is to define an auxiliary relation with which the proof can be carried
out, and which is equivalent to the previous definition.

m ∞→n (∞→n -sleep)
m ∞→n + 1

m1
+→ m2 m2

∞→n’ (∞→n -perform)
m1

∞→n

The most important property of the ∞→n relation, for our purposes, is that it allows the machine to

remain in the same configuration, at most, a finite number n times (∞→n -sleep rule). This rule is crucial,

as it is used for being able to comply with the guard condition when carrying out the correctness proof.
At some point before n reaches 0, or necessarily when n arrives at 0, at least one transition (∞→n -perform

rule) must be performed, in exchange for making a transition, the value of n is reset to any natural n′,
i.e., the possibility is given (again) to remain in the same configuration (this time, n′ times at most).
The relation ∞→ and the relation ∞→n are equivalent as stated in the following lemma:

Lemma 2. Let m be a machine configuration, n any natural number,

m ∞→ if and only if m ∞→n
Proof outline. The if part is by coinduction. By ∞→ definition, necessarily m → m1 and m1

∞→ , the result
is obtained by applying the induction hypothesis on m1

∞→ and then by using the ∞→n -perform rule.

The only if part is also by coinduction. Assuming that if m ∞→n then m → m1 and m1
∞→n1

, we apply the

coinduction hypothesis on m1
∞→n1

and then the result follows by ∞→ definition.

A more detailed proof can be consulted in Appendix A.

Compilation Correctness

To carry out the correctness proof, it is necessary to define a measure that indicates how many
times the machine can remain in the same configuration based on the constructs of a language.
The measure offered by Leroy (extended to cover all MiniMLdB) is the following:

∥n∥ = ∥b∥ = ∥x∥ = ∥λ.d∥ = ∥µ.λ.d∥ = 0

∥d1 ⋆ d2∥ = ∥d1∥+ 1

∥let d1 in d2∥ = ∥d1∥+ 1

∥if d1 then d2 else d3∥ = ∥d1∥+ 1

∥d1 d2∥ = ∥d1∥+ 1

This is because it is possible that an evaluation step of a MiniMLdB expression d does not
correspond, one to one in the same order, to a transition while evaluating JdK in the machine, causing
the machine to stay at the same configuration, ∥d∥ times, before performing a transition.

In this way, we are ready to state the correctness for the non-termination case, using the auxiliary
relation ∞→n and strengthening the hypothesis, by the following lemma:

Lemma 3. If Ω ⊢ d ∞⇒ , then (JdK ⋅ c, JΩK, s) ∞→∥d∥ for all codes c and stacks s.

Mathematics 2020, 8, 1573 26 of 55

Proof outline. By coinduction. The main idea of the proof is to use Theorem 1 to evaluate the finite
parts of d, to apply the coinduction hypothesis on the infinite parts of d, and to employ ∞→n -sleep and
∞→n -perform rules as convenient.

A complete proof of this lemma can be consulted in Appendix A. This gives the possibility for
formulating the correctness theorem directly with the m ∞→ relation, as Leroy [14] does, as follows:

Theorem 3. If Ω ⊢ d ∞⇒ , then (JdK ⋅ c, JΩK, s) ∞→ for all codes c and stacks s.

Proof outline. The result is an immediate deduction from Lemma 3 followed by an application
of Lemma 2.

A step-by-step proof can be seen in Appendix A. This theorem is written in Coq as follows:

Theorem compile_evalinf:
∀ O, ∀ d, MML_dB_CNS O d →
∀ c, ∀ s, transinf ((compile d)++c, (compile_env O), s).

3.3. Big-Step MSECD Machine

This section introduces coinductive natural semantics to express non-terminating computations
(infinite evaluations) in a machine. We illustrate its use with our big-step Modern SECD machine.

3.3.1. Rules of Non-terminating Computations

As with natural semantics (for finite evaluations, Section 2.3), coinductive natural semantics for
divergence (infinite evaluations) is defined by the following two mutually dependent predicates:

∆, s ⊢ i ∞⇒ ∆, s ⊢ c ∞⇒

The first one reads: in the state (∆, s) the instruction i diverges, whereas the second one reads: in
the state (∆, s) the code c diverges.

Thus, the infinite evaluations of the machine are defined by the coinductive interpretation of the
following rules:

∆, s ⊢ i ∞⇒
1)

∆, s ⊢ i ⋅ c ∞⇒

∆, s ⊢ i⇒ (∆1, s1) ∆1, s1 ⊢ c ∞⇒
2)

∆, s ⊢ i ⋅ c ∞⇒

∆, s ⊢ c1
∞⇒

3)
∆, true ⋅ s ⊢ ISel c1 c2

∞⇒

∆, s ⊢ c2
∞⇒

4)
∆, f alse ⋅ s ⊢ ISel c1 c2

∞⇒

v ⋅∆1, s ⊢ c ∞⇒
5)

∆, v ⋅ c[∆1] ⋅ s ⊢ IApp ∞⇒

v ⋅ c[∆1]rec ⋅∆1, s ⊢ c ∞⇒
6)

∆, v ⋅ c[∆1]rec ⋅ s ⊢ IApp ∞⇒

The coinductive natural semantics of the machine is encoded in Coq in an analogous manner to the
coinductive natural semantics of MiniMLdB (it is just necessary to use a coinductive mutually dependent
definition in Coq that parallels the mutually dependent predicates of the machine coinductive natural
semantics). Likewise, the respective lemmas that express that the machine interpreter is sound and
complete regarding the machine coinductive natural semantics are analogous to those of the MiniMLdB

interpreter. These formalizations can be seen in detail in [61].
We will give a brief explanation of the rules. When evaluating a code, it must begin by evaluating

the first instruction i. The evaluation of i can be finite (rule 2) or infinite (rule 1). In the rule 1 case,
if the first instruction diverges, then the complete code diverges. How can an instruction diverge?

Mathematics 2020, 8, 1573 27 of 55

Let us recall (Section 2.3) that due to the high level of abstraction of the big-step MSECD, in the case of
termination, the ISel and IApp instructions are fully evaluated in a single big step, which includes the
evaluation of their sub-codes and is why for these instructions it is necessary to define rules that allow
expressing the possibility that their corresponding sub-codes diverge (rules 3–6). In the case of rule 2 ,
if the evaluation of the first instruction terminates but the remaining code diverges, then, the complete
code (including the first instruction) diverges.

We can note here that in principle only rule 2 is necessary to express divergence in the machine
since, intuitively, an instruction performs only a single basic operation and this rule is the analogous
of the small-step semantics transition relation ∞→ . However, as already mentioned, our big-step
machine has two instructions, namely ISel and IApp, which are high-level (and therefore they evaluate
different from their small-step semantics counterparts, performing not only single basic operations
but a big-step sub-code evaluation). This is why these instructions require specific rules, while the
remaining instructions, perform in fact only a single basic operation; for instance, IConst n push n on
the stack. This is why these remaining instructions do not need specific rules.

In this way, the machine computations that do not terminate are completely defined. However,
as in the case of the MSECD small-step semantics, we are facing, once more, the problem with Coq’s
guard condition. This means that similarly, we cannot prove correctness directly by using this relation.
To solve this problem, we will present a variant of Leroy’s solution adapted to coinductive natural
semantics. This means that we must define an auxiliary relation equivalent to the previous relation,
and which allows proving correctness. Below, we present the auxiliary relation:

∆, s ⊢ i ∞Z⇒
1)

∆, s ⊢ i ⋅ c ∞Z⇒n

∆, s ⊢ c1
∞Z⇒n

3)
∆, true ⋅ s ⊢ ISel c1 c2

∞Z⇒

∆, s ⊢ c2
∞Z⇒n

4)
∆, f alse ⋅ s ⊢ ISel c1 c2

∞Z⇒

v ⋅∆1, s ⊢ c ∞Z⇒n
5)

∆, v ⋅ c[∆1] ⋅ s ⊢ IApp ∞Z⇒

v ⋅ c[∆1]rec ⋅∆1, s ⊢ c ∞Z⇒n
6)

∆, v ⋅ c[∆1]rec ⋅ s ⊢ IApp ∞Z⇒

∆, s ⊢ c1
∞Z⇒n (∞Z⇒n -sleep)

∆, s ⊢ c1 ⋅ c2
∞Z⇒n + 1

c1 ≠ [] ∆, s ⊢ c1 ⇒ (∆1, s1) ∆1, s1 ⊢ c2
∞Z⇒n’ (∞Z⇒n -perform)

∆, s ⊢ c1 ⋅ c2
∞Z⇒n

The rule (∞Z⇒n -sleep) is the improved analogous version of Leroy’s rule (∞→n -sleep), since, in addition,

it expresses that if in a code, the initial code c1 diverges, then, no matter what the remaining code c2 is,
the code will diverge. The importance of this improvement is that it allows proving correctness without
the need to strengthen the hypothesis. The rule (∞Z⇒n -perform) is analogous to the rule (∞→n -perform)

of Leroy. We can note that rule 2 disappears (is no longer necessary) because it is subsumed by
the (∞Z⇒n -perform) rule. For its part, the remaining rules (1 and 3–6) remain unchanged, i.e., they are

analogous, but instead of the relation for code ∞⇒ they use the relation ∞Z⇒n with any natural n.

It is worth remarking that the ∞⇒ relation defines the machine computations that do not terminate
in the expected way and it would be ideal working directly with it in Coq; however, because of the
Coq guard condition it is not possible. This is why we have defined the ∞Z⇒ relation just to beat the
Coq guard condition. Since we have defined the ∞Z⇒ relation (more precisely ∞Z⇒n relation for code

and ∞Z⇒ relation for instructions) in a very similar way to the ∞⇒ relation, we have used a very similar
notation; nonetheless, we should be careful and notice the distinction between ∞⇒ and ∞Z⇒ .

The following lemma states that the two original mutually dependent relations are equivalent to
the two auxiliary mutually dependent relations.

Mathematics 2020, 8, 1573 28 of 55

Lemma 4. Let ∆ be a machine environment, s a stack, i a machine instruction,

∆, s ⊢ i ∞⇒ if and only if ∆, s ⊢ i ∞Z⇒

and, let c be a machine code, n any natural,

∆, s ⊢ c ∞⇒ if and only if ∆, s ⊢ c ∞Z⇒n

Proof outline. The if part consist of: if ∆, s ⊢ i ∞⇒ then ∆, s ⊢ i ∞Z⇒ , and if ∆, s ⊢ c ∞⇒ then ∆, s ⊢ c ∞Z⇒n ,

i.e., of the following two cases:

1. If ∆, s ⊢ i ∞⇒ then ∆, s ⊢ i ∞Z⇒ . Assuming 2, since the instructions’ definition of ∞⇒ and ∞Z⇒ are
analogous, the proof proceeds simply by case analysis which are proved directly by ∞Z⇒ definition
using 2 to obtain the required ∆, s ⊢ c ∞Z⇒n code premises.

2. If ∆, s ⊢ c ∞⇒ then ∆, s ⊢ c ∞Z⇒n . By coinduction. The main idea is to use the coinduction hypothesis

together with the ∞Z⇒n -perform rule, and to apply 1 to obtain ∆, s ⊢ i ∞Z⇒ premises when necessary.

The only if part consists of: If ∆, s ⊢ i ∞Z⇒ then ∆, s ⊢ i ∞⇒ , and if ∆, s ⊢ c ∞Z⇒n then ∆, s ⊢ c ∞⇒ .

That is, of the following two cases:

3. If ∆, s ⊢ i ∞Z⇒ then ∆, s ⊢ i ∞⇒ . Assuming 4, the proof is analogue to that of 1 going in the opposite
direction (and using 4 instead of 2).

4. If ∆, s ⊢ c ∞Z⇒n then ∆, s ⊢ c ∞⇒ . Assuming that, if ∆, s ⊢ i ⋅ c ∞Z⇒n then ∆, s ⊢ i ∞Z⇒ or there exists

n1, ∆1, s1, such that ∆, s ⊢ i ⇒ (∆1, s1) and ∆1, s1 ⊢ c ∞Z⇒n1
; The proof proceeds by coinduction.

The key idea is to use the coinduction hypothesis together with ∞Z⇒n definition, in particular with

the ∞Z⇒n -perform rule, employing the assumption in the step which is required, and applying 3 to

obtain ∆, s ⊢ i ∞⇒ premises when necessary.

The details of this proof can be consulted in Appendix A.

3.3.2. Compilation Correctness

To prove correctness, we must use the auxiliary relation ∞Z⇒n along with a measure. Following an

analogous argument to the case of the small-step MSECD, the measure ∥d∥ also works here. In this
way, the correctness for the non-termination case can be formulated by the following lemma:

Lemma 5 (Correctness for non-termination (auxiliary)). Let Ω be a nameless environment, ∆ a machine
environment, d a nameless expression, c a machine code. If

Ω ⊢ d ∞⇒ , d ⇓ c, Ω £ ∆

then, for all stack s,

∆, s ⊢ c ∞Z⇒∥d∥

Proof outline. We proceed by coinduction. The main idea is to mimic the MiniMLdB d evaluation in
the machine while evaluating c. To carry out this idea, for the finite parts of d (if any), we employ
Theorem 2, whereas for the infinite parts of d, we apply the coinduction hypothesis. In addition, we
use the ∞Z⇒n definition, including the ∞Z⇒n -sleep and ∞Z⇒n -perform rules, as necessary.

Mathematics 2020, 8, 1573 29 of 55

A complete proof of this lemma appears in Appendix A. Finally, we enunciate the correctness
theorem for the non-termination case of the machine, using the ∞⇒ relation directly in the following
manner:

Theorem 4 (Correctness for non-termination). Let Ω be a nameless environment, ∆ a machine environment,
d a nameless expression, c a machine code. If

Ω ⊢ d ∞⇒ , d ⇓ c, Ω £ ∆

then, for all stack s,

∆, s ⊢ c ∞⇒
Proof outline. The result is a direct consequence of Lemma 5 followed by Lemma 4.

A detailed step-by-step proof can be found in Appendix A. This theorem is written in Coq as
follows:

Theorem Compilation_CNS_correctness:
∀ O, ∀ d, MML_dB_CNS O d →

∀ c, Compilation_NS d c →
∀ D, Compilation_NS_env O D →
∀ s, BSMSECD_CNSC (D, s) c.

4. Abstract to Coq Translation Algorithm

At this point, by means of our Mini-ML compiler, we have shown how from the (coinductive)
natural semantics definition of each compiler component the corresponding formalization in Coq can
be realized. It is our intention here to generalize this method and write it formally as an algorithm.

Algorithm 1 expresses how to translate a (coinductive) natural semantics definition of a compiler
to its corresponding formalization in Coq.

We observe that the steps of the algorithm possess a high-level of abstraction. This is favorable in
the sense that it provides freedom on how to actually implement them. We can even take advantage of
this freedom by applying previous work. For instance, applying the results in [67], step 14 could be
performed by generating a function from the Inductive definition IN , corresponding to the natural
semantics N.

Analyzing the algorithm, as we can note in step 35, the case in which the target language R of
a translation T is a postfix representation requires a special treatment that merits explanation. Let V
be the source language of T, d a construct of V, if c is the translation of d into R, then if R is a prefix
representation when reasoning about the evaluation of c in Coq, necessarily a constructor s associated
with the construct, must be used (at front) when starting the evaluation; in this way, the guard condition
is fulfilled. Instead, if R is a postfix representation, then necessarily a constructor s associated with
the construct, must be used but (behind), at the end of the evaluation; in this way, the Coq’s guard
condition is not fulfilled since it requires that it must be used at the start (at front). For instance,
let Plus e1 e2 be a construct in MiniML and let Plus_dB d1 d2 be its translation in MiniMLdB, then
the evaluation of Plus_dB d1 d2 will start using a Plus_dB constructor associated with the addition,
at the start, and the Coq’s guard condition will be satisfied. Instead, let Plus_dB d1 d2 be a construct
in MiniMLdB and c1++c2++IAdd its translation into code of the big-step MSECD, then the evaluation
of c1++c2++IAdd will not start using an IAdd constructor associated with the addition, even when
potentially, eventually, it will be used at the end in fact. Therefore, in this latter case, we must find a
way to express and convince Coq’s guard condition that the constructor will be in fact used, but at the
end of the evaluation of c. This is exactly what the solution presented in Section 3.3 does, if the auxiliary

Mathematics 2020, 8, 1573 30 of 55

relation is used, then initially the sleep rule constructor can be used, which allows the starting of the
evaluation of c without using a constructor s associated with the construct, ensuring that potentially,
eventually, such a s constructor will be in fact used (what is expressed in the constructor corresponding
to the perform rule); the measure function ∥d∥ indicates the number of constructors that will be used at
the end of the evaluation of c. This is certainly a weakness of Coq’s guard condition that turns out to
be too inflexible in this case, and that is why we have had to resort to an indirect solution.

In fact, in our compiler, in the MiniML to MiniMLdB translation it was not necessary to use this
indirect solution at all because MiniMLdB is a prefix representation. Instead, it was in fact necessary
to use it in the MiniMLdB to big-step MSECD machine code generation because machine code is a
postfix representation.

Algorithm 1: Translation of a Compiler Definition to Coq (first part)
Input: A (coinductive) natural semantics definition of a total correct compiler

(where all-natural semantics and translations are deterministic)
Output: A Coq formalization of the compiler (from which a verified implementation can be

obtained)

1 foreach language L do
2 Let A be the abstract syntax of L;
3 Emit an Inductive definition IA with type Set;
4 foreach language construct c ∈ A do
5 Add the constructor s, corresponding to the construct c, to IA;
6 end
7 Emit an Extraction command with argument the IA definition;

8 Let N be the natural semantics of L;
9 Emit an Inductive definition IN with type Prop;

10 foreach rule r ∈ N do
11 Add the constructor s, corresponding to the rule r, to IN ;
12 end
13 Emit a Lemma that states N determinism;
14 Emit a Fixpoint function (interpreter) i that mimics the N natural semantics;
15 Emit a Lemma enunciating that the interpreter i is sound regarding N natural semantics;
16 Emit a Lemma enunciating that the interpreter i is complete regarding N natural semantics;

17 Let CoN be the coinductive natural semantics of L;
18 Emit a CoInductive definition CCoN with type Prop;
19 foreach rule r ∈ CoN do
20 Add the constructor s, corresponding to the rule r, to CCoN ;
21 end
22 Emit a Lemma enunciating that the interpreter i is sound regarding CoN coinductive natural

semantics;
23 Emit a Lemma enunciating that the interpreter i is complete regarding CoN coinductive

natural semantics;

24 Emit an Extraction command with the interpreter i as argument;
25 end
26 ...

Mathematics 2020, 8, 1573 31 of 55

Algorithm 1: Translation of a Compiler Definition to Coq (second part)

26 foreach translation T do
27 Emit an Inductive definition IT with type Prop;
28 foreach translation rule r ∈ T do
29 Add the constructor s, corresponding to rule r, to IT ;
30 end
31 Emit a Lemma that states T determinism;
32 Emit a Fixpoint function (compiler) c that mimics the T translation;
33 Emit a Theorem enunciating the translation T correctness for termination;
34 Let R be the target language of the translation T;
35 if R is a postfix representation then
36 Emit an auxiliary CoInductive definition C′

CoN analogous to CCoN , but including a
natural n as additional term;

37 Add the constructor s, corresponding to the adapted improved sleep rule, to C′

CoN ;
38 Add the constructor p, corresponding to the adapted perform rule, to C′

CoN ;
39 foreach rule r ∈ CoN do
40 if r is subsumed by the improved sleep rule or the perform rule then
41 Remove the constructor s, corresponding to the rule r, from C′

CoN ;
42 end
43 end
44 Emit a Lemma that states the equivalence between CCoN and C′

CoN ;
45 Let V be the source language of T;
46 Define a size function ∥d∥ over the constructs of V where
47 if d is an atom then
48 ∥d∥ = 0;
49 else if d is composed by d1, . . . , dn then
50 ∥d∥ = 1+ ∥d1∥;
51 end
52 Emit a Fixpoint function (left height) h that mimics the ∥d∥ size;
53 Emit a Lemma enunciating the translation T correctness for non-termination

(using C′

CoN and h);
54 end
55 Emit a Theorem enunciating the translation T correctness for non-termination (using CCoN);
56 Emit an Extraction command with the c compiler as argument;
57 end

5. Conclusions

Natural semantics is a simple, easy, and intuitive formalism widely known and used in the
literature to define the semantics of programming languages.

In this work, we extended (coinductive) natural semantics to present it as a unifying framework
for the verification of total correctness of compilers in Coq. This way, we present a solution to the
problem of having a simple, easy, clear, and intuitive framework to perform this task in this proof
assistant. By means of this framework, one can obtain standalone executable verified compiler.

Although we have not illustrated it here, natural semantics can also be used to express and
verify the static semantics of a language. For instance, in [68] the Mini-ML static semantics is verified
(although it is not possible to obtain a verified semantic analyzer). In future work, we plan to extend
this use of natural semantics to make it possible to obtain a verified semantic analyzer.

To have a full compiler framework, we must address lexing and parsing too. So, we envisioned
that natural ‘semantics’ can also be used to perform these tasks. This inspiration comes from the

Mathematics 2020, 8, 1573 32 of 55

observation that, as stated by Kahn [11], natural deduction is at the heart of natural semantics, so we
are looking for a natural deduction-based parsing strategy, fortunately, it already exists a parsing
technique with these features since long time ago. In the logic programming community, parsing
as deduction [69,70] is a well-known and established natural deduction-based parsing framework.
Therefore, since both: natural semantics and parsing as deduction are based on natural deduction,
we believe that we can abstract both in a single formalism able to express both: syntax and semantics.
In this way, it would achieve natural ‘semantics’ as full compiler verification framework in Coq.

Author Contributions: Conceptualization, A.Z.; methodology, A.Z.; software, A.Z.; validation, A.Z.;
formal analysis, A.Z.; investigation, A.Z.; resources, G.B.-E.; writing—original draft preparation, A.Z.;
writing—review and editing, A.Z. and G.B.-E.; visualization, A.Z.; supervision, G.B.-E.; project administration,
G.B.-E.; funding acquisition, G.B.-E. Both authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by CONACYT, grant number A1-S-27780, and DGAPA UNAM,
grant number PAPIIT-A401219.

Acknowledgments: The first author sincerely thanks Xavier Leroy for inspiring him to work with coinductive
natural semantics in Coq. In particular, for revising his preliminary results regarding the equivalence of co

⇒

with the union of⇒ and ∞
⇒ . Finally, for encouraging him to write his results and extend his work. The first

author is grateful to David de Frutos-Escrig for providing advice during this work. Special thanks to Veronica
Dahl who offered guidance, and useful insight into Prolog parsing techniques. Our deepest gratitude goes
to our anonymous reviewers whose accurate, appropriate and constructive comments have led to a valuable
improvement of this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proofs

Theorem A1. If Ω ⊢ d⇒ v, then (JdK ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s) for all codes c and stacks s.

Proof. By induction on Ω ⊢ d⇒ v.
Base cases:

(i) d = n. By hypothesis Ω ⊢ n ⇒ n. Since by definition JnK = IConst n and JnK = n we must
prove (IConst n ⋅ c, JΩK, s) +→ (c, JΩK, n ⋅ s), which follows simply by definition of the machine
small-step semantics transition→ corresponding to the IConst n instruction.

(ii) d = b. Analogous to case i. Hypothesis Ω ⊢ b⇒ b; JbK = IConstb b and JbK = b.
(iii) d = i. The proof follows from the fact that if Ω ⊢ i z→ v then JΩK(i) = JvK which is proved by

straightforward induction on Ω.
(iv) d = λ.d. Analogous to case i. Hypothesis Ω ⊢ λ.d ⇒ (λ.d)[Ω]; Jλ.dK = IClos(JdK ⋅ IRet) and

J(λ.d)[Ω]K = (JdK ⋅ IRet)[JΩK].
(v) d = µ.λ.d. Analogous to case i. Hypothesis Ω ⊢ µ.λ.d ⇒ (µ.λ.d)[Ω]; Jµ.λ.dK = IClosrec(JdK ⋅

IRet) and J(µ.λ.d)[Ω]K = (JdK ⋅ IRet)[JΩK]rec.

Inductive cases:

(vi) d = d1 ⋆ d2.

By hypothesis Ω ⊢ d1 ⇒ n1, Ω ⊢ d2 ⇒ n2, Ω ⊢ d1 ⋆ d2 ⇒ n1 ⋆ n2. We must prove
(Jd1 ⋆ d2K ⋅ c, JΩK, s) +→ (c, JΩK, Jn1 ⋆ n2K ⋅ s).

(a) (Jd1K ⋅ Jd2K ⋅ IOp ⋅ c, JΩK, s) +→ (c, JΩK, n1 ⋆ n2 ⋅ s) by definition Jd1 ⋆ d2K = Jd1K ⋅ Jd2K ⋅ IOp
and Jn1 ⋆ n2K = n1 ⋆ n2.

(b) (Jd1K ⋅ Jd2K ⋅ IOp ⋅ c, JΩK, s) +→ (Jd2K ⋅ IOp ⋅ c, JΩK, n1 ⋅ s) by +→ transitivity, applying
induction hypothesis, and by definition Jn1K = n1.

Mathematics 2020, 8, 1573 33 of 55

(c) (Jd2K ⋅ IOp ⋅ c, JΩK, n1 ⋅ s) +→ (IOp ⋅ c, JΩK, n2 ⋅ n1 ⋅ s) by +→ transitivity, applying induction
hypothesis, and by definition Jn2K = n2.

(d) (IOp ⋅ c, JΩK, n2 ⋅ n1 ⋅ s) +→ (c, JΩK, n1 ⋆ n2 ⋅ s) by → definition of IOp.

(vii) d = if d1 then d2 else d3.

By hypothesis Ω ⊢ d1 ⇒ true, Ω ⊢ d2 ⇒ v. We must prove
(Jif d1 then d2 else d3K ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s).

(a) (Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s)
by definition Jif d1 then d2 else d3K = Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin).

(b) (Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, s) +→
(ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, true ⋅ s) by +→ transitivity, and applying
induction hypothesis

(c) (ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, true ⋅ s) +→ (Jd2K ⋅ IJoin, JΩK, (c, []) ⋅ s) by →
definition of ISel.

(d) (Jd2K ⋅ IJoin, JΩK, (c, []) ⋅ s) +→ (IJoin, JΩK, JvK ⋅ (c, []) ⋅ s) by +→ transitivity, and applying
induction hypothesis.

(e) (IJoin, JΩK, JvK ⋅ (c, []) ⋅ s) +→ (c, JΩK, JvK ⋅ s) by → definition of IJoin.

(viii) d = if d1 then d2 else d3.

By hypothesis Ω ⊢ d1 ⇒ f alse, Ω ⊢ d3 ⇒ v. We must prove
(Jif d1 then d2 else d3K ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s).

(a) (Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s)
by definition Jif d1 then d2 else d3K = Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin).

(b) (Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, s) +→
(ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, f alse ⋅ s) by +→ transitivity, and applying
induction hypothesis

(c) (ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, f alse ⋅ s) +→ (Jd3K ⋅ IJoin, JΩK, (c, []) ⋅ s) by →
definition of ISel.

(d) (Jd3K ⋅ IJoin, JΩK, (c, []) ⋅ s) +→ (IJoin, JΩK, JvK ⋅ (c, []) ⋅ s) by +→ transitivity, and applying
induction hypothesis.

(e) (IJoin, JΩK, JvK ⋅ (c, []) ⋅ s) +→ (c, JΩK, JvK ⋅ s) by → definition of IJoin.

(ix) d = let d1 in d2.

By hypothesis Ω ⊢ d1 ⇒ v1, v1 ⋅Ω ⊢ d2 ⇒ v, Ω ⊢ let d1 in d2 ⇒ v. We must prove

(Jlet d1 in d2 K ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s).

(a) (Jd1K ⋅ ILet ⋅ Jd2K ⋅ IEndLet ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s)
by definition Jlet d1 in d2K = Jd1K ⋅ ILet ⋅ Jd2K ⋅ IEndLet.

Mathematics 2020, 8, 1573 34 of 55

(b) (Jd1K ⋅ ILet ⋅ Jd2K ⋅ IEndLet ⋅ c, JΩK, s) +→ (ILet ⋅ Jd2K ⋅ IEndLet ⋅ c, JΩK, Jv1K ⋅ s) by +→
transitivity, and applying induction hypothesis.

(c) (ILet ⋅ Jd2K ⋅ IEndLet ⋅ c, JΩK, Jv1K ⋅ s) +→ (Jd2K ⋅ IEndLet ⋅ c, Jv1K ⋅ JΩK, s) by → definition of
ILet.

(d) (Jd2K ⋅ IEndLet ⋅ c, Jv1K ⋅ JΩK, s) +→ (IEndLet ⋅ c, Jv1K ⋅ JΩK, JvK ⋅ s) by +→ transitivity,
and applying induction hypothesis.

(e) (IEndLet ⋅ c, Jv1K ⋅ JΩK, JvK ⋅ s) +→ (c, JΩK, JvK ⋅ s) by → definition of IEndLet.

(x) d = d1 d2.

By hypothesis Ω ⊢ d1 ⇒ (λ.d)[Ω1], Ω ⊢ d2 ⇒ v2, v2 ⋅Ω1 ⊢ d ⇒ v, Ω ⊢ d1 d2 ⇒ v. We
must prove (Jd1 d2K ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s).

(a) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s) by definition Jd1 d2K = Jd1K ⋅ Jd2K ⋅ IApp

(b) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) +→ (Jd2K ⋅ IApp⋅, JΩK, J(λ.d)[Ω1]K ⋅ s) by +→ transitivity,
and applying induction hypothesis.

(c) (Jd2K ⋅ IApp ⋅ c, JΩK, J(λ.d)[Ω1]K ⋅ s) +→ (IApp ⋅ c, JΩK, Jv2K ⋅ J(λ.d)[Ω1]K ⋅ s) by +→
transitivity, and applying induction hypothesis.

(d) (Jd2K ⋅ IApp ⋅ c, JΩK, J(λ.d)[Ω1]K ⋅ s) +→ (IApp ⋅ c, JΩK, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K] ⋅ s) by
definition J(λ.d)[Ω1]K = (JdK ⋅ IRet)[JΩ1K].

(e) (IApp ⋅ c, JΩK, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K] ⋅ s) +→ (JdK ⋅ IRet, Jv2K ⋅ JΩ1K, (c, JΩK) ⋅ s) by →
definition of IApp.

(f) (JdK ⋅ IRet, Jv2K ⋅ JΩ1K, (c, JΩK) ⋅ s) +→ (IRet, Jv2K ⋅ JΩ1K, JvK ⋅ (c, JΩK) ⋅ s) by +→ transitivity
and applying induction hypothesis.

(g) (IRet, Jv2K ⋅ JΩ1K, JvK ⋅ (c, JΩK) ⋅ s) +→ (c, JΩK, JvK ⋅ s) by → definition of IRet.

(xi) d = d1 d2.

By hypothesis Ω ⊢ d1 ⇒ (µ.λ.d)[Ω1], Ω ⊢ d2 ⇒ v2, v2 ⋅ (µ.λ.d)[Ω1] ⋅Ω1 ⊢ d⇒ v,
Ω ⊢ d1 d2 ⇒ v. We must prove (Jd1 d2K ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s).

(a) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) +→ (c, JΩK, JvK ⋅ s) by definition Jd1 d2K = Jd1K ⋅ Jd2K ⋅ IApp

(b) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) +→ (Jd2K ⋅ IApp⋅, JΩK, J(µ.λ.d)[Ω1]K ⋅ s) by +→ transitivity,
and applying induction hypothesis.

(c) (Jd2K ⋅ IApp ⋅ c, JΩK, J(µ.λ.d)[Ω1]K ⋅ s) +→ (IApp ⋅ c, JΩK, Jv2K ⋅ J(µ.λ.d)[Ω1]K ⋅ s) by +→
transitivity, and applying induction hypothesis.

(d) (Jd2K ⋅ IApp ⋅ c, JΩK, J(µ.λ.d)[Ω1]K ⋅ s) +→ (IApp ⋅ c, JΩK, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K]rec ⋅ s) by
definition J(µ.λ.d)[Ω1]K = (JdK ⋅ IRet)[JΩ1K]rec.

(e) (IApp ⋅ c, JΩK, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K]rec ⋅ s) +→
(JdK ⋅ IRet, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K]rec ⋅ JΩ1K, (c, JΩK) ⋅ s) by → definition of IApp.

Mathematics 2020, 8, 1573 35 of 55

(f) (JdK ⋅ IRet, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K]rec ⋅ JΩ1K, (c, JΩK) ⋅ s) +→
(IRet, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K]rec ⋅ JΩ1K, JvK ⋅ (c, JΩK) ⋅ s) by +→ transitivity and applying
induction hypothesis.

(g) (IRet, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K]rec ⋅ JΩ1K, JvK ⋅ (c, JΩK) ⋅ s) +→ (c, JΩK, JvK ⋅ s) by → definition
of IRet.

Lemma A1. Let ∆, ∆1, ∆2 be machine environments; s, s1, s2 stacks; c1, c2 machine codes. If

∆, s ⊢ c1 ⇒ (∆1, s1), ∆1, s1 ⊢ c2 ⇒ (∆2, s2)
then

∆, s ⊢ c1 ⋅ c2 ⇒ (∆2, s2)
Proof. By induction on ∆, s ⊢ c1 ⇒ (∆1, s1).
Base case:

(i) c1 = [].
Hypothesis ∆, s ⊢ [] ⇒ (∆, s), ∆, s ⊢ c2 ⇒ (∆2, s2). We must prove ∆, s ⊢ [] ⋅ c2 ⇒ (∆2, s2),
since [] ⋅ c2 = c2 our goal reduces to ∆, s ⊢ c2 ⇒ (∆2, s2) which follows by hypothesis.

Inductive case:

(ii) c1 ≠ [] that is c1 = i ⋅ c.

Hypothesis ∆, s ⊢ i⇒ (∆1, s1), ∆1, s1 ⊢ c⇒ (∆2, s2), ∆2, s2 ⊢ c2 ⇒ (∆3, s3). We must prove
∆, s ⊢ i ⋅ c ⋅ c2 ⇒ (∆3, s3).

(a) Applying induction hypothesis on ∆1, s1 ⊢ c ⇒ (∆2, s2) and ∆2, s2 ⊢ c2 ⇒ (∆3, s3) we
have ∆1, s1 ⊢ c ⋅ c2 ⇒ (∆3, s3).

(b) Using (∆, s) ⊢ i⇒ (∆1, s1) and ∆1, s1 ⊢ c ⋅ c2 ⇒ (∆3, s3) by⇒ definition we conclude
∆, s ⊢ i ⋅ c ⋅ c2 ⇒ (∆3, s3).

Theorem A2 (Correctness for termination). Let Ω be a nameless environment, ∆ a machine environment, d
a nameless expression, c a machine code, v a nameless value. If

Ω ⊢ d⇒ v, d ⇓ c, Ω £ ∆

then, there exists a machine value vm such that v # vm and for all stack s,

∆, s ⊢ c⇒ (∆, vm ⋅ s)

Proof. By induction on Ω ⊢ d⇒ v.

Base cases:

(i) d = n.

Hypothesis Ω ⊢ n ⇒ n, n ⇓ c, Ω £ ∆. We claim that there exists vm = n, the proof of n # n
follows by definition. Using the n ⇓ c hypothesis, by ⇓ definition necessarily c = IConst n. We
are now in a position to prove the main goal ∆, s ⊢ IConst n ⇒ (∆, n ⋅ s) which follows by⇒
definition of IConst.

Mathematics 2020, 8, 1573 36 of 55

(ii) d = b. Analogous to case i.

Hypothesis Ω ⊢ b ⇒ b, b ⇓ c, Ω £ ∆. We claim that there exists vm = b, the proof of b # b
follows by definition. Using the b ⇓ c hypothesis, by ⇓ definition necessarily c = IConstb b. We
are now in a position to prove the main goal ∆, s ⊢ IConstb b⇒ (∆, b ⋅ s) which follows by⇒
definition of IConstb.

(iii) d = i.

The proof relies on the fact that if Ω ⊢ i z→ v, Ω £ ∆, v # vm then ∆ ⊢ i z→ vm which
is proved by straightforward induction on Ω ⊢ i z→ v. (Also, it can by proved by induction
on Ω.)

(iv) d = λ.d. Analogous to case i.

Hypothesis Ω ⊢ λ.d ⇒ (λ.d)[Ω], λ.d ⇓ c, Ω £ ∆. Using the λ.d ⇓ c hypothesis, by ⇓
definition necessarily d ⇓ c1, c = IClos c1. We claim that there exists vm = c1[∆], the proof of
(λ.d)[Ω] # c1[∆] follows by definition, d ⇓ c1 and Ω £ ∆. We are now in a position to prove
the main goal ∆, s ⊢ IClos c1 ⇒ (∆, c1[∆] ⋅ s) which follows by⇒ definition of IClos.

(v) d = µ.λ.d. Analogous to case i.

Hypothesis Ω ⊢ µ.λ.d⇒ (µ.λ.d)[Ω], µ.λ.d ⇓ c, Ω £ ∆. Using the µ.λ.d ⇓ c hypothesis, by ⇓
definition necessarily d ⇓ c1, c = IClosrec c1. We claim that there exists vm = c1[∆]rec, the proof
of (µ.λ.d)[Ω] # c1[∆]rec follows by definition, d ⇓ c1 and Ω £ ∆. We are now in a position
to prove the main goal ∆, s ⊢ IClosrec c1 ⇒ (∆, c1[∆]rec ⋅ s) which follows by ⇒ definition of
IClosrec.

Inductive cases:

(vi) d = d1 ⋆ d2.

Hypothesis Ω ⊢ d1 ⇒ n1, Ω ⊢ d2 ⇒ n2, Ω ⊢ d1 ⋆ d2 ⇒ n1 ⋆ n2, d1 ⋆ d2 ⇓ c, Ω £ ∆.

We claim that there exists vm = n1 ⋆ n2, the proof of n1 ⋆ n2 # n1 ⋆ n2 follows by definition.
Using the d1 ⋆ d2 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2, c = c1 ⋅ c2 ⋅ IOp.
We are now in position to prove the main goal ∆, s ⊢ c1 ⋅ c2 ⋅ IOp⇒ (∆, n1 ⋆ n2 ⋅ s).

(a) ∆, s ⊢ c1 ⇒ (∆, n1 ⋅ s) by induction hypothesis.

(b) ∆, n1 ⋅ s ⊢ c2 ⇒ (∆, n2 ⋅ n1 ⋅ s) by induction hypothesis.

(c) ∆, s ⊢ c1 ⋅ c2 ⇒ (∆, n2 ⋅ n1 ⋅ s) by Lemma A1 on vi.a and vi.b.

(d) ∆, n2 ⋅ n1 ⋅ s ⊢ IOp⇒ (∆, n1 ⋆ n2 ⋅ s) by definition.

(e) ∆, s ⊢ c1 ⋅ c2 ⋅ IOp⇒ (∆, n1 ⋆ n2 ⋅ s) by Lemma A1 on vi.c and vi.d.

(vii) d = if d1 then d2 else d3.

Hypothesis Ω ⊢ d1 ⇒ true, Ω ⊢ d2 ⇒ v, if d1 then d2 else d3 ⇓ c, Ω £ ∆. Using the
if d1 then d2 else d3 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2, d3 ⇓ c3,
c = c1 ⋅ ISel c2 c3. We are now in position to prove the main goal ∆, s ⊢ c1 ⋅ ISel c2 c3 ⇒ (∆, vm ⋅ s).

(a) ∆, s ⊢ c1 ⇒ (∆, true ⋅ s) by induction hypothesis.

(b) ∆, s ⊢ c2 ⇒ (∆, vm ⋅ s) by induction hypothesis (such that v # vm).

Mathematics 2020, 8, 1573 37 of 55

(c) ∆, true ⋅ s ⊢ ISel c2 c3 ⇒ (∆, vm ⋅ s) by definition using viii.b.

(d) ∆, s ⊢ c1 ⋅ ISel c2 c3 ⇒ (∆, vm ⋅ s) by Lemma A1 on viii.a and viii.c.

(viii) d = if d1 then d2 else d3.

Hypothesis Ω ⊢ d1 ⇒ f alse, Ω ⊢ d3 ⇒ v, if d1 then d2 else d3 ⇓ c, Ω £ ∆. Using the
if d1 then d2 else d3 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2, d3 ⇓ c3,
c = c1 ⋅ ISel c2 c3. We are now in position to prove the main goal ∆, s ⊢ c1 ⋅ ISel c2 c3 ⇒ (∆, vm ⋅ s).

(a) ∆, s ⊢ c1 ⇒ (∆, f alse ⋅ s) by induction hypothesis.

(b) ∆, s ⊢ c3 ⇒ (∆, vm ⋅ s) by induction hypothesis (such that v # vm).

(c) ∆, f alse ⋅ s ⊢ ISel c2 c3 ⇒ (∆, vm ⋅ s) by definition using viii.b.

(d) ∆, s ⊢ c1 ⋅ ISel c2 c3 ⇒ (∆, vm ⋅ s) by Lemma A1 on viii.a and viii.c.

(ix) d = let d1 in d2.

Hypothesis Ω ⊢ d1 ⇒ v1, v1 ⋅ Ω ⊢ d2 ⇒ v, Ω ⊢ let d1 in d2 ⇒ v, let d1 in d2 ⇓ c,
Ω £ ∆. Using the let d1 in d2 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2,
c = c1 ⋅ ILet ⋅ c2 ⋅ IEndLet. We are now in position to prove the main goal
∆, s ⊢ c1 ⋅ ILet ⋅ c2 ⋅ IEndLet⇒ (∆, vm ⋅ s)

(a) ∆, s ⊢ c1 ⇒ (∆, vm1 ⋅ s) by induction hypothesis (such that v1 # vm1).

(b) ∆, vm1 ⋅ s ⊢ ILet⇒ (vm1 ⋅∆, s) by definition.

(c) ∆, s ⊢ c1 ⋅ ILet⇒ (vm1 ⋅∆, s) by Lemma A1 on ix.a and ix.b.

(d) vm1 ⋅∆, s ⊢ c2 ⇒ (vm1 ⋅∆, vm ⋅ s) by induction hypothesis (such that v # vm).

(e) ∆, s ⊢ c1 ⋅ ILet ⋅ c2 ⇒ (vm1 ⋅∆, vm ⋅ s) by Lemma A1 on ix.c and ix.d.

(f) vm1 ⋅∆, vm ⋅ s ⊢ IEndLet⇒ (∆, vm ⋅ s) by definition.

(g) ∆, s ⊢ c1 ⋅ ILet ⋅ c2 ⋅ IEndLet⇒ (∆, vm ⋅ s) by Lemma A1 on ix.e and ix.f.

(x) d = d1 d2.

Hypothesis Ω ⊢ d1 ⇒ (λ.d)[Ω1], Ω ⊢ d2 ⇒ v2, v2 ⋅ Ω1 ⊢ d ⇒ v, Ω ⊢ d1 d2 ⇒ v,
d1 d2 ⇓ c, Ω £ ∆. Using the d1 d2 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2,
c = c1 ⋅ c2 ⋅ IApp.

We are now in position to prove the main goal ∆, s ⊢ c1 ⋅ c2 ⋅ IApp⇒ (∆, mv ⋅ s).

(a) d ⇓ c, Ω1 £ ∆1, ∆, s ⊢ c1 ⇒ (∆, c[∆1] ⋅ s) by induction hypothesis
(such that (λ.d)[Ω1] # c[∆1]).

(b) ∆, c[∆1] ⋅ s ⊢ c2 ⇒ (∆, vm2 ⋅ c[∆1] ⋅ s) by induction hypothesis (such that v2 # vm2).

(c) ∆, s ⊢ c1 ⋅ c2 ⇒ (∆, vm2 ⋅ c[∆1] ⋅ s) by Lemma A1 on x.a and x.b.

(d) vm2 ⋅∆1, s ⊢ c⇒ (vm2 ⋅∆1, vm ⋅ s) by induction hypothesis (such that v # vm).

Mathematics 2020, 8, 1573 38 of 55

(e) ∆, vm2 ⋅ c[∆1] ⋅ s ⊢ IApp⇒ (∆, vm ⋅ s) by definition using x.d.

(f) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp⇒ (∆, vm ⋅ s) by Lemma A1 on x.c and x.e.

(xi) d = d1 d2.

Hypothesis Ω ⊢ d1 ⇒ (µ.λ.d)[Ω1], Ω ⊢ d2 ⇒ v2, v2 ⋅ (µ.λ.d)[Ω1] ⋅Ω1 ⊢ d⇒ v,
Ω ⊢ d1 d2 ⇒ v, d1 d2 ⇓ c, Ω £ ∆. Using the d1 d2 ⇓ c hypothesis, by ⇓ definition necessarily
d1 ⇓ c1, d2 ⇓ c2, c = c1 ⋅ c2 ⋅ IApp.

We are now in position to prove the main goal ∆, s ⊢ c1 ⋅ c2 ⋅ IApp⇒ (∆, mv ⋅ s).

(a) d ⇓ c, Ω1 £ ∆1, ∆, s ⊢ c1 ⇒ (∆, c[∆1]rec ⋅ s) by induction hypothesis
(such that (µ.λ.d)[Ω1] # c[∆1]rec).

(b) ∆, c[∆1]rec ⋅ s ⊢ c2 ⇒ (∆, vm2 ⋅ c[∆1]rec ⋅ s) by induction hypothesis (such that v2 # vm2).

(c) ∆, s ⊢ c1 ⋅ c2 ⇒ (∆, vm2 ⋅ c[∆1]rec ⋅ s) by Lemma A1 on xi.a and xi.b.

(d) vm2 ⋅ c[∆1]rec ⋅∆1, s ⊢ c ⇒ (vm2 ⋅ c[∆1]rec ⋅∆1, vm ⋅ s) by induction hypothesis (such that
v # vm).

(e) ∆, vm2 ⋅ c[∆1]rec ⋅ s ⊢ IApp⇒ (∆, vm ⋅ s) by definition using xi.d.

(f) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp⇒ (∆, vm ⋅ s) by Lemma A1 on xi.c and xi.e.

Lemma A2. Let m be a machine configuration, n any natural number,

m ∞→ if and only if m ∞→n
Proof.

(i) If m ∞→ then m ∞→n . By coinduction.

Hypothesis m ∞→ . Using the m ∞→ hypothesis by ∞→ definition necessarily m → m1, m1
∞→ . We

are now in position to prove m ∞→n .

(a) m1
∞→n by coinduction hypothesis on m1

∞→ .

(b) m ∞→n by the ∞→n -perform rule on m → m1 and m1
∞→n .

(ii) If m ∞→n then m ∞→ . By coinduction.

Hypothesis m ∞→n . We have to prove m ∞→ .

(a) The proof uses the fact that if m ∞→n then there exists m1 such that m → m1 and m1
∞→n1

which is proved by induction on the natural n.

(b) m → m1, m1
∞→n1

by ii.a on m ∞→n .

(c) m1
∞→ by coinduction hypothesis on m1

∞→n1
.

(d) m ∞→ by ∞→ definition on m → m1 and m1
∞→ .

Mathematics 2020, 8, 1573 39 of 55

Lemma A3. If Ω ⊢ d ∞⇒ , then for all codes c, for all stacks s, (JdK ⋅ c, JΩK, s) ∞→∥d∥ .

Proof. By coinduction.

(i) d = d1 ⋆ d2.

Hypothesis Ω ⊢ d1
∞⇒ . We have to prove (Jd1 ⋆ d2K ⋅ c, JΩK, s) ∞→∥d1 ⋆ d2∥

.

(a) for all ch , sh , (Jd1K ⋅ ch , JΩK, sh) ∞→∥d1∥
by coinduction hypothesis on Ω ⊢ d1

∞⇒ .

(b) (Jd1K ⋅ Jd2K ⋅ IOp ⋅ c, JΩK, s) ∞→∥d1∥
by i.a with ch = Jd2K ⋅ IOp ⋅ c and sh = s.

(c) (Jd1K ⋅ Jd2K ⋅ IOp ⋅ c, JΩK, s) ∞→∥d1∥+ 1
by ∞→n -sleep rule on i.b.

(d) (Jd1 ⋆ d2K ⋅ c, JΩK, s) ∞→∥d1 ⋆ d2∥
by definition Jd1 ⋆ d2K = Jd1K ⋅ Jd2K ⋅ IOp and

∥d1 ⋆ d2∥ = ∥d1∥+ 1.

(ii) d = d1 ⋆ d2.

Hypothesis Ω ⊢ d1 ⇒ n1, Ω ⊢ d2
∞⇒ . We must prove (Jd1 ⋆ d2K ⋅ c, JΩK, s) ∞→∥d1 ⋆ d2∥

.

(a) (Jd1K ⋅ Jd2K ⋅ IOp ⋅ c, JΩK, s) +→ (Jd2K ⋅ IOp ⋅ c, JΩK, Jn1K ⋅ s) by Theorem A1 on Ω ⊢ d1 ⇒ n1.

(b) for all ch , sh , (Jd2K ⋅ ch , JΩK, sh) ∞→∥d2∥
by induction hypothesis on Ω ⊢ d2

∞⇒ .

(c) (Jd2K ⋅ IOp ⋅ c, JΩK, Jn1K ⋅ s) ∞→∥d2∥
by ii.b with ch = IOp ⋅ c and sh = Jn1K ⋅ s.

(d) (Jd1K ⋅ Jd2K ⋅ IOp ⋅ c, JΩK, s) ∞→∥d1 ⋆ d2∥
by ∞→n -perform rule on ii.a and ii.c.

(e) (Jd1 ⋆ d2K ⋅ c, JΩK, s) ∞→∥d1 ⋆ d2∥
by definition Jd1 ⋆ d2K = Jd1K ⋅ Jd2K ⋅ IOp.

(iii) d = let d1 in d2.

Hypothesis Ω ⊢ d1
∞⇒ . We have to prove (Jlet d1 in d2K ⋅ c, JΩK, s) ∞→∥let d1 in d2∥

.

(a) for all ch , sh , (Jd1K ⋅ ch , JΩK, sh) ∞→∥d1∥
by coinduction hypothesis on Ω ⊢ d1

∞⇒ .

(b) (Jd1K ⋅ ILet ⋅ Jd2K ⋅ IEndLet ⋅ c, JΩK, s) ∞→∥d1∥
by iii.a with ch = ILet ⋅ Jd2K ⋅ IEndLet ⋅ c and sh = s.

(c) (Jd1K ⋅ ILet ⋅ Jd2K ⋅ IEndLet ⋅ c, JΩK, s) ∞→∥d1∥+ 1
by ∞→n -sleep rule on iii.b.

(d) (Jlet d1 in d2K ⋅ c, JΩK, s) ∞→∥let d1 in d2∥

by definition Jlet d1 in d2K = Jd1K ⋅ ILet ⋅ Jd2K ⋅ IEndLet and ∥let d1 in d2∥ = ∥d1∥+ 1 .

(iv) d = let d1 in d2.

Hypothesis Ω ⊢ d1 ⇒ v1, v1 ⋅Ω ⊢ d2
∞⇒ .

We must prove (Jlet d1 in d2K ⋅ c, JΩK, s) ∞→∥let d1 in d2∥
.

(a) (Jd1K ⋅ ILet ⋅ Jd2K ⋅ IEndLet ⋅ c, JΩK, s) +→ (ILet ⋅ Jd2K ⋅ IEndLet ⋅ c, JΩK, Jv1K ⋅ s) by Theorem A1
on Ω ⊢ d1 ⇒ v1.

Mathematics 2020, 8, 1573 40 of 55

(b) (ILet ⋅ Jd2K ⋅ IEndLet ⋅ c, JΩK, Jv1K ⋅ s) → (Jd2K ⋅ IEndLet ⋅ c, Jv1K ⋅ JΩK, s) by → definition of
ILet.

(c) for all ch , sh , (Jd2K ⋅ ch , Jv1K ⋅ JΩK, sh) ∞→∥d2∥
by coinduction hypothesis on v1 ⋅Ω ⊢ d2

∞⇒ .

(d) (Jd2K ⋅ IEndLet ⋅ c, Jv1K ⋅ JΩK, s) ∞→∥d2∥
by iv.c with ch = IEndLet ⋅ c and sh = s.

(e) (ILet ⋅ Jd2K ⋅ IEndLet ⋅ c, JΩK, Jv1K ⋅ s) ∞→∥d1∥
by ∞→n -perform rule on iv.b and iv.d.

(f) (Jd1K ⋅ ILet ⋅ Jd2K ⋅ IEndLet ⋅ c, JΩK, s) ∞→∥d1∥+ 1
by ∞→n -perform rule on iv.a and iv.e.

(g) (Jlet d1 in d2K ⋅ c, JΩK, s) ∞→∥let d1 in d2∥

by definition Jlet d1 in d2K = Jd1K ⋅ ILet ⋅ Jd2K ⋅ IEndLet and ∥let d1 in d2∥ = ∥d1∥+ 1 .

(v) d = if d1 then d2 else d3.

Hypothesis Ω ⊢ d1
∞⇒ . We must prove (Jif d1 then d2 else d3K ⋅ c, JΩK, s) ∞→∥if d1 then d2 else d3∥

.

(a) for all ch , sh , (Jd1K ⋅ ch , JΩK, sh) ∞→∥d1∥
by coinduction hypothesis on Ω ⊢ d1

∞⇒ .

(b) (Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, s) ∞→∥d1∥
by v.a with

ch = ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c and sh = s.

(c) (Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, s) ∞→∥d1∥+ 1
by ∞→n -sleep rule on v.b.

(d) (Jif d1 then d2 else d3K ⋅ c, JΩK, s) ∞→∥if d1 then d2 else d3∥
by definition

Jif d1 then d2 else d3K = Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) and
∥if d1 then d2 else d3∥ = ∥d1∥+ 1.

(vi) d = if d1 then d2 else d3.

Hypothesis Ω ⊢ d1 ⇒ true, Ω ⊢ d2
∞⇒ .

We must prove (Jif d1 then d2 else d3K ⋅ c, JΩK, s) ∞→∥if d1 then d2 else d3∥
.

(a) (Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, s) +→
(ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, true ⋅ s) by Theorem A1 on Ω ⊢ d1 ⇒ true.

(b) (ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, true ⋅ s) → (Jd2K ⋅ IJoin, JΩK, (c, []) ⋅ s) by →
definition of ISel.

(c) for all ch , sh , (Jd2K ⋅ ch , JΩK, sh) ∞→∥d2∥
by coinduction hypothesis on Ω ⊢ d2

∞⇒ .

(d) (Jd2K ⋅ IJoin, JΩK, (c, []) ⋅ s) ∞→∥d2∥
by vi.c with ch = IJoin and sh = (c, []) ⋅ s.

(e) (ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, true ⋅ s) ∞→∥d1∥
by ∞→n -perform rule on vi.b and vi.d.

(f) (Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, s) ∞→∥d1∥+ 1
by ∞→n -perform rule on vi.a and vi.e.

Mathematics 2020, 8, 1573 41 of 55

(g) (Jif d1 then d2 else d3K ⋅ c, JΩK, s) ∞→∥if d1 then d2 else d3∥
by definition

Jif d1 then d2 else d3K = Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) and
∥if d1 then d2 else d3∥ = ∥d1∥+ 1.

(vii) d = if d1 then d2 else d3.

Hypothesis Ω ⊢ d1 ⇒ f alse, Ω ⊢ d3
∞⇒ .

We must prove (Jif d1 then d2 else d3K ⋅ c, JΩK, s) ∞→∥if d1 then d2 else d3∥
.

(a) (Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, s) +→
(ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, f alse ⋅ s) by Theorem A1 on Ω ⊢ d1 ⇒ f alse.

(b) (ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, f alse ⋅ s) → (Jd3K ⋅ IJoin, JΩK, (c, []) ⋅ s) by →
definition of ISel.

(c) for all ch , sh , (Jd3K ⋅ ch , JΩK, sh) ∞→∥d3∥
by coinduction hypothesis on Ω ⊢ d3

∞⇒ .

(d) (Jd3K ⋅ IJoin, JΩK, (c, []) ⋅ s) ∞→∥d3∥
by vii.c with ch = IJoin and sh = (c, []) ⋅ s.

(e) (ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, f alse ⋅ s) ∞→∥d1∥
by ∞→n -perform rule on vii.b and vii.d.

(f) (Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) ⋅ c, JΩK, s) ∞→∥d1∥+ 1
by ∞→n -perform rule on vii.a and vii.e.

(g) (Jif d1 then d2 else d3K ⋅ c, JΩK, s) ∞→∥if d1 then d2 else d3∥
by definition

Jif d1 then d2 else d3K = Jd1K ⋅ ISel (Jd2K ⋅ IJoin) (Jd3K ⋅ IJoin) and
∥if d1 then d2 else d3∥ = ∥d1∥+ 1.

(viii) d = d1 d2.

Hypothesis Ω ⊢ d1
∞⇒ . We must prove (Jd1 d2K ⋅ c, JΩK, s) ∞→∥d1 d2∥

.

(a) for all ch , sh , (Jd1K ⋅ ch , JΩK, sh) ∞→∥d1∥
by coinduction hypothesis on Ω ⊢ d1

∞⇒ .

(b) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) ∞→∥d1∥
by viii.a with ch = Jd2K ⋅ IApp ⋅ c and sh = s.

(c) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) ∞→∥d1∥+ 1
by ∞→n -sleep rule on viii.b.

(d) (Jd1 d2K ⋅ c, JΩK, s) ∞→∥d1 d2∥
by definition Jd1 d2K = Jd1K ⋅ Jd2K ⋅ IApp and ∥d1 d2∥ = ∥d1∥+ 1.

(ix) d = d1 d2.

Hypothesis Ω ⊢ d1 ⇒ (λ.d)[Ω1], Ω ⊢ d2
∞⇒ . We must prove (Jd1 d2K ⋅ c, JΩK, s) ∞→∥d1 d2∥

.

(a) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) +→ (Jd2K ⋅ IApp ⋅ c, JΩK, J(λ.d)[Ω1]K ⋅ s) by Theorem A1 on
Ω ⊢ d1 ⇒ (λ.d)[Ω1].

(b) for all ch , sh , (Jd2K ⋅ ch , JΩK, sh) ∞→∥d2∥
by coinduction hypothesis on Ω ⊢ d2

∞⇒ .

(c) (Jd2K ⋅ IApp ⋅ c, JΩK, J(λ.d)[Ω1]K ⋅ s) ∞→∥d2∥
by ix.b with ch = IApp ⋅ c and sh = J(λ.d)[Ω1]K ⋅ s.

Mathematics 2020, 8, 1573 42 of 55

(d) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) ∞→∥d1∥+ 1
by ∞→n -perform rule on ix.a and ix.c.

(e) (Jd1 d2K ⋅ c, JΩK, s) ∞→∥d1 d2∥
by definition Jd1 d2K = Jd1K ⋅ Jd2K ⋅ IApp and ∥d1 d2∥ = ∥d1∥+ 1.

(x) d = d1 d2.

Hypothesis Ω ⊢ d1 ⇒ (µ.λ.d)[Ω1], Ω ⊢ d2
∞⇒ . We must prove (Jd1 d2K ⋅ c, JΩK, s) ∞→∥d1 d2∥

.

(a) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) +→ (Jd2K ⋅ IApp ⋅ c, JΩK, J(µ.λ.d)[Ω1]K ⋅ s) by Theorem A1 on
Ω ⊢ d1 ⇒ (µ.λ.d)[Ω1].

(b) for all ch , sh , (Jd2K ⋅ ch , JΩK, sh) ∞→∥d2∥
by coinduction hypothesis on Ω ⊢ d2

∞⇒ .

(c) (Jd2K ⋅ IApp ⋅ c, JΩK, J(µ.λ.d)[Ω1]K ⋅ s) ∞→∥d2∥
by x.b with ch = IApp ⋅ c and

sh = J(µ.λ.d)[Ω1]K ⋅ s.

(d) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) ∞→∥d1∥+ 1
by ∞→n -perform rule on x.a and x.c.

(e) (Jd1 d2K ⋅ c, JΩK, s) ∞→∥d1 d2∥
by definition Jd1 d2K = Jd1K ⋅ Jd2K ⋅ IApp and ∥d1 d2∥ = ∥d1∥+ 1.

(xi) d = d1 d2.

Hypothesis Ω ⊢ d1 ⇒ (λ.d)[Ω1], Ω ⊢ d2 ⇒ v2, v2 ⋅Ω1 ⊢ d ∞⇒ .
We must prove (Jd1 d2K ⋅ c, JΩK, s) ∞→∥d1 d2∥

.

(a) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) +→ (Jd2K ⋅ IApp ⋅ c, JΩK, J(λ.d)[Ω1]K ⋅ s) by Theorem A1 on
Ω ⊢ d1 ⇒ (λ.d)[Ω1].

(b) (Jd2K ⋅ IApp ⋅ c, JΩK, J(λ.d)[Ω1]K ⋅ s) +→ (IApp ⋅ c, JΩK, Jv2K ⋅ J(λ.d)[Ω1]K ⋅ s) by Theorem A1
on Ω ⊢ d2 ⇒ v2.

(c) (IApp ⋅ c, JΩK, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K] ⋅ s)→ (JdK ⋅ IRet, Jv2K ⋅ JΩ1K, (c, JΩK) ⋅ s) by→ of IApp.

(d) for all ch , sh , (JdK ⋅ ch , Jv2K ⋅ JΩ1K, sh) ∞→∥d∥ by coinduction hypothesis on v2 ⋅Ω1 ⊢ d ∞⇒ .

(e) (JdK ⋅ IRet, Jv2K ⋅ JΩ1K, (c, JΩK) ⋅ s) ∞→∥d∥ by xi.d with ch = IRet and sh = (c, JΩK) ⋅ s.

(f) (IApp ⋅ c, JΩK, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K] ⋅ s) ∞→∥d2∥
by ∞→n -perform rule on xi.c and xi.e.

(g) (Jd2K ⋅ IApp ⋅ c, JΩK, J(λ.d)[Ω1]K ⋅ s) ∞→∥d1∥
by ∞→n -perform rule on xi.b and xi.f, and by

definition J(λ.d)[Ω1]K = (JdK ⋅ IRet)[JΩ1K].

(h) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) ∞→∥d1∥+ 1
by ∞→n -perform rule on xi.a and xi.g.

(i) (Jd1 d2K ⋅ c, JΩK, s) ∞→∥d1 d2∥
by definition Jd1 d2K = Jd1K ⋅ Jd2K ⋅ IApp and ∥d1 d2∥ = ∥d1∥+ 1.

(xii) d = d1 d2.

Hypothesis Ω ⊢ d1 ⇒ (µ.λ.d)[Ω1], Ω ⊢ d2 ⇒ v2, v2 ⋅ (µ.λ.d)[Ω1] ⋅Ω1 ⊢ d ∞⇒ .
We must prove (Jd1 d2K ⋅ c, JΩK, s) ∞→∥d1 d2∥

.

Mathematics 2020, 8, 1573 43 of 55

(a) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) +→ (Jd2K ⋅ IApp ⋅ c, JΩK, J(µ.λ.d)[Ω1]K ⋅ s) by Theorem A1 on
Ω ⊢ d1 ⇒ (µ.λ.d)[Ω1].

(b) (Jd2K ⋅ IApp ⋅ c, JΩK, J(µ.λ.d)[Ω1]K ⋅ s) +→ (IApp ⋅ c, JΩK, Jv2K ⋅ J(µ.λ.d)[Ω1]K ⋅ s) by
Theorem A1 on Ω ⊢ d2 ⇒ v2.

(c) (IApp ⋅ c, JΩK, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K]rec ⋅ s)→
(JdK ⋅ IRet, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K]rec ⋅ JΩ1K, (c, JΩK) ⋅ s) by → of IApp.

(d) for all ch , sh , (JdK ⋅ ch , Jv2K ⋅ J(µ.λ.d)[Ω1]K ⋅ JΩ1K, sh) ∞→∥d∥ by coinduction hypothesis on

v2 ⋅ (µ.λ.d)[Ω1] ⋅Ω1 ⊢ d ∞⇒ .

(e) (JdK ⋅ IRet, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K]rec ⋅ JΩ1K, (c, JΩK) ⋅ s) ∞→∥d∥ by xii.d with ch = IRet and

sh = (c, JΩK) ⋅ s, and by definition J(µ.λ.d)[Ω1]K = (JdK ⋅ IRet)[JΩ1K]rec.

(f) (IApp ⋅ c, JΩK, Jv2K ⋅ (JdK ⋅ IRet)[JΩ1K]rec ⋅ s) ∞→∥d2∥
by ∞→n -perform rule on xii.c and xii.e.

(g) (Jd2K ⋅ IApp ⋅ c, JΩK, J(µ.λ.d)[Ω1]K ⋅ s) ∞→∥d1∥
by ∞→n -perform rule on xii.b and xii.f, and by

definition J(µ.λ.d)[Ω1]K = (JdK ⋅ IRet)[JΩ1K]rec.

(h) (Jd1K ⋅ Jd2K ⋅ IApp ⋅ c, JΩK, s) ∞→∥d1∥+ 1
by ∞→n -perform rule on xii.a and xii.g.

(i) (Jd1 d2K ⋅ c, JΩK, s) ∞→∥d1 d2∥
by definition Jd1 d2K = Jd1K ⋅ Jd2K ⋅ IApp and

∥d1 d2∥ = ∥d1∥+ 1.

Theorem A3. If Ω ⊢ d ∞⇒ , then (JdK ⋅ c, JΩK, s) ∞→ for all codes c and stacks s.

Proof. Hypothesis Ω ⊢ d ∞⇒ . We must prove (JdK ⋅ c, JΩK, s) ∞→ .

(i) (JdK ⋅ c, JΩK, s) ∞→∥d∥ by Lemma A3 on Ω ⊢ d ∞⇒ .

(ii) (JdK ⋅ c, JΩK, s) ∞→ by Lemma A2 on i.

Lemma A4. Let ∆ be a machine environment, s a stack, i a machine instruction,

∆, s ⊢ i ∞⇒ if and only if ∆, s ⊢ i ∞Z⇒

and, let c be a machine code, n any natural,

∆, s ⊢ c ∞⇒ if and only if ∆, s ⊢ c ∞Z⇒n

Proof.

1. If ∆, s ⊢ i ∞⇒ then ∆, s ⊢ i ∞Z⇒ and if ∆, s ⊢ c ∞⇒ then ∆, s ⊢ c ∞Z⇒n .

(a) If ∆, s ⊢ i ∞⇒ then ∆, s ⊢ i ∞Z⇒ . Assuming 1b, the proof is by case analysis.

i. i = ISel c1 c2.

Hypothesis ∆, s ⊢ c1
∞⇒ , ∆, true ⋅ s ⊢ ISel c1 c2

∞⇒ .
We must prove ∆, true ⋅ s ⊢ ISel c1 c2

∞Z⇒ .

Mathematics 2020, 8, 1573 44 of 55

A. ∆, s ⊢ c1
∞Z⇒n by 1b on ∆, s ⊢ c1

∞⇒ .

B. ∆, true ⋅ s ⊢ ISel c1 c2
∞Z⇒ by definition using 1(a)iA.

ii. i = ISel c1 c2.

Hypothesis ∆, s ⊢ c1
∞⇒ , ∆, f alse ⋅ s ⊢ ISel c1 c2

∞⇒ .
We must prove ∆, f alse ⋅ s ⊢ ISel c1 c2

∞Z⇒ .

A. ∆, s ⊢ c1
∞Z⇒n by 1b on ∆, s ⊢ c1

∞⇒ .

B. ∆, f alse ⋅ s ⊢ ISel c1 c2
∞Z⇒ by definition using 1(a)iiA.

iii. i = IApp.

Hypothesis v ⋅∆1, s ⊢ c ∞⇒ , ∆, v ⋅ c[∆1] ⋅ s ⊢ IApp ∞⇒ .
We must prove ∆, v ⋅ c[∆1] ⋅ s ⊢ IApp ∞Z⇒ .

A. v ⋅∆1, s ⊢ c ∞Z⇒n by 1b on v ⋅∆1, s ⊢ c ∞⇒ .

B. ∆, v ⋅ c[∆1] ⋅ s ⊢ IApp ∞Z⇒ by definition using 1(a)iiiA.

iv. i = IApp.

Hypothesis v ⋅ c[∆1]rec ⋅∆1, s ⊢ c ∞⇒ , ∆, v ⋅ c[∆1]rec ⋅ s ⊢ IApp ∞⇒ .
We must prove ∆, v ⋅ c[∆1]rec ⋅ s ⊢ IApp ∞Z⇒ .

A. v ⋅ c[∆1]rec ⋅∆1, s ⊢ c ∞Z⇒n by 1b on v ⋅ c[∆1]rec ⋅∆1, s ⊢ c ∞⇒ .

B. ∆, v ⋅ c[∆1]rec ⋅ s ⊢ IApp ∞Z⇒ by definition using 1(a)ivA.

(b) If ∆, s ⊢ c ∞⇒ then ∆, s ⊢ c ∞Z⇒n . By coinduction.

i. c = i ⋅ c’.

Hypothesis ∆, s ⊢ i ∞⇒ , ∆, s ⊢ i ⋅ c’ ∞⇒ . We have to prove ∆, s ⊢ i ⋅ c’ ∞Z⇒n .

A. ∆, s ⊢ i ∞Z⇒ by 1a on ∆, s ⊢ i ∞⇒ .

B. ∆, s ⊢ i ⋅ c’ ∞Z⇒n by definition using 1(b)iA.

ii. c = i ⋅ c’.

Hypothesis ∆, s ⊢ i⇒ (∆1, s1), ∆1, s1 ⊢ c’ ∞⇒ , ∆, s ⊢ i ⋅ c’ ∞⇒ .
We have to prove ∆, s ⊢ i ⋅ c’ ∞Z⇒n .

A. ∆1, s1 ⊢ c’ ∞Z⇒n by coinduction hypothesis on ∆1, s1 ⊢ c’ ∞⇒ .

B. ∆, s ⊢ i ⋅ c’ ∞Z⇒n by ∞Z⇒n -perform rule on ∆, s ⊢ i⇒ (∆1, s1) and 1(b)iiA.

2. If ∆, s ⊢ i ∞Z⇒ then ∆, s ⊢ i ∞⇒ and if ∆, s ⊢ c ∞Z⇒n then ∆, s ⊢ c ∞⇒ .

(a) If ∆, s ⊢ i ∞Z⇒ then ∆, s ⊢ i ∞⇒ . Assuming 2b, the proof is by case analysis.

Mathematics 2020, 8, 1573 45 of 55

i. i = ISel c1 c2.

Hypothesis ∆, s ⊢ c1
∞Z⇒n , ∆, true ⋅ s ⊢ ISel c1 c2

∞Z⇒ .

We must prove ∆, true ⋅ s ⊢ ISel c1 c2
∞⇒ .

A. ∆, s ⊢ c1
∞⇒ by 2b on ∆, s ⊢ c1

∞Z⇒n .

B. ∆, true ⋅ s ⊢ ISel c1 c2
∞⇒ by definition using 2(a)iA.

ii. i = ISel c1 c2.

Hypothesis ∆, s ⊢ c1
∞Z⇒n , ∆, f alse ⋅ s ⊢ ISel c1 c2

∞Z⇒ .

We must prove ∆, f alse ⋅ s ⊢ ISel c1 c2
∞⇒ .

A. ∆, s ⊢ c1
∞⇒ by 2b on ∆, s ⊢ c1

∞Z⇒n .

B. ∆, f alse ⋅ s ⊢ ISel c1 c2
∞⇒ by definition using 2(a)iiA.

iii. i = IApp.

Hypothesis v ⋅∆1, s ⊢ c ∞Z⇒n , ∆, v ⋅ c[∆1] ⋅ s ⊢ IApp ∞Z⇒ .

We must prove ∆, v ⋅ c[∆1] ⋅ s ⊢ IApp ∞⇒ .

A. v ⋅∆1, s ⊢ c ∞⇒ by 2b on v ⋅∆1, s ⊢ c ∞Z⇒n .

B. ∆, v ⋅ c[∆1] ⋅ s ⊢ IApp ∞⇒ by definition using 2(a)iiiA.

iv. i = IApp.

Hypothesis v ⋅ c[∆1]rec ⋅∆1, s ⊢ c ∞Z⇒n , ∆, v ⋅ c[∆1]rec ⋅ s ⊢ IApp ∞Z⇒ .

We must prove ∆, v ⋅ c[∆1]rec ⋅ s ⊢ IApp ∞⇒ .

A. v ⋅ c[∆1]rec ⋅∆1, s ⊢ c ∞⇒ by 2b on v ⋅ c[∆1]rec ⋅∆1, s ⊢ c ∞Z⇒n .

B. ∆, v ⋅ c[∆1]rec ⋅ s ⊢ IApp ∞⇒ by definition using 2(a)ivA.

(b) If ∆, s ⊢ c ∞Z⇒n then ∆, s ⊢ c ∞⇒ . By coinduction.

i. c = i ⋅ c.

Hypothesis ∆, s ⊢ i ∞Z⇒ , ∆, s ⊢ i ⋅ c ∞Z⇒n . We must prove ∆, s ⊢ i ⋅ c ∞⇒ .

A. ∆, s ⊢ i ∞⇒ by 2a on ∆, s ⊢ i ∞Z⇒ .

B. ∆, s ⊢ i ⋅ c ∞⇒ by definition using 2(b)iA.

ii. c = c1 ⋅ c2.

Hypothesis ∆, s ⊢ c1
∞Z⇒n , ∆, s ⊢ c1 ⋅ c2

∞Z⇒
n + 1

. We must prove ∆, s ⊢ c1 ⋅ c2
∞⇒ .

A. The proof uses the fact that if ∆, s ⊢ i ⋅ c ∞Z⇒n then ∆, s ⊢ i ∞Z⇒ or there exists

n1, ∆1, s1, such that ∆, s ⊢ i ⇒ (∆1, s1) and ∆1, s1 ⊢ c ∞Z⇒n1
, which is proved

by induction on the natural n.

Mathematics 2020, 8, 1573 46 of 55

B. c1 ≠ [] that is c1 = i ⋅ c’1 by ∞Z⇒n definition and ∆, s ⊢ c1
∞Z⇒n .

C. ∆, s ⊢ i ∞Z⇒ , or ∆, s ⊢ i⇒ (∆1, s1) and ∆1, s1 ⊢ c’1 ⋅ c2
∞Z⇒n1

by 2(b)iiA on

∆, s ⊢ i ⋅ c’1 ⋅ c2
∞Z⇒

n + 1
.

• ∆, s ⊢ i ∞Z⇒ .

– ∆, s ⊢ i ∞⇒ by 2a on ∆, s ⊢ i ∞Z⇒ .

– ∆, s ⊢ i ⋅ c’1 ⋅ c2
∞⇒ by definition using ∆, s ⊢ i ∞⇒ .

• ∆, s ⊢ i⇒ (∆1, s1) and ∆1, s1 ⊢ c’1 ⋅ c2
∞Z⇒n1

.

– ∆1, s1 ⊢ c’1 ⋅ c2
∞⇒ by coinduction hypothesis on ∆1, s1 ⊢ c’1 ⋅ c2

∞Z⇒n1
.

– ∆, s ⊢ i ⋅ c’1 ⋅ c2
∞⇒ by definition using ∆, s ⊢ i⇒ (∆1, s1) and ∆1, s1 ⊢

c’1 ⋅ c2
∞⇒ .

iii. c = c1 ⋅ c2.

Hypothesis c1 ≠ [], ∆, s ⊢ c1 ⇒ (∆1, s1), ∆1, s1 ⊢ c2
∞Z⇒
n’

, ∆, s ⊢ c1 ⋅ c2
∞Z⇒n .

We must prove ∆, s ⊢ c1 ⋅ c2
∞⇒ .

A. c1 ≠ [] that is c1 = i ⋅ c’1 by hypothesis.

B. ∆, s ⊢ i ⇒ (∆t, st) and ∆t, st ⊢ c’1 ⇒ (∆1, s1) by ∆, s ⊢ c1 ⇒ (∆1, s1)
hypothesis.

• c’1 = [].

– ∆t = ∆1 and st = s1 by ∆t, st ⊢ c’1 ⇒ (∆1, s1) and c’1 = [].

– ∆1, s1 ⊢ c2
∞⇒ by coinduction hypothesis on ∆1, s1 ⊢ c2

∞Z⇒
n’

.

– ∆, s ⊢ i ⋅ c2
∞⇒ by definition using ∆, s ⊢ i⇒ (∆1, s1) and

∆1, s1 ⊢ c2
∞⇒ .

– ∆, s ⊢ i ⋅ c’1 ⋅ c2
∞⇒ by c’1 = [].

• c’1 ≠ []

– ∆t, st ⊢ c’1 ⋅ c2
∞Z⇒
n’

by ∞Z⇒n -perform rule on ∆t, st ⊢ c’1 ⇒ (∆1, s1) and

∆1, s1 ⊢ c2
∞Z⇒
n’

.

– ∆t, st ⊢ c’1 ⋅ c2
∞⇒ by coinduction hypothesis on ∆t, st ⊢ c’1 ⋅ c2

∞Z⇒
n’

.

– ∆, s ⊢ i ⋅ c’1 ⋅ c2
∞⇒ by definition using ∆, s ⊢ i⇒ (∆t, st) and

∆t, st ⊢ c’1 ⋅ c2
∞⇒ .

Lemma A5 (Correctness for non-termination (auxiliary)). Let Ω be a nameless environment, ∆ a machine
environment, d a nameless expression, c a machine code. If

Ω ⊢ d ∞⇒ , d ⇓ c, Ω £ ∆

Mathematics 2020, 8, 1573 47 of 55

then, for all stack s,

∆, s ⊢ c ∞Z⇒∥d∥

Proof. By coinduction.

(i) d = d1 ⋆ d2.

Hypothesis Ω ⊢ d1
∞⇒ , Ω ⊢ d1 ⋆ d2

∞⇒ , d ⇓ c, Ω £ ∆. Using the d1 ⋆ d2 ⇓ c hypothesis,
by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2, c = c1 ⋅ c2 ⋅ IOp.
We must prove ∆, s ⊢ c1 ⋅ c2 ⋅ IOp ∞Z⇒∥d1 ⋆ d2∥

.

(a) ∆, s ⊢ c1
∞Z⇒∥d1∥

by coinduction hypothesis on Ω ⊢ d1
∞⇒ .

(b) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1∥+ 1
by ∞Z⇒n -sleep rule on i.a.

(c) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 ⋆ d2∥
by definition ∥d1 ⋆ d2∥ = ∥d1∥+ 1.

(ii) d = d1 ⋆ d2.

Hypothesis Ω ⊢ d1 ⇒ n1, Ω ⊢ d2
∞⇒ , Ω ⊢ d1 ⋆ d2

∞⇒ , d ⇓ c, Ω £ ∆. Using the d1 ⋆ d2 ⇓ c
hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2, c = c1 ⋅ c2 ⋅ IOp. We must prove
∆, s ⊢ c1 ⋅ c2 ⋅ IOp ∞Z⇒∥d1 ⋆ d2∥

.

(a) ∆, s ⊢ c1 ⇒ (∆, n1 ⋅ s) by Theorem A2 on Ω ⊢ d1 ⇒ n1.

(b) ∆, n1 ⋅ s ⊢ c2
∞Z⇒∥d2∥

by coinduction hypothesis on Ω ⊢ d2
∞⇒ .

(c) ∆, n1 ⋅ s ⊢ c2 ⋅ IOp ∞Z⇒∥d2∥+ 1
by ∞Z⇒n -sleep rule on ii.b.

(d) ∆, s ⊢ c1 ⋅ c2 ⋅ IOp ∞Z⇒∥d1∥+ 1
by ∞Z⇒n -perform rule on ii.a and ii.c.

(e) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 ⋆ d2∥
by definition ∥d1 ⋆ d2∥ = ∥d1∥+ 1.

(iii) d = let d1 in d2.

Hypothesis Ω ⊢ d1
∞⇒ , Ω ⊢ let d1 in d2

∞⇒ , d ⇓ c, Ω £ ∆. Using the let d1 in d2 ⇓ c
hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2, c = c1 ⋅ ILet ⋅ c2 ⋅ IEndLet. We must
prove Ω ⊢ c1 ⋅ ILet ⋅ c2 ⋅ IEndLet ∞Z⇒∥let d1 in d2∥

.

(a) ∆, s ⊢ c1
∞Z⇒∥d1∥

by coinduction hypothesis on Ω ⊢ d1
∞⇒ .

(b) ∆, s ⊢ c1 ⋅ ILet ⋅ c2 ⋅ IEndLet ∞Z⇒∥d1∥+ 1
by ∞Z⇒n -sleep on iii.a.

(c) ∆, s ⊢ c1 ⋅ ILet ⋅ c2 ⋅ IEndLet ∞Z⇒∥let d1 in d2∥
by definition ∥let d1 in d2∥ = ∥d1∥+ 1.

(iv) d = let d1 in d2.

Hypothesis Ω ⊢ d1 ⇒ v1, v1 ⋅Ω ⊢ d2
∞⇒ , Ω ⊢ let d1 in d2

∞⇒ , d ⇓ c, Ω £ ∆. Using the
let d1 in d2 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2,
c = c1 ⋅ ILet ⋅ c2 ⋅ IEndLet. We must prove Ω ⊢ c1 ⋅ ILet ⋅ c2 ⋅ IEndLet ∞Z⇒∥let d1 in d2∥

.

Mathematics 2020, 8, 1573 48 of 55

(a) ∆, s ⊢ c1 ⇒ (∆, vm1 ⋅ s) by Theorem A2 on Ω ⊢ d1 ⇒ v1 (such that v1 # vm1).

(b) ∆, vm1 ⋅ s ⊢ ILet⇒ (vm1 ⋅∆, s) by definition.

(c) vm1 ⋅∆, s ⊢ c2
∞⇒∥d2∥

by coinduction hypothesis on v1 ⋅Ω ⊢ d2
∞⇒ .

(d) vm1 ⋅∆, s ⊢ c2 ⋅ IEndLet ∞⇒∥d2∥+ 1
by ∞Z⇒n -sleep rule on iv.c.

(e) ∆, vm1 ⋅ s ⊢ ILet ⋅ c2 ⋅ IEndLet ∞⇒∥d2∥+ 1
by ∞Z⇒n -perform rule on iv.b and iv.d.

(f) ∆, s ⊢ c1 ⋅ ILet ⋅ c2 ⋅ IEndLet ∞Z⇒∥d1∥+ 1
by ∞Z⇒n -perform rule on iv.a and iv.e.

(g) ∆, s ⊢ c1 ⋅ ILet ⋅ c2 ⋅ IEndLet ∞Z⇒∥let d1 in d2∥
by definition ∥let d1 in d2∥ = ∥d1∥+ 1.

(v) d = if d1 then d2 else d3.

Hypothesis Ω ⊢ d1
∞⇒ , Ω ⊢ if d1 then d2 else d3

∞⇒ , d ⇓ c, Ω £ ∆. Using the
if d1 then d2 else d3 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2, d3 ⇓ c3,
c = c1 ⋅ ISel c2 c3. We must prove ∆, s ⊢ c1 ⋅ ISel c2 c3

∞Z⇒∥if d1 then d2 else d3∥
.

(a) ∆, s ⊢ c1
∞Z⇒∥d1∥

by coinduction hypothesis on Ω ⊢ d1
∞⇒ .

(b) ∆, s ⊢ c1 ⋅ ISel c2 c3
∞Z⇒∥d1∥+ 1

by ∞Z⇒n -sleep rule on v.a.

(c) ∆, s ⊢ c1 ⋅ ISel c2 c3
∞Z⇒∥if d1 then d2 else d3∥

by definition ∥if d1 then d2 else d3∥ = ∥d1∥+ 1.

(vi) d = if d1 then d2 else d3.

Hypothesis Ω ⊢ d1 ⇒ true, Ω ⊢ d2
∞⇒ , Ω ⊢ if d1 then d2 else d3

∞⇒ , d ⇓ c, Ω £ ∆.
Using the if d1 then d2 else d3 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2,
d3 ⇓ c3, c = c1 ⋅ ISel c2 c3. We must prove ∆, s ⊢ c1 ⋅ ISel c2 c3

∞Z⇒∥if d1 then d2 else d3∥
.

(a) ∆, s ⊢ c1 ⇒ (∆, true ⋅ s) by Theorem A2 on Ω ⊢ d1 ⇒ true.

(b) ∆, s ⊢ c2
∞Z⇒∥d2∥

by coinduction hypothesis on Ω ⊢ d2
∞⇒ .

(c) ∆, true ⋅ s ⊢ ISel c2 c3 ⇒ ∞Z⇒ by definition using vi.b.

(d) ∆, true ⋅ s ⊢ ISel c2 c3
∞Z⇒∥d2∥

by definition using vi.c.

(e) ∆, s ⊢ c1 ⋅ ISel c2 c3
∞Z⇒∥d1∥+ 1

by ∞Z⇒n -perform rule on vi.a and vi.d.

(f) ∆, s ⊢ c1 ⋅ ISel c2 c3
∞Z⇒∥if d1 then d2 else d3∥

by definition ∥if d1 then d2 else d3∥ = ∥d1∥+ 1.

(vii) d = if d1 then d2 else d3.

Hypothesis Ω ⊢ d1 ⇒ f alse, Ω ⊢ d3
∞⇒ , Ω ⊢ if d1 then d2 else d3

∞⇒ , d ⇓ c, Ω £ ∆.
Using the if d1 then d2 else d3 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2,
d3 ⇓ c3, c = c1 ⋅ ISel c2 c3. We must prove ∆, s ⊢ c1 ⋅ ISel c2 c3

∞Z⇒∥if d1 then d2 else d3∥
.

Mathematics 2020, 8, 1573 49 of 55

(a) ∆, s ⊢ c1 ⇒ (∆, f alse ⋅ s) by Theorem A2 on Ω ⊢ d1 ⇒ f alse.

(b) ∆, s ⊢ c3
∞Z⇒∥d3∥

by coinduction hypothesis on Ω ⊢ d3
∞⇒ .

(c) ∆, f alse ⋅ s ⊢ ISel c2 c3 ⇒ ∞Z⇒ by definition using vii.b.

(d) ∆, f alse ⋅ s ⊢ ISel c2 c3
∞Z⇒∥d3∥

by definition using vii.c.

(e) ∆, s ⊢ c1 ⋅ ISel c2 c3
∞Z⇒∥d1∥+ 1

by ∞Z⇒n -perform rule on vii.a and vii.d.

(f) ∆, s ⊢ c1 ⋅ ISel c2 c3
∞Z⇒∥if d1 then d2 else d3∥

by definition ∥if d1 then d2 else d3∥ = ∥d1∥+ 1.

(viii) d = d1 d2.

Hypothesis Ω ⊢ d1
∞⇒ , Ω ⊢ d1 d2

∞⇒ , d ⇓ c, Ω £ ∆. Using the d1 d2 ⇓ c hypothesis, by ⇓
definition necessarily d1 ⇓ c1, d2 ⇓ c2, c = c1 ⋅ c2 ⋅ IApp.
We must prove ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 d2∥

.

(a) ∆, s ⊢ c1
∞Z⇒∥d1∥

by coinduction hypothesis on Ω ⊢ d1
∞⇒ .

(b) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1∥+ 1
by ∞Z⇒n -sleep rule on viii.a.

(c) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 d2∥
by definition ∥d1 d2∥ = ∥d1∥+ 1.

(ix) d = d1 d2.

Hypothesis Ω ⊢ d1 ⇒ (λ.d′)[Ω1], Ω ⊢ d2
∞⇒ , Ω ⊢ d1 d2

∞⇒ , d ⇓ c, Ω £ ∆. Using the
d1 d2 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2, c = c1 ⋅ c2 ⋅ IApp.
We must prove ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 d2∥

.

(a) ∆, s ⊢ c1 ⇒ (∆, vm ⋅ s) by Theorem A2 on Ω ⊢ d1 ⇒ (λ.d′)[Ω1] (such that (λ.d′)[Ω1] #
vm).

(b) ∆, vm ⋅ s ⊢ c2
∞Z⇒∥d2∥

by coinduction hypothesis on Ω ⊢ d2
∞⇒ .

(c) ∆, vm ⋅ s ⊢ c2 ⋅ IApp ∞Z⇒∥d2∥+ 1
by ∞Z⇒n -sleep rule on ix.b.

(d) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1∥+ 1
by ∞Z⇒n -perform rule on ix.a and ix.c.

(e) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 d2∥
by definition ∥d1 d2∥ = ∥d1∥+ 1.

(x) d = d1 d2.

Hypothesis Ω ⊢ d1 ⇒ (µ.λ.d′)[Ω1], Ω ⊢ d2
∞⇒ , Ω ⊢ d1 d2

∞⇒ , d ⇓ c, Ω £ ∆. Using the
d1 d2 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2, c = c1 ⋅ c2 ⋅ IApp.
We must prove ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 d2∥

.

(a) ∆, s ⊢ c1 ⇒ (∆, vm ⋅ s) by Theorem A2 on Ω ⊢ d1 ⇒ (µ.λ.d′)[Ω1]
(such that (µ.λ.d′)[Ω1] # vm).

Mathematics 2020, 8, 1573 50 of 55

(b) ∆, vm ⋅ s ⊢ c2
∞Z⇒∥d2∥

by coinduction hypothesis on Ω ⊢ d2
∞⇒ .

(c) ∆, vm ⋅ s ⊢ c2 ⋅ IApp ∞Z⇒∥d2∥+ 1
by ∞Z⇒n -sleep rule on x.b.

(d) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1∥+ 1
by ∞Z⇒n -perform rule on x.a and x.c.

(e) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 d2∥
by definition ∥d1 d2∥ = ∥d1∥+ 1.

(xi) d = d1 d2.

Hypothesis Ω ⊢ d1 ⇒ (λ.d′)[Ω1], Ω ⊢ d2 ⇒ v2, v2 ⋅Ω1 ⊢ d′ ∞⇒ , Ω ⊢ d1 d2
∞⇒ , d ⇓ c,

Ω £ ∆. Using the d1 d2 ⇓ c hypothesis, by ⇓ definition necessarily d1 ⇓ c1, d2 ⇓ c2,
c = c1 ⋅ c2 ⋅ IApp. We must prove ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 d2∥

.

(a) Ω1 £ ∆1, d′ ⇓ c′, ∆, s ⊢ c1 ⇒ (∆, c′[∆1] ⋅ s) by Theorem A2 on Ω ⊢ d1 ⇒ (λ.d′)[Ω1]
(such that (λ.d′)[Ω1] # c′[∆1]).

(b) ∆, c′[∆1] ⋅ s ⊢ c2 ⇒ (∆, vm2 ⋅ c′[∆1] ⋅ s) by Theorem A2 on Ω ⊢ d2 ⇒ v2 (such that
v2 # vm2).

(c) vm2 ⋅∆1, s ⊢ c′ ∞Z⇒
∥d′∥

by coinduction hypothesis on v2 ⋅Ω1 ⊢ d′ ∞⇒ .

(d) ∆, vm2 ⋅ c′[∆1] ⋅ s ⊢ IApp ∞Z⇒ by definition using xi.c.

(e) ∆, vm2 ⋅ c′[∆1] ⋅ s ⊢ IApp ∞Z⇒
∥d′∥

by definition using xi.d.

(f) ∆, c′[∆1] ⋅ s ⊢ c2 ⋅ IApp ∞Z⇒∥d2∥
by ∞Z⇒n -perform rule on xi.b and xi.e.

(g) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1∥+ 1
by ∞Z⇒n -perform rule on xi.a and xi.f.

(h) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 d2∥
by definition ∥d1 d2∥ = ∥d1∥+ 1.

(xii) d = d1 d2.

Hypothesis Ω ⊢ d1 ⇒ (µ.λ.d′)[Ω1], Ω ⊢ d2 ⇒ v2, v2 ⋅ (µ.λ.d′)[Ω1] ⋅Ω1 ⊢ d′ ∞⇒ ,
Ω ⊢ d1 d2

∞⇒ , d ⇓ c, Ω £ ∆. Using the d1 d2 ⇓ c hypothesis, by ⇓ definition necessarily
d1 ⇓ c1, d2 ⇓ c2, c = c1 ⋅ c2 ⋅ IApp. We must prove ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 d2∥

.

(a) Ω1 £ ∆1, d′ ⇓ c′, ∆, s ⊢ c1 ⇒ (∆, c′[∆1]rec ⋅ s) by Theorem A2 on Ω ⊢ d1 ⇒
(µ.λ.d′)[Ω1]
(such that (µ.λ.d′)[Ω1] # c′[∆1]rec).

(b) ∆, c′[∆1]rec ⋅ s ⊢ c2 ⇒ (∆, vm2 ⋅ c′[∆1]rec ⋅ s) by Theorem A2 on Ω ⊢ d2 ⇒ v2 (such that
v2 # vm2).

(c) vm2 ⋅ c′[∆1]rec ⋅∆1, s ⊢ c′ ∞Z⇒
∥d′∥

by coinduction hypothesis on v2 ⋅ (µ.λ.d′)[Ω1] ⋅Ω1 ⊢ d′ ∞⇒ .

(d) ∆, vm2 ⋅ c′[∆1]rec ⋅ s ⊢ IApp ∞Z⇒ by definition using xii.c.

Mathematics 2020, 8, 1573 51 of 55

(e) ∆, vm2 ⋅ c′[∆1]rec ⋅ s ⊢ IApp ∞Z⇒
∥d′∥

by definition using xii.d.

(f) ∆, c′[∆1]rec ⋅ s ⊢ c2 ⋅ IApp ∞Z⇒∥d2∥
by ∞Z⇒n -perform rule on xii.b and xii.e.

(g) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1∥+ 1
by ∞Z⇒n -perform rule on xii.a and xii.f.

(h) ∆, s ⊢ c1 ⋅ c2 ⋅ IApp ∞Z⇒∥d1 d2∥
by definition ∥d1 d2∥ = ∥d1∥+ 1.

Theorem A4 (Correctness for non-termination). Let Ω be a nameless environment, ∆ a machine
environment, d a nameless expression, c a machine code. If

Ω ⊢ d ∞⇒ , d ⇓ c, Ω £ ∆

then, for all stack s,

∆, s ⊢ c ∞⇒
Proof. Hypothesis Ω ⊢ d ∞⇒ , d ⇓ c, Ω £ ∆. We must prove ∆, s ⊢ c ∞⇒ .

(i) ∆, s ⊢ c ∞Z⇒∥d∥ by Lemma A5 on the hypothesis.

(ii) ∆, s ⊢ c ∞⇒ by Lemma A4 on i.

References

1. Leroy, X. Formal Verification of a Realistic Compiler. Commun. ACM 2009, 52, 107–115. [CrossRef]
2. Leroy, X. A formally verified compiler back-end. J. Autom. Reason. 2009, 43, 363–446. [CrossRef]
3. Leroy, X. Formal Certification of a Compiler Back-End or: Programming a Compiler with a Proof Assistant.

In Proceedings of the Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, Charleston, SC, USA, 11–13 January 2006 2006; Association for Computing
Machinery: New York, NY, USA, 2006; pp. 42–54. [CrossRef]

4. Blazy, S.; Leroy, X. Mechanized semantics for the Clight subset of the C language. J. Autom. Reason. 2009,
43, 263–288. [CrossRef]

5. Blazy, S.; Dargaye, Z.; Leroy, X. Formal Verification of a C Compiler Front-End. In International Symposium
on Formal Methods; Misra, J., Nipkow, T., Sekerinski, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2006;
Volume 4085, pp. 460–475. [CrossRef]

6. Anand, A.; Appel, A.W.; Morrisett, G.; Paraskevopoulou, Z.; Pollack, R.; Savary Bélanger, O.; Sozeau, M.;
Weaver, M. CertiCoq: A verified compiler for Coq. In Proceedings of the The Third International Workshop
on Coq for Programming Languages, CoqPL 2017, Paris, France, 15–21 January 2017.

7. Jung, R.; Krebbers, R.; Jourdan, J.H.; Bizjak, A.; Birkedal, L.; Dreyer, D. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. J. Funct. Program. 2018, 28, e20. [CrossRef]

8. Leroy, X. Functional Programming Languages Part II: Abstract Machines. MPRI 2-4, INRIA. Available
online: https://xavierleroy.org/mpri/2-4/machines.pdf (accessed on 4 March 2020).

9. Grégoire, B.; Leroy, X. A Compiled Implementation of Strong Reduction. In Proceedings of the seventh
ACM SIGPLAN International Conference on Functional Programming, ICFP ’02, Pittsburgh, PA, USA,
4–6 October 2002; Association for Computing Machinery: New York, NY, USA, 2002; pp. 235–246. [CrossRef]

10. Zúñiga, A.; Bel-Enguix, G. A Correct Compiler from Mini-ML to a Big-Step Machine Verified Using 1407
Natural Semantics in Coq. In Proceedings of the XVIII Jornadas de PROgramación y LEnguajes (PROLE
2018), Seville, Spain, 17–19 September 2018.

11. Kahn, G. Natural semantics. In Annual Symposium on Theoretical Aspects of Computer Science; Brandenburg, F.J.,
Vidal-Naquet, G., Wirsing, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1987; Volume 247, pp. 22–39.
[CrossRef]

http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1007/s10817-009-9155-4
http://dx.doi.org/10.1145/1111037.1111042
http://dx.doi.org/10.1007/s10817-009-9148-3
http://dx.doi.org/10.1007/11813040_31
http://dx.doi.org/10.1017/S0956796818000151
https://xavierleroy.org/mpri/2-4/machines.pdf
http://dx.doi.org/10.1145/581478.581501
http://dx.doi.org/10.1007/BFb0039592

Mathematics 2020, 8, 1573 52 of 55

12. Despeyroux, J. Proof of Translation in Natural Semantics. Research Report RR-0514; INRIA. 1986. Available
online: https://hal.inria.fr/inria-00076040/file/RR-0514.pdf (accessed on 4 March 2020).

13. Boutin, S. Proving Correctness of the Translation from Mini-ML to the CAM with the Coq Proof Development
System. Research Report RR-2536; INRIA. Available online: https://hal.inria.fr/inria-00074142/file/RR-
2536.pdf (accessed on 4 March 2020).

14. Leroy, X. Coinductive Big-Step Operational Semantics. In Proceedings of the ESOP 2006: Programming
Languages and Systems, Vienna, Austria, 27–28 March 2006; Sestoft, P., Ed.; Springer: Berlin/Heidelberg,
Germany, 2006; Volume 3924, pp. 54–68. [CrossRef]

15. Leroy, X.; Grall, H. Coinductive big-step operational semantics. Inf. Comput. 2009, 207, 284–304. [CrossRef]
16. Hardin, T.; Maranget, L.; Pagano, B. Functional runtime systems within the lambda-sigma calculus.

J. Funct. Program. 1998, 8, 131–176. [CrossRef]
17. Grégoire, B. Compilation des Termes de Preuves: Un (nouveau) Mariage Entre Coq et OCaml. Ph.D. Thesis,

Spécialité Informatique, Université Paris 7—Denis Diderot, École Polytechnique, France, 2003.
18. Leroy, X. The ZINC Experiment: An Economical Implementation of the ML Language. Technical Report

RT-0117; INRIA. Available online: https://hal.inria.fr/inria-00070049/file/RT-0117.pdf (accessed on
4 March 2020).

19. Kunze, F.; Smolka, G.; Forster, Y. Formal Small-Step Verification of a Call-by-Value Lambda Calculus
Machine. In Proceedings of the Asian Symposium on Programming Languages and Systems, APLAS 2018,
Wellington, New Zealand, 2–6 December 2018; Ryu, S., Ed.; Springer International Publishing: Cham,
Switzerland, 2018; Volume 11275, pp. 264–283. [CrossRef]

20. Charguéraud, A. Pretty-Big-Step Semantics. In Proceedings of the ESOP 2013: Programming Languages
and Systems, Rome, Italy, 16–24 March 2013; Felleisen, M., Gardner, P., Eds.; Springer: Berlin/Heidelberg,
Germany, 2013; Volume 7792, pp. 41–60. [CrossRef]

21. Bach Poulsen, C.; Mosses, P.D. Flag-based big-step semantics. J. Log. Algebr. Methods Program. 2017,
88, 174–190. [CrossRef]

22. Leroy, X. Le Système Caml Special Light: Modules et Compilation Efficace en Caml. Research Report RR-2721;
INRIA. Available online: https://hal.inria.fr/inria-00073972/file/RR-2721.pdf (accessed on 4 March 2020).

23. Dargaye, Z. Vérification Formelle d’un Compilateur Optimisant Pour Langages Fonctionnels. Ph.D. Thesis,
Université Paris 7—Denis Diderot, Paris, France, 2009.

24. Sozeau, M.; Anand, A.; Boulier, S.; Cohen, C.; Forster, Y.; Kunze, F.; Malecha, G.; Tabareau, N.; Winterhalter, T.
The MetaCoq Project. J. Autom. Reason. 2020, 64, 947–999. [CrossRef]

25. Sozeau, M.; Boulier, S.; Forster, Y.; Tabareau, N.; Winterhalter, T. Coq Coq Correct! Verification of Type
Checking and Erasure for Coq, in Coq. Proc. ACM Program. Lang. 2019, 4, 1–28. [CrossRef]

26. Barras, B. Auto-Validation d’un Système de Preuves Avec Familles Inductives. Ph.D. Thesis, Université
Paris 7—Denis Diderot, Paris, France, 1999.

27. Ager, M.S. From Natural Semantics to Abstract Machines. In Proceedings of the LOPSTR 2004: Logic
Based Program Synthesis and Transformation, London, UK, 7–9 September 2005; Etalle, S., Ed.; Springer:
Berlin/Heidelberg, Germany, 2005; Volume 3573, pp. 245–261. [CrossRef]

28. Biernacka, M.; Danvy, O. A Concrete Framework for Environment Machines. ACM Trans. Comput. Log. 2007,
9, 6-es. [CrossRef]

29. Biernacka, M.; Biernacki, D. Formalizing Constructions of Abstract Machines for Functional Languages
in Coq. In Proceedings of the 7th International Workshop on Reduction Strategies in Rewriting and
Programming, Paris, France, 25 June 2007; Giesl, J., Ed.; Preeliminary Proceedings: Paris, France, 2007;
pp. 84–99.

30. Pirog, M.; Biernacki, D. A Systematic Derivation of the STG Machine Verified in Coq. In Proceedings of
the third ACM Haskell symposium on Haskell, Baltimore, MA, USA, 30 September 2010; Association for
Computing Machinery: New York, NY, USA, 2010; Haskell ’10, pp. 25–36. [CrossRef]

31. Sieczkowski, F.; Biernacka, M.; Biernacki, D. Automating Derivations of Abstract Machines from Reduction
Semantics. In Proceedings of the IFL 2010: Implementation and Application of Functional Languages,
Alphen aan den Rijn, The Netherlands, 1–3 September 2010; Hage, J., Morazán, M.T., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6647, LNCS, pp. 72–88. [CrossRef]

https://hal.inria.fr/inria-00076040/file/RR-0514.pdf
https://hal.inria.fr/inria-00074142/file/RR-2536.pdf
https://hal.inria.fr/inria-00074142/file/RR-2536.pdf
http://dx.doi.org/10.1007/11693024_5
http://dx.doi.org/10.1016/j.ic.2007.12.004
http://dx.doi.org/10.1017/S0956796898002986
https://hal.inria.fr/inria-00070049/file/RT-0117.pdf
http://dx.doi.org/10.1007/978-3-030-02768-1_15
http://dx.doi.org/10.1007/978-3-642-37036-6_3
http://dx.doi.org/10.1016/j.jlamp.2016.05.001
https://hal.inria.fr/inria-00073972/file/RR-2721.pdf
http://dx.doi.org/10.1007/s10817-019-09540-0
http://dx.doi.org/10.1145/3371076
http://dx.doi.org/10.1007/11506676_16
http://dx.doi.org/10.1145/1297658.1297664
http://dx.doi.org/10.1145/1863523.1863528
http://dx.doi.org/10.1007/978-3-642-24276-2_5

Mathematics 2020, 8, 1573 53 of 55

32. Biernacka, M.; Charatonik, W.; Zielinska, K. Generalized Refocusing: From Hybrid Strategies to Abstract
Machines. In Proceedings of the 2nd International Conference on Formal Structures for Computation and
Deduction (FSCD 2017), Oxford, UK, 3–9 September 2017; Miller, D., Ed.; Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik: Dagstuhl, Germany, 2017; Volume 84, pp. 10:1–10:17. [CrossRef]

33. Biernacka, M.; Charatonik, W. Deriving an Abstract Machine for Strong Call by Need. In Proceedings of the
4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019), Dortmund,
Germany, 24–30 June 2019; Geuvers, H., Ed.; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl,
Germany, 2019; Volume 131, pp. 8:1–8:20. [CrossRef]

34. Danvy, O.; Nielsen, L.R. Refocusing in Reduction Semantics. Technical Report RS-04-26, BRICS; Department of
Computer Science, University of Aarhus: Aarhus, Denmark, 2004.

35. Chlipala, A. A Verified Compiler for an Impure Functional Language. In Proceedings of the 37th
annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Madrid, Spain,
20–22 January 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 93–106.
[CrossRef]

36. Benton, N.; Hur, C.K. Biorthogonality, Step-Indexing and Compiler Correctness. In Proceedings of
the 14th ACM SIGPLAN International Conference on Functional Programming, Edinburgh, Scotland,
31 August–2 September 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 97–108.
[CrossRef]

37. Werner, B. Une Théorie des Constructions Inductives. Ph.D. Thesis, Université Paris-Diderot—Paris VII,
Paris, France, 1994.

38. Glondu, S. Towards Certification of the Extraction of Coq. Ph.D. Thesis, Université Paris 7—Denis Diderot,
Paris, France, 2012.

39. Mullen, E.; Pernsteiner, S.; Wilcox, J.R.; Tatlock, Z.; Grossman, D. CEuf: Minimizing the Coq Extraction TCB.
In Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, Los
Angeles, CA, USA, 8–9 January 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp.
172–185. [CrossRef]

40. Savary Bélanger, O. Verified Extraction for Coq. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2019.
41. Bélanger, O.S.; Appel, A.W. Shrink Fast Correctly! In Proceedings of the 19th International Symposium on

Principles and Practice of Declarative Programming, Namur, Belgium, 9–10 October 2017; Association for
Computing Machinery: New York, NY, USA, 2017; pp. 49–60. [CrossRef]

42. Paraskevopoulou, Z.; Appel, A.W. Closure Conversion is Safe for Space. Proc. ACM Program. Lang. 2019, 3,
1–29. [CrossRef]

43. Ahmed, A. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Proceedings of
the ESOP 2006: Programming Languages and Systems, Vienna, Austria, 27–28 March 2006; Sestoft, P., Ed.;
Springer: Berlin/Heidelberg, Germany, 2006; Volume 3924, pp. 69–83. [CrossRef]

44. Ahmed, A.; Blume, M. Typed Closure Conversion Preserves Observational Equivalence. In Proceedings of
the 13th ACM SIGPLAN International Conference on Functional Programming, Victoria, BC, Canada, 22–24
September 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 157–168. [CrossRef]

45. Patrignani, M.; Ahmed, A.; Clarke, D. Formal Approaches to Secure Compilation: A Survey of Fully Abstract
Compilation and Related Work. ACM Comput. Surv. 2019, 51, 1–36. [CrossRef]

46. Abate, C.; Blanco, R.; Ciobâcă, S.; Durier, A.; Garg, D.; Hritcu, C.; Patrignani, M.; Tanter, É.; Thibault,
J. Trace-Relating Compiler Correctness and Secure Compilation. In Proceedings of the ESOP 2020:
Programming Languages and Systems, Dublin, Ireland, 27–30 April 2020; Müller, P., Ed.; Springer
International Publishing: Cham, 2020; Volume 12075, pp. 1–28. [CrossRef]

47. Perconti, J.T.; Ahmed, A. Verifying an Open Compiler Using Multi-language Semantics. In Proceedings
of the ESOP 2014: Programming Languages and Systems, Grenoble, France, 5–13 April 2014; Shao, Z., Ed.;
Springer: Berlin/Heidelberg, Germany, 2014; Volume 8410, pp. 128–148. [CrossRef]

48. Neis, G.; Hur, C.K.; Kaiser, J.O.; McLaughlin, C.; Dreyer, D.; Vafeiadis, V. Pilsner: A Compositionally
Verified Compiler for a Higher-Order Imperative Language. In Proceedings of the ICFP 2015,
The 20th ACM SIGPLAN International Conference on Functional Programming, Vancouver, BC, Canada,
31 August–2 September 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 166–178.
[CrossRef]

http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.10
http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.8
http://dx.doi.org/10.1145/1706299.1706312
http://dx.doi.org/10.1145/1596550.1596567
http://dx.doi.org/10.1145/3167089
http://dx.doi.org/10.1145/3131851.3131859
http://dx.doi.org/10.1145/3341687
http://dx.doi.org/10.1007/11693024_6
http://dx.doi.org/10.1145/1411204.1411227
http://dx.doi.org/10.1145/3280984
http://dx.doi.org/10.1007/978-3-030-44914-8_1
http://dx.doi.org/10.1007/978-3-642-54833-8_8
http://dx.doi.org/10.1145/2784731.2784764

Mathematics 2020, 8, 1573 54 of 55

49. Patterson, D.; Ahmed, A. The next 700 Compiler Correctness Theorems (Functional Pearl). Proc. ACM
Program. Lang. 2019, 3, 1–29. [CrossRef]

50. Dreyer, D.; Ahmed, A.; Birkedal, L. Logical Step-Indexed Logical Relations. Log. Methods Comput. Sci. 2011,
7. [CrossRef]

51. Jung, R.; Swasey, D.; Sieczkowski, F.; Svendsen, K.; Turon, A.; Birkedal, L.; Dreyer, D. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Mumbai, India,
15–17 January 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 637–650.
[CrossRef]

52. Jung, R.; Krebbers, R.; Birkedal, L.; Dreyer, D. Higher-Order Ghost State. In Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming, Nara, Japan, 18 September 2016;
Association for Computing Machinery: New York, NY, USA, 2016; ICFP 2016, pp. 256–269. [CrossRef]

53. Krebbers, R.; Jung, R.; Bizjak, A.; Jourdan, J.H.; Dreyer, D.; Birkedal, L. The Essence of Higher-Order
Concurrent Separation Logic. In Proceedings of the ESOP 2017: Programming Languages and Systems,
Uppsala, Sweden, 25–28 April 2017; Yang, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2017;
Volume 10201, pp. 696–723. [CrossRef]

54. Linn Georges, A.; Trieu, A.; Birkedal, L. Mechanized Reasoning about a Capability Machine. Available
online: https://iris-project.org/pdfs/2020-iris-capabilities-prisc-conf.pdf (accessed on 4 March 2020).

55. Cuellar, S.; Giannarakis, N.; Madiot, J.M.; Mansky, W.; Beringer, L.; Cao, Q.; Appel, A.W. Compiler Correctness
for Concurrency: From Concurrent Separation Logic to Shared-Memory Assembly Language. Technical Report
TR-014-19; Department of Computer Science, Princeton University: Princeton, NJ, USA, 2020.

56. Cuellar, S. Concurrent Permission Machine for Modular Proofs of Optimizing Compilers with Shared
Memory Concurrency. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2020.

57. Nakata, K.; Uustalu, T. Trace-Based Coinductive Operational Semantics for While. In Proceedings of the
International Conference on Theorem Proving in Higher Order Logics 2009, Munich, Germany, 17–20 August
2009; Berghofer, S., Nipkow, T., Urban, C., Wenzel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009;
Volume 5674, pp. 375–390. [CrossRef]

58. Leroy, X. L’éternité c’est Long . . . Sémantiques de la Divergence: Théorie des Domaines et Approches
Coinductives. Sémantiques Mécanisées, Sixième Cours, Collège de France. 2020. Available online: https:
//www.college-de-france.fr/media/xavier-leroy/UPL2331162062302586657_leroy_cours_6.pdf (accessed
on 4 March 2020).

59. Leroy, X. Personal communication, 2020.
60. Paulin-Mohring, C. Extraction de Programmes dans le Calcul des Constructions. Ph.D. Thesis, Université

Paris-Diderot—Paris VII, Paris, France, 1989.
61. Zúñiga, A. (Coinductive) Natural Semantics for Compiler Verification in Coq: The Coq Development.

Available online: https://sites.google.com/a/ciencias.unam.mx/zuniga/repository/cnsvcompiler.tgz
(accessed on 24 August 2020).

62. Jourdan, J.H.; Laporte, V.; Blazy, S.; Leroy, X.; Pichardie, D. A Formally-Verified C Static Analyzer.
ACM SIGPLAN Not. 2015, 50, 247–259. [CrossRef]

63. Jourdan, J.H.; Pottier, F.; Leroy, X. Validating LR(1) Parsers. In Proceedings of the European Symposium
on Programming, ESOP 2012, Tallinn, Estonia, 24 March–1 April, 2012; Seidl, H., Ed.; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 7211, pp. 397–416. [CrossRef]

64. Landin, P.J. The Mechanical Evaluation of Expressions. Comput. J. 1964, 6, 308–320. [CrossRef]
65. Henderson, P. Functional Programming Application and Implementation; Computer Science, Prentice-Hall

International: Upper Saddle River, NJ, USA, 1980.
66. Giménez, E. Un Calcul de Constructions Infinies et Son Application a la Vérification de Systemes

Communicants. Ph.D. Thesis, École Normale Supérieure de Lyon, Lyon, France, 1996.
67. Tollitte, P.N.; Delahaye, D.; Dubois, C. Producing Certified Functional Code from Inductive Specifications.

In Proceedings of the International Conference on Certified Programs and Proofs, Kyoto, Japan,
13–15 December 2012; Hawblitzel, C., Miller, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012;
Volume 7679, pp. 76–91, CPP 2012. [CrossRef]

68. Dubois, C.; Ménissier-Morain, V. Certification of a Type Inference Tool for ML: Damas–Milner within Coq.
J. Autom. Reason. 1999, 23, 319–346. [CrossRef]

http://dx.doi.org/10.1145/3341689
http://dx.doi.org/10.2168/LMCS-7(2:16)2011
http://dx.doi.org/10.1145/2676726.2676980
http://dx.doi.org/10.1145/2951913.2951943
http://dx.doi.org/10.1007/978-3-662-54434-1_26
https://iris-project.org/pdfs/2020-iris-capabilities-prisc-conf.pdf
http://dx.doi.org/10.1007/978-3-642-03359-9_26
https://www.college-de-france.fr/media/xavier-leroy/UPL2331162062302586657_leroy_cours_6.pdf
https://www.college-de-france.fr/media/xavier-leroy/UPL2331162062302586657_leroy_cours_6.pdf
https://sites.google.com/a/ciencias.unam.mx/zuniga/repository/cnsvcompiler.tgz
http://dx.doi.org/10.1145/2775051.2676966
http://dx.doi.org/10.1007/978-3-642-28869-2_20
http://dx.doi.org/10.1093/comjnl/6.4.308
http://dx.doi.org/10.1007/978-3-642-35308-6_9
http://dx.doi.org/10.1023/A:1006285817788

Mathematics 2020, 8, 1573 55 of 55

69. Pereira, F.C.N.; Warren, D.H.D. Parsing as Deduction. In Proceedings of the 21st Annual Meeting of the
Association for Computational Linguistics, ACL ’83, Cambridge, MA, USA, 15–17 June 1983; Association for
Computational Linguistics: Cambridge, MA, USA, 1983; pp. 137–144. [CrossRef]

70. Shieber, S.M.; Schabes, Y.; Pereira, F.C.N. Principles and implementation of deductive parsing.
J. Log. Program. 1995, 24, 3–36. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3115/981311.981338
http://dx.doi.org/10.1016/0743-1066(95)00035-I
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Contributions

	Natural Semantics
	MiniMLdB
	Modern SECD Machine
	Compilation
	Correctness

	Big-Step MSECD Machine
	Compilation
	Correctness

	Coinductive Natural Semantics
	MiniMLdB
	Modern SECD Machine
	Big-Step MSECD Machine
	Rules of Non-terminating Computations
	Compilation Correctness

	Abstract to Coq Translation Algorithm
	Conclusions
	Proofs
	References

