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Abstract: Let F denote an algebraically closed field; let q be a nonzero scalar in F such that q is not
a root of unity; let d be a nonnegative integer; and let X, Y, Z be the equitable generators of Uq(sl2)
over F . Let V denote a finite-dimensional irreducible Uq(sl2)-module with dimension d + 1, and let
R denote the set of all linear maps from V to itself that act tridiagonally on the standard ordering
of the eigenbases for each of X, Y, and Z. We show that R has dimension at most seven. Indeed,
we show that the actions of 1, X, Y, Z, XY, YZ, and ZX on V give a basis for R when d ≥ 3.
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1. Introduction

We characterize the linear operators that act tridiagonally with respect to appropriately ordered
eigenbases for all three equitable generators of Uq(sl2) acting on its finite-dimensional irreducible
modules. To state the main result, we first recall the equitable presentation of Uq(sl2). Throughout this
paper, let F denote an algebraically closed field, and let q be a nonzero scalar in F such that q is not a
root of unity.

Lemma 1. [Theorem 2.1] [1] The algebra Uq(sl2) is isomorphic to the unital associative F -algebra with
generators X±1, Y, Z and the following relations:

XX−1 = X−1X = 1,

qXY− q−1YX
q− q−1 = 1,

qYZ− q−1ZY
q− q−1 = 1,

qZX− q−1XZ
q− q−1 = 1.

We call X±1, Y, Z the equitable generators for the quantum algebra Uq(sl2).
The equitable presentation of this algebra was introduced in [1], where its relationship to the usual

presentation in terms of the Chevalley generators [2] is discussed. The equitable presentation has been
studied in connection with tridiagonal pairs [3,4], Leonard pairs [5], the q-tetrahedron algebra [6–9],
bidiagonal pairs [10], Q-polynomial distance-regular graphs [11–13], in Poisson algebras [14], and the
universal Askey–Wilson algebra [15].

Other relevant references include [16–21].
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Definition 1. [Definition 5.2] [1] Let nX , nY, nZ denote the following elements of Uq(sl2):

nX =
q(1−YZ)

q− q−1 =
q−1(1− ZY)

q− q−1 ,

nY =
q(1− ZX)

q− q−1 =
q−1(1− XZ)

q− q−1 ,

nZ =
q(1− XY)

q− q−1 =
q−1(1−YX)

q− q−1 .

Definition 2. Let V denote a vector space over F with dimension d + 1. By a decomposition of V, we mean a
sequence {Vi}d

i=0 consisting of one-dimensional subspaces of V such that:

V = V0 + V1 + . . . + Vd, direct sum.

Definition 3. Let {Vi}d
i=0 be a decomposition of V. For notational convenience, define V−1 = 0 and Vd+1 = 0.

For A ∈ End(V), we say A raises {Vi}d
i=0 whenever AVi = Vi+1 for 0 ≤ i ≤ d. We say A lowers {Vi}d

i=0
whenever AVi = Vi−1 for 0 ≤ i ≤ d. An ordered pair A, B of elements in End(V) is called LRwhenever there
exists a decomposition of V that is lowered by A and raised by B. A three-tuple A, B, C of elements in End(V)

is called an LR triple whenever any two of A, B, C form an LR pair on V.

Definition 4. Let 0 6= q ∈ F , q2 6= 1; an LR pair A, B on V is said to be the q-Weyl type whenever:

qAB− q−1BA
q− q−1 = I.

An LR triple A, B, C on V is said to be the q-Weyl type whenever the LR pairs A, B, B, C, and C, A all are the
q-Weyl type.

Let A, B, C be an LR triple q-Weyl type on V. In [22], Nomura describes a family of linear maps
that acts tridiagonally with respect to each of the (A, B), (B, C), and (C, A) decompositions for V.

The point of view of our work is quite different. To state the main result of this paper, we use the
following definition.

Definition 5. A square matrix is said to be tridiagonal whenever each nonzero entry lies on either the diagonal,
the subdiagonal, or the superdiagonal. A square matrix is said to be lower bidiagonal whenever each nonzero
entry lies on either the diagonal or the subdiagonal; a square matrix is said to be upper bidiagonal whenever each
nonzero entry lies on either the diagonal or the superdiagonal.

Our main result is the following; an sl2 analogue appears in [23].

Theorem 1. Let V be a finite-dimensional Uq(sl2)-module. Fix a linear map Ψ : V → V. Then, the following
are equivalent.

(i) Ψ acts on V as a linear combination of one, X, Y, Z, XY, YZ, and ZX.
(ii) All three of the matrices representing Ψ with respect to standard X-, Y-, and Z-eigenbases

are tridiagonal.
(iii) Any two of the matrices representing Ψ with respect to standard X-, Y-, and Z-eigenbases are

tridiagonal.

Moreover, one, X, Y, Z, XY, YZ, and ZX are linearly independent when dim V ≥ 3.
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2. Standard Eigenbases for Uq(sl2)-Modules

In this section, we recall the finite-dimensional Uq(sl2)-modules and some distinguished bases.

Lemma 2. [Lemma 4.2] [1] For each nonnegative integer d and for ε ∈ {1,−1}, there is an irreducible
finite-dimensional Uq(sl2)-module Vd,ε with basis {u0, u1, . . . , ud} and action:

(εX− qd−2i I)ui = 0 (0 ≤ i ≤ d),

(εY− q2i−d I)ui = (q−d − q2i+2−d)ui+1 (0 ≤ i ≤ d− 1),

(εY− qd I)ud = 0,

(εZ− q−d I)u0 = 0,

(εZ− q2i−d I)ui = (qd − q2i−2−d)ui−1 (1 ≤ i ≤ d).

The basis {u0, u1, . . . , ud} is called the standard X-eigenbasis of Vd,ε.

Since the module Vd,−1 can be treated similarly to Vd,1, we treat only the module Vd,1,
and throughout this paper, we write Vd to mean Vd,1. For any vector space V, End(V) is the F -algebra
of all F -linear transformations from V to itself.

Corollary 1. With reference to Lemma 2, the actions of X, Y, Z, on Vd are each multiplicity free with eigenvalues
{qd−2i}d

i=0. Moreover, each of X, Y, Z is invertible on Vd.

Definition 6. Let Vd be a finite-dimensional irreducible Uq(sl2)-module; for τ ∈ {X, Y, Z}, define the
decomposition [τ] of Vd as follows. For 0 ≤ i ≤ d the ith component of [τ] is the eigenspace for τ with
eigenvalue qd−2i.

Lemma 3. With reference to Lemma 2, for 0 ≤ i ≤ d, let Ui = span{ui}, then {Ui}d
i=0 is the [X]

decomposition of Vd.

Proof. This is clear from Definition 6.

Lemma 4. [24] With reference to Definition 1, let Vd be a finite-dimensional irreducible Uq(sl2)-module;
the following hold:

(i) nd
XVd is the eigenspace for Y (resp. Z) on Vd with eigenvalue q−d (resp. qd).

(ii) nd
YVd is the eigenspace for Z (resp. X) on Vd with eigenvalue q−d (resp. qd).

(iii) nd
ZVd is the eigenspace for X (resp. Y) on Vd with eigenvalue q−d (resp. qd).

Definition 7. [24] Let Vd be a finite-dimensional irreducible Uq(sl2)-module; for τ ∈ {X, Y, Z}, a basis
{vi}d

i=0 for V is said to be [τ]row whenever the following hold:

(i) For 0 ≤ i ≤ d, the vector vi is contained in the component i of the decomposition [τ];
(ii) Σd

i=0vi ∈ nd
τVd.

Lemma 5. With reference to Lemma 2, the basis u = {u0, u1, . . . , ud} is the [X]row basis for Vd.
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Proof. Note that by Lemma 2,

Y(Σd
i=0ui) = Y(u0 + u1 + u2 + . . . + ud−1 + ud)

= Yu0 + Yu1 + Yu2 + . . . + Yud−1 + Yud

= q−du0 + (q−d − q2−d)u1 + q2−du1 + (q−d − q4−d)u2

+ q4−du2 + (q−d − q6−d)u3 + · · ·+ qd−2ud−1 + (q−d − qd)ud + qd ud

= q−d(u0 + u1 + u2 + . . . + ud−1 + ud)

= q−d(Σd
i=0ui),

and:

Z(Σd
i=0ui) = Z(u0 + u1 + u2 + . . . + ud−1 + ud)

= Zu0 + Zu1 + Zu2 + . . . + Zud−1 + Zud

= q−du0 + q2−du1 + (qd − q−d)u0 + q4−du2 + (qd − q2−d)u1

+ q6−du3 + (qd − q4−d)u2 + · · ·+ qd−2ud−1 + (qd − qd−4)ud−2

+ qdud + (qd − qd−2)ud−1

= qd(u0 + u1 + u2 + . . . + ud−1 + ud)

= qd(Σd
i=0ui).

Hence, by Lemma 4, Σd
i=0ui ∈ nd

xVd. Moreover, note that from Lemma 3:

Vd = U1 + U2 + . . . + Ud

and ui ∈ Ui. Now, the result holds by Definition 7.

Let {ai}d
i=0 and {bi}d

i=0 be two bases of the vector space V. By the transition matrix from {ai}d
i=0

to {bi}d
i=0, we mean the matrix S ∈ Matd+1(F ) such that bj = Σd

i=0Sijai for 0 ≤ j ≤ d.

For all integers k and for all nonnegative integers n, m, write:

[k] =
qk − q−k

q− q−1 , [n]! = [1][2] · · · [n],
[ n

m

]
=


[n]!

[n−m]![m]!
if n ≥ m,

0 otherwise.

Definition 8. Let P and Q denote (d + 1)× (d + 1) matrices with entries Pij and Qij, respectively, where:

Pij = (−1)jq(j−d)(i−1)
[

i
d− j

]
(0 ≤ i, j ≤ d),

Qij = (−1)jqj(d−i−1)
[

d− i
j

]
(0 ≤ i, j ≤ d).

Theorem 2. [Theorem 16.3, Lemma 16.6] [24] With reference to Definition 8, let Vd be a finite-dimensional
irreducible Uq(sl2)-module, and let [X]row, [Y]row, [Z]row be bases for Vd, then:

(i) The matrix P is a transition matrix from [X]row to [Y]row.
(ii) The matrix Q is a transition matrix from [X]row to [Z]row.

Lemma 6. With reference to Lemma 2 and Definition 8,

(i) Let vj = ∑d
i=d−j Pijui (0 ≤ j ≤ d), then v = {v0, v1, . . . , vd} is the [Y]row basis for Vd.

(ii) Let wj = ∑
d−j
i=0 Qijui (0 ≤ j ≤ d), then w = {w0, w1, . . . , wd} is the [Z]row basis for Vd.
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Proof. By Lemma 5, the basis u = {u0, u1, . . . , ud} is the [X]row basis for Vd. Hence, the results hold by
Theorem 2.

Theorem 3. [Theorem 10.12] [24] With reference to Lemma 2, let v = {v0, v1, . . . , vd}, and let w =

{w0, w1, . . . , wd} be as in Lemma 6, then:

(Y− qd−2i I)vi = 0 (0 ≤ i ≤ d),
(Z− q2i−d I)vi = (q−d − q2i+2−d)vi+1 (0 ≤ i ≤ d− 1),

(Z− qd I)vd = 0,
(X− q−d I)v0 = 0,
(X− q2i−d I)vi = (qd − q2i−2−d)vi−1 (1 ≤ i ≤ d).
(Z− qd−2i I)wi = 0 (0 ≤ i ≤ d),
(X− q2i−d I)wi = (q−d − q2i+2−d)wi+1 (0 ≤ i ≤ d− 1),

(X− qd I)wd = 0,
(Y− q−d I)w0 = 0,
(Y− q2i−d I)wi = (qd − q2i−2−d)wi−1 (1 ≤ i ≤ d).

In view of Theorem 3, the bases [Y]row and [Z]row are called the standard Y- and Z-eigenbases of
Vd, respectively.

Let [T]B denote the matrix representing a linear operator T with respect to an ordered basis B.
We say that T acts upper bidiagonally, lower bidiagonally, or tridiagonally on B when the matrix [T]B
has the stated shape.

Lemma 7. With reference to Lemma 2 and Theorem 3,

[X]u = [Y]v = [Z]w,

[X]v = [Y]w = [Z]u,

[X]w = [Y]u = [Z]v.

Proof. This is clear from Theorem 3.

Lemma 8. With reference to Theorem 3, for all s ∈ Uq(sl2),

[s]uP = P[s]v, [s]vP = P[s]w, [s]wP = P[s]u.

Proof. By Theorem 2 and elementary linear algebra, for s ∈ {X, Y, Z}, [s]uP = P[s]v. Now, from
Lemma 7, [Z]uP = P[Z]v gives [X]vP = P[X]w and [Y]uP = P[Y]v gives [X]wP = P[X]u. Similarly,
we can prove the result for Y and Z. Since these formulas hold on generators, they must hold for all
s ∈ Uq(sl2).

Lemma 9. [Lemmas 16.5 and 16.6] [24] P3 = qd(d−1) I, PQ = (−1)d I.

3. Linear Combinations of 1, X, Y, Z, Xy, Yz, Zx

In this section, we define the linear transformation A and describe the action of A on the bases u,
v, and w given in the previous section, which we will use later to prove Theorem 1 and some special
cases of this theorem.



Mathematics 2020, 8, 1546 6 of 13

Lemma 10. With reference to Lemma 2,

XYui = ui + (q−2(i+1) − 1)ui+1 (0 ≤ i ≤ d− 1),
XYud = ud,
ZXui = ui + q2(d−i)(1− q2(i−d−1))ui−1 (1 ≤ i ≤ d),
ZXu0 = u0,
YZu0 = q−2du0 + q−2d(1− q2)u1,
YZud = q2d−2(1− q−2)ud−1 + (q2d + (1− q2d)(1− q−2)ud,
YZui = q2(i−1)(1− q2(i−1−d))ui−1

+ (q2(2i−d) + (1− q2i)(1− q2(i−d−1)))ui
+ q2(i−d)(1− q2(i+1))ui+1 (1 ≤ i ≤ d− 1).

Proof. Performroutine calculations using the action of X, Y, and Z on the basis u in Lemma 2.

Lemma 11. With reference to Lemma 2 and Theorem 3,

[XY]u = [YZ]v = [ZX]w,

[XY]v = [YZ]w = [ZX]u,

[XY]w = [YZ]u = [ZX]v.

Proof. By elementary linear algebra and Lemma 7,

[XY]u = [X]u[Y]u = [Y]v[Z]v = [YZ]v,

[XY]u = [X]u[Y]u = [Z]w[X]w = [ZX]w.

Similarly, we can prove the other results.

Definition 9. Let d be a nonnegative integer, and consider Vd. Let A ∈ End(Vd) denote any linear combination
of {1, X, Y, Z, XY, YZ, ZX}. Write:

A = aI 1 + ax X + ayY + az Z + axy XY + ayzYZ + azx ZX.

Lemma 12. With reference to Lemma 2 and Definition 9, the action of A on the basis u is given by:

Au0 = α0u0 + β1u1,

Aui = γi−1ui−1 + αiui + βi+1ui+1 (1 ≤ i ≤ d− 1),

Aud = γd−1ud−1 + αdud,

where:

αi = aI + qd−2iax + q2i−d(ay + az) + axy + azx

+ (q2(2i−d) + (1− q2(i−d−1))(1− q2i))ayz (0 ≤ i ≤ d),

γi = (1− q2(i−d))(qdaz + q2iayz + q2(d−i−1)azx ) (1 ≤ i ≤ d),

βi = (1− q2i)(q−day + q−2iaxy + q2(i−d−1)ayz) (0 ≤ i ≤ d− 1).

Proof. Use the actions of X, Y, and Z from Lemma 2 and the actions of XY, YZ, and ZX from
Lemma 10 on the basis u to get the result.
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Lemma 13. With reference to Theorem 3 and Definition 9, the action of A on the basis v is given by:

Av0 = α′0v0 + β′1v1,

Avi = γ′i−1vi−1 + α′ivi + β′i+1vi+1 (1 ≤ i ≤ d− 1),

Avd = γ′d−1vd−1 + α′dvd,

where:

α′i = aI + qd−2iay + q2i−d(az + ax ) + ayz + axy

+ (q2(2i−d) + (1− q2(i−d−1))(1− q2i))azx (0 ≤ i ≤ d),

γ′i = (1− q2(i−d))(qdax + q2iazx + q2(d−i−1)axy) (1 ≤ i ≤ d),

β′i = (1− q2i)(q−daz + q−2iayz + q2(i−d−1)azx ) (0 ≤ i ≤ d− 1).

Proof. The actions of X, Y, and Z on the basis v are given in Theorem 3, and by Lemma 11, the actions
of XY, YZ, and ZX on the basis v have the same coefficients of the actions of ZX, XY, and YZ on the
basis u, respectively, which appear in Lemma 10. Now, expand the actions of these components on the
basis v to get the result.

Lemma 14. With reference to Theorem 3 and Definition 9, the action of A on the basis w is given by:

Aw0 = α∗0w0 + β∗1w1,

Awi = γ∗i−1wi−1 + α∗i wi + β∗i+1wi+1 (1 ≤ i ≤ d− 1),

Awd = γ∗d−1wd−1 + α∗dwd,

where:

α∗i = aI + qd−2iaz + q2i−d(ax + ay) + azx + ayz

+ (q2(2i−d) + (1− q2(i−d−1))(1− q2i))axy (0 ≤ i ≤ d),

γ∗i = (1− q2(i−d))(qday + q2iaxy + q2(d−i−1)ayz) (1 ≤ i ≤ d),

β∗i = (1− q2i)(q−dax + q−2iazx + q2(i−d−1)axy) (0 ≤ i ≤ d− 1).

Proof. The actions of X, Y, and Z on the basis w are given in Theorem 3, and by Lemma 11, the actions
of XY, YZ, and ZX on the basis w have the same coefficients of the actions of YZ, ZX, and XY on the
basis u, respectively, which appear in Lemma 10. Now, expand the actions of these components on the
basis w to get the result.

Corollary 2. With reference to Definition 9, the matrices representing A with respect to the [X]row, [Y]row,
and [Z]row bases for Vd are tridiagonal.

Proof. This is clear from Lemmas 12–14.

Note that Lemmas 12–14 give that (i) implies (ii) in Theorem 1.
Routine calculations using Lemmas 12–14 and taking the advantage of the symmetry of the

actions of X, Y, Z on the bases u, v, w give expressions for aI , ax , ay , az , axy , ayz , azx , which appear in
the following corollaries.

Corollary 3. With reference to Lemma 12, assume d ≥ 2. Then:
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aI =

(
q−4 − q3−2d(q− q−1) +

[4]
[2]

)
ayz +

[2]β1 − qγd−1 − β2/[2]
(q− q−1)

− q−dα0 − qdαd

qd − q−d − q2d−2β1 + q2−2dγd−1

(q− q−1)
2 +

q2d−1β2 + q1−2dγd−2

[2](q− q−1)
2 ,

ax = −(qd−4 + q2−d)ayz

+
α0 − αd

(qd − q−d)
+

qd−2β1 + q2−dγd−1

(q− q−1)
2 +

qd−1β2 + q1−dγd−2

[2](q− q−1)
2 ,

ay = −q1−d(q + q−1)ayz +
qd−2[2]β1 − qd−1β2

[2](q− q−1)
2 ,

az = −qd−3(q + q−1)ayz +
q2−d[2]γd−1 − q1−dγd−2

[2](q− q−1)
2 ,

axy = q4−2dayz +
q2[2]β1 − qβ2

[2](q− q−1)
2 ,

azx = q2d−4ayz +
[2]γd−1 − qγd−2

[2](q− q−1)
2 .

If d ≥ 3, then:

ayz =
−q2d−4 (β1 − β2 + β3/[3])

(q2 − q−2)(q− q−1)
2 =

q6−2d (γd−1 − γd−2 + γd−3/[3])

(q2 − q−2)(q− q−1)
2 .

Corollary 4. With reference to Lemma 13, assume d ≥ 2. Then:

aI =

(
q−4 − q3−2d(q− q−1) +

[4]
[2]

)
azx +

[2]β′1 − qγ′d−1 − β′2/[2]
(q− q−1)

−
q−dα′0 − qdα′d

qd − q−d −
q2d−2β′1 + q2−2dγ′d−1

(q− q−1)
2 +

q2d−1β′2 + q1−2dγ′d−2

[2](q− q−1)
2 ,

ay = −(qd−4 + q2−d)azx

+
α′0 − α′d

(qd − q−d)
+

qd−2β′1 + q2−dγ′d−1

(q− q−1)
2 +

qd−1β′2 + q1−dγ′d−2

[2](q− q−1)
2 ,

az = −q1−d(q + q−1)azx +
qd−2[2]β′1 − qd−1β′2

[2](q− q−1)
2 ,

ax = −qd−3(q + q−1)azx +
q2−d[2]γ′d−1 − q1−dγ′d−2

[2](q− q−1)
2 ,

ayz = q4−2dazx +
q2[2]β′1 − qβ′2
[2](q− q−1)

2 ,

axy = q2d−4azx +
[2]γ′d−1 − qγ′d−2

[2](q− q−1)
2 .

If d ≥ 3, then:

azx =
−q2d−4 (β′1 − β′2 + β′3/[3]

)
(q2 − q−2)(q− q−1)

2 =
q6−2d (γ′d−1 − γ′d−2 + γ′d−3/[3]

)
(q2 − q−2)(q− q−1)

2 .
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Corollary 5. With reference to Lemma 14, assume d ≥ 2. Then:

aI =

(
q−4 − q3−2d(q− q−1) +

[4]
[2]

)
axy +

[2]β∗1 − qγ∗d−1 − β∗2/[2]
(q− q−1)

−
q−dα∗0 − qdα∗d

qd − q−d −
q2d−2β∗1 + q2−2dγ∗d−1

(q− q−1)
2 +

q2d−1β∗2 + q1−2dγ∗d−2

[2](q− q−1)
2 ,

az = −(qd−4 + q2−d)axy

+
α∗0 − α∗d

(qd − q−d)
+

qd−2β∗1 + q2−dγ∗d−1

(q− q−1)
2 +

qd−1β∗2 + q1−dγ∗d−2

[2](q− q−1)
2 ,

ax = −q1−d(q + q−1)axy +
qd−2[2]β∗1 − qd−1β∗2

[2](q− q−1)
2 ,

ay = −qd−3(q + q−1)axy +
q2−d[2]γ∗d−1 − q1−dγ∗d−2

[2](q− q−1)
2 ,

azx = q4−2daxy +
q2[2]β∗1 − qβ∗2
[2](q− q−1)

2 ,

ayz = q2d−4axy +
[2]γ∗d−1 − qγ∗d−2

[2](q− q−1)
2 .

If d ≥ 3, then:

axy =
−q2d−4 (β∗1 − β∗2 + β∗3/[3]

)
(q2 − q−2)(q− q−1)

2 =
q6−2d (γ∗d−1 − γ∗d−2 + γ∗d−3/[3]

)
(q2 − q−2)(q− q−1)

2 .

4. Tridiagonal Operators

In this section, we prove that (iii) implies (i) in Theorem 1.

Lemma 15. Assume d ≥ 2. Fix Ψ ∈ End(Vd). Let u = {u0, u1, . . . , ud} and v = {v0, v1, . . . , vd} be [X]row

and [Y]row bases for Vd, respectively. Assume that Ψ acts tridiagonally on u and v, so for some αi, βi, γi, α′i, β′i,
γ′i ∈ F :

Ψu0 = α0u0 + β1u1, Ψv0 = α′0v0 + β′1v1,
Ψui = γi−1ui−1 + αiui + βi+1ui+1, Ψvi = γ′i−1vi−1 + α′ivi + β′i+1vi+1

(1 ≤ i ≤ d− 1),
Ψud = γd−1ud−1 + αdud, Ψvd = γ′d−1vd−1 + α′dvd.

(i) αi, βi, γi, α′i, β′i, γ′i , and aI , ax , ay , az , axy , ayz , azx are related by Lemmas 12 and 13.

(ii) Ψ acts on Vd as A = aI 1 + ax X + ayY + az Z + axy XY + ayz YZ + azx ZX.

(iii) Ψ acts tridiagonally on any [Z]row basis.

Proof. By Lemma 8, [Ψ]uP − P[Ψ]v = 0. Take β0 = β′0 = γd = γ′d = 0. For 0 ≤ i, j ≤ d,
matrix multiplication gives the (i, j)-entry:

Pij (αi − α′j) + Pi−1j βi + Pi+1j γi − Pij−1 γ′j−1 − Pij+1 β′j+1 = 0. (1)

It is routine to verify that the parameters given in terms of aI , ax , ay , az , axy , ayz , and azx by
Lemmas 12 and 13 are a solution. we now show that there is a unique solution in the parameters α0,
αd, β1, β2, γd−1, γd−2, and γd−3.
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Respectively taking i to be d− j− 1, d− j, and d− j + 1 in (1) gives:

β′k = −q2(k−d)γd−k (1 ≤ k ≤ d),

α′k = αd−k + qk−d[d− k + 1]γd−k + qd−k−1[d− k]β′k+1 (0 ≤ k ≤ d),

γ′k = qd−k−1[d− k](α′k+1 − αd−k)− q2(d−k−1)βd−k −
[d− k][d− k + 1]

[2]
γd−k

− q2(d−k−1)[d− k− 1][d− k]
[2]

β′k+2 (0 ≤ k ≤ d− 1).

Substituting the above into (1) at j = d, d− 1, and d− 2 gives respectively:

αk + βk + γk = q1−k[k](α1 + β1 + γ1)

+ (1− q1−k[k])(α0 + γ0) (2 ≤ k ≤ d), (2)

q[k]αk + q2[k− 1]βk + [k + 1]γk = (qk − q[k]− (q3 − q[2])[k− 1][k]
qk−1[2]

)γ0

+(1− q2−k[k− 1])[k](qα1 + [2]γ1) (3)

+
[k− 1][k]
qk−2[2]

(q[2]α2 + q2β2 + [3]γ2) (3 ≤ k ≤ d),

q2[k− 1][k]αk + q2[k− 2][k− 1]βk + [k][k + 1]γk

= −(q4−k(q− [2])[k− 2][k− 1][k] + [2][k](q[k− 1]− qk−1))γ1

+(1− q3−k[k− 2][k− 1][k](q2α2 + [3]γ2) (4)

+
[k− 2][k− 1][k]

qk−3 (q2α3 + q4 β3

[3]
+

[4]γ3

[2]
) (4 ≤ k ≤ d).

For 4 ≤ k ≤ d, the system of equations in αk, βk, γk has a coefficient matrix with determinant
(q2 + 1)q3(1−k) 6= 0, so these parameters are uniquely determined by those with a lower index. Use (2)
at k = 2, 3 and (3) at k = 3 to solve for α2, α3, and β3. Since γd = 0, (2), (3), and (4) at k = d can be
solved for α1, γ3, and βd in term of α0, αd, β1, β2, γ0, γ1, and γ2. We may use (2) at k = d− 1, d− 2,
and d− 3 to replace γ0, γ1, and γ2 with γd−1, γd−2, and γd−3 to get a unique solution in terms of α0,
αd, β1, β2, γd−1, γd−2, and γd−3. Now, (i) follows.

For (ii), expand the actions of X, Y, and Z on the basis u to verify that the action of A agrees
with the action of Ψ on the basis u. Now, (iii) follows from (ii) since the operators in the sum act
tridiagonally on any [Z]row basis by Theorem 3.

We can use the same argument to prove the result in Lemma 15 when Ψ acts tridiagonally on the
bases v and w or when Ψ acts tridiagonally on the bases w and u.

5. Main Results

In this section, we prove the main result of this paper, and then, we give some special cases.

Theorem 4. Let V be a finite-dimensional Uq(sl2)-module. Fix a linear map Ψ : V → V. Then, the following
are equivalent.

(i) Ψ acts on V as a linear combination of one, X, Y, Z, XY, YZ, and ZX.
(ii) All three of the matrices representing Ψ with respect to standard X-, Y-, and Z-eigenbases

are tridiagonal.
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(iii) Any two of the matrices representing Ψ with respect to standard X-, Y-, and Z-eigenbases are
tridiagonal.

Moreover, one, X, Y, Z, XY, YZ, and ZX are linearly independent when dim V ≥ 3.

Proof. The theorem holds for d < 2 since (i), (ii), and (iii) do. Suppose d ≥ 2. Corollary 2 and
Lemma 15 show that (i) implies (ii). Clearly, (ii) implies (iii). Finally, (iii) implies (i) by Lemma 15.
Thus, the result holds.

Corollary 6. With reference to Lemma 2 and Theorem 3, let Ψ ∈ End(Vd). Then, the following (i)–(iii)
are equivalent.

(i) Ψ acts on Vd as a linear combination of I, Y, Z, and YZ.
(ii) All three of (a), (b), (c) below hold.
(iii) Any two of (a), (b), (c) below hold.

(a) Ψ acts tridiagonally on a [X]row basis.
(b) Ψ acts lower bidiagonally on a [Y]row basis.
(c) Ψ acts upper bidiagonally on a [Z]row basis.

Proof. The actions of Y, Z, and YZ are described in Lemma 2, and Theorem 3 shows that (a), (b),
and (c) hold when Ψ acts as a linear combination of I, Y, Z, and YZ. If all three of (a), (b), and (c) hold,
then clearly so do any two of them. Finally, suppose any two of (a), (b), (c) hold, so one of (b) and (c)
holds. Then, the matrices representing Ψ with respect to standard X-, Y-, and Z-bases are all tridiagonal,
so Lemma 15 gives that Ψ acts on Vd as A = aI 1 + ax X + ayY + az Z + axy XY + ayz YZ + azx ZX with
the coefficients as described in that lemma. Now, (b) implies that all γ′i = 0, so ax = azx = axy = 0 by
Corollary 4. Similarly, (c) implies that all β∗i = 0, so ax = azx = axy = 0 by Corollary 5. Thus, Ψ acts on
Vd as a linear combination of I, Y, Z, and YZ.

Corollary 7. With reference to Lemma 2 and Theorem 3, let Ψ ∈ End(Vd). Then, the following (i)–(iii)
are equivalent.

(i) Ψ acts on Vd as a linear combination of I, Z, X, and ZX.
(ii) All three of (a), (b), (c) below hold.
(iii) Any two of (a), (b), (c) below hold.

(a) Ψ acts tridiagonally on a [Y]row basis.
(b) Ψ acts lower bidiagonally on a [Z]row basis.
(c) Ψ acts upper bidiagonally on a [X]row basis.

Proof. This is similar to the proof of Corollary 6.

Corollary 8. With reference to Lemma 2 and Theorem 3, let Ψ ∈ End(Vd). Then, the following (i)–(iii)
are equivalent.

(i) Ψ acts on Vd as a linear combination of I, X, Y, and XY.
(ii) All three of (a), (b), (c) below hold.
(iii) Any two of (a), (b), (c) below hold.

(a) Ψ acts tridiagonally on a [Z]row basis.
(b) Ψ acts lower bidiagonally on a [X]row basis.
(c) Ψ acts upper bidiagonally on a [Y]row basis.

Proof. This is similar to the proof of Corollary 6.
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Corollary 9. With reference to Lemma 2 and Theorem 3, let Ψ ∈ End(Vd). Then, the following (i)–(iii)
are equivalent.

(i) Ψ acts on Vd as a linear combination of I, X.
(ii) All three of (a), (b), (c) below hold.
(iii) Any two of (a), (b), (c) below hold.

(a) Ψ acts diagonally on a [X]row basis.
(b) Ψ acts upper bidiagonally on a [Y]row basis.
(c) Ψ acts lower bidiagonally on a [Z]row basis.

Proof. We argue as in the proof of Corollary 6. The result is clear if (a) holds. Note that (b) implies that
all β′i = 0, so az = azx = ayz = 0 by Corollary 4, and (c) implies that all γ∗i = 0, so ay = ayz = axy = 0 by
Corollary 5. Thus, Ψ acts on Vd as a linear combination of I, X.

Corollary 10. With reference to Lemma 2 and Theorem 3, let Ψ ∈ End(Vd). Then, the following (i)–(iii)
are equivalent.

(i) Ψ acts on Vd as a linear combination of I, Y.
(ii) All three of (a), (b), (c) below hold.
(iii) Any two of (a), (b), (c) below hold.

(a) Ψ acts diagonally on a [Y]row basis.
(b) Ψ acts upper bidiagonally on a [Z]row basis.
(c) Ψ acts lower bidiagonally on a [X]row basis.

Proof. This is similar to the proof of Corollary 9.

Corollary 11. With reference to Lemma 2 and Theorem 3, let Ψ ∈ End(Vd). Then, the following (i)–(iii)
are equivalent.

(i) Ψ acts on Vd as a linear combination of I, Z.
(ii) All three of (a), (b), (c) below hold.
(iii) Any two of (a), (b), (c) below hold.

(a) Ψ acts diagonally on a [Z]row basis.
(b) Ψ acts upper bidiagonally on a [X]row basis.
(c) Ψ acts lower bidiagonally on a [Y]row basis.

Proof. This is similar to the proof of Corollary 9.
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