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Abstract: We introduce a new multivariate regression model based on the generalized Poisson
distribution, which we called geographically-weighted multivariate generalized Poisson regression
(GWMGPR) model, and we present a maximum likelihood step-by-step procedure to obtain
parameters for it. We use the maximum likelihood ratio test to examine the significance of the
regression parameters and to define their critical region.
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1. Introduction

Poisson distribution is one of the most widely utilized univariate and multivariate regression
models for count data analysis. The univariate regression model is comprised of one response
variable, while the multivariate regression model is made up of two or more response variables that
are correlated. There are several multivariate count data models based on Poisson distribution,
namely multivariate Poisson regression model, multivariate Poisson-gamma mixture model,
multivariate Poisson log-normal model, and multivariate generalized Poisson regression model [1,2].

Poisson distribution is characterized by its restrictive assumption on equidispersion, a condition
where the sample variance is equal to the mean. However, when the sample mean is less (greater)
than the variance, it is called overdispersion (underdispersion). The multivariate Poisson regression
model assumes equidispersion and allows for nonnegative correlations, while the multivariate
Poisson-gamma mixture model handles overdispersion and nonnegative correlations. Furthermore,
the multivariate Poisson-log-normal model allows overdispersion and a more flexible correlation
structure. The multivariate generalized Poisson regression (MGPR) model is the most flexible amongst
all because it allows any type of dispersion and correlation.

The MGPR model developed by Famoye [2] is a regression model based on multivariate
generalized Poisson distribution, which was obtained by the same procedure in constructing
bivariate generalized Poisson distribution, which is a product of generalized Poisson marginal with a
multiplicative factor [3,4]. To date, bivariate and multivariate generalized Poisson regression models
have been applied to real data with units of analysis such as elderly, women, patients, soccer teams,
or households [2,5,6]. These models are global regression models that assume the relationships between
variables are spatially constant.
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When the units of analysis used are locations, spatial effects need to be taken into account in
modeling the relationships between the explanatory variables and the response variables. Two possible
issues arise when the sample data contain spatial elements, namely spatial dependency and spatial
heterogeneity [7]. Out of these two, spatial dependency or spatial autocorrelation is best known
and most acknowledged. Spatial dependency occurs when the intensity of an event at one location
influences the intensity at surrounding locations. Meanwhile, spatial heterogeneity describes the
distribution of an event and the distribution of a relationship across a landscape. This means that what
matters in a socio-economic relationship may not be homogenously distributed across space, such as
infant mortality rates or unemployment rates at different locations. Both of these issues tend to arise
when data are collected by location units such as provinces, districts/cities, sub-districts, villages, etc.

One statistical technique commonly used to address spatial effects is geographically weighted
regression (GWR) model [8]. The GWR model allows the relationships between response variables and
explanatory variables vary over space so the regression coefficients systematically vary across space.
With this method, separate regression models are estimated for each location unit. All observations,
i.e., location units, are included in each regression but with different weights. The farther a spatial unit
from the location for which the regression is fitted, the smaller its data are weighted. This is in line
with Tobler’s First Law, which stated that everything is related to everything else, but near things are
more related than distant things [9].

The GWR models for univariate response applied in previous studies were based on normal
distribution [10–13]. Another study used Poisson distribution to develop a geographically weighted
Poisson regression model and semi-parametric geographically weighted Poisson regression [14].
Meanwhile, Rodrigues et al. [15] and Chen et al. [16] used the GWR model based on logistic
distribution and negative binomial distribution, respectively. The development of the GWR model for
multivariate responses based on several different distributions has been carried out, such as based on
normal distribution [17], Poisson distribution [18], Weibull distribution [19], Student-t distribution [20],
negative binomial distribution [21], and logistic distribution [22].

Furthermore, two GWR models for count data which use multivariate responses have been
developed, based on the Poisson distribution and negative binomial distribution. The first model
is called geographically weighted multivariate Poisson regression (GWMPR) model [18], while the
second model is called geographically weighted negative binomial regression (GWMNBR) model [21].
The GWMPR model assumes equidispersion, whereas the GWMNBR model only handles cases of
overdispersion. In this paper, we propose an alternative multivariate regression model that can handle
any type of dispersion by taking into account spatial effects in measuring the relationships between
the response variables and the explanatory variables. The proposed model is called a geographically
weighted multivariate generalized Poisson regression (GWMGPR) model.

The following discussion in this paper is divided into several main topics. In Section 2, we define
the GWMGPR model followed by discussions on the parameter estimation using the maximum
likelihood estimation (MLE) method in Section 3. We present simultaneous hypothesis testing in
Section 4 to test the significance of all parameters together. In this section, we define the distribution of
the test statistic and the critical region for the corresponding hypothesis by applying the maximum
likelihood ratio test. We give conclusions in Section 5.

2. GWMGPR Model

The GWMGPR model is an extension of existing model of MGPR developed by Famoye [2]
as follows:

P
(
y1, . . . , yg

)
=

g

∏
l=1

[(
µl

1 + ϕlµl

)yl (1 + ϕlyl)
yl−1

yl !
exp

[
− µl

1 + ϕlµl
(1 + ϕlyl)

]]

×
[

1 +
g

∑
l<m

γlm
(
e−yl − zl

) (
e−ym − zm

)]
, (1)
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where y1, . . . , yg = 0, 1, 2, . . . with zl = exp
(

µl(rl−1)
1+ϕlµl

)
; l = 1, 2, . . . , g, and ln (rl)−

ϕlµl(rl−1)
1+ϕl µl

+ 1 = 0,
l = 1, 2, . . . , g, where yl is the response variable (l = 1, 2, . . . , g), ϕl is the dispersion parameter of yl ,
and γlm shows the correlation between yl and ym (l, m = 1, 2, . . . , g; l < m). When ϕl = 0, the MGPR
model is reduced to multivariate Poisson regression model. Meanwhile, if ϕl < 0 or ϕl > 0, then the
MGPR model experiences underdispersion or overdispersion, respectively. The variable yl and ym are
negatively or positively correlated when γlm < 0 or γlm > 0, respectively.

We use the usual log-linear relationship between the marginal Yil and the covariates xi as follows:

µil = qil exp
(

xT
i βl

)
, (2)

where qil is an exposure measure for observation i of the response variable l, xi is a vector of the
explanatory variables, and βl is a parameter vector of the MGPR model for the response variable l,

xi =
[
1 xi1 xi2 · · · xip

]T

(p+1)×1
, i = 1, 2, . . . , n,

βl =
[

βl0 βl1 βl2 · · · βlp

]T

(p+1)×1
, l = 1, 2, . . . , g.

Equation (2) produces one regression model with the same regression coefficients for all n
observations (locations), which we called the global model. Meanwhile, the local regression model
produces n regression models; therefore, each location has its own regression coefficients. This is
the underlying idea of the GWMGPR model, which is to build a model that takes into account
spatial variations in relationships that allows the regression coefficients to vary across geographical
locations. In this case, the location-specific regression coefficients are functions of longitude and
latitude coordinates denoted by ui = (u1i, u2i), a vector of two-dimensional coordinates of location i.
This means that the response variables Y1i, Y2i, . . . , Yil are predicted by explanatory variables xi, each of
which has a regression coefficient depending on the location where the data were observed.

Let n random samples (xi, yi), i = 1, 2, . . . , n from the random variables yi∼MGP
(µ (ui) ,ϕ (ui) ,γ (ui)) be given, where ui is a two-dimensional coordinate vector of location i;
then, the GWMGPR model based on MGPR in (2) is written as

µil (ui) = qil exp
(

xT
i βl (ui)

)
, (3)

where qil is the exposure for location i of the response variable l with

xi =
[
1 xi1 xi2 · · · xip

]T

(p+1)×1
, i = 1, 2, . . . , n,

βl (ui) =
[

βl0 (ui) βl1 (ui) βl2 (ui) · · · βlp (ui)
]T

(p+1)×1
, l = 1, 2, . . . , g; i = 1, 2, . . . , n.

3. Parameter Estimation

As stated earlier, we use the MLE method to obtain the estimators of the GWMGPR model.
The MLE method is widely used to find estimators from observed data. This method requires that
the estimators, say θ̂, maximizes the log-likelihood function by solving the gradient function to zero.
For a more detailed discussion about MLE, including its principles and properties, see Pawitan [23].

Supposing n random samples (xi, yi) , i = 1, 2, . . . , n are taken independently from random
variables yi ∼ MGP (µ (ui) ,ϕ (ui) ,γ (ui)), then the likelihood function of location i that corresponds
to (1) is
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L (Ω) =L (µl (ui) , ϕl (ui) , γlm (ui)) , (i = 1, 2, . . . , n; l, m = 1, 2 . . . , g; l < m) ,

=
n

∏
i=1

[
g

∏
l=1

((
µil (ui)

1 + ϕl (ui) µil (ui)

)yil (1 + ϕl (ui) yil)
yil−1

yil !

exp
(
− µil (ui)

1 + ϕl (ui) µil (ui)
(1 + ϕl (ui) yil)

))
×
(

1 +
g

∑
l<m

γlm (ui)
(
e−yil − zil

) (
e−yim − zim

))]
, (4)

where

zil = exp
(

µil (ui) (rl − 1)
1 + ϕl (ui) µil (ui)

)
, (5)

ln (rl)−
ϕl (ui) µil (ui) (rl − 1)

1 + ϕl (ui) µil (ui)
+ 1 = 0, (6)

and µil (ui) is stated in (3). Hence, the parameter vector of location i of the corresponding GWMGPR
model is written as

θ (ui) =
[
βT

1 (ui) . . . βT
g (ui) ϕ1 (ui) . . . ϕg (ui) γ12 (ui) . . . γ(g−1)g (ui)

]T
. (7)

Let Q1 be the log-likelihood function of (4) such that

Q1 = ln (L (µl (ui) , ϕl (ui) , γlm (ui) )) , ( i = 1, 2, . . . , n; l, m = 1, 2 . . . , g; l < m) ,

=
n

∑
i=1

[
g

∑
l=1

(
yil ln

(
µil (ui)

1 + ϕl (ui) µil (ui)

)
+ (yil − 1) ln (1 + ϕl (ui) yil)

− ln (yil !)−
µil (ui) (1 + ϕl (ui) yil)

1 + ϕl (ui) µil (ui)

)
+ ln (1 + Q2)

]
, (8)

where

Q2 =
g

∑
l<m

γlm (ui)
(
e−yil − zil

) (
e−yim − zim

)
, (9)

and zil is defined in (5).
To estimate the parameters for location i, we can approximate Equation (2) by Equation (3).

The regression model is built on using a subset or the entire data points by giving a weight based
on the distance of the data points to location i. We give more weight to data points that are closer
to location i than other data points that are farther away. Thus, the weights vary according to the
proximity of the data points to location i. This means that we need to compute a weighting matrix for
each location where the weights represent the proximity of each data point to location i with closer
points having more weight in the estimation of the parameters for location i.

The above explanation means that the local parameters of θ̂ are estimated by a weighting function,
wij. The weights wij, i, j = 1, 2, . . . , n at each location ui are defined by a function of distance dij between
the center of location i and other locations. Several weighting functions (kernels) are presented
in Fotheringham et al. [8]. The kernels generally define weights such that locations close to the
regression point will make more contributions in estimating the parameters than locations farther
away. The most common kernels are the Gaussian function and bi-square function accompany with
fixed or adaptive bandwidth.

Fixed Gaussian weighting function is defined as

wij = exp

(
−1

2

(dij

b

)2
)

,
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and fixed bi-square weighting function is

wij =


(

1−
( dij

b

)2
)2

; if dij < b

0 ; otherwise,

where dij is Euclidean distance between location i and location j

dij =
√(

u1i − u1j
)2

+
(
u2i − u2j

)2,

and b is the bandwidth that controls the degree of distance-decay. The bandwidth is a measure of the
distance-decay in the weighting function and indicates the extent to which the local model should be
smoothed [8]. When b is large (small), it gives relative higher (lower) weight for more remote locations.
This means that a fixed weighting functions may lead to a problem of undersmoothing in areas with
only small observations and oversmoothing in areas with a high density of observations.

An alternative to the fixed weighting functions is adaptive kernels or spatially varying kernels,
which give smaller bandwidth in areas with more data points and greater bandwidth in areas
with less data points. Two types of adaptive kernel are adaptive Gaussian and adaptive bi-square.
Adaptive Gaussian weighting function is defined as

wij = exp

(
−1

2

(dij

bi

)2
)

,

and adaptive bi-square weighting function is stated as

wij =


(

1−
( dij

bi

)2
)2

; if dij ≤ bi

0 ; otherwise,

where bi is the bandwidth of location i.
Therefore, the implementation of GWMGPR requires a choice of specific function: a bisquare or

a Gaussian function and the choice of bandwidth. The results of GWMGPR are more sensitive to the
bandwidth of the particular weighting function chosen rather than to the selection of the weighting
function. This means that we need to determine optimum bandwidth so there are sufficient data points
within the kernel to get a reliable estimation in terms of bias and standard error but not too large of
bandwidth so that there are too many data points such that the heterogeneity is washed away or not
too high of bandwidth that the kernel only includes one data point for each location, then the system
breaks down. The greater the bandwidth, the lower standard error of the coefficient regression but the
higher bias, and vice versa.

There are several techniques used to obtain optimal bandwidth in terms of optimum trade-off
between bias and standard error, such as the generalized cross-validation (GCV), which is used to
determine the best combination of the bias and standard error. The optimum bandwidth is indicated
by the minimum value of GCV, which is defined as follows [8]:

GCV =

n
n
∑

i=1
(yi − ŷi (b))

T (yi − ŷi (b))

(n− ν1)
2 ,

where ŷi (b) is the prediction of yi for bandwidth b, and v1 is the number of effective parameters in the
GWMGPR model.

Once the weights wij are calculated, the parameter estimation is determined. To obtain the
estimator of location i, we need information of location j by applying a weighting function wij to the
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log-likelihood function. When the optimal weighting function is obtained, the log-likelihood function
of location i in (8) is written as a weighted log-likelihood function as follows:

Q1 = ln (L (µl (ui) , ϕl (ui) , γlm (ui)))wij, (l, m = 1, 2 . . . , g; l < m) ,

Q1 =
n

∑
j=1

[
g

∑
l=1

(
yjl ln

(
µjl (ui)

1 + ϕl (ui) µjl (ui)

)
+
(

yjl − 1
)

ln
(

1 + ϕl (ui) yjl

)

− ln
(

yjl !
)
−

µjl (ui)
(

1 + ϕl (ui) yjl

)
1 + ϕl (ui) µjl (ui)

+ ln (1 +Q2)

wij, (10)

where

Q2 =
g

∑
l<m

γlm (ui)
(

e−yjl − zjl

) (
e−yjm − zjm

)
, (11)

zjl = exp

(
µjl (ui) (rl − 1)

1 + ϕl (ui) µjl (ui)

)
, (12)

ln (rl)−
ϕl (ui) µjl (ui) (rl − 1)

1 + ϕl (ui) µjl (ui)
+ 1 = 0, (13)

and
µjl (ui) = qjl exp

(
xT

j βl (ui)
)

. (14)

The MLE method is applied to the parameter estimation; therefore, the weighted log-likelihood
function in (10) is maximized over the vector parameter θ (ui) in (7). The first partial derivatives of Q1

with respect to θ (ui) are shown as follows:

∂Q1

∂βT
l (ui)

=
n

∑
j=1


(

yjl − µjl (ui)
)

xj(
1 + ϕl (ui) µjl (ui)

)2 +
∂Q2/∂βT

l (ui)

1 +Q2

wij, (15)

∂Q1

∂ϕl (ui)
=

n

∑
j=1

− µjl (ui) yjl

1 + ϕl (ui) µjl (ui)
+

(
yjl − 1

)
yjl(

1 + ϕl (ui) yjl (ui)
)

−
µjl (ui)

(
yjl − µjl (ui)

)
(

1 + ϕl (ui) µjl

)2 +
∂Q2/∂ϕl (ui)

1 +Q2

wij, (16)

∂Q1

∂γlm (ui)
=

n

∑
j=1

(
1

1 +Q2

∂Q2

∂γlm (ui)

)
wij (17)

with Q2 is stated in (11), where

∂Q2

∂βT
l (ui)

=−
g

∑
l<m

γlm (ui)
(
e−yjm − zjm

) ∂zjl

∂βT
l (ui)

,

∂Q2

∂ϕl (ui)
=−

g

∑
l<m

γlm
(
e−yjm − zjm

) ∂zjl

∂ϕl (ui)
,

∂Q2

∂γlm (ui)
=

g

∑
l<m

(
∂

∂γlm (ui)
γjlm

(
e−yjl − zjl

) (
e−yjm − zjm

))
=
(

e−yjl − zjl

) (
e−yjm − zjm

)
,
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and

∂zjl

∂βT
l (ui)

=
zjl xj µjl (rl − 1)(

1 + ϕl (ui) µjl (ui)
) (

1 + ϕl (ui) µjl (ui) − ϕl (ui) µjl (ui) rl

) ,

∂zjl

∂ϕl (ui)
=

zjl µ2
jl (ui) (rl − 1)2(

1 + ϕl (ui) µjl (ui)
) (

1 + ϕl (ui) µjl (ui) − ϕl (ui) µjl (ui) rl

) ,

with zjl and rl are stated in (12) and (13), respectively.
From Equations (15) to (17), the total number of parameters of GWMGPR model, notated by

a1, is (g + 2p + 3) gn/2. The first partial derivatives of Q1 with respect to each parameter in (15)
through (17) are not closed-form and the MLE does not give analytical solutions. A numerical
optimization, such as the Newton–Raphson algorithm, as the simplest and the most common
optimization method, is needed when there is no analytical solution available to obtain the maximum
likelihood estimators. The Newton–Raphson algorithm is

θ̂
(h+1)

(ui) = θ̂
(h)

(ui)−H−1
(
θ̂
(h)

(ui)
)

g
(
θ̂
(h)

(ui)
)

,

where θ̂
(h)

(ui) is the vector of parameter of location i at the hth iteration, H−1
(
θ̂
(h)

(ui)
)

is the

inverse of Hessian matrix of location i at the hth iteration, and g
(
θ̂
(h)

(ui)
)

is the gradient vector of
location i at the hth iteration. For a more detailed discussion about numerical optimization methods,
see Cameron and Trivedi [24].

4. Simultaneous Hypothesis Testing

Simultaneous hypothesis testing aims to test more than one parameter, for example to test all the
parameters βlk (ui), (l = 1, 2, . . . g; i = 1, 2, . . . , n) together. This is used to determine the significance
of the regression parameters in the model jointly. The hypothesis for simultaneous testing of parameter
βlk (ui) is stated as follows:

H0 : βl1 (ui) = βl2 (ui) = ... = βlp (ui) = 0; (i = 1, 2, . . . , n; l, m = 1, 2, . . . , g) ,

H1 : at least one βlk (ui) 6= 0 . (18)

If we cannot reject H0, then it means that none of the regression parameter values are significant.
In case of rejection, it means that one or more of βlk (ui)’s have a significant effect in the model.

The critical region of hypothesis testing in (18) is obtained using the likelihood ratio test technique
by calculating the ratio between the maximum value of the likelihood function under H0, L (ω),
with the maximum value of the likelihood function under the population, L (Ω). The maximum value
of L (Ω) is the maximum value in (4). Meanwhile, the calculation of L (ω) is described below.

The first step to obtain the maximum L (ω) in determining the critical region for the
hypothesis in (18) is to define the parameter space under H0, ω = {βωl0 (ui) , ϕωl (ui) , γωlm (ui)},
(l, m = 1, 2, . . . , g; l < m). Let θω2 (ui) be the vector of parameters under H0

θω2 (ui) =
[

βω10 (ui) . . . βωg0 (ui) ϕω1 (ui) . . . ϕωg (ui) γω12 (ui) . . . γω(g−1)g (ui)
]T

,

and the GWMGPR model of location i under H0 be

µωil (ui) = qil exp (βωl0 (ui)) . (19)

The likelihood function in space ω is
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L (ω) =
n

∏
i=1

P (yi |βωl0 (ui) , ϕωl (ui) , γωlm (ui) ) , (l, m = 1, 2, ..., g; l < m). (20)

Let Q1ω = ln L (ω), then the log-likelihood function under H0 is written as

Q1ω =
n

∑
i=1

P (yi |βωl0 (ui) , ϕωl (ui) , γωlm (ui) ), (l, m = 1, 2, ..., g; l < m) ,

=
n

∑
i=1

[
g

∑
l=1

(
yil ln

(
µωil (ui)

1 + ϕωl (ui) µωil (ui)

)
+ (yil − 1) ln (1 + ϕωl (ui) yil)

− ln (yil !)−
µωil (ui) (1 + ϕωl (ui) yil)

1 + ϕωl (ui) µωil (ui)

)
+ ln (1 + Q2ω)

]
, (21)

where

Q2ω =
g

∑
l<m

γωlm (ui)
(
e−yil − zωil

) (
e−yim − zωim

)
,

zωil = exp
(

µωil (ui) (rωl − 1)
1 + ϕωl (ui) µωil (ui)

)
,

and

ln (rωl)−
ϕωl (ui) µωil (ui) (rωl − 1)

1 + ϕωl (ui) µωil (ui)
+ 1 = 0.

By carrying out the same procedure as described previously, we need the information of location
j to obtain the estimator of location i. The contribution of each location depends on the weighting
function wij, such that the weighted log-likelihood function corresponding to (21) is written as

Q1ω =wij ln L (ω)

Q1ω =
n

∑
j=1

[
g

∑
l=1

(
yjl ln

(
µωjl (ui)

1 + ϕωl (ui) µωjl (ui)

)
+
(

yjl − 1
)

ln
(

1 + ϕωl (ui) yjl

)

− ln
(

yjl !
)
−

µωjl (ui)
(

1 + ϕωl (ui) yjl

)
1 + ϕωl (ui) µωjl (ui)

+ ln (1 +Q2ω)

wij, (22)

where

Q2ω =
g

∑
l<m

γωlm (ui)
(

e−yjl − zωjl

) (
e−yjm − zωjm

)
, (23)

zωjl = exp

(
µωjl (ui) (rl − 1)

1 + ϕωl (ui) µωjl (ui)

)
,

ln (rl)−
ϕωl (ui) µωjl (ui) (rl − 1)

1 + ϕωl (ui) µωjl (ui)
+ 1 = 0,

and µωjl (ui) is defined as
µωjl (ui) = qjl exp (βωl0 (ui)) .
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The first partial derivatives of Q1ω with respect to each parameter in the parameter vector
θω2 (ui) are

∂Q1ω

∂βωl0 (ui)
=

n

∑
j=1


(

yjl − µωjl (ui)
)

(
1 + ϕωl (ui) µωjl (ui)

)2 +
∂Q2ω/∂βωl0 (ui)

1 +Q2ω2

wij, (24)

∂Q1ω

∂ϕωl (ui)
=

n

∑
j=1

− µωjl (ui) yjl

1 + ϕωl (ui) µωjl (ui)
+

(
yjl − 1

)
yjl(

1 + ϕωl (ui) yjl

)
−

µωjl (ui)
(

yil − µωjl (ui)
)

(
1 + ϕωl (ui) µωjl (ui)

)2 +
∂Q2ω/∂ϕωl (ui)

1 +Q2ω

wij, (25)

∂Q1ω

∂γωlm (ui)
=

n

∑
j=1

(
1

1 +Q2ω

∂Q2ω

∂γωlm (ui)

)
wij, (26)

where Q2ω is defined in (23) with

∂Q2ω

∂βωl0 (ui)
=−

g

∑
l<m

γωlm (ui)
(
e−yjm − zωjm

) ∂zωjl

∂βωl0 (ui)
,

∂Q2ω

∂ϕωl (ui)
=−

g

∑
l<m

γωlm (ui)
(
e−yjm − zωjm

) ∂zωjl

∂ϕωl (ui)
,

∂Q2ω

∂γωlm (ui)
=

g

∑
l<m

(
∂

∂γωlm
γωlm (ui)

(
e−yjl − zωjl

) (
e−yjm − zωjm

))
=
(

e−yjl − zωjl

) (
e−yim − zωjm

)
,

and

∂zωjl

∂βωl0 (ui)
=

zωjl µωjl (ui)(
1 + ϕωl (ui) µωjl (ui)

)
× (rωl − 1)(

1 + ϕωl (ui) µωjl (ui) − ϕωl (ui) µωjl (ui) rωl

) ,

∂zωjl

∂ϕωl (ui)
=

zωjl µ2
ωjl (ui)(

1 + ϕωl (ui) µωjl (ui)
)

× (rωl − 1)2(
1 + ϕωl (ui) µωjl (ui) − ϕωl (ui) µωjl (ui) rωl

) .

Equations (24) through (26) are not closed-form, so a numerical iteration is needed to solve the
equations. The total number of parameters in the parameter space ω, notated by a2, is (g + 3) gn/2 .

Using a significance level α ∈ (0, 1), the critical region of the likelihood ratio test for the GWMGPR
model with regard to the hypothesis in (18) is

Λ =
max L (ω)

max L (Ω)
< kα, (27)
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where kα is a constant that depends on α with 0 ≤ kα ≤ 1, L (Ω) and L (ω) are stated in (4) and (20),
respectively. Equation (27) can be written as

G2 =− ln
(

Λ2
)
= −2 ln (Λ)

=2
(
ln L

(
Ω̂
)
− ln L (ω̂)

)
. (28)

The distribution of the test statistic G2 in (28) is written in the following Theorem 1.

Theorem 1. Supposing the maximum likelihood estimator under H0 and the population regarding to hypothesis
testing stated in (18) are

θ̂ω2
(g+3)gn/2 ×1

=
[

β̂ω10 (ui) . . . β̂ωg0 (ui) ϕ̂ω1 (ui) . . . ϕ̂ωg (ui) γ̂ω12 (ui) . . . γ̂ω(g−1)g (ui)
]T

,

θ̂
(g+2p+3)gn/2 ×1

=
[
β̂

T
1 (ui) . . . β̂

T
g (ui) ϕ̂1 (ui) . . . ϕ̂g (ui) γ̂12 (ui) . . . γ̂(g−1)g (ui)

]T
,

respectively, then the test statistic G2 in (28) follows a chi-square distribution with gpn degrees of freedom.

Proof of Theorem 1. Suppose the maximum likelihood estimator under the population related to the
hypothesis stated in (18) is partitioned as follows:

θ̂
(g+2p+3)gn/2 ×1

=
[
θ̂1 θ̂2

]T
,

where
θ̂1 =

[
β̂l1 (ui) β̂l2 (ui) . . . β̂lp (ui)

]T
, (l = 1, 2, . . . , g) ,

and
θ̂2 =

[
β̂10 (ui) . . . β̂g0 (ui) ϕ̂1 (ui) . . . ϕ̂g (ui) γ̂12 (ui) . . . γ̂(g−1)g (ui)

]T
.

The maximum likelihood estimators and the known parameters in H0 are partitioned as

θ̂ω =
[
θω1 θ̂ω2

]T
,

where
θω1

gpn×1
=
[
0 0 . . . 0

]T
,

and

θ̂ω2
(g+3)gn/2 ×1

=
[

β̂ω10 (ui) . . . β̂ωg0 (ui) ϕ̂ω1 (ui) . . . ϕ̂ωg (ui) γ̂ω12 (ui) . . . γ̂ω(g−1)g (ui)
]T

,

with the true parameter is partitioned as

θω =
[
θω1 θ2

]T
.

Therefore, the hypothesis in (18) can be written as

H0 : θ1 = θω1

H1 : θ1 6= θω1.
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The test statistic G2 stated in (28) can be described as follows:

G2 =2
[
ln L

(
θ̂
)
− ln L

(
θ̂ω

)]
=2
[
ln L

(
θ̂
)
− ln L (θω)

]
− 2

[
ln L

(
θ̂ω

)
− ln L (θω)

]
. (29)

Let ` (θω) = ln L (θω), using Taylor’s second order expansion around θ̂, we get

` (θω) ≈ `
(
θ̂
)
+ g

(
θ̂
) (
θω − θ̂

)
− 1/2

(
θω − θ̂

)T
I
(
θ̂
) (
θω − θ̂

)
,

where

g
(
θ̂
)
=

∂` (θ)

∂θ

∣∣∣∣∣θ = θ̂,

and

I
(
θ̂
)
= −∂2` (θ)

∂θ∂θT

∣∣∣∣∣θ = θ̂.

Since g
(
θ̂
)
= 0, then

2
[
`
(
θ̂
)
− ` (θω)

]
≈
(
θ̂− θω

)T
I
(
θ̂
) (
θ̂− θω

)
. (30)

Meanwhile, when the function ` (θω) is represented via second order approximation around θ̂ω,
the following is obtained:

` (θω) ≈ `
(
θ̂ω

)
+ g

(
θ̂
) (
θω − θ̂ω

)
− 1/2

(
θω − θ̂ω

)
I
(
θ̂
) (
θω − θ̂ω

)
,

or it can be written as

2
[
`
(
θ̂ω

)
− ` (θω)

]
≈
(
θ̂ω − θω

)T
I
(
θ̂
) (
θ̂ω − θω

)
. (31)

Following (30) and (31), the test statistic in (29) can be written as

G2 ≈
(
θ̂− θω

)T
I
(
θ̂
) (
θ̂− θω

)
−
(
θ̂ω − θω

)T
I
(
θ̂
) (
θ̂ω − θω

)
. (32)

Let the partition of Fisher information matrix I
(
θ̂
)

and its inverse I−1
(
θ̂
)

be

I
(
θ̂
)
=

[
I11[gpn× gpn] I12[gpn × (g+3)gn/2 ]

I21[(g+3)gn/2 × gpn] I22[(g+3)gn/2 × (g+3)gn/2 ]

]
,

and

I−1
(
θ̂
)
=

[
I11

gpn× gpn I12
gpn × (g+3)gn/2

I21
(g+3)gn/2 × gpn I22

(g+3)gn/2 × (g+3)gn/2

]
.

Based on the nature of the conditional distribution, given as θ1 = θω1, θ̂1 and θ̂2, we get

θ̂ω2 = θ̂2 − I21
(
I11
)−1 (

θ̂1 − θω1

)
. (33)

A simpler form of (33) using a simple manipulation of the partitioned matrix of the Fisher information is

θ̂ω2 = θ̂2 + I−1
22 I21

(
θ̂1 − θω1

)
.
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Since
(
θ̂ω − θω

)
=
(

0, θ̂ω2 − θ2

)
and θω2 − θ2 = θ̂2 − θ2 + I−1

22 I21

(
θ̂1 − θω1

)
, then

(
θ̂ω − θω

)T
I
(
θ̂
) (
θ̂ω − θω

)
=
(
θ̂ω2 − θ2

)T
I22

(
θ̂ω2 − θ2

)
=

[
θ̂1 − θω1

θ̂2 − θ2

]T [
I12I−1

22 I21 I12

I21 I22

] [
θ̂1 − θω1

θ̂2 − θ2

]
.

The statistic G2 in (32) can then be written as

G2 ≈
(
θ̂− θω2

)T
I
(
θ̂
) (
θ̂− θω2

)
−
(
θ̂ω2 − θω2

)T
I
(
θ̂
) (
θ̂ω2 − θω2

)
=
(
θ̂1 − θω1

)T (
I11 − I12I−1

22 I21

) (
θ̂1 − θω1

)
=
(
θ̂1 − θω1

)T(
I11
)−1 (

θ̂1 − θω1

)
.

With regard to the normality for MLE under the regularity conditions (see Cameron and Trivedi [25]),
the distribution of the partitioned matrix is[

θ̂1 − θ1

θ̂2 − θ2

]
a∼ N

(
0, I−1 (θ) ≡

[
I11 I12

I21 I22

])
,

such that (
θ̂1 − θ1

)
a∼ N

(
0, I11

)
,(

I11
)1/2 (

θ̂1 − θ1

)
a∼ N

(
0, Igpn

)
,

G2 =
(
θ̂1 − θω1

)T(
I11
)−1 (

θ̂1 − θω1

)
a∼ χ2

gpn.

Regarding Equation (27), the critical region of the test statistic G2 is

α =P (Λ < kα; ω)

=P (−2 ln Λ > −2 ln kα; ω)

=P
(

G2 > c; ω
)

, where c = −2 ln kα

=P
(

G2 > χ2
α,gpn

)
.

Therefore, H0 in (18) is rejected when G2 > χ2
α,gpn.

5. Conclusions

We developed a local regression model, called a geographically weighted multivariate generalized
Poisson regression (GWMGPR) model. We have shown the step-by-step procedure to obtain the
estimation of the parameters and the test statistic for hypothesis testing of the GWMGPR model.
It is easy to see that the same procedure of developing the GWMGPR model presented in this article
can be applied in developing other GWR models based on different multivariate distributions.

The distribution of the test statistic developed in this paper is based on an asymptotic approach.
Therefore, further study is needed for development of exact distributions of the test statistics.
Despite the advantages of presenting regression coefficients for each location, GWMGPR is a complex
model that needs a challenging coding program. Furthermore, simulation and application of the
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GWMGPR model using real data to validate the theoretical results in this paper that are being prepared
for our next manuscript.
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MLE Maximum likelihood estimation
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