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Abstract: The paper proposes the automated optimal design of a class of micro–electro–mechanical
(MEMS) devices, based on a procedure of finite element analysis coupled to evolutionary optimization
algorithms. A magnetic MEMS, used as an optical switch, is considered as the case study. In particular,
the geometry of the device is optimized in order to maximize the actuation torque and minimize the
power losses and the device volume. The optimization algorithms belong to the genetic class and,
in particular, Migrated Parents - Non-Dominated Sorting Genetic Algorithm MP-NSGA, with three
objective functions, is compared to NSGA-III.

Keywords: MEMS; micromirror; magnetic field; finite element analysis; many-objective optimization;
Pareto Front

1. Introduction

It can be stated that the miniaturization of electromechanical systems is impacting contemporary
society as deeply the mass production of electronic systems in recent decades. In fact, the impressive
evolution of embedded system technologies has been fostered by the availability of miniaturized devices,
which can behave like sensors or actuators: in a sense, these devices are the link between a physical
process and the electric circuit processing the analogue signal (sensors) or governing the movement of
a mechanical component (actuator) [1]. In this respect, the interest in micro–electro–mechanical system
(MEMS) devices has substantially grown after the technological birth of MEMS, dating back to 1964
with the production of the first batch device [2]. However, only recently have the analysis and design
of MEMS been approached in a methodologically mature way, based on the precise formulation of
forward and inverse problems, which, in turn, might give rise to non-trivial mathematical problems to
solve in at least an approximate way.

In the area of MEMS, two main lines of research can be observed. The former one, theoretically
oriented, is devoted to the analysis and synthesis of multi-physics models [3–5] of, e.g., coupled
thermal–elastic systems [3,6,7], electrostatic–elastic systems [3,8,9], magnetically actuated systems, and
microfluidic systems [3,10–14]. In contrast, the latter is more focused on various application areas,
for instance, the design and manufacturing of MEMS for biomedical systems with an emphasis on
miniaturized bio-sensors and microdevices for tissue engineering [9,15].

Several research projects are characterized by advanced theoretical models which aim at obtaining
classes of closed-form solutions [16,17]. Alternatively, problem formulations which prove a priori
conditions for the existence, uniqueness, and regularity of the solutions without explicitly computing
them, have been developed [18,19]. When an explicit solution is not obtainable, methods finding
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approximate solutions by means of numerical techniques have been proposed: in particular, if the
conditions of existence, uniqueness, and regularity are fulfilled, then the absence of ghost solutions is
ensured [6,20–22].

Moreover, techniques for modeling magneto–thermo–elastic devices, considering the wave
propagation in micro-domains with fixed or free boundaries, have been studied [23–26]. Obtaining the
conditions of existence and uniqueness of solutions to inverse problems with moving boundaries is the
core of several contributions [18,27–30]. Due to their simple construction technology, membrane MEMS
devices are another class of devices often considered in many engineering applications [5,25,31–33].

There are many techniques of exciting a MEMS actuator; the ones which are commonly used can
be classified into three categories, according to their relevant physical principle:

(i) The electrostatic excitation, based on an electric field which causes the controlled displacement of
a movable component or the deformation of an elastic membrane;

(ii) The thermal excitation, which exploits the difference between the thermal expansion coefficients
featuring two elastic materials when subject to a temperature gradient;

(iii) The magnetic excitation, based on the Lorentz force acting on a loop of current placed in an
external magnetic field.

Specifically, magnetic actuation exhibits many advantages. In fact, it has a good linearity of
movement versus excitation signal for a broad interval of values of current, low voltages needed for
power supply, and hence low power consumption, and finally it is simple to control by means of a
sequence of pulses of current [11,34,35]. For these reasons, in the paper, the field model of a magnetic
MEMS used as a micromirror is considered, and a numerical method for the optimal shape design
trading off multiple design criteria is proposed. The method is a very general one because it is based
on the combination of a Finite Element model and a general purpose optimization algorithm. Hence,
it is suitable for a broad class of MEMS devices, provided the designer sets up a parametric model of
the device and defines the design variables, the objective functions and the constraints.

The manuscript is organized as follows: in Section 2, the principle of operation of the device
is described; then, direct and inverse problems are formulated, specifically, the former is solved by
means of a 3D finite-element model, while the solution of the latter is based on an algorithm of
evolutionary computing inspired by Pareto-like optimality. Eventually, in Section 3, the results are
presented and discussed.

2. Materials and Methods

2.1. The Magnetic Micromirror

A micromagnetic device used as an optical switch [36] is considered. It is based on the actuation
of a ferromagnetic plate under the influence of a magnetic field variation. It consists of an NdFeB
magnet (neodymium, iron, and boron alloy, Label A in Figure 1), two copper conductors carrying like
currents (Label B in Figure 1), and a ferromagnetic plate (Label C in Figure 1) free to rotate around its
axis in the point marked with R. The cross-section of the micromirror is shown in Figure 1.
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Figure 1. Geometry of the micromirror. 

The residual induction of magnet is 1.2 T and the relative magnetic permeability is equal to 1.05. 
The plate is made of ferromagnetic material which is assumed to be linear with a relative permeability 
equal to 103. 

Typical dimensions of the device, hereinafter called the prototype, are: x1 = 100 μm, x2 = 1.2 mm, 
x3 = 50 μm, x4 = 50 μm, x5 = 200 μm, x6 = 600 μm, x7 = 10 A, plate length = 1 mm, and plate height = 25 
μm [37,38]. The magnet exhibits a square shaped base, hence the magnet depth in the third 
dimension, referring to Figure 1, is equal to 2 × x2. The plate depth is equal to its length (1 mm) and 
the two conductors are as long as the magnet in the third dimension, i.e., equal to 2 × x2. 

The torque holding the plate at the prescribed angle, evaluated at the point R, is due to the 
magnetic field of the permanent magnet in the absence of current, while the actuation torque, 
evaluated in point R, necessary to switch the plate angle is due to the magnetic field variation caused 
by a current pulse in the conductors. In particular, the actuation torque is calculated as the difference 
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2.2. Field Analysis 

Given the geometry in Figure 1, the field analysis problem consists of finding the magnetic field 
distribution for a given plate angle and a given amplitude I of the current pulse. Since it is assumed 
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and 𝐵ത଴  is the magnetic remanence of the permanent magnet. The magnetic induction field 𝐵ത  is then 
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Since the tensor is symmetric, the torque corresponding to (3) is given by 

Figure 1. Geometry of the micromirror.

The residual induction of magnet is 1.2 T and the relative magnetic permeability is equal to 1.05.
The plate is made of ferromagnetic material which is assumed to be linear with a relative permeability
equal to 103.

Typical dimensions of the device, hereinafter called the prototype, are: x1 = 100 µm, x2 = 1.2 mm,
x3 = 50 µm, x4 = 50 µm, x5 = 200 µm, x6 = 600 µm, x7 = 10 A, plate length = 1 mm, and plate
height = 25 µm [37,38]. The magnet exhibits a square shaped base, hence the magnet depth in the third
dimension, referring to Figure 1, is equal to 2 × x2. The plate depth is equal to its length (1 mm) and
the two conductors are as long as the magnet in the third dimension, i.e., equal to 2 × x2.

The torque holding the plate at the prescribed angle, evaluated at the point R, is due to the
magnetic field of the permanent magnet in the absence of current, while the actuation torque, evaluated
in point R, necessary to switch the plate angle is due to the magnetic field variation caused by a current
pulse in the conductors. In particular, the actuation torque is calculated as the difference between the
total torque (with currents on) and the holding torque (with currents off).

2.2. Field Analysis

Given the geometry in Figure 1, the field analysis problem consists of finding the magnetic field
distribution for a given plate angle and a given amplitude I of the current pulse. Since it is assumed to
neglect the transient behavior, a steady-state analysis is considered. Hence, the problem to be solved,
in terms of magnetic vector potential A, is

∇
2A = −µJ −∇× B0 (1)

subject to suitable boundary conditions, where J is the specific current, which is supposed to be
supplied to the coil by an external source of DC current I. Moreover, µ is the magnetic permeability
and B0 is the magnetic remanence of the permanent magnet. The magnetic induction field B is then
calculated as

B = ∇×A (2)

The torque acting on the plate is calculated by means of the Maxwell’s stress tensor [9]: the force
F acting on each point Q of a closed surface surrounding the plate is calculated as

F =

∫
Ω

∇·TdΩ =

∫
Γ

T·n dΓ (3)

where n is the outward normal unit vector and T is the Maxwell’s magnetic stress tensor.
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Since the tensor is symmetric, the torque corresponding to (3) is given by

M =

∫
Γ

rQR × T·n dΓ (4)

where rQR is the position vector of a given point Q on Γ with respect to the rotation axis in R, which is
the center point of the plate.

Based on (4), the holding torque and actuation torque were independently defined and computed.
In particular, the holding torque is defined as

Mh =

∫
Γ

rQR × TI = 0·n dΓ (5)

i.e., the no-load torque due to magnet only, while the total torque is defined as

Mt =

∫
Γ

rQR × TI,0·n dΓ (6)

i.e., the on-load torque, due to both magnet and current.
The actuation torque is eventually computed as Ma = Mt − Mh.
In order to solve the field analysis problem (1)–(4) given the geometry of magnet and conductors

(i.e., the forward problem), a 3D Finite Element FE model (Figure 2) was built with MagNet by Mentor
Infolytica [39]; the field simulation was obtained by means of the magnetostatic solver.
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Figure 2. 3D geometry of the FE model.

In the real device, the length of the copper wires is equal to the magnet depth. For modelling
purposes, however, the copper conductors must start from and end at a face of the airbox; this feature
is required by the FE code used, in order to have a geometrically consistent model. This is why in the
model, (see Figures 2 and 3) the copper conductors are longer than the magnet.

A typical finite-element mesh, shown in Figure 3, is composed of about 350,000 tetrahedral
elements; second-order polynomial Lagrangian elements are considered. The torque-angle curve
has been computed based on the Maxwell’s stress tensor, for both holding and actuation torque.
The torques calculated for the prototype are shown in Figure 4.
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The actuation torque of the prototype was computed for different current values, considering the
rotation angle equal to 10 degrees. The torque versus current curve is shown in Figure 5.
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It can be noted that the actuation torque versus current curve is rather linear for currents up to
100 A. In fact, the linear behavior of the actuation torque is one of the advantages of magnetic MEMS.

The values of the torques calculated with the 3D model are in accordance with those calculated
in previous papers by the authors [37,38] with the 2D model. For the sake of comparison, let it be
considered that the depth of the 2D model is 10 µm, while the plate in the 3D model is 1-mm long
in the third dimension: for a rotation angle ϕ = 10◦ the holding torque is equal to 2.53 × 10−8 Nm
for the 3D model, while it is equal to about 4.39 × 10−11 Nm for the 2D model. Therefore, for the 2D
model, the holding torque is 0.44 × 10−8 Nm per mm of depth. The torque resulting from the 3D model
(2.53 × 10−8 Nm) is comparable with the torque of the 2D model (0.44 × 10−8 Nm). Although a full
comparison between the two models is hardly possible, because of the different depth of the various
components, the two torque values are in reasonable agreement.

2.3. Optimization Problem

The design (or inverse) problem—i.e., find the shape of the MEMS device fulfilling the prescribed
performance—is based on three design criteria which, in turn, depend on a set of seven degrees of
freedom, here called design variables. The latter control the geometry of permanent magnet and
current-carrying conductors, and are subject to a set of constraints. Design criteria are modelled via
objective functions dependent on the design variables: this way, the inverse problem can be converted
into a constrained optimization problem, subsequently solved by means of an algorithm of evolutionary
computing (see Section 2.4).

In particular, the seven-dimensional vector of design variable vector is X = [x1, x2, x3, x4, x5, x6,
x7] where x1, . . . , x6 are geometrical quantities (see Figure 1), while x7 is the value of current carried by
each conductor.

Moreover, the following objective functions are defined for a prescribed mirror position ϕ = 10◦:
ohmic power loss in conductors, to be minimized

f1(X) = 2x2x2
7(σx4x5)

−1 (7)

with the copper conductivity σ = 5.77 × 107 Sm−1;
Actuation torque acting on the mirror, to be maximized

f2(X) =

∫
Γ

rQR × T(X)I,0·n dΓ −
∫
Γ

rQR × T(X)I = 0·n dΓ (8)

excitation system (i.e., conductors and magnet) volume, to be minimized

f3(X) = (2x2)
2(x1 + x3 + x4) (9)

All in one, meeting the design criteria would help in the design of an efficient and miniaturized
device with a good torque performance. From the modelling viewpoint, it can be noted that the
computation of f1 and f3 is inexpensive (closed-form Equations (7) and (9)), while f2 is computationally
demanding because it is a field-dependent objective (finite-element simulations).

Eventually, three behavioral constraints are prescribed, namely, lower thresholds for holding and
actuation torque are set to 10−8 and 10−9 Nm, respectively; moreover, the pulsed current density value
in the conductors is constrained to be lower than 5 × 109 Am−1. In Table 1, the range of variation in the
design variables and the three constraints are shown.

The optimal design problem can be formally cast as follows: starting from an initial guess, identify
the family of geometries such that f1(X) is minimized, f2(X) is maximized and f3(X) is minimized, subject
to the inequality constraints (Table 1) and to field Equations (1)–(6). The simultaneous optimization of
objective vector (f1, f2, f3) is intended in the Pareto sense; therefore, the family of optimal solutions
called non-dominated solutions is the unknown [40]. Traditionally, methods and algorithms for solving
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bi-objective problems has been developed, while approaches to higher-order objective spaces have
been considered more recently [40]. In fact, a tri-objective problem is proposed here.

Table 1. Variation ranges of the design variables and constraints.

Design Variable Minimum Maximum Constraint Threshold

x1 50 µm 150 µm Holding torque >10−8 Nm
x2 1 mm 2 mm
x3 25 µm 75 µm Actuation torque >10−9 Nm
x4 25 µm 75 µm
x5 100 µm 300 µm Current density <5 × 109 Am−2

x6 300 µm 900 µm
x7 0 A 150 A

2.4. Optimization Algorithms

As far as the selection of optimization algorithms to solve problem (7)–(9) is concerned,
the following remarks can be put forward. The arguments minimizing (7) could be found analytically;
the same holds for (9), while the argument maximizing (8) could be numerically approximated
by resorting to a zero-order deterministic algorithm, e.g., the Nelder–Mead simplex algorithm or
the Powell algorithm of conjugate directions linked to the finite-element solver; this way, the three
independent solutions (i.e., two minimizers and one maximizer) would be found. In multi-objective
optimization, however, the identification of the Pareto front trading off conflicting objectives is the
aim: it cannot be achieved except through resorting to a strategy of evolutionary computing, because
deterministic computing does not make it possible the non-dominated sorting of a set of solutions [41],
and the tri-objective problem here considered is no exception.

In particular, the selected optimization algorithms belong to the class of genetic Algorithms
and they are based on the classical Non-Dominated Sorting Genetic Algorithm, (NSGA-II) [41–46].
In particular, Migration - Non-Dominated Sorting Genetic Algorithm M-NSGA includes the Migration
concept introduced in [47–49] with a self-adaptation mechanism that allows for the modulation of the
size of the migrated population in [50–52]. In [47], the migrated population is introduced after the
generation step and the new genetic heritage due to the migrated individuals will be active in the
next generation if the individuals survive after selection. In this paper, an alternative version of the
M-NSGA algorithm, named MP-NSGA, is used [53].

In the Non-Dominated-Sorting Genetic Algorithm strategy, the initial population is composed of
a random set of N individuals. The new generation is obtained by applying the genetic operator to
the parent population of the previous step: in general, for a pair of individuals, one or two offspring
are generated by means of cross-over genetic rules [43]; in the NSGA-II strategy, the new generation
is the result of the selection of the individuals that best fit with a selection criteria, i.e., the one that
minimizes the objective functions.

In the NSGA-II algorithm at each generation, a population of N parents generates up to N sons
(up to 2N individuals after generation step) that, after a selection step, produce a new population of
N individuals [43]. In the M-NSGA algorithm, a new population [47,50,51], with a size variable in
number of individuals from 5 to N, immigrates after the generation step, so improved individuals
could modify the genetic heritage of the original population if they survive after selection. The flow
chart is shown in Figure 6a. In the MP-NSGA algorithm, immigration occurs before generation step,
so the genetic heritage of the migrated population can affect the successive generation step of the
new individuals. Moreover, in this case, the size of the immigrated population is smaller, and the
number of individuals is variable between 5 to N/2: then, the generation can generate up to 3N/2 new
individuals. The proposed version of the M-NSGA algorithm includes the check of three problem
boundaries. In case a solution does not satisfy even one of the constraints, all the objective functions
are set to 1010. This way, these individuals are discarded during the selection step. The flow chart of
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the bounded version of the MP-NSGA algorithm is shown in Figure 6b. The algorithm stops after a
given number of generations.Mathematics 2020, 8, 1509 8 of 17 
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Figure 6. Optimization flow chart (a) M-NSGA and (b) MP-NSGA with boundary check.

NSGA-III is able to manage up to 15 objective functions and is based on NSGA-II for the individual
generation and classification of Non-Dominated Sorting levels [53]. The algorithm uses reference
points to preserve diversity. The initial population is formed by N individuals, with being N a multiple
of four larger than H, which is the number of reference points chosen randomly in the design variable
space [54]. After each generation step, the operators’ non-domination sorting and selection of the
reference points are applied to preserve diversity in the population. First, the current minimum of
each objective function is searched for and the scaling factors for each objective function are set to the
current maximum value for each objective function. Maximum values generate a hyperplane where
the reference points are mapped. Each generated individual is assigned to the closer reference point
mapped in the hyper-plane following the procedure in [53] related to niche-preservation. In practice,
if more points are associated with one reference point, only one is chosen to belong to the new Pt+1

population. This process is repeated until N individuals are selected.

3. Results

The optimization problem is solved running MP-NSGA with 20 individuals for 50 generations
and NSGA-III with the same number of individuals and generations. The objective space is
three-dimensional, however, a 3D plot of the results does not allow a good evaluation of the results.
Hence, for the sake of clarity, 2D orthogonal projections of the objective space into f1–f2, f1–f3 and f2–f3

planes, respectively, are done. They are shown in Figures 7–9.
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From Figures 7–9, it can be noted that MP-NSGA is able to better explore the search space than
NSGA-III. This is a typical benefit of the migration operator introduced in MP-NSGA.

On the other hand, however, NSGA-III appears to better approximate the Pareto front, because
there are solutions obtained by MP-NSGA, which are dominated by NSGA-III solutions.

In Table 2, the solutions obtained with the two methods are shown.

Table 2. Solutions obtained with MP-NSGA and NSGA-III.

MP-NSGA NSGA-III

f1 f2 f3 f1 f2 f3

1.91 × 10−3 1.11 × 10−9 5.67 × 10−10 10 1.38 × 10−7 9.8 × 10−10

0.31 6.71 × 10−9 4.00 × 10−10 1.8 8.31 × 10−8 1.14 × 10−9

1.05 × 10−3 1.38 × 10−9 1.22 × 10−9 3.39 9.79 × 10−8 9.92 × 10−10

12.0 1.43 × 10−7 1.28 × 10−9 7.68 1.28 × 10−7 9.71 × 10−10

1.14 3.96 × 10−8 2.41 × 10−9 7.27 1.37 × 10−7 1.04 × 10−9

7.96 1.36 × 10−7 1.01 × 10−9 1.72 7.76 × 10−8 9.25 × 10−10

3.76 8.88 × 10−8 1.15 × 10−9 3.44 9.82 × 10−8 9.37 × 10−10

10.3 1.13 × 10−7 8.66 × 10−10 4.59 1.11 × 10−7 9.61 × 10−10

6.93 1.13 × 10−7 1.30 × 10−9 5.91 1.2 × 10−7 9.71 × 10−10

5.01 3.88 × 10−8 7.66 × 10−10 6.14 1.3 × 10−7 1.04 × 10−9

11.1 1.41 × 10−7 1.13 × 10−9 2.94 9.36 × 10−8 1.06 × 10−9

1.75 5.08 × 10−8 2.02 × 10−9 4.59 1.11 × 10−7 9.74 × 10−10

4.81 1.01 × 10−7 9.39 × 10−10 5.35 1.25 × 10−7 1.07 × 10−9

1.62 4.71 × 10−8 2.07 × 10−9 3.03 9.11 × 10−8 7.29 × 10−10

6.64 1.07 × 10−7 9.38 × 10−10 4.59 1.15 × 10−7 9.80 × 10−10

0.97 1.83 × 10−8 1.63 × 10−9 5.90 1.20 × 10−7 9.71 × 10−10

1.95 6.78 × 10−8 1.00 × 10−9 2.26 9.02 × 10−8 1.10 × 10−9

1.47 4.22 × 10−8 2.34 × 10−9 3.76 1.04 × 10−7 9.71 × 10−10

1.56 3.94 × 10−8 1.90 × 10−9 0.96 5.76 × 10−8 9.22 × 10−10

3.32 7.47 × 10−8 8.85 × 10−10 3.95 1.08 × 10−7 9.69 × 10−10

In the following, an in-depth analysis of the solutions obtained with MP-NSGA is made.
In Figures 10–12, the starting and final solutions are shown; moreover, the prototype and other
reference solutions are highlighted in each picture.
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The points SPL and FPL highlighted in Figures 9–11 are the solutions with the lowest power losses
in the first generation and in the last one, respectively. In Table 3, the values of the design variables and
the relevant objective function values are shown. For the sake of comparison, the prototype proposed
in [37,38] (P point in Figures 7–9) is also reported.
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Table 3. Values of the design variables and objective functions for points P, SPL and FPL (Figures 9–11).

Design
Variable P SPL FPL Objective Function P SPL FPL

x1 [µm] 100 144 140 f1 power losses [W] 1.04 2.36 × 10−2 1.05 × 10−3
x2 [mm] 1.2 1.17 1.24
x3 [µm] 50 33.8 28.9 f2 actuation torque

[Nm] 2.53 × 10−8 7.76 × 10−9 1.38 × 10−9
x4 [µm] 50 34.6 29.2
x5 [µm] 200 178 175

f3 system volume [m3] 1.15 × 10−9 1.16 × 10−9 1.22 × 10−9
x6 [µm] 600 532 485

x7, current [A] 10 1.89 0.35

While in Table 3 the solutions with the lowest power losses of the first and last generations are
shown, in Table 4, the solutions with the highest actuation torque of the first and last iterations are
shown, along with the solutions with the lowest system volume of the first and last iterations. However,
the solution of the first iteration with the lowest system volume, SSV, is, by chance, the same with the
highest actuation torque, SAT.

Table 4. Values of the design variables and objective functions of solutions with highest actuation
torque (SAT and FAT) and lowest system volume (SSV and FSV).

Design
Variable SAT = SSV FAT FSV Objective Function SAT = SSV FAT FSV

x1 [µm] 134 150 50 f1 power losses [W] 9.34 12 0.31x2 [mm] 1.02 1.18 1
x3 [µm] 45.9 25 25 f2 actuation torque

[Nm] 4.8 × 10−8 1.43 × 10−7 6.71 × 10−9
x4 [µm] 75 55 25
x5 [µm] 156 222 300

f3 system volume [m3] 1.07 × 10−9 1.28 × 10−9 4 × 10−10
x6 [µm] 827 300 900

x7, current [A] 55.6 60.1 8.16

The geometry of the three, up to twenty final solutions, FPL, FAT and FSV, is shown in Figure 13.
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4. Discussion

In the past, a bi-objective formulation [37] as well as a tri-objective formulation [38] of the
optimization problem, was proposed and solved by the authors. The bi-objective formulation [34]
reads: having prescribed lower thresholds for holding and actuation torque, given the plate angle
ϕ = 10◦, find the geometry of magnet and conductors, as well as the amplitude of the current pulse,
so that the power loss in the conductors and the magnet volume are both minimized. Moreover, there
were thresholds for the holding torque and for the actuation torque, set to 1 and 0.25 nNm, respectively.
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The tri-objective formulation [35] reads: having prescribed lower thresholds for holding torque
(10−8 Nm) and actuation torque (10−9 Nm), given the mirror position ϕ = 10◦, find the geometry of
magnet and conductors, as well as the current pulse amplitude, such that power loss in conductors
(f 1), weighted material cost (f 2), and excitation system volume (i.e., conductors and magnet, f 3) are
simultaneously minimized in the Pareto sense.

However, both optimization problems were based on a 2D model of the micromirror, while, in this
paper, a 3D model is considered. This improvement allows good accuracy in the solution of the direct
problem. In fact, the geometry of the system is clearly a 3D one due to the different depths of the
device components: only a 3D model is able to accurately simulate the field distribution in the model
and, hence, relevant quantities, e.g., forces and torques. A comparison of the torque calculated by
means of both models (2D and 3D) is made (see the end of Section 2.2); there is an agreement between
the two models, but the 3D model is more reliable because the field distribution in the third dimension
is taken into account.

Moreover, the tri-objective formulation was solved by means of P-EStra, a Paretian Evolution
strategy of lowest order. For each optimization run, only one solution was found. In this paper,
a migration-assisted algorithm (MP-NSGA), which runs with a population of N individuals at a time,
is used; the Paretian solution found is then composed of N = 20 individuals.

Looking at the results, the following comments can be put forward. From Table 3, it can be noted
that the solutions with the lowest power losses are characterized by relatively thick magnets (high
values of magnet thickness x1), and rather thin coils (low values of x4) carrying a low current (low
values of x7). The length of the coils and the distance between them (design variables x5 and x6,
respectively) have values in the middle of the feasible range. From Table 4, it can be noted that the
solutions with a higher actuation torque have thick magnets (high values of magnet thickness x1),
small intercoil distance (low values of variable x6) and high current values (variable x7).

In turn, the dimensions of the coils (design variables x4 and x5, respectively) have values in the
middle of the feasible range.

From Table 4, it can be also noted that the solutions with lowest system volume are characterized
by small magnets and thin coils located close to the magnet (low values of variables x1, x2, x3, x4).
In turn, the coils are larger and quite distant from each other; in fact, variables x5 and x6 do not affect
the system volume calculation. The current in the coils is the maximum possible, given the current
density constraint.

In general, for all the Pareto-optimal solutions identified, it can be noted that short magnets (low
values for magnet length x2) are preferred and the distance between the coils and the magnet (design
variable x3) is kept as small as possible.
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