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Abstract: We consider the problem of pricing American options using the generalized Black–Scholes
model. The generalized Black–Scholes model is a modified form of the standard Black–Scholes
model with the effect of interest and consumption rates. In general, because the American option
problem does not have an exact closed-form solution, some type of approximation is required.
A simple numerical method for pricing American put options under the generalized Black–Scholes
model is presented. The proposed method corresponds to a free boundary (also called an optimal
exercise boundary) problem for a partial differential equation. We use a transformed function
that has Lipschitz character near the optimal exercise boundary to determine the optimal exercise
boundary. Numerical results indicating the performance of the proposed method are examined.
Several numerical results are also presented that illustrate a comparison between our proposed
method and others.

Keywords: American option pricing; generalized Black–Scholes partial differential equation; optimal
exercise boundary; transformed function

JEL Classification: C60; G13

1. Introduction

Hedging and pricing are important issues in derivative securities. European and American
options can be exercised only on the expiration date and at any time until the expiration date,
respectively. For European options, closed-form solutions are derived from Black and Scholes [1]’s
and Merton [2]’s celebrated papers. However, no analogous results exist for American options,
because the early exercise possibility of American options leads to complications in analytical
calculations. The option holder’s purchase of this early exercise right changes the problem into the
so-called free boundary value problem. McKean [3] and Van Moerbeke [4] proved that the valuation
of American options constitutes a free boundary problem and they studied the properties of the
free boundary (generally it is called an optimal exercise boundary). Therefore, financial researchers
have paid attention to developing approximation methods to price American options. For example,
hybrid methods combine analytical and numerical approximations. Kim et al. [5] used numerical
methods, and Bouchard et al. [6] used Monte Carlo simulations. More specifically, Chockalingam and
Muthuraman [7] adopted an approximate moving boundary method. Additionally, to fix the boundary
and solve the resulting nonlinear problem, front-fixing methods developed by Wu and Kwok [8] and
Nielsen et al. [9] apply a nonlinear transformation.

However, unlike previous studies, Alghalith [10] recently introduced a closed formula for pricing
American options and an exact upper bound for the price. This formula is the first to explicitly and
directly link the difference between the prices of an American option and its European counterpart to
the interest rate.
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In this paper, the assumptions of the Black–Scholes [1] and Alghalith [10] models are adopted
to develop a numerical method that uses the transformed function to value American put options.
The Alghalith [10] model is called the generalized Black–Scholes model, which is a modified form of
the standard Black–Scholes model, including the effect of interest and consumption rates. The main
contribution of this paper is the development of a numerical method for finding the optimal exercise
boundary of American put options under the generalized Black–Scholes model. Since the buyer of
an option has the right to exercise it, and since when exercising the option, the buyer will choose an
optimal exercise strategy to maximize profits, the writer of the option will suffer same amount of loss.
In fact, the value of the option to the option writer comes from the compensation they receive. In this
paper, utilizing the optimal exercise strategy means finding the optimal exercise boundary exactly.
Therefore, the proposed method is of great significance. The proposed method is mathematically
proven by determining this boundary using a transformed function. We exploit a transformed function
that has the Lipschitz character to prevent the solution surface from degenerating near the optimal
exercise boundary. By constructing a relation between the transformed function and the optimal
exercise boundary, and using the properties of the transformed function, the optimal exercise boundary
can be easily determined. After determining the optimal exercise boundary, we calculate the value of
the American put options by applying finite difference method (FDM) and use the Crank–Nicolson
method in time discretization. Typically, the optimal exercise boundary may not be located at grid
points. Therefore, the interpolation method is used to determine the value of the American put option
under the generalized Black–Scholes model. For calculating the optimal exercise boundary and pricing
American put options, fast and accurate results are provide through our method. Additionally, several
numerical results are presented to illustrate comparisons between the proposed method and others.
Finally, the result of our method is compared with that of the closed formula of Alghalith [10] for
pricing the American options.

This paper is further organized in the following manner. In Section 2, the generalized
Black–Scholes model and the free boundary value problem for American put options have been
introduced. Sections 3 discusses the use of the transformed function to calculate the optimal exercise
boundary as reasonable and presents the numerical method to value American put options under the
generalized Black–Scholes model. Numerical examples, results, and a comparison with other models
are presented in Section 4. Finally, Section 5 provides a summary of the paper.

2. Preliminaries

This section presents a mathematical problem for pricing an American put option under the
generalized Black–Scholes model. The assumption of the models of Black–Scholes [1] and Alghalith [10]
are adopted. Let S(t) denote the value of an underlying asset price as a function of the current time t.
S(t) is assumed to follow the process:

dS(t) = rS(t)dt + σS(t)dW(t), ∀t ∈ [0, T], (1)

where r > 0 and σ > 0 are the constant interest rate and the volatility, respectively, and W(t) is
a standard Brownian motion. Well-known in the literature is that the wealth process satisfies this
equation (see [11]):

dX(t) = {rX(t)− c(t)}dt + π(t)σdW(t), ∀t ∈ [0, T], (2)

where π(t) is the risky portfolio process and c(t) ≥ 0 is the consumption rate (defined as the amount

of money consumed at time t). Consumption is possible by the option writer if the buyer/holder
did not exercise at the optimal exercise time because, in this case, the writer gains extra money
(in excess of the hedging need) that can be consumed and X(t) = P(t) + c(t), where P(t) is the price
of the American put option.
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Therefore, given the assumptions of the Black–Scholes [1] model and following Alghalith [10],
the modified Black–Scholes partial differential equation(PDE) is

Pt + r(SPS − P) +
1
2

σ2S2PSS + (1− r)c = 0, (3)

where PS, PSS, and Pt refer to partial derivatives. Following the literature (see [11]), c in the previous

PDE is replaced by its average (erT−1)P
2 ; this expression is substituted into (3) to obtain

Pt + rSPS +
1
2

σ2S2PSS − λP = 0, (4)

where λ = r− 1
2 (e

rT − 1)(1− r) (see [10]).
The payoffs for an American put option at the underlying asset price S(T) with exercise price K

and time T to expiration are
(K− S(T))+ = max{K− S(T), 0}. (5)

The valuation of an American put option is denoted as P(τ, S), and τ(:= T− t) is the time to expiration
for τ ∈ [0, T]. As is well-known [12], a function β(τ) exists that is commonly referred to as the optimal
exercise boundary, such that the option is exercised for S < β(τ) and

P(τ, S) = K− S. (6)

In this case, the region in which it is optimal to exercise, generally called the “exercise region” is defined
as Ωe = [0, T]× [0, β(τ)]. Instead, for S < β(τ), the American option price satisfies the following
generalized Black–Scholes equation:

Pτ − rSPS −
1
2

σ2S2PSS + λP = 0, (7)

where λ = r− 1
2 (e

rT − 1)(1− r). In this case, the region in which it is optimal to hold, generally called
the “continuation region” is defined as Ωc = [0, T]× (β(τ), ∞). Further, we assume that the optimal
exercise boundary β(τ) decreases continuously with β(0) = K.

Mckean’s analysis [3] implies that the value P(τ, S) of an American put option and the exercise
boundary β(τ) jointly solve the free boundary problem consisting of (7) subject to the following
boundary conditions:

lim
S→∞

P(τ, S) = 0, (8)

P(τ, β(τ)) = K− β(τ), (9)

PS(τ, β(τ)) = −1, (10)

and the initial condition
P(0, S) = max{K− S, 0}. (11)

For more detailed information on Equations (7)–(11), please see Reference [13].
To find the optimal exercise boundary, we review a transformed function developed by

Kim et al. [14] as follows:

Q(τ, S) =
√

P(τ, S)− K + S. (12)

This transformed function ensures that the solution surface in the exercise (continuation) region is
a horizontal (inclined) plane. The transformed function forms a sufficiently large angle for which
the horizontal line corresponds to the exercise region, rendering the borderline easily distinguishable
(see Figure 1). The function also has a Lipschitz character with non-singularity and non-degeneracy
near the optimal exercise boundary (i.e., the optimal exercise boundary is easily identified).
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The free boundary partial differential problem (7)–(11) does not have an exact closed-form
solution; thus, a numerical approximation is required. In the following sections, the transformed
function is applied, and then the optimal exercise boundary is obtained.
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Figure 1. Transformed function.

3. Numerical Method under the Generalized Black–Scholes Model

The transformed function from the PDE is derived to determine the optimal exercise boundary
from the Taylor series. Following Theorem 1, an angle between the exercise region and the Q line is
obtained such that 0 < θ0 < QS < θ1 for some constants θ0 and θ1.

Theorem 1. Let
Q(τ, S) =

√
P(τ, S)− K + S,

Here, Q has a Lipschitz character with non-singularity and non-degeneracy near the optimal exercise boundary.
Then,

0 < θ0 < QS < θ1,

where

θ0 =

√
r

σ2K
, θ1 =

√
1

σ2β(∞)

(
r− λ +

λK
β(∞)

)
,

β(∞)is the asymptotically optimal exercise boundary for perpetual American option.

Proof of Theorem 1. From P(τ, S) = Q2(τ, S) + (K − S), the following relations near the optimal
exercise boundary are obtained:

PS = 2QQS − 1, PSS = 2QSQS + 2QQSS = 2(QS)
2, Pτ = 2QQτ . (13)

Plugging Equation (13) into Equation (7) leads to Q, which satisfies the following equation:

2QQτ − rS(2QQS − 1)− 1
2

σ2S2{2(QS)
2 + 2QQSS}+ λ(Q2 + K− S) = 0. (14)



Mathematics 2020, 8, 1563 5 of 12

The following is obtained:

σ2β2(QS)
2 =

1
2
(erT − 1)(1− r)(β− K) + rK (15)

near the optimal exercise boundary(: Q = 0 as S→ β). More precisely, we have

(QS)
2 =

1
2 (e

rT − 1)(1− r)(β− K) + rK
σ2β2

=
(erT − 1)(1− r)

2σ2β
+

1
(σβ)2 {rK− 1

2
(erT − 1)(1− r)K}

=
(erT − 1)(1− r)

2σ2β
+

λK
(σβ)2

(16)

which leads to

QS =

√
1
2 (e

rT − 1)(1− r)(β− K) + rK

σβ
. (17)

For every τ ∈ [0, T], because 0 < β(∞) < β(τ) < K, 1
K < 1

β(τ)
< 1

β(∞)
is obtained. Additionally,

(erT − 1)(1− r)
2σ2K

<
(erT − 1)(1− r)

2σ2β
<

(erT − 1)(1− r)
2σ2β(∞)

and
λ

σ2K
<

λK
(σβ)2 <

λK
(σβ(∞))2 .

Therefore,
r

σ2K
< (QS)

2 <
1

σ2β(∞)

(
r− λ +

λK
β(∞)

)
.

Then, 0 < θ0 < QS < θ1, where

θ0 =

√
r

σ2K

and

θ1 =

√
1

σ2β(∞)

(
r− λ +

λK
β(∞)

)
.

For λ = r, Equation (7) becomes the standard Black–Scholes equation. This theorem derived the
result

√
rK

σK < QS <
√

rK
σβ(∞)

for λ = r in Equation (7).
For discretization (∆τ, ∆S), a two-dimensional mesh in the first quadrant of the τ − S plane is

introduced. This problem is solved by applying the FDM and dividing the time interval [0, T] into
N subintervals τn = n∆τ, n = 0, 1, 2, . . . , N − 1, N, ∆τ = T

N and the stock price interval [0, SM] into M
subintervals Si = i∆S, i = 0, 1, 2, . . . , M− 1, M, ∆S = SM

M . A numerical scheme that allows for the grid
values Pn

i ≈ P(τn, Si) to be computed is defined. For this problem, β(τn−1) is given, and the goal is to
compute β(τn).

To find β(τn), the relationship between Q and β(τn) is defined. To obtain
Q(τn, S) =

√
P(τn, S)− (K− S), P(τn, S) should be known. The optimal exercise boundary

does not depend on a grid point because it is usually placed between grids. This means an FDM
with a nonuniform mesh must be used. Therefore, S1 = β(τn−1) + ∆S, S2 = β(τn−1) + 2∆S and then
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P(τn, S1) is found. The generalized Black–Scholes Equation (7) may be approximated as the following
difference equation:

P(τn, S1) = (1− λ∆τ)P(τn−1, S1) +
1
2
(σS1)

2 ∂2P(τn−1, S1)

∂S2 ∆τ + rS1
∂P(τn−1, S1)

∂S
∆τ. (18)

The central difference is used for derivatives, and a cubic spline interpolation is applied to find
P(τn−1, S1) and P(τn−1, S2). Finally, the following is obtained:

Q(τn, S1) =
√

P(τn, S1)− (K− S1). (19)

Theorem 2. We suppose that Q(τn, S) is known, then β(τn) satisfies

aβ(τn)
5 + bβ(τn)

4 + cβ(τn)
3 + dβ(τn)

2 + eβ(τn) + f = 0, (20)

where

a =− 3A(r− λ)2

4B
√

B
,

b =
A(r− λ)√

B
+

A(r− λ)2β(τn−1)

2B
√

B
+ 5(r− λ)∆τ +

2(r− λ)

σ2 ln(
S

β(τn−1)
) +

2(r− λ)

σ2 C,

c =2A
√

B− A(r− λ)β(τn−1)√
B

− A(r− λ)2β2(τn−1)

4B
√

B
− 6(r− λ)S∆τ + 6Kλ∆τ

− 4S
r− λ

σ2 ln(
S

β(τn−1)
)− 4S

r− λ

σ2 C− 2(r− λ)S
σ2 + 2(r− λ)S∆τ + CD + Dln(

S
β(τn−1)

),

d =− 6KλS∆τ +
2S2(r− λ)

σ2 ln(
S

β(τn−1)
) +

4(r− λ)S2

σ2 +
2(r− λ)S2

σ2 C− 2SCD

− 2SDln(
S

β(τn−1)
)− SD− (r− λ)S2∆τ,

e =− 2(r− λ)S3

σ2 + DS2ln(
S

β(τn−1)
) + 2S2D + S2CD,

f =− DS3,

(21)

where
A = 3σQ(τn, S)∆τ, B = (r− λ)β(τn−1) + Kλ, C = 1 + r∆τ + σ2∆τ, D =

2Kλ

σ2 .

Proof of Theorem 2. Because Q(τn, β(τn)) = 0, we have a second order Taylor expansion of Q:

Q(τn, S) = QS(τn, β(τn))(S− β(τn)) +
1
2

QSS(τn, β(τn))(S− β(τn))
2 +O(S− β(τn))

3. (22)

To find QSS, the partial derivative is calculated with respect to S in (7) to obtain

PτS − rPS − rSPSS − σ2SPSS −
1
2
(σS)2PSSS + λPS = 0. (23)

Given PSS from Equation (13), PSSS = 6QSQSS is calculated. From Equation (10), this gives
PSτ = −PSSβ′, where β′ is the rate of change of β with respect to time, which results in the following
equation near the optimal exercise boundary (Q = 0):

QSS = −
2Q2

S{β′(τn) + rβ(τn) + σ2β(τn)}+ (λ− r)
3σ2β(τn)2QS

. (24)
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Equation (22) is rewritten as follows:

Q ≈
√
(r− λ)β(τn) + λK

σβ(τn)
(S− β(τn))−

2Q2
S{β

′(τn) + rβ(τn) + σ2β(τn)}+ (λ− r)
6σ2β(τn)2QS

(S− β(τn))
2. (25)

In (25), because the optimal exercise boundary is included in the square root representation,√
(r− λ)β(τn) + λK is revised into the form ∑m

i=0 ciβ(τn)i, where m is the integer and ci is the
constant. Because β(τn−1) is too close to β(τn), if f (β(τn)) =

√
(r− λ)β(τn) + λK in (25), then the

approximation of f (β(τn)) is as follows:

f (β(τn)) ≈ f (β(τn−1)) + f ′(β(τn−1))(β− β(τn−1)) +
f ′′(β(τn−1))

2!
(β− β(τn−1))

2 (26)

=
√
(r− λ)β(τn−1) + λK +

r− λ

2
√
(r− λ)β(τn−1) + λK

(β− β(τn−1))

− (r− λ)2

8{(r− λ)β(τn−1) + λK}
√
(r− λ)β(τn−1) + λK

(β− β(τn−1))
2.

Using (25) with β′(τn)
β(τn)

≈
ln( S

β(τn−1)
)−( S

β(τn)
−1)

∆τ from Ref. [14], Equations (19), (25) and (26) is
rewritten with respect to β(τn):

aβ(τn)
5 + bβ(τn)

4 + cβ(τn)
3 + dβ(τn)

2 + eβ(τn) + f = 0.

The Newton–Raphson method is used to solve Equations (20) and (21), and then the optimal
exercise boundary β(τn) is determined from β(τn−1). Therefore, the previously mentioned process is
repeated, and the optimal exercise boundary is obtained in a time-recursive manner.

4. Numerical Results

This section provides numerical examples to illustrate the use of the proposed method to value
American put options under the generalized Black–Scholes model. The numerical simulations are
performed on a personal computer with an Intel Core i5 2.30 GHz and 8.00 GB RAM, and the software
programs are written in MATLAB(R2019a). A FDM with Crank–Nicolson scheme is used for the
proposed method.

Figure 2 plots the optimal exercise boundaries of American put options under the generalized
Black–Scholes model with specified parameters. Option investors should have a significant interest in
understanding the optimal exercise boundary of American options. A computational domain with
200 spatial steps and 1000 time steps is constructed. All else being fixed, Figure 2 indicates that the
optimal exercise boundary of a put option shifts downward as r(and λ) decreases. When the interest
rate increases, exercising the option early for cash is more attractive because of a higher return from
interest rates.

Figure 3 illustrates the optimal exercise boundary for the expected consumption value λ and
r with the parameter set T = 2, σ = 0.3, and K = 100. For a specific variable, λ = r, that is,
the optimal exercise boundary in the standard Black–Scholes model is compared with the optimal
exercise boundary in the generalized model. The same parameters are used, which show that the
optimal exercise boundary value is larger for the standard Black–Scholes model than the generalized
Black–Scholes model.

Figure 4 demonstrates the American put option values of r = 0.02, 0.05, 0.08,
and 0.11 (λ = 2.7206× 10−6 , 4.3814× 10−5, 1.8500× 10−4, and 4.9585× 10−4). Table 1 presents the
American put option values obtained for specific parameters. Note that the discrete meshes of
1000× 200 nodes is plotted in Figure 4 and Table 1. A higher expected consumption value of λ results
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in lower values of the American put option. As interest rates in the economy increase, the expected
growth rate of a stock price tends to increase, whereas the present value of any future cash flows
received by an option holder decreases. Both of these effects tend to decrease the value of a put option.
Hence, put option prices decline as the risk-free interest rate increases.
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Figure 2. Optimal exercise boundary for different r(and λ). (T = 2, σ = 0.3, K = 100).
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Figure 3. Optimal exercise boundary for r = 0.02 (and also λ = 2.7206× 10−6). (T = 2, σ = 0.3,
K = 100).
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Table 1. American put option values.

(S,T,K,σ) r = 0.02 r = 0.05 r = 0.08 r = 0.11
(λ = 2.7206 × 10−6) (λ = 4.3814 × 10−5) (λ = 1.8500 × 10−4) (λ = 4.9585 × 10−4)

(95, 1.0, 100, 0.1) 6.0165 5.2869 5.0116 5.0025
(100, 1.0, 100, 0.1) 3.2347 2.4576 1.9151 1.5293
(110, 1.0, 100, 0.1) 0.6661 0.3897 0.2210 0.1218

(95, 0.5, 100, 0.1) 5.4703 5.0889 4.9855 5.0050
(100, 0.5, 100, 0.1) 2.4243 1.9738 1.6338 1.3700
(110, 0.5, 100, 0.1) 0.2274 0.1439 0.0894 0.0544

(95, 2.0, 100, 0.1) 6.8305 5.5790 5.0588 4.9961
(100, 2.0, 100, 0.1) 4.2805 2.9778 2.1717 1.6569
(110, 2.0, 100, 0.1) 1.4508 0.7599 0.3859 0.1901
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r=0.11( =4.9585 10
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)

Figure 4. American put option values for different values of r(and λ). (T = 1, σ = 0.1, K = 100).

Table 2 provides a comparison of American put option values calculated using various methods
with λ = r. Benchmark results are obtained using the Binomial method with 10,000 time steps.
In Table 2, the root mean squared error (RMSE) is calculated for λ = r using the proposed method.
By doing so, the numerical convergence of the method is illustrated. The parameter values used to
calculate the American put option values are r = 0.05, σ = 0.2, K = 100, and T = 1, and discrete
meshes N × M of 125 × 25, 250 × 50, 500 × 100, 1000 × 200, 2000 × 400 and 4000 × 800 are
checked. Computation errors are deduced to compare with the results [15] obtained through other
numerical methods, including the front-fixing method (front-fixing) developed by Wu and Kwok [8],
the finite difference implementation of the moving boundary method (MBM-FDM) developed by
Muthuraman [16], and the simple numerical method (simple method) developed by B.J. Kim, Y.-K.
Ma, and H.J. Choe [15]. Benchmark results are obtained using binomial method (binomial) developed
by Cox et al. [17], and we consider these results to be the exact American put option values.
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Table 2. Comparison of value of American put options calculated by various methods.

(S,T,r,σ) Binomial Front-Fixing MBM-FDM Simple Method

(80, 1.0, 0.05, 0.2) 20.0000 20.0000 20.0000 20.0000
(90, 1.0, 0.05, 0.2) 11.4928 11.4924 11.4857 11.4929
(100, 1.0, 0.05, 0.2) 6.0903 6.0893 6.0829 6.0905
(110, 1.0, 0.05, 0.2) 2.9866 2.9856 2.9854 2.9868
(120, 1.0, 0.05, 0.2) 1.3672 1.3654 1.3643 1.3674

RMSE 0.0010 0.0048 0.0002

The Proposed Method

(S,T,r,σ)
Computational Discrete Mesh (N × M)

125 × 25 250 × 50 500 × 100 1000 × 200 2000 ×400 4000 × 800

(80, 1.0, 0.05, 0.2) 19.9396 19.9708 19.9964 20.0009 20.0001 20.0000
(90, 1.0, 0.05, 0.2) 10.6927 11.4142 11.4760 11.4886 11.4913 11.4923
(100, 1.0, 0.05, 0.2) 5.4337 6.0368 6.0775 6.0862 6.0887 6.0897
(110, 1.0, 0.05, 0.2) 2.6967 2.9603 2.9787 2.9836 2.9852 2.9859
(120, 1.0, 0.05, 0.2) 1.2610 1.3592 1.3637 1.3655 1.3663 1.3667

RMSE 0.4838 0.1032 0.0231 0.0069 0.0028 0.0012

The five different methods have similar American put option values. While the proposed method
may not be the best options trading method, determining the optimal exercise boundary is an important
problem associated with American options. The proposed method can be easily applied because only
the equation has to be solved to determine the optimal exercise boundary. Therefore, the proposed
method can be used to accurately calculate the optimal exercise boundary.

Finally, Table 3 presents the reference [10] value(closed-form formula) compared with the value
of this paper’s model when r = 0.02, 0.05, 0.08 and 0.11, and when T = 0.5, 1, and 2. We use the
parameter values σ = 0.3, and K = 100 to calculate the American put option value. In any case,
the result of the proposed method can obtain a value close to that of reference [10] in a 125× 25 mesh.
In addition, when the maturity is short, a result close to [10] is obtained. The larger the mesh size,
the larger the difference between the proposed method and the result of [10]. Therefore, [10] can be
used to approximate the value of an option when its maturity is short, and is calculated by a formula.
However, for American options, determining the optimal exercise boundary is the most important
issue. The proposed method can be used in any situation, including short or long maturity.

Table 3. Comparison of value of American put options with closed-form formula.

(S,T,K,r,σ) Closed-Form Formula
The Proposed Method: Computational Mesh (N × M)

125 × 25 250 × 50 500 × 100 1000 × 200

(100, 0.5, 100, 0.02, 0.3) 7.9363 7.7735 7.9945 7.9987 8.0020
(100, 0.5, 100, 0.05, 0.3) 7.2091 7.1535 7.4053 7.4137 7.4191
(100, 0.5, 100, 0.08, 0.3) 6.5281 6.6098 6.8795 6.8966 6.9015
(100, 0.5, 100, 0.11, 0.3) 5.8926 6.0840 6.4102 6.4294 6.4347

(100, 1.0, 100, 0.02, 0.3) 10.9493 10.9206 11.0657 11.0786 11.0845
(100, 1.0, 100, 0.05, 0.3) 9.5848 9.8175 9.9927 10.0070 10.0127
(100, 1.0, 100, 0.08, 0.3) 8.3363 8.8532 9.0639 9.0811 9.0869
(100, 1.0, 100, 0.11, 0.3) 7.2023 8.0312 8.2522 8.2709 8.2770

(100, 2.0, 100, 0.02, 0.3) 15.1768 15.2689 15.3577 15.3733 15.3808
(100, 2.0, 100, 0.05, 0.3) 12.9045 13.4118 13.5299 13.5726 13.5801
(100, 2.0, 100, 0.08, 0.3) 10.8381 11.6097 12.0134 12.0352 12.0422
(100, 2.0, 100, 0.11, 0.3) 8.9858 10.5430 10.6741 10.7056 10.7140
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5. Final Remarks

In this paper, a simple numerical method is presented to find the optimal exercise boundary in
an American put option under the generalized Black–Scholes model. Most importantly, a Lipschitz
curve is found that avoids the degeneracy and singularity of the solution line near the optimal exercise
boundary because the solution line near the optimal exercise boundary needs to be carefully examined.
Of course, the American option value can be easily calculated, as suggested by [10]. However, because
the American option is a sensitive free boundary problem, pinpointing the free boundary is more
important. It is employed to easily determine the optimal exercise boundary by solving a quintic
equation in a time-recursive manner. The generalized Black–Scholes model is a modified form of the
standard Black–Scholes model with the effect of interest and consumption rates. We present this effect
and show several numerical results that illustrate a comparison to other methods. Therefore, in such a
rapidly changing environment, the straightforward method of this paper is a very powerful tool for
understanding financial markets.
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