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Abstract: This paper puts forward a PD-type iterative learning control algorithm for a class of discrete
spatially interconnected systems with unstructured uncertainty. By lifting and changing the variable
of discrete space model, the uncertain spatially interconnected systems is converted into equivalent
singular system, and the general state space model is derived in view of singular system theory.
Then, the state error and output error information are used to design the iterative learning control
law, transforming the controlled system into an equivalent repetitive process model. Based on the
stability theory of repetitive process, sufficient condition for the stability of the system along the trial
is given in the form of linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed
algorithm is verified by the simulation of ladder circuits.

Keywords: iterative learning control; spatially interconnected systems; norm uncertainty;
repetitive process; PD-type

1. Introduction

Iterative learning control (ILC) is applicable to the controlled systems that repeatedly perform the
same finite-time operation task, with the goal to achieve accurate tracking of the reference trajectory.
Each execution is known as a trial (or pass) and the finite duration the trial (or pass) length. The most
fascinating feature of ILC is that it does not depend on the precise mathematical model of the system,
only requiring a small amount of prior knowledge and computation. By iteratively updating the control
input signal, the system output can completely track the desired trajectory over a limited time. ILC has
strong adaptability and is easy to implement, which is of great significance for dynamic systems with
non-linearity, strong coupling, difficult modeling and high precision trajectory control requirements.

Since Arimoto et al. first proposed the concept of ILC and established the learning algorithm [1],
after more than 30 years of development, ILC has achieved a lot of fruitful results and become
an important research direction in the field of control. Due to its potential applications in various
engineering problems, ILC is widely used in industrial and other fields, including industrial robot
operating systems [2], industrial wafer scanners [3], rotating mechanical systems [4], time-delay
intermittent processes [5], etc.

An effective method commonly used in ILC design is to use 2D system models, such as Roesser
model, Fornasini-Marchesini model, and repetitive process model, i.e., system dynamics information
propagates in two independent directions where for ILC these directions are time axis and trial axis
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respectively. Considering the finite duration, repetitive process is a more natural setting for ILC design
and analysis. Repetitive process is characterized by a series of sweeps, termed passes, through a
set of dynamics defined over a fixed finite duration named as the pass length. On each pass an
output, termed the pass profile, is produced that acts as a forcing function on, and thus contributes to,
the dynamics of the next pass profile. In addition, the design of ILC law based on repetitive process
model has been verified by physical equipments [6,7].

In practical applications, coupling often occurs, that is, there exists information interaction
between various elements within the system. Such system is known as interconnected systems.
Spatially interconnected systems (SISs), as a unique class of interconnected systems, are composed of
many identical or similar subsystems coupled with their nearest neighbors. Although each subsystem
is simple and easy to control, the whole interconnected systems exhibit the complex characteristics
of large scale, multiple variables and high dimension. SISs have a wide range of applications in
engineering, such as multi-vehicle formation systems [8], deformable mirror in adaptive optics [9],
vibration control of actuated beam [10], large microcantilever array [11], ladder circuits [12], etc.

Recently, SISs have aroused great interest among scholars. A state space framework of spatially
interconnected systems is developed in [13], where the analysis, synthesis and implementation of
distributed controller is also studied. In [14], an optimal distributed controller is introduced for
space-invariant systems with finite communication speed. A distributed model predictive control
method arising from [15] is suggested to solve the tracking problem of interconnected systems with
local state and input constraints. In [16], model reference tracking control for a class of discrete spatially
interconnected systems with interconnected chains is presented. However, the practical problem faced
by the above methods is that in engineering, for the spatially interconnected systems with repetitive
operation characteristics, like robot circular formation, it is not only required to track the desired
trajectory accurately, but also to complete it within limited time.

Furthermore, uncertainty widely exists in practical interconnected systems due to modeling error,
parameter changes caused by environmental factors, which affects the stability and performance of
system. There are many forms of uncertainty. One of the popular forms is polytopic uncertainty,
namely uncertain model matrices belong to a convex bounded (polytope-type) domain where any
uncertain matrix can be written as a convex combination of its vertices [17]. Structured uncertainty
represented by linear fractional transformation (LFT uncertainty) is also widely used, it can be
modeled by pulling out the parametric uncertainty block and introducing the corresponding
pseudo-input/-output vectors [8,18,19]. A more natural representation for the uncertainty is
norm-bounded model where any uncertain matrix consists of nominal model matrix and norm
constraint [12,20]. Using this setting to develop control law design, the number of LMIs to be solved is
much reduced than the polytopic form [12]. For the above reasons, we focus on norm uncertainty.

In [21], three types of robustness are introduced: (1) Robustness is the state where the technology,
product, or process performance is minimally sensitive to factors causing variability (either in the
manufacturing or user’s environment); (2) Robust design satisfies the functional requirements even
though the design parameters and the process variables have large tolerances for ease of manufacturing
and assembly; (3) Robustifying a product is the process of defining its specifications to minimize the
product’s sensitivity to variation. Although different expressions are used, their meanings are similar,
i.e., robust design is a design insensitive to variations including external disturbance and parameter
uncertainty. Since spatially interconnected systems itself have uncertainty characteristic, the purpose of
our control is to implement robust or insensitivity design to uncertainty. To the best of our knowledge,
robust ILC design for uncertain spatially interconnected systems has not been fully investigated yet,
which motivates this study.

For clarity, the main contributions of this paper are summarized as follows:

• The discrete spatially interconnected systems with norm-bounded uncertainty is transformed
into a general state space model based on singular system theory.
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• Inspired by the idea of [22], a new PD-type ILC law is designed on the basis of the existing
methods [23,24] for spatially interconnected systems, which accelerates the convergence speed of
the system output and makes the controller design more efficient.

Note that the existing robust design optimization frameworks (Agros Suite and Ārtap) allow
to solve quite complex optimization problems for systems of PDEs that may be even nonlinear and
nonstationary [25]. The paper focuses on discrete-time linear systems only (or rather interconnections
of discrete-time linear systems) and hence such sophisticated optimization softwares are avoided
(but probably it is possible to use Agros Suite or Ārtap for obtaining some results). All presented
design procedures for the developed ILC schemes are formulated as convex optimization problems
and therefore they are amenable to effective algorithmic solution in terms of linear matrix
inequalities (LMIs).

This paper is organized as follows. The mathematical model of uncertain discrete spatially
interconnected systems is introduced in Section 2. Section 3 develops the PD-type ILC law.
LMI condition for the stability of system along the trial is presented in Section 4. Section 5 verifies the
effectiveness of the proposed method by simulation experiments. Conclusion is given in Section 6.

Throughout this paper, the null and identity matrices with compatible dimensions are denoted by
0 and I, respectively, and the notation X > 0 indicates that the matrix X is positive definite. The symbol
sym(X) is used to express the symmetric matrix X + XT, superscript (∗) means element transposition
in a symmetric matrix.

The following lemmas are applied to the proof of the main results.

Lemma 1. Given symmetric matrix Ω, as well as matrices X and Y with appropriate dimensions,
unknown matrix F satisfies FTF ≤ I, then [26]

Ω + XFY + YTFTXT < 0 (1)

holds if and only if there exists some ε > 0 such that

Ω + εXXT + ε−1YTY < 0. (2)

Lemma 2. Given symmetric matrix Γ, along with matrices H, E and J with appropriate dimensions, matrix F
satisfies FTF ≤ I, and ∆ = F(I − JF)−1, then [26]

Γ + H∆E + ET∆THT < 0 (3)

holds when and only when there exists some ε > 0 such that

Γ +
[

ε−1ET εH
] [ I −J
−JT I

]−1 [
ε−1E
εHT

]
< 0. (4)

2. System Model

Uncertain discrete spatially interconnected systems is shown in Figure 1, each subsystem can be
represented by the following state space model x(t + 1, s)

w(t, s)
y(t, s)

 =

 As
TT + ∆As

TT As
TS + ∆As

TS Bs
T + ∆Bs

T
As

ST + ∆As
ST As

SS + ∆As
SS Bs

S
Cs

T Cs
S Ds

T


 x(t, s)

v(t, s)
u(t, s)


x(0, s) = x0(s)

(5)
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where

w(t, s) =

[
w+(t, s)
w−(t, s)

]
, v(t, s) =

[
v+(t, s)
v−(t, s)

]
(6)

and s is a spatial variable, indicating the location information of the subsystem in space.
x(t, s) ∈ Rm, u(t, s) ∈ Rq and y(t, s) ∈ Rn represent the state, input and output variables of
the subsystem s, respectively. v(t, s) and w(t, s) denote the interaction between adjacent
subsystems. ∆As

ij(i = T, S; j = T, S), as well as ∆Bs
T , denotes parameter uncertainty and satisfies

the following relationships [
∆As

TT ∆As
TS

∆As
ST ∆As

SS

]
=

[
Hs

1
Hs

2

]
Fs
[

Zs
1 Zs

2

]
∆Bs

T = Hs
1FsZs

3

(7)

and Hs
1, Hs

2, Zs
1, Zs

2, Zs
3 are known matrices with appropriate dimensions, uncertain matrix Fs satisfies

the constraint (Fs)TFs ≤ I.

...

wv

w v

u y

1s  s i s n...

Figure 1. Spatially interconnected systems.

In general, many physically realizable interconnected systems are only coupled with states,
and the output of each subsystem is determined by its state [23,24]. Thus, this paper may as well
assume that Bs

S, Cs
S, Ds

T are all zero matrices.
Assuming that the number of subsystems is n, w+(t, s) and v+(t, s) have the same dimension,

similarly, w−(t, s) and v−(t, s) are the same size. Define the following interconnection topology
features [13]

v+(s + 1) = w+(s) 1 ≤ s ≤ n− 1

v+(s = 1) = w+(s = n)

v−(s− 1) = w−(s) 2 ≤ s ≤ n

v−(s = n) = w−(s = 1)

(8)

Due to the non-causality of space, the interconnected systems cannot be directly analyzed by
using the conventional two-dimensional system model. Therefore, it is necessary to apply “lifting
technology” to transform the spatially interconnected systems into an equivalent one-dimensional
dynamic model. To this end, first define the following lifting vectors

X(t) =
[

x(t, 1)T, x(t, 2)T, · · · , x(t, n)T
]T

V(t) =
[
v(t, 1)T, v(t, 2)T, · · · , v(t, n)T

]T

W(t) =
[
w(t, 1)T, w(t, 2)T, · · · , w(t, n)T

]T

U(t) =
[
u(t, 1)T, u(t, 2)T, · · · , u(t, n)T

]T

Y(t) =
[
y(t, 1)T, y(t, 2)T, · · · , y(t, n)T

]T

(9)
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then the whole uncertain spatially interconnected systems can be described by the following
model equivalently X(t + 1)

W(t)
Y(t)

 =

 ATT + ∆ATT ATS + ∆ATS BT + ∆BT
AST + ∆AST ASS + ∆ASS 0

CT 0 0


 X(t)

V(t)
U(t)

 (10)

where

Aij = diag
{

A1
ij, A2

ij, · · · , An
ij

}
(i = T, S; j = T, S)

∆Aij = diag
{

∆A1
ij, ∆A2

ij, · · · , ∆An
ij

}
BT = diag

{
B1

T , B2
T , · · · , Bn

T

}
∆BT = diag

{
∆B1

T , ∆B2
T , · · · , ∆Bn

T

}
CT = diag

{
C1

T , C2
T , · · · , Cn

T

}
.

It is noted that model (10) still contains interconnected variables and parameter uncertainty, so
further simplification of the model is needed.

Utilizing the interconnection characteristic of (8), the relationship among interconnected variables
can be written as

W(t) = ∆SV(t) (11)

where ∆S is a time-independent permutation matrix.
Let R(t) =

[
XT(t) VT(t)

]T, by shifting items, (10) is equivalent to the following uncertain
singular interconnected systems model

ER(t + 1) = (A + ∆A)R(t) + (B + ∆B)U(t)

Y(t) = CR(t)
(12)

where

E =

[
I 0
0 0

]
, A =

[
ATT ATS
AST ASS − ∆S

]
, B =

[
BT
0

]
, C =

[
CT 0

]
∆A =

[
∆ATT ∆ATS
∆AST ∆ASS

]
=

[
H1

H2

]
F
[

Z1 Z2

]
, ∆B =

[
∆BT

0

]
=

[
H1

0

]
FZ3

Hi = diag
{

H1
i , H2

i , · · · , Hn
i

}
(i = 1 ∼ 2), F = diag

{
F1, F2, · · · , Fn

}
Zj = diag

{
Z1

j , Z2
j , · · · , Zn

j

}
(j = 1 ∼ 3).

Consequently, the singular system model (12) can be conveyed explicitly by the
following equations

X(t + 1) = (ATT + H1FZ1) X(t) + (ATS + H1FZ2)V(t) + (BT + H1FZ3)U(t) (13)

0 = (AST + H2FZ1) X(t) + (ASS − ∆S + H2FZ2)V(t) (14)

Y(t) = CTX(t). (15)

From the causality of the singular system, it can be seen that uncertain term (ASS − ∆S + H2FZ2)

is non-singular for any matrix F satisfying FTF ≤ I, which implies that (ASS − ∆S) is also
non-singular [27].
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Let ASS = ASS − ∆S, construct non-singular matrices P = diag
{

I,
(

ASS
)−1
}

, Q = I.

Make nonsingular transformation R(t) = Q−1R(t) to get the equivalent system model

ER(t + 1) = P(A + ∆A)R(t) + P(B + ∆B)U(t)

Y(t) = CR(t).
(16)

Next, observe that the model (16) can be articulated definitely by (13), (15) and (17)

0 =
(

AST + H2FZ1
)

X(t) +
(

I + H2FZ2
)

V(t) (17)

where

AST =
(

ASS
)−1 AST , H2 =

(
ASS

)−1 H2.

Since model (12) and (16) are equivalent,
(

I + H2FZ2
)

is also non-singular. Based on the matrix
inversion formula, it can be obtained that(

I + H2FZ2
)−1

= I − H2FZ2 (18)

where

F = F(I − JF)−1, J = −Z2H2.

Bring (18) into (17), the relationship between state variable and interconnected variable is obtained
as follows

V(t) = −
(

AST + H2FZ1
)

X(t) (19)

where

Z1 = Z1 − Z2 AST .

By substituting (19) into (13), one-dimensional state space model of uncertain interconnected
systems can be gained

X(t + 1) =
(

ATT + H1FZ1
)

X(t) + (BT + H1FZ3)U(t)

Y(t) = CTX(t)
(20)

where

ATT = ATT − ATS AST , H1 = H1 − ATS H2, Z1 = Z1 − Z2 AST .

For a simplicity of presentation, let A = ATT + H1FZ1, B = BT + H1FZ3, C = CT , the model (20)
can be reduced to the following form

X(t + 1) = AX(t) + BU(t)

Y(t) = CX(t).
(21)

3. Control Law Design

In order to design ILC law, the state space model (21) is described as an ILC structural form

Xk+1(t + 1) = AXk+1(t) + BUk+1(t)

Yk+1(t) = CXk+1(t)
(22)
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k + 1 means current trial of the system, t ∈ [0, T0] indicates the finite cycle of each trial of the system.
The designed ILC law is

Uk+1(t) = Uk(t) + ∆Uk+1(t) (23)

the current control action Uk+1(t) is equal to the previous control action Uk(t) plus an update item
∆Uk+1(t), which is calculated from the previous error information. Define the desired output trajectory
Yr(t), then the system tracking error vector for the k-th trial is

ek(t) = Yr(t)−Yk(t). (24)

Introduce state error vector

ηk+1(t + 1) = Xk+1(t)− Xk(t) (25)

for the sake of generality, assume that Yr(0) = Yk(0) = CXk(0) and ηk(0) = 0, that is, system returns
to the same initial state for each trial, then

ηk+1(t + 1) = Aηk+1(t) + B∆Uk+1(t− 1) (26)

and
ek+1(t) = −Cηk+1(t + 1) + ek(t). (27)

Suppose that the update item in ILC law (23) takes the form

∆Uk+1(t) = K1ηk+1(t + 1) + K2ek(t) + K3 (ek(t + 1)− ek(t)) (28)

and K1, K2, K3 are gain matrices to be designed, the update term is composed of state feedback
information and proportional difference term of the previous output error information.

Substitute (28) into (26) and (27), let βk+1(t) =
[
ηT

k+1(t) eT
k (t− 1)

]T
and L = K2 − K3, then the

uncertain discrete repetitive process model is available

βk+1(t + 1) = Ãβk+1(t) + B̃ek(t)

ek+1(t) = C̃βk+1(t) + D̃ek(t)
(29)

where

Ã =

[
A + BK1 BL

0 0

]
B̃ =

[
BK3

I

]
C̃ =

[
−C

(
A + BK1

)
−CBL

]
D̃ = I − CBK3

.

Hence, the stability analysis and controller synthesis of the interconnected systems will be
performed next based on the discrete repetitive process model (29).

Remark 1. Note that different learning gains in (28) correspond to different forms of ILC laws.
Specifically, it can be divided into the following three categories

1. K2 6= K3 for the PD-type ILC.
2. K2 = K3 for the P-type ILC.
3. K2 = 0 for the D-type ILC.
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4. LMI-Based Design

Lemma 3. A discrete repetitive process described by (29) is stable along the trial if there exists matrix S > 0
such that [28]

ΦTSΦ− S < 0 (30)

where

Φ =

[
Ã B̃
C̃ D̃

]
, S =

 S1 0 0
0 S2 0
0 0 S3

 .

It should be emphasized that the inequality in Lemma 3 involves the product term of system
matrix Φ and auxiliary matrix variable S, making it difficult to directly solve the controller
gain. Consequently, it needs to be transformed into linear matrix inequality through a series
of transformations.

Firstly, the nominal case (∆A = 0, ∆B = 0) is considered. The following theorem gives the LMI
condition for the stability along the trial for a nominal discrete repetitive process.

Theorem 1. An ILC scheme described as a discrete repetitive process of the form (29) in the absence of
uncertainty is stable along the trial if there exist matrices W1 > 0, W2 > 0, W3 > 0 and matrices R1, R2,
R3 such that

Ξ1 =



−W1 0 0 ATTW1 + BT R1 BT R2 BT R3

(∗) −W2 0 0 0 W3

(∗) (∗) −W3 −CT
(

ATTW1 + BT R1
)
−CT BT R2 W3 − CT BT R3

(∗) (∗) (∗) −W1 0 0
(∗) (∗) (∗) (∗) −W2 0
(∗) (∗) (∗) (∗) (∗) −W3


< 0 (31)

then the gain matrices of PD-type ILC law (28) are given by

K1 = R1W−1
1 , K2 = R2W−1

2 + R3W−1
3 , K3 = R3W−1

3 . (32)

Proof of Theorem 1. By Schur’s complement lemma, (30) is transformed into

−S−1
1 0 0 A + BK1 BL BK3

(∗) −S−1
2 0 0 0 I

(∗) (∗) −S−1
3 −C

(
A + BK1

)
−CBL I − CBK3

(∗) (∗) (∗) −S1 0 0
(∗) (∗) (∗) (∗) −S2 0
(∗) (∗) (∗) (∗) (∗) −S3


< 0. (33)

Next, left and right multiply (33) by diag
{

I, I, I, S−1
1 , S−1

2 , S−1
3

}
. Then, make variable

substitutions, let S−1
1 = W1, S−1

2 = W2, S−1
3 = W3, K1S−1

1 = K1W1 = R1, LS−1
2 = LW2 = R2,

K3S−1
3 = K3W3 = R3, it can be proved immediately that (31) holds and the proof is complete.

Secondly, consider the case when uncertainty arises. Theorem 2 gives the LMI condition for the
robust stability of uncertain discrete repetitive process along the trial.
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Theorem 2. An ILC scheme described as a discrete repetitive process of the form (29) in the case of norm
uncertainty is robustly stable along the trial if there exist matrices W1 > 0, W2 > 0, W3 > 0 and matrices R1,
R2, R3 as well as real numbers εi > 0(i = 1, 2) such that Ξ1 Ξ2 Ξ3

(∗) Ξ4 0
(∗) (∗) Ξ5

 < 0 (34)

where

Ξ2 =



0 ε1H1

0 0
0 −ε1CT H1

RT
1 ZT

3 0
RT

2 ZT
3 0

RT
3 ZT

3 0


, Ξ3 =



0 ε2H1

0 0
0 −ε2CT H1

WT
1 ZT

1 0
0 0
0 0


, Ξ4 =

[
−ε1 I 0
(∗) −ε1 I

]
,

Ξ5 =

[
−ε2 I ε2 J
(∗) −ε2 I

]

then the gain matrices of PD-type ILC law (28) are given by (32).

Proof of Theorem 2. Left and right multiply (33) by diag
{

I, I, I, S−1
1 , S−1

2 , S−1
3

}
, then make variable

substitutions, let S−1
1 = W1, S−1

2 = W2, S−1
3 = W3, K1S−1

1 = K1W1 = R1, LS−1
2 = LW2 = R2,

K3S−1
3 = K3W3 = R3, and therefore

Ξ =



−W1 0 0 AW1 + BR1 BR2 BR3

(∗) −W2 0 0 0 W3

(∗) (∗) −W3 −C
(

AW1 + BR1
)
−CBR2 W3 − CBR3

(∗) (∗) (∗) −W1 0 0
(∗) (∗) (∗) (∗) −W2 0
(∗) (∗) (∗) (∗) (∗) −W3


< 0. (35)

It should be pointed out that the above inequality is still nonlinear due to the system uncertainty,
which must be further simplified.

Note that (35) can be rewritten as

Ξ = Ω + sym(XFY) < 0 (36)

where

Ω = Ξ1 +



0 0 0 H1FZ1W1 0 0
(∗) 0 0 0 0 0
(∗) (∗) 0 −CT H1FZ1W1 0 0
(∗) (∗) (∗) 0 0 0
(∗) (∗) (∗) (∗) 0 0
(∗) (∗) (∗) (∗) (∗) 0


, X =



H1

0
−CT H1

0
0
0


Y =

[
0 0 0 Z3R1 Z3R2 Z3R3

]
.

Then, according to Lemma 1, (36) is equivalent to

Ω + ε1XXT + ε−1
1 YTY < 0 (37)
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by Schur’s complement lemma, (37) can be expressed as follows Ω ε−1/2
1 YT ε1/2

1 X
(∗) −I 0
(∗) (∗) −I

 < 0.

Next, left and right multiply the above inequality by diag
{

I, ε1/2
1 I, ε1/2

1 I
}

, and gives

 Ω YT ε1X
(∗) −ε1 I 0
(∗) (∗) −ε1 I

 = Γ + sym(MFN) < 0 (38)

where

Γ =

 Ξ1 YT ε1X
(∗) −ε1 I 0
(∗) (∗) −ε1 I

 , M =



H1

0
−CT H1

0
0
0
0
0


, N =

[
0 0 0 Z1W1 0 0 0 0

]
.

In light of Lemma 2, (38) is equal to

Γ +
[

ε−1
2 NT ε2M

] [ I −J
(∗) I

]−1 [
ε−1

2 N
ε2MT

]
< 0 (39)

afterwards, apply Schur’s complement lemma to rewrite (39) as Γ ε−1
2 NT ε2M

(∗) −I J
(∗) (∗) −I

 < 0.

As mentioned earlier, left and right multiply the above inequality by diag {I, ε2 I, ε2 I},
separately. Moreover, substitute ε2 for ε2

2, and then (34) can be established.

5. Simulation

To verify the feasibility, effectiveness and robustness of the proposed PD-type ILC algorithm,
the active ladder circuits interconnected by four circuit units are taken as the simulation object.
The interconnection structure is shown in Figure 1, where each unit referring to [29] is depicted in
Figure 2.
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C

1R

2R
ˆ( , )c t sUˆ( , 1)c t s U

ˆ( , 1)L t s i

ˆ( , )t si

ˆ( , )t sEˆ( , )L t si

Figure 2. Ladder circuit subunit.

The continuous model of circuit unit s(s = 1 ∼ 4) derived from Kirchhoff’s law is

C
dUc(t̂, s)

dt̂
= − 1

R2
Uc(t̂, s) + iL(t̂, s) + i(t̂, s)− iL(t̂, s + 1)

L
diL(t̂, s)

dt̂
= −Uc(t̂, s)− R1iL(t̂, s) + Uc(t̂, s− 1)− E(t̂, s)

(40)

where t̂ is continuous time, i(t̂, s) is a controlled current source dominated by voltage

i(t̂, s) = γUc(t̂, s− 1) (41)

parameter γ = 0.1, inductance L = 0.05 ± 10%H, capacitance C = 0.04F, resistance R1 = 1 Ω,
R2 = 10 Ω.

Take T = 0.02s as the sampling period, and t represents the discrete time. Let the information
exchanged by each subsystem be the respective inductor current and capacitor voltage, in other words,
w+(t, s) = Uc(t, s), w−(t, s) = iL(t, s), v+(t, s) = Uc(t, s− 1), v−(t, s) = iL(t, s + 1).

Consequently, (40) can be discretized and rewritten as an uncertain interconnected subsystem
model in the form of (5), where the state is x(t, s) =

[
UT

c (t, s) iTL(t, s)
]T, the input is u(t, s) = E(t, s),

the output is y(t, s) = iL(t, s), and the subsystem matrices are

As
TT =

[
1− T

R2C
T
C

− T
L 1− R1T

L

]
=

[
0.95 0.5
−0.4 0.6

]
, As

TS =

[
γT
C − T

C
T
L 0

]
=

[
0.05 −0.5
0.4 0

]

As
ST =

[
1 0
0 1

]
, Bs

T =

[
0
− T

L

]
=

[
0
−0.4

]
, Cs

T =
[

0 1
]

, As
SS = Bs

S = Cs
S = Ds

T = 0.

The uncertainty of model is

∆As
TT =

[
0 0

−0.04σs −0.04σs

]
, ∆As

TS =

[
0 0

0.04σs 0

]
, ∆Bs

T =

[
0

−0.04σs

]
, ∆As

ST = ∆As
SS = 0.

parameter σs varies randomly within the interval [−1, 1], and express uncertainty in the form of (7) as

Hs
1 =

[
0
−4

]
, Zs

1 =
[

0.01 0.01
]

, Zs
2 =

[
−0.01 0

]
, Zs

3 = 0.01, Hs
2 = 0, Fs = σs.
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Suppose that the initial condition of the system is x0(0, 1) = x0(0, 2) = x0(0, 3) = x0(0, 4) = 0,
finite work cycle of each trial is 6s, desired output trajectories of interconnected systems are

yr(t, s) =


0.5 sin(t) s = 1
sin(2t) s = 2
1− e−t s = 3
0.05t2 s = 4

. (42)

Meanwhile, root mean square (RMS) of tracking error is introduced as an index to evaluate the
tracking performance of the interconnected systems

RMS =
4

∑
s=1

√√√√ 1
300

300

∑
t=1

e2
k(t, s). (43)

5.1. Nominal System

When there is no uncertainty in the system model, by utilizing Theorem 1, the gain matrices of
PD-type ILC (28) are as follows

K1 =


−0.8601 1.6387 0.0061 −0.0696 −0.0291 −0.0155 0.8831 −0.0536
0.8703 −0.0613 −0.8623 1.6439 0.0200 −0.0607 −0.0280 −0.0220
−0.0235 −0.0141 0.8872 −0.0539 −0.8727 1.6296 0.0090 −0.0617
0.0133 −0.0633 −0.0310 −0.0204 0.8818 −0.0534 −0.8641 1.6372

 ,

K2 =


−2.0864 −0.0947 0.0084 −0.0737
−0.0937 −2.0780 −0.0708 −0.0037
0.0095 −0.0718 −2.1053 −0.0785
−0.0757 −0.0018 −0.0784 −2.0902

 , K3 =


−1.6669 −0.0704 0.0196 −0.0523
−0.0694 −1.6653 −0.0492 0.0140
0.0207 −0.0502 −1.6811 −0.0593
−0.0544 0.0159 −0.0591 −1.6722

 .

The P-type ILC is given as

∆Uk+1(t) = K1ηk+1(t + 1) + K3ek(t + 1) (44)

and the corresponding gain matrices are

K1 =


−0.7824 1.7138 0.0089 −0.1087 −0.0488 −0.0256 0.8224 −0.0795
0.8064 −0.1001 −0.8386 1.6899 0.0547 −0.0548 −0.0224 −0.0349
−0.0191 −0.0099 0.8976 −0.0503 −0.8835 1.6187 0.0050 −0.0585
−0.0049 −0.1039 −0.0678 −0.0308 0.8776 −0.0384 −0.8049 1.6731

 ,

K3 =


−1.5809 −0.1352 0.0209 −0.0930
−0.1382 −1.6281 −0.0312 0.0091
0.0471 −0.0381 −1.7193 −0.0776
−0.1161 0.0130 −0.0584 −1.6267

 .

Similarly, the D-type ILC takes the form as

∆Uk+1(t) = K1ηk+1(t + 1) + K3(ek(t + 1)− ek(t)) (45)
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and the corresponding gain matrices are

K1 =


−1.0000 1.5000 0 0 0 0 1.0000 0
1.0000 0 −1.0000 1.5000 0 0 0 0

0 0 1.0000 0 −1.0000 1.5000 0 0
0 0 0 0 1.0000 0 −1.0000 1.5000

 ,

K3 =


−2.5000 0 0 0

0 −2.5000 0 0
0 0 −2.5000 0
0 0 0 −2.5000

 .

The simulation results are shown in Figures 3–5. With the increase of trials, the output of each
subsystem asymptotically tracks to the desired reference trajectory, and the tracking error converges to
zero monotonously along the trial. Besides, compared with P- and D-type ILC laws, PD-type ILC has
faster convergence speed and better tracking effect, thus verifying the effectiveness and rapidity of the
proposed approach.
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Figure 3. Outputs of nominal subsystems 1 and 2.
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Figure 4. Outputs of nominal subsystems 3 and 4.
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Figure 5. RMS of PD-, P- and D-type ILC for nominal system.

5.2. Uncertain System

Consider the case when norm uncertainty is present, based on Theorem 2, the gain matrices of
PD-type ILC (28) are as follows

K1 =


−0.7240 1.7700 0.0180 −0.1392 −0.0485 −0.0337 0.7546 −0.1232
0.7552 −0.1224 −0.7233 1.7702 0.0176 −0.1398 −0.0494 −0.0340
−0.0493 −0.0342 0.7542 −0.1231 −0.7232 1.7708 0.0183 −0.1395
0.0181 −0.1394 −0.0489 −0.0339 0.7542 −0.1233 −0.7234 1.7707

 ,

K2 =


−1.8355 −0.1168 0.0063 −0.1143
−0.1168 −1.8273 −0.1191 −0.0096
0.0063 −0.1191 −1.8276 −0.1198
−0.1142 −0.0096 −0.1198 −1.8282

 , K3 =


−1.6537 −0.0497 0.0479 −0.0470
−0.0497 −1.6462 −0.0515 0.0451
0.0479 −0.0514 −1.6467 −0.0522
−0.0470 0.0450 −0.0522 −1.6483

 .

In the same way, the gain matrices of P-type ILC (44) are

K1 =


−0.7176 1.7715 0.0126 −0.1473 −0.0541 −0.0321 0.7591 −0.1193
0.7422 −0.1305 −0.7055 1.7885 0.0170 −0.1499 −0.0537 −0.0354
−0.0321 −0.0251 0.7424 −0.1388 −0.7329 1.7690 0.0225 −0.1323
0.0074 −0.1431 −0.0493 −0.0296 0.7698 −0.1144 −0.7279 1.7600

 ,

K3 =


−1.6583 −0.1681 0.1518 −0.0493
−0.1649 −1.5810 −0.0159 0.0381
0.1497 −0.0131 −1.8003 −0.0596
−0.0505 0.0384 −0.0596 −1.6533


and the gain matrices of D-type ILC (45) are

K1 =


−0.9844 1.5147 0 −0.0081 −0.0016 −0.0006 0.9859 −0.0072
0.9859 −0.0072 −0.9843 1.5147 0 −0.0081 −0.0016 −0.0006
−0.0016 −0.0006 0.9859 −0.0072 −0.9843 1.5147 0 −0.0081

0 −0.0081 −0.0015 −0.0006 0.9859 −0.0073 −0.9843 1.5147

 ,

K3 =


−2.0264 −0.1156 −0.1046 −0.1156
−0.1154 −2.0265 −0.1154 −0.1045
−0.1046 −0.1156 −2.0266 −0.1156
−0.1155 −0.1047 −0.1155 −2.0265

 .
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As shown in Figures 6–8, the simulation results indicate that the convergence rate of tracking
error of the uncertain subsystems decreases significantly, but it still converges monotonously along the
trial. Moreover, the convergence rate of PD-type ILC algorithm is faster than that of the P- and D-type
ILC, which validates the robustness and superiority of the propounded method.
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Figure 7. Outputs of uncertain subsystems 3 and 4.
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Figure 8. RMS of PD-, P- and D-type ILC for uncertain system.

6. Conclusions

In this paper, a class of uncertain discrete spatially interconnected systems is transformed into
an equivalent one-dimensional model by lifting technology and singular system theory. Based on
the repetitive process theory, PD-type ILC algorithm is designed to transform the system model into
discrete repetitive process model. Furthermore, the LMI conditions for the stability of nominal system
and uncertain system along the trial are given. Eventually, the simulation results verify the feasibility
and robustness of the algorithm.

However, there are two main limitations of the proposed methodology. Since the state
feedback is used in the proposed methodology, it is not suitable for the systems whose state is
not measurable. Besides, the methodology uses the lifting along the spatial variable to obtain a
commonly used state-space model, the dimension of the lifting matrices will expand as the number of
subsystems increases, which will lead to computational complexity. In the future, we will consider
using output feedback to design ILC law and thus the application scope of the method can be
extended. Furthermore, in order to reduce the scale of the control problem, it is planned to develop
two-dimensional approach for spatially interconnected systems instead of lifting technology.
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