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Abstract: Numerous studies have addressed the relationship between performance in mathematics
problem-solving and reading comprehension in students of all educational levels. This work presents
a new proposal to measure the complexity of arithmetic word problems through the student reading
comprehension of the problem statement and the use of learning analytics. The procedure to quantify
this reading comprehension comprises two phases: (a) the division of the statement into propositions
and (b) the computation of the time dedicated to read each proposition through a technological
environment that records the interactions of the students while solving the problem. We validated our
approach by selecting a collection of problems containing mathematical concepts related to fractions
and their different meanings, such as fractional numbers over a natural number, basic mathematical
operations with a natural whole or fractional whole and the fraction as an operator. The main results
indicate that a student’s reading time is an excellent proxy to determine the complexity of both
propositions and the complete statement. Finally, we used this time to build a logistic regression
model that predicts the success of students in solving arithmetic word problems.

Keywords: learning; reading comprehension; complexity; problem-solving; arithmetic word
problems; fraction operator; technological environment

1. Introduction

Previous work has studied the relationship between performance in mathematics problem-solving
and reading comprehension in students of all educational levels [1–3]. Authors such as Pólya [4] and
Puig and Cerdán [5] have shown that reading and understanding the statement are key phases of the
problem-solving process. The National Council of Teachers of Mathematics (NCTM) [6] determined that,
in solving a mathematical problem, many of the necessary skills present in all areas of the educational
curriculum are required, such as reading, reflection and understanding. The latest PISA report [7] indeed
highlights that a solid reading competence is fundamental for academic achievement in all subjects of the
educational system (including mathematics), while being a prerequisite for successful participation in
most adult life [8–10].

Our research is framed within the context of arithmetic word problems (from now on AWPs or
AWP in singular) and focuses on how to measure the complexity of the statements involved. To this
end, we computed the reading comprehension of students through a technological environment and
use learning analytics to predict student performance in solving this sort of problems.
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1.1. Complexity of Arithmetic Word Problems

AWPs are texts or statements describing real-life situations in which unknown quantities
need to be determined from other amounts that are known [5,11,12]. AWPs are some of the first
problem-solving activities in the elementary school mathematics curriculum, and as such, they deserve
special care and attention.

The complexity of AWPs has been conceptualized through research on the resolution of verbal
problems and on the difficulties they present for schoolchildren. Daroczy et al. [13] showed that
these difficulties can be caused by either one or a combination of linguistic and numerical complexity.
Linguistic complexity refers to the linguistic and morphological aspects of the statement (e.g., how
words are combined to form the text). Numerical complexity, in turn, refers to the numerical factors of
the statement (e.g., both the quantities and the relationships between them).

According to Castro et al. [14], the complexity of AWPs can be measured following four
main approaches:

• The linguistic approach, based on the student’s reading ability [15] and the readability of external
texts different from the AWP statement [16].

• The structural variables approach, based on the so-called task variables (e.g., syntactic variables
or context variables) as defined by Kilpatrick [17] or Goldin and McClintock [18].

• The open sentences approach, based on the situation of the question within the statement [19].
• The semantic approach, based on the semantic structure of the statement, considered as a whole [5]

or divided into segments [19], so that an association can be built between keywords and operators
in a partial problem-solving process.

To the author’s knowledge, none of the previous approaches has yet measured the complexity of
AWPs through the students’ reading comprehension of the statement itself. This aspect makes our
research a novel and original contribution to the state of the art of mathematical problem-solving.

1.2. Measuring the Complexity of AWP Statements through a Technological Environment

To measure the complexity of an AWP, we split its statement into propositions, as follows from
the partial semantic approach defined above. Our unit of analysis is thus a proposition, which contains
a verb and a quantity associated with the related action. Figure 1 shows an example of an AWP
statement [20] divided into three propositions.

Figure 1. Example of an arithmetic word problem (AWP) statement ([20]) divided into propositions.

Propositions can be classified into levels to facilitate comparability and to determine their
complexity. Hunt [21] names these constructions T-units or minimal terminable units of language.
T-units each consist of a main clause plus the subordinate clauses it may include, and they can be
organized on a number of levels: declarative sentences represent level 0; level 1 adds a subordination
to sentences of level 0; level 2 adds a subordination to those of level 1 and so on. The higher the
level, the more complex the sentence will be. This way, Proposition 1 in Figure 1 belongs to level 0,
and Propositions 2 and 3 are of level 1, since they are respectively subordinate by the terms “of them”
and “now”.

We measure the complexity of each proposition by obtaining the time per word that students
spent while reading the corresponding segment of the AWP statement. The time per word is computed
through a technological learning environment able to control which information is displayed at any
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time and to register the interaction of students with the content. This novel approach is more powerful
than to control reading from printed texts.

The use of intelligent tutors or technological learning environments (e.g., Moodle, Edmodo or
Bakpax) has increased in recent years across all educational stages [22]. However, these environments
have not yet been used to measure reading comprehension and the complexity of AWPs. These tools
can usually be accessed through mobile devices and smart screens and allow one to register
student–computer, student–teacher or student–content interactions [23–26], thereby giving rise to the
so-called learning analytics research field. This field deals with applying data analytics to education
and it is defined as the area of investigation in charge of measuring, compiling and analyzing data sets
obtained through the use of computer-assisted learning platforms that track and record student digital
interactions [27,28].

Technological environments and learning analytics are a cutting-edge approach to detect patterns
on student strategies when solving a learning task. They are also helpful in understanding study
habits, the use of teaching materials or the time dedicated to the proposed activities [29], sometimes
supplemented by information on attendance, participation or motivation [30].

This work focuses on the analysis of the student–computer and student–content interactions
obtained through the Read and Learn (R&L) technological environment [24,31]. R&L is a research tool
to carry out experiments that analyze the strategies of students when they first have to read a text or
problem statement and then answer a series of questions in a digital context.

1.3. Predicting Student Performance When Solving AWPs

Mathematical models have been extensively used to try to predict the probability of correctly
solving a learning task. These models are commonly used to build a personalized route that guides
students through an adapted teaching–learning process [32].

Logistic and Bayesian knowledge tracing models stand out among the statistical prediction
models used for this purpose. The former have been used to predict the probability of success from
the students’ previous skills and the difficulty of the task [33]. The latter use hidden Markov models to
estimate latent parameters and predict student success [32].

Following previous work on the matter [26,34], this work presents a binary logistic regression
model to predict student performance from the complexity of an AWP measured by the reading
comprehension of its statement.

The remainder of the paper is organized as follows. Section 2 describes the materials and
methods used to measure the complexity of AWPs, the features of the R&L technological environment,
a validation experiment for a sample population and the tested hypotheses. Section 3 presents the
experimental results that determined the feasibility of our approach for assessing the complexity of
mathematical problems through reading comprehension. Section 4 shows how to build a logistic
model to predict student performance from the complexity computed for an AWP. Finally, discussion
and conclusions are drawn in Section 5 in the context of the state-of-the-art literature.

2. Material and Methods

2.1. Procedure for Measuring the Complexity of AWPs

The complexity of an AWP can be derived from the complexity of all the propositions that form
its statement. To estimate the complexity of a proposition, we compute the reading time per word for a
group of students using the R&L technological environment. The reading time of proposition j in task
i (Tij in Equation (1)) thus comprises the time spent by each student (tijs) in the group (of size n) and
the number of words in the proposition (k).

Tij =

{ tijs

k
; s ∈ {1, ..., n}

}
(1)
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The total complexity of an AWP can in turn be measured by averaging the previous reading
times per student for all propositions (Equation (2)), where m represents the number of propositions in
the statement.

Ti =

{
1
m

m

∑
j=1

tijs

k
; s ∈ {1, ..., n}

}
(2)

2.2. Instrument

R&L is a technological environment in which to design research experiments on reading
comprehension in text and image-related learning tasks. It is a web tool that can be accessed through
mobile devices, computers and smart screens using any browser on any operating system.

Experiments in R&L can include enriched texts with a list of questions and answers. A number of
configuration settings are available, such as the possibility of accessing the statement at any time or
only under certain conditions, the effect of alternatively hiding and showing parts of texts by clicking
on them (Figure 2), the use of open-ended or multiple-choice questions, the number of attempts
allowed to complete the task or the definition of feedback to be given after answering the questions.

Figure 2. An example of an experimental setting in R&L wherein the texts of both questions and
answer options are totally hidden.

R&L records all user interactions with the statements, questions and response options along with
timestamps, which allows tracking the access history to the learning content with a level of precision
of milliseconds. Any user action is registered, such as displaying a hidden proposition, moving the
focus from the statement to the questions and vice versa. This way, we can determine aspects such as:
what part of the statement the student is focused on, which point in time a certain proposition is read,
how long a student remains in the same proposition, how many times a proposition is consulted and
in which order students access the statement, the questions and the answer options.

R&L is able to digest these learning data flows and compute the variables of interest from the
previously recorded data (e.g., the time reading a proposition or answering a question). Data can then
be exported in CSV so it can be further used in any preferred data analysis software (e.g., R or SPSS).
For more details on R&L the interested reader can check out the literature [24] and keep up with our
website about data analytics and technological tools in education https://go.uv.es/grimo/datte.

2.3. Experimental Design

To test our proposal we have conducted a descriptive quantitative study involving a group of
70 students, 26 girls and 44 boys, aged between 15 and 16 years old.

https://go.uv.es/grimo/datte
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At the time of the study, the students belonged to two public secondary schools in Spain selected
by a convenience non-probability sampling. One school is located in an upper-middle socioeconomic
area of a town of twelve thousand inhabitants. The other one is located in a multicultural suburb with
medium-low socioeconomic status in a city of eight hundred thousand inhabitants.

Informed consent was obtained from schools, teachers and students before the start of the
experiment. Anonymity of the data was guaranteed by just collecting the year of birth, gender,
course and a dummy school code for each student. Any combination of data with a frequency of
less than 5 observations was considered subject to statistical secrecy and it was removed to prevent
de-anonymization.

The experiment was run individually using the school’s computer room. Students were introduced
to the R&L technological environment before starting the session. Following fair and ethical practices,
participants were made aware that they were involved in a research study. They were clearly informed
about the aims of the study and that their performance would not be considered in their grades.

Participants were asked to solve a couple of AWPs presented as two tasks with their corresponding
statement and five answer options. The statements were designed taking in to account the mathematical
and the grammatical complexity. We built two isomorphic tasks [35] dealing with mathematical
introductory concepts related fractional numbers over a natural number, basic mathematical operations
with a fractional whole and the fraction as an operator. In addition, we classify the propositions of the
statements into levels as defined by Hunt [21], which allows the measured reading comprehension to
be compared.

Tasks were written in Spanish since all participants were native Spanish speakers. For the sake of
readability, we also show the translation of the statement into English as follows:

• Task 1: We have thirty candies. Two-thirds of them are strawberry flavored. How many strawberry
candies do we have? (From the original: Tenemos treinta caramelos. Si dos tercios son de fresa, ¿cuántos
caramelos son de fresa?) The possible answers are 5, 10, 17, 20 and 45.

• Task 2: I have one-half of a pizza. Two-thirds of it is margherita. What fraction of the pizza is
margherita? (From the original: Tengo media pizza. Si dos tercios son de margarita, ¿qué porción de
pizza es de margarita?) The possible answers are 4/3, 3/5, 1/3, 7/6 and 1/6.

Both tasks have an equal mathematical structure, expressed in terms of the relationships between
the variables and quantities involved. This means that they are solved by applying the same rules,
procedures, and algorithms. The question is placed at the end of the statement following the pattern
a x b = ? where a and b are known quantities. Note that the semantic relationship between the
variables and the unknown quantity, the lack of data in the question and the absence of irrelevant data
is equivalent in both statements. The tasks can be classified as two AWPs of multiplicative comparison
according to Puig and Cerdán [5]. This sort of problems use a scalar function (I) to link two extensive
quantities (E) of the same type of magnitude (E x I = E, the Schwartz relation [36]). For example,
the scalar function in task 1 is “two-thirds of,” while the two extensive quantities are “thirty candies”
and the unknown quantity of “strawberry candies”.

The proposed AWPs use the fraction (i.e., two-thirds) as an operator [37] that transforms an initial
quantity (i.e., thirty candies or one-half of a pizza) into a final quantity (e.g., strawberry candies or a
fraction of the pizza). This transformation is associated with the scalar function and the multiplication
operator, as shown in Figure 3. The tasks are consistent [38] since they can be solved by directly
translating the key terms in the statement (e.g., are or is) into the operation to be performed, in this
case a multiplication.
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Figure 3. Use of the fraction as an operator in the proposed AWPs.

We can determined the grammatical complexity of the tasks by dividing the statement into
propositions and analyzing their syntax. Each statement is composed of three propositions, as shown
in Table 1. The first two relate to the informative part of the statement and the third one is the question.
We configured the tasks in R&L so that just one proposition could be displayed at a time while the rest
of them remained hidden (see the different colored segments in Figure 4).

Table 1. Propositions of tasks 1 and 2.

Prop Task 1 Prop Task 2

P11 We have thirty candies P21 I have one-half of a pizza
Tenemos treinta caramelos Tengo media pizza

P12 Two-thirds of them are strawberry flavored P22 Two-thirds of it is margherita
Si dos tercios son de fresa Si dos tercios son de margarita

P13 How many strawberry candies do we have? P23 What fraction of the pizza is margherita?
¿cuántos caramelos son de fresa? ¿qué porción de pizza es de margarita?

The length of the informative parts is the same in both statements (i.e., 3 + 6 words for P11 + P12
and P21 + P22 as from the original text in Spanish). The number of words in the question part differs
(i.e., 5 to 7 words for P13 and P23 as shown in Table 2) due to the introduction of rational numbers
that change the Spanish quantifier “cuántos” by “qué porción de,” although it keeps the same length
in English.

Figure 4. Informative and question parts of the statements.

Table 2. Syntax of the propositions from the original text in Spanish.

Prop Words Nouns Verbs Numerals Prepositions Conjunctions Level/Type

P11 3 1 1 1 0 0 L0/Declarative
P12 6 1 1 2 1 1 L1/Subordinate
P13 5 2 1 1 1 0 L1/Interrogative
P21 3 1 1 1 0 0 L0/Declarative
P22 6 1 1 2 1 1 L1/Subordinate
P23 7 3 1 1 2 0 L1/Interrogative

The grammatical complexity of each proposition is also represented by the number of nous, verbs,
numerals, prepositions and conjunctions in Table 2. The type of sentences can be categorized into
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levels as defined by Hunt [21]. Propositions P11 and P21 are declarative sentences of level 0. The rest
of propositions are level 1 since they include a subordination to the previous sentences by the terms
“of them” (P12), “of it” (P22), “candies” (P13) and “of the pizza” (P23) respectively.

2.4. Research Hypotheses

We pose the following hypotheses in line with previous work on the mathematical concepts dealt
with by our study:

• H1: The change from natural to fractional numbers increases the complexity of AWPs.
According to Perera Dzul [39], difficulties begin when students face the study of fractions,
without having prior knowledge and enough situations in daily life that present problems related
to rational numbers. Gairín and Muñoz [40], in a study on textbooks for the teaching of rational
numbers in secondary education in Spain, affirm that rational numbers are overshadowed by the
study of procedural aspects, making it difficult to transfer this concept to daily life problems.

• H2: The use of the fraction as an operator makes statements harder to understand. Authors
like Hart [41] have already shown how challenging a syntagm of the type “two-thirds of them are”
can be. Sanz, Figueras and Gómez [42] have also observed that students from 15 to 16 years old
find it difficult to tackle this expression when presented literally in simple operative exercises.

• H3: Operating on a rational whole is more difficult than operating on a natural whole.
Problems arise when the concept of the whole is reformulated. If the whole is not a natural
but a fractional number, solving an AWP becomes a more difficult task [43].

Hypotheses 1 and 3 were tested by comparing the average reading times of propositions of the
same level. Regarding H1, an increase in complexity from P11 to P21 was due to the mere presence of
fractional instead of natural numbers. By comparing the complexity of P12 and P22 we checked the
effect of reformulating the whole (H3) from a natural number (i.e., thirty candies) to a fractional one
(i.e., one-half of a pizza).

To test H2, we compared the average reading times of level 1 subordinate propositions with that
of proposition P21. Propositions P12 and P22 include the syntagms “of them are” and “of them it is”
that refer to the use of the fraction as an operator (from now on, we refer only to syntagms “of them are”
in order to improve readability). We take proposition P21 as the reference level 0 declarative sentence
since it also uses a rational number (i.e., one-half of a pizza), but it does so as a fractional quantity.

3. Analysis and Results

Reading times were rather dispersed in our group of students, as shown by the high standard
deviations in Table 3 (values are expressed in seconds per word or s/word). The Kolmogorov–Smirnov
test confirmed that the times recorded did not follow a normal distribution (p-value < 0.05) for the
propositions (Tij) or the complete statement (Ti). Therefore, we use the median as a good representative
of each set of times. We did not use the mean in our analysis, since it is affected by outliers in the
obtained asymmetric distributions. For example, see how most of the students read faster than the
average reading time (empty circle) in the box-plots shown in Figure 5.

We checked for differences in the reading times due to the socioeconomic context and the gender
of students. Differences between school were not statistically significant following the non-parametric
Wilcoxon signed-rank test for paired samples (p-values > 0.05). Reading times were also not statistically
different between boys and girls (p-values > 0.05). We can then use the data obtained for the whole
group to study the complexity of the statements.
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Table 3. Reading times (s/word) for each proposition (Tij) and task (Ti).

T11 T12 T13 T1 T21 T22 T23 T2

Mean 5.39 4.72 3.47 4.42 11.55 8.42 7.17 8.46
Median 5.12 2.78 1.73 3.67 6.68 6.01 5.01 7.21
St. Dev. 3.63 5.68 5.96 3.23 12.45 8.22 9.12 5.91
Min 0.37 0.51 0.04 0.88 0.62 0.88 0.27 1.19
Max 14.66 36.42 45.95 19.31 66.38 49.88 70.65 33.47
Q1 2.36 1.61 0.64 2.50 3.58 3.05 2.03 4.18
Q3 7.38 4.99 4.83 4.89 15.10 10.45 9.55 10.62

Figure 5. Distribution of reading times for each proposition (Tij) and task (Ti).

By comparing the reading times in Table 3 we can test our hypotheses as follows:

• H1: The change from natural to fractional numbers increases the complexity of AWPs.
The median reading time of propositions P11 and P21 increases from 5.12 s/word to 6.68 s/word
(see also the difference reported in Figure 5). This rise in complexity is due to the change from a
natural to a fractional initial quantity. The difference in medians is statistically significant according
to the Wilcoxon signed-rank test (p-value = 0.0001 < 0.05). The results thus confirm this hypothesis.

• H2: The use of the fraction as an operator makes statements harder to understand. The median
reading time of propositions that use the fraction as an operator (i.e., 2.78 s/word for P12 and
6.01 s/word for P22) is shorter than that of the proposition using the fraction as a quantity
(i.e., 6.68 s/word for P21). The difference in medians is not statistically significant for task 2
according to the Wilcoxon signed-rank test (p-value = 0.069 > 0.05). The difference is significant
for task 1 (p-value = 0.004 < 0.05) mainly due to the ease of operating on a natural whole, as we
analyze below in H3. Thus, the syntagm “of them are” does not introduce further complexity to
the statements in the AWPs studied.

• H3: Operating on a rational whole is more difficult than operating on a natural whole.
The median reading time of proposition P22 (i.e., 6.01 s/word) is longer than that of proposition
P12 (i.e., 2.78 s/word). Differences are statistically significant according to the Wilcoxon
signed-rank test (p-value = 0.0002 < 0.05), as is also shown in Figure 5. Those results confirm the
hypothesis that it was more complex to operate on a rational whole (e.g., one-half of a pizza) than
to operate on a natural whole (e.g., thirty candies).

Student performance was rather good when solving the two proposed tasks. The success rate
was 94.3% for task 1 and 62.9% for task 2. The median reading time of all propositions in task 2 was
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longer than that of task 1 (7.21 s/word and 3.67 s/word respectively) and the distribution was more
sparse (e.g., compare T2 and T1 in Figure 5). The previous results confirm that solving task 2 was more
complicated than solving task 1.

4. Predicting Student Success from the Proposed Complexity Measure

We use a binary logistic regression model to predict the student success when solving an AWP.
The model estimates the probability of succeeding (or failing) in completing a task from the complexity
of its statement, measured as the reading time per word. The data obtained in our study were used to
train a model for each task, as described by Equation (3), where Tij is the time taken by students to
read each proposition (j) of the problem (i).

P(success = 1) = 1/(1 + e−(b0+∑m
j=1 bjTij)) (3)

We discarded outliers from our data and kept the results of 58 students to build the model for
task 1 and of 57 students for task 2. We trained the models with a random sample of 50 students
and validated them with the remaining eight students (task 1) and seven students (task 2). Table 4
shows the relation between the reading time per proposition and the success of students from direct
observation of the data. Faster reading times led to better performance in task 1 (indirect relation),
whereas slower students were the best performers in task 2 (direct relation). These results are in line
with the complexity of the statements analyzed above.

Table 4. Relation between the reading time per proposition and student success.

T11 T12 T13 T21 T22 T23

Success inverse inverse inverse direct direct direct

The model built for task 1 is shown in Equation (4). It explains between 0.142 (Cox and Snell
R2 value) and 0.424 (Nagelkerke R2 value) of the dependent variable. It gives an accuracy of 98.3%
when calibrating on the train set and it correctly predicts the success of the eight students in the
validation set. The sign of the coefficients obtained for each proposition (bj) reproduces the indirect
relation previously found between the reading time and the probability of successfully solving task 1
(see Table 4).

P(success = 1) = 1/(1 + e−(7.302−0.063·T11−0.788·T12−0.269·T13)) (4)

We analyzed the odds ratio (OR) to understand the magnitude of the effect, that is, how much the
probability of success changes as a result of increasing by one second the reading time of a proposition,
the rest being constant. An OR greater than one indicates an increase in the probability while an OR
less than one implies a decrease. Taking more time to read proposition P12 (i.e., higher values of T12)
lowers the probability of success since OR = 0.455. Increasing the reading time for propositions P11
and P13 does not affect the student’s success that much since OR remains near to one (OR = 0.939 and
OR = 0.764 respectively).

The model built for task 2 (see Equation (5)) is more limited since it explains between 0.056
(Cox and Snell R2 value) and 0.175 (Nagelkerke R2 value) of the dependent variable. It gives an
accuracy of 65.4% when calibrating on the train set and it correctly predicts the success of four students
in the validation set. All coefficients are positive and confirm the direct relation found in Table 4.
They are also close to zero, which makes OR rather close to one. For example, increasing the reading
time of proposition P22 slightly raises the probability of success (OR = 1.117); the time taken to read
propositions P21 and P23 does not have any significant effect on student success (OR = 1.009 and
OR = 1.059 respectively).

P(success = 1) = 1/(1 + e−(−0.896+0.009·T21+0.111·T22+0.057·T23)) (5)
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Far from being contradictory, the models represent the different complexities of the two statements.
The overall reading time for task 1 was half the overall time for task 2 (e.g., see T1 and T2 in Table 3).
Students having reading comprehension problems in task 1 thus showed higher probabilities of failure.
On the contrary, task 2 appeared as a more complex AWP whose successful resolution could benefit
from investing more time in reading its propositions.

5. Discussion and Conclusions

We have presented a novel proposal to measure the complexity of an AWP through the student
reading comprehension of its statement. The approach allowed us to predict the students’ success
from their reading times when solving the task. The students’ reading time has demonstrated to be a
good proxy to determine the complexity of AWPs and it can become an essential tool for the design of
problem statements. By analyzing the statement propositions, one can adjust the level of complexity of
the task to focus on certain student profiles.

The paper also introduces the use of the R&L technological environment to compute the
complexity of a problem statement, without the need to use traditional paper-and-pencil questionnaires.
In addition to that, R&L enables the collection of extensive data on student interactions and opens the
way for more data-driven research on the topic.

The results obtained confirm that our procedure for measuring the complexity of AWPs is
consistent with previous findings [14]. The two tasks under study can be classified as multiplicative
comparison problems according to the semantic approach [5], whose difficulty lies in the introduction
of fractional versus natural numbers [39–41].

We identified the complexity of the syntagms “of are” or “of them it is” (or its equivalent “son
de” in Spanish), which is related to the multiplication operator and to the concept of “fraction of” or
“part of” [37]. These ideas begin to be developed in the school curriculum from the fourth year of
primary education. The complexity of this concept, though, increases when it is applied to a fraction.
These results may be linked to the design of tasks for current textbooks, where the concept of natural
number is introduced through graphic support and considering the whole as a discrete quantity.
However, when this concept is introduced over a fraction in the sixth year of primary education,
the visual representation is usually removed and the whole becomes a continuum. That results in
the mathematical concept being taught through a rote rule, which associates this expression with the
multiplication of fractions and leads to possible errors in later courses, as shown by researchers at the
Rational Number Project (http://www.cehd.umn.edu/ci/rationalnumberproject/) and the National
Assessment of Educational Progress (https://nces.ed.gov/nationsreportcard/). Our work confirmed
this issue with a sample group of students of the last year from compulsory secondary education.

The complexity of the statement propositions has been used to build binary logistic regression
models that predict the probability of success in solving AWPs. The models confirmed that the
propositions that most affect probability are those that involved a more difficult mathematical concept.
In our study, these propositions are the ones that deal with the fraction as an operator over both a
natural and a rational number.

It is worth noting that our approach also proposes the segmentation of the statement into
propositions, whose complexity can be measured and compared following the classification into
levels by Hunt [21]. In our study, first level propositions are declarative alphanumeric sentences
where the numerical values are either natural numbers or fractions. Second level propositions
introduce a subordinate clause through the syntagms “of them are” or “of it is”. This fact goes
far beyond evaluating the complexity by the success rate [44] and allows comparing the complexity of
mathematical concepts within and across AWPs.

This work opens up a line of research on using technological environments and data analytics to
determine the complexities of AWPs by measuring the level of understanding of each the statements
and dealing with the mathematical concepts that make them more difficult to solve. Next steps include
the design of a longitudinal study by students’ age that analyzes the evolution of the concepts and the

http://www.cehd.umn.edu/ci/rationalnumberproject/
https://nces.ed.gov/nationsreportcard/
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possible blockages that occur. Future work will also help to define an index that allows creating AWPs
statements with prefixed complexities by weighting the propositions in the statement according to
their level following the classification by Hunt [21].

These sorts of metrics and tools can be implemented by intelligent tutors designed to teach
maths through problem-solving. They can help to track personalized teaching–learning paths for each
student while using reading comprehension as one of the key drivers for predicting students’ skills [26].
Despite the benefits provided by technological environments, the development of digital teaching
competence continues to be a challenge for the education system [45,46]. However, the introduction
of emerging tools and data analytics is progressively providing teachers and researchers with new
experimental scenarios to study, for example, the possible impact of the use of feedback oriented
to success when students interact with a given statement [31]. As Alonso et al. pointed out [22],
the development of good teaching practices that integrate technology in the classroom can help
teachers to start applying digital learning tools effectively and to improve their digital competence.
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