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Abstract: SPSS model syntax was defined and used to evaluate the individual performance of 49 

linear and non-linear models to fit the lactation curve of 159 Murciano-Granadina does selected for 

genotyping analyses. Lactation curve shape, peak and persistence were evaluated for each model 

using 3107 milk yield controls with an average of 3.78 ± 2.05 lactations per goat. Best fit (Adjusted 

R2) values (0.47) were reached by the five-parameter logarithmic model of Ali and Schaeffer. Three 

main possibilities were detected: non-fitting (did not converge), standard (Adjusted R2 over 75%) 

and atypical curves (Adjusted R2 below 75%). All the goats fitted for 38 models. The ability to fit 

different possible functional forms for each goat, which progressively increased with the number of 

parameters comprised in each model, translated into a higher sensitivity to explaining curve shape 

individual variability. However, for models for which all goats fitted, only moderate increases in 

explanatory and predictive potential (AIC, AICc or BIC) were found. The Ali and Schaeffer model 

reported the best fitting results to study the genetic variability behind goat milk yield and perhaps 

enhance the evaluation of curve parameters as trustable future selection criteria to face the future 

challenges offered by the goat dairy industry. 

Keywords: goodness of fit; linear and nonlinear regression; mathematical modeling; parametric 

models; shape of lactation curve 

 

1. Introduction 

When research involves excessively high costs, researchers may be compulsorily forced to 

perform sample selection procedures [1]. These procedures seek to achieve the highest 

representativity of the population under study in the minimum possible number of effective 



Mathematics 2020, 8, 1505 2 of 21 

 

individuals. Limited samples are a common element of research whose objective is to determine the 

genetic background which regulates the expression of economically important traits. 

The effects of sample size limitation become determinant when traits are obtained after the 

application of functions to model the trends that such traits describe (as happens in milk yield, 

composition or growth, among others). In such circumstances, sample size limitations may not only 

compromise population representativeness, but also may reduce the buffer effect derived from the 

dilution of the loss of information when larger numbers of individuals are considered. In this context, 

the application of general ‘best fitting’ models considered for milk yield standardization and 

composition may become impractical [2]. Hence, it may not be able to represent the reality of the 

populations under study. 

Although numerous empirical linear and nonlinear parametric functions have been considered 

to modelize standardized lactation curves in animal populations at a large scale [3], some functions 

may be preferred over others. Concretely, these functions may differ in regards to their mathematical 

properties, computational complexity, the number of parameters that they comprise, the degree of 

relationship that they present with the main features of a typical lactation cycle or their ability to fit 

a wider range of curves. As a result, best fitting function (model) selection may depend on the higher 

or lesser ability of each certain function to report specific information on the milk yield outcomes of 

a certain individual or population. 

The fitting properties of common models can be regularly consulted across the scientific 

literature from decades ago. However, reaching consensus on a standardized model able to 

accurately fit the maximum number possible of curves, that is, which is able to capture the most of 

the variability for most of the situations found in the field, is a challenging task to accomplish [4]. 

From a scientific perspective, the idea of a general model applied to individual goat lactations 

becomes even more striking, provided that the occurrence odd fitting curves in percentages that reach 

up to 6% in the Murciano-Granadina breed are described by from four (highly selected populations 

in stable environments) to 32 possible theoretical groups when combinations of the signs of the 

parameters of each model are determined in other breeds [2]. 

Contextually, individualized multimodel fitting may improve the outcomes obtained when 

fitting the standardized models to whole populations or samples. This, in turn, may depict the 

situation found in farms rather accurately. However, the process is often time-consuming and 

ineffective, and it may end up reporting inaccurate outcomes for curve shape parameters. 

In an attempt to save these drawbacks, the literature has reported the use of software such as 

Wombat or ASREML with mixed models to automatize the process of issuing equations of lactation 

curves in genetic analyses [5]. Alternatively, statistic software such as SPSS or SAS is readily available 

and can be relatively easily used for the modellization of lactation curves without the need for 

extended specific knowledge [6]. 

Comparing the effectiveness of different models over individual studies may be a difficult task 

to develop, due to the idiosyncratic nature of milk supply modeling [7]. However, mixed models are, 

by definition, linear and can combine population and animal-specific effects. As a result, mixed 

models can be used to model specific data seeking to predict milk yield for a certain animal or herd 

in the unique conditions to which they may be exposed [7]. In this context, the comparative 

evaluation of certain nonlinear random and auto-regressive models [7,8] has been reported to be 

capable of increasing prediction accuracy and especially suitable for short-term milk-yield 

predictions [7]. 

Even if the use of SPSS software (Armonk, NY, USA) does not require extensive knowledge in 

the operators and may help save time, model syntax is not often found or accessible in the literature 

and requires certain computational skills. This framework makes the mechanization of the computer-

based stages of the process difficult, which is not time- or resource-effective. This situation becomes 

even more evident when the latter aim is to implement individualized methods at large-scale 

population levels. 

The description of the methods to perform individualized evaluation of the goodness of fit may 

prevent the occurrence of problems derived from drastically fitting biologically atypical lactation 
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curves to standardized models. As a result, many practical purposes may benefit from the study of 

individual patterns, such as health monitoring, individual feeding, and, especially in recent years, its 

application in breeding and genetic evaluations [9]. 

In these regards, standardized modellization of lactation curves may provide summary 

information, which may be determinant when making management and breeding decisions. That is, 

mathematical parameters determining milk yield prediction, and describing curve scale (initial and 

maximum yields), shape (time of maximum yield and persistence) or its biological/economic 

importance may become suitable candidates to be considered as potential new breeding criteria [10]. 

To this aim, once model syntax for the SPSS software for forty-nine models found in the 

literature to fit lactation curves has been described, the first objective of this paper was to determine 

the explanatory ability and predictive potential of each of the models defined. Second, the outcomes 

of lactation curve shape parameters (peak yield and persistency), model fitting properties and 

parameter estimation were compared in a sample of Murciano-Granadina goat selected to perform 

genotyping studies using Bayesian methods. As a result, the identification of the best fitting model 

for individual lactation curves may enable a more realistic comparison of individual curves and 

parameters. This model may not only better adapt to the mathematical nature described by each 

lactation curve itself, but may consider the particular situation of each animal at the moment such 

animals were evaluated. 

2. Materials and Methods 

2.1. Animal Sample and Sample Selection Process 

The individuals registered in the studbook of the National Association of Breeders of Goats of 

Murciano-Granadina breed (CAPRIGRAN) were ranked, considering the official breeding value for 

milk yield and content that they obtained at the latest genetic evaluation at the time of sampling 

(published in stud catalog in 2015). A total of 159 herdbook-registered (Delgado et al., 2005) 

individuals were considered in the analysis. Animals in the sample belonged to 28 farms in the South 

of Spain, whose records were collected in random periods, from 2005 to 2018. The minimum age in 

the range was 1 year, the Q1 age was 1.24 years, the median age was 1.35 years, the Q3 age was 1.50 

years, and the maximum age was 9.15 years. 

2.2. Milk Performance Standardization 

Murciano-Granadina is a polyestric breed. Its husbandry practices consider two kidding seasons 

each year, with lactation periods ranging from 210 to 240 days [11]. Total milk yield was estimated 

until 210 lactation days and expressed in Kgs as described in Pizarro, et al. [12] following the 

technique applied by CAPRIGRAN, provided the methods proved to be as accurate as the 

Fleischmann method, as suggested in the guidelines in ICAR [13]. 

Milk yield for each goat was computed through real production (RPj) following the equation  

��� = ���� + 30 � ��� + ��� − 30(�� − 2)����

����

���

  

where RPj is real production of the jth goat; P1 is milk yield at first control; n is the number of controls; 

Pij is milk yield in ith control i for jth goat, Pnj is milk yield at the last control for jth goat. 

Official control procedure is described in the Royal Decree Law 368/2005, of 8th April 2005 and 

milk performance recordings were performed at each farm according to the ICAR protocol (AT4, 

AT4T, AT4M, A6, AT6M, or AT6T) chosen by the farmer. The first control and the last, which were 

assessed individually for each goat computing the days (d1) between kidding date (KD) and the date 

of the first control (FC), using the formula d1 = FC − KD, and the days between the penultimate control 

(PC) and the last control (LC), using d2 = LC − PC. 

Lactation yields were then standardized/normalized to provide a reasonably equitable 

comparison of dairy goats with different lactation characteristics as suggested in Norman, et al. [14]. 
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Normalized milk yield per each goat at 210 days was calculated using the formula NPj = d1 P1 + A + B, 

where NPj is the normalized yield for goat j. A and B could be defined as; A =  30 ∑
������

�

����

���
 , � =

 ��� − 30��� − 2��
���������

�
. 

The model used to calculate normalized yields at 210 days is described by ��210 =

 ∑ ��
�������������

�
� ·  �� �������

��� , from which MP210 is the accumulated milk yield until 210 lactation days; 

pldci is milk yield during milk control i; pldci+1 is milk yield in the following milk control and Ii,i+1 is 

the day interval between two consecutive controls. 

2.3. Milk Production Records 

A total of 3107 milk yield control records from 399 lactations (average of 3.91 ± 2.01 lactations 

per goat) belonging to 159 genotyped goats were considered in the statistical analyses. Days from 

parity to first control were, on average, 21.21 ± 13.71. Number of controls per lactation were, on 

average, 4.80 ± 2.86. Parametric assumptions (normality and homoscedasticity) were tested on our 

study sample to determine whether distribution properties could have been biased as a result of the 

process of sample selection. The Shapiro–Francia test routine of the Test and distribution graphics 

package of the Stata Version 15.0 software process was used to test the normality. Levene’s test to 

test variance homogeny of variance across groups (homoscedasticity) of the SPSS Statistics for 

Windows statistical program, Version 25.0. 

2.4. Lactation Curve Models and Curve Shape Parameters 

Forty-nine linear and non-linear models were used to describe the lactation curves for milk yield 

of the 159 considered in this study. The equations for these models are presented in Table S1. Table 

S1 also presents the code that we will use to refer to each model across the manuscript and literature 

referencing works in which every model was applied. Linear and non-linear functions were used to 

model the relationship between milk yield and days in milk. As a way to facilitate the automatized 

application of the models in this study, Table 1 presents SPSS Model syntax. The syntax formulas 

defined in this paper are ready to be copied and pasted in the non-linear regression task from the 

Regression procedure of SPSS version 25.0 [15]. 

Table 1. SPSS models syntax for lactation curve in SPSS. 

Model Name SPSS Model Syntax 

Ali and Schaeffer model (ALISCH) 
b0 + b1 * days + b2 * (days ** 2) + b3 * (lg10 (1/days)) + b4 

* (lg10 (1/days) ** 2) 

Asymptotic Regression, Single 

Exponential decay to an arbitrary 

value (SXPDCY) 

b0 * (1 − b1) ** days 

Asymptotic Regression, Lactation 

modification of Metcherlich Law of 

Diminishing Returns or Exponential 

growth model (METLAW) 

b0 * (1 − b1 * exp (−b2 * days) − (b3 * days))  

Brody (BRODY) b0 * Exp (−b1*days) − b0 * Exp(−b2*days) 

Cappio Borlino, biexponential 

(CAPBOR) 
b0 * days ** b1 * Exp(−b2 * days) 

Cobby and Le Du (COBLDU) b0 *1 − Exp(−b2 * days) − (b1 *days) 

Compound/Exponential Growth 

(CEXPGR) 
b0 * (b1 **days)  

Cubic (CUBIC) b0 + (b1 * days) + (b2 * days **2) + (b3 * days **3) 

Cubic Spline function with one knot 

(CUBSPL) 

b0 + b1 * days + b2 * days ** 2 + b3 * (days) ** 3 + b4 * 

(days − Knot) ** 3 

Curve S (CURVES) Exp (b0 + (b1/days)) 
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Density (DENSITY) (b0 + b1 * days) ** (−1/b2) 

Dhanoa (DHANOA) b0 * days ** (b1 * days) * Exp(−b2 * days) 

Dijkstra (DJKSTR) b0 * Exp(b1 * (1 − Exp (−b2 * days)) b2) − b3 * days 

Exponential decline function or 

Gaines (EDFGAIN) 
b0 * Exp (−b1 * days) 

Gauss (GAUSS) b0 * (1 − b2 * Exp (−b1 * days ** 2)) 

Gompertz (GMPRTZ) b0 * Exp (−b1 * Exp (−b2 * days))  

Grossman (GROSMN) 
b0 * (days ** b1) * Exp(−b2 * days) * (1 + b3 * SIN (days) + 

b4 * Cos (days)) 

Hayashi (HAYSHI) b1 * Exp (−b2/days − Exp (−days/b0 * b2)) 

Inverse quadratic polynomial 

(INVQPOL)  
days * (b0 + (b1 * days) + (b2 * (days ** 2))) ** (−1) 

Inverse, Linear hyperbolic 

(INVLINHY) 
b0 + (b1/days) 

Johnson Schumacher (JOHNSCH) b0 * Exp (−b1/(days + b2)) 

Log Logistic (LOGLOG) b0 − ln(1 + b1 * Exp (−b2 * days)) 

Log Modified Weibull (LGMWEIB) (b0 +(b2 * days)) ** (b1)  

Logarithmic (LOGARITH) b0 + (b1 * ln(days)) 

Madalena (MADALN) b0 − b1 ∗ days 

Michaelis Menten (MICHMEN) 
b1/days * (1 + (b2/210) ** b1)/(1 + (b2/days) ** b1) * (1 + 

(days/b2) * b1) 

MilkBot (MILKBOT) b0 * (1 − (Exp ((b2 * days)/b1))/2) * Exp (−b3 * days) 

Molina and Boschini/Modal Linear 

(MOL & BOS) 
b0 - b1 * Abs(days − (b2)) 

Morgan Mercer Florin (MORMFLO) ((b0 * b1) + (b2 * days ** b3))/(b1 +(days ** b3)) 

Nelder, inverser polynomial, Yadav 

(NELDER) 
days/(b0 + b1 *days + b2 *days ** 2) 

Parabolic exponential and Parabolic, 

Sikka (PEMSIK) 
b0 * Exp ((b1 * days) − (b2 * days ** 2)) 

Parabolic yield-density 

(PARYLDENS) 
(b0 + (b1 * days) + (b2 * (days ** 2))) ** (−1) 

Power (POWER) b0 * (days **b1)  

Quadratic cum log (QDCMLOG) b0 + b1 * days + b2 * days ** 2 + b3 * ln (days) 

Quadratic (QUADRT) b0 + (b1 * days) + (b2 * days**2) 

Quadratic model Dave (DAVE) b0 + b1 * days − b2 * days ** 2 

Quadratic spline function with one 

knot (QUADSPL) 
b0+ b1 * days + b2 * days ** 2 + b3 * (days − Knot) ** 2 

Ratio Cubics/Partial Fraction with 

Cubic Denominator (RATCUB) 

(b0 + b1 *days + b2 *days ** 2 + b3 *days ** 

3)/(b4*days**3) 

Ratio Quadratics/Partial Fraction 

with Quadratic Denominator 

(RATQUAD) 

(b0 + b1 * days + b2 * days ** 2)/(b3 * days ** 2) 

Richards (RICHRDS) b0/((1 + b2 * Exp (−b1 * days)) ** (1/b3)) 

Rook (ROOK) b0 * (1/1 + (b1/b2 + days)) * Exp (−b3 * days) 

Simple Linear (SIMLIN) b0 + (b1 * days) 

Singh And Gopal (SIN&GOP) b0 − b1 * days + b2 *ln (days) 

Third order Legendre orthogonal 

polynomial (3ORDLEG) 

b0 * 0.7071 * (2 * ((days − 1)/(210 - 1)) − 1) ** 0+ (b1 * 1.2247 * (2 * 

((days − 1)/(210 − 1)) − 1) ** 1) + ((b2 * −0.7906 * (2 * ((days − 

1)/(210 − 1)) − 1) ** 0)+ (2.3717 * (2 * ((days − 1)/(210 − 1)) − 1) ** 

2))+ ((b3 * −2.8062 * (2 * ((days − 1)/(210 − 1)) − 1) ** 1)+ (4.6771 

* (2 * ((days − 1)/(210 − 1)) − 1) ** 3)) 
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Verhulst/Logistic differential 

equation/Pearl Reed (VERHLST) 
b0/(1 + b1 * (Exp (−b2 * days))) 

Von Bertalanffy (VBRTLNFY) b0 * (1 − (b1) *(Exp(−b2 * days))) ** 3 

Weibull, Parametric Survival Models 

(PARSURW) 
b0 − (b1 * (Exp (−b2 *(days ** b3)))) 

Wilmink’s exponential (WILMINK) b0 + b1 * Exp (−0.05 * days) + b2 * days 

Wood (WOOD) b0 − b1 * Exp(−0.05 * days) − b3 * days  

Days: days in milk. 

The initial search grid was specified covering the parameter bounds of each model (b0, b1, b2, 

b3 and b4 parameters). An iterative process using the curve estimation task from the Regression 

procedure of SPSS version 25.0 [15] was used. The iterative process considered for as many rounds 

as was necessary until a tolerance convergence criterion of 10−8 was reached, as suggested by other 

authors, as stricter criteria such as 10−6 or 10−8 have been suggested to report the same outcomes out 

of a slightly higher number of iterations [16]. Convergence criterion was defined as the error sum of 

squares between successive iterations. Once determined, initial parameters were pre-set and 

considered to run the mechanized protocols for model fitting. The Levenberg–Marquardt method 

was used as the default iteration method. A maximum of 2000 iteration rounds were used for each 

analysis, as suggested in IBM SPSS Statistics Algorithms version 25.0 by IBM Corp. [17]. Average 

number of rounds to achieve convergence criterion was 3.158 ± 0.682 (μ ± SD). 

2.5. Model Selection Criteria 

As suggested by Tedeschi [18], evaluating model suitability to predict or describe the trends in 

data from the field can only be achieved if several statistical analyses are combined and interpreted. 

The use of only a few techniques may be misleading in selecting the appropriate model in a given 

scenario. Residual values are computed after the result from the difference between observed value 

and predicted values. The Shapiro–Francia test was run on the residuals of each model to determine 

whether they are normally distributed or not. The Durbin–Watson statistic tests the null hypothesis 

that the residuals from an ordinary least-square regression are not auto-correlated against the 

alternative that the residuals follow an auto-regressive process. The Durbin–Watson statistic ranges 

from 0 to 4. The Durbin–Watson test is reliable for sample sizes larger than 15 [19]. Durbin–Watson 

statistics are only suitable for ordered time or spatial series [20]. A value nearer to two indicates non-

auto-correlation, a value near 0 indicates positive auto-correlation and a value near 4 indicates 

negative auto-correlation. The Durbin–Watson test [21] was conducted on the residuals of each model 

(using mean daily yields of each day of lactation) to test for possible first-order autocorrelations 

among residuals. Positive autocorrelations occur when adjacent values of residuals tend to share the 

same sign (positive or negative) more than is randomly possible. The Linear regression test of the 

regression procedure in SPSS version 25.0. provided the Durbin–Watson statistic. 

Among the accuracy and precision criteria suggested by Tedeschi [18], we chose those 

parameters, which were rather appropriate and common for lactation curve model comparison. 

Model selection criteria included percentage of successfully fitted lactation curves (Table 2), RSS, 

MSPE, Adjusted R Squared (Adj. R2), Akaike information criterion (AIC), corrected Akaike 

information criterion (AICc) and Bayesian information criteria (BIC) (Table S3). 
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Table 2. Mean Adjusted coefficient of determination (Adj. R2), Adj. R2 Standard deviations (SD) and 

percentage of successfully fitted lactation curves of the models of lactation curve for milk yield (Kg) 

in goat Murciano-Granadina. 

Model μ Adj. R2 

SD 

Adj. 

R 

Percentage of 

Successfully Fitted 

Lactation Curves 

Ali and Schaeffer model (ALISCH) 0.469 0.236 100.00% 

Asymptotic Regression, Single Exponential decay 

to an arbitrary value (SXPDCY) 
0.143 0.182 73.53% 

Asymptotic Regression, Lactation modification of 

Metcherlich Law of Diminishing Returns or 

Exponential growth model (METLAW) 

0.301 0.210 100.00% 

Brody (BRODY) 0.304 0.214 100.00% 

Cappio Borlino, biexponential (CAPBOR) 0.347 0.223 100.00% 

Cobby and Le Du (COBLDU) 0.276 0.215 100.00% 

Compound/Exponential Growth (CEXPGR) 0.080 0.003 9.80% 

Cubic (CUBIC) 0.440 0.232 100.00% 

Cubic Spline function with one knot (CUBSPL) 0.440 0.232 100.00% 

Curve S (CURVES) 0.137 0.168 100.00% 

Density (DENSITY) NC NC NC 

Dhanoa (DHANOA) 0.345 0.232 100.00% 

Dijkstra (DJKSTR) 0.374 0.201 100.00% 

Exponential decline function or Gaines (EDFGAIN) 0.194 0.182 100.00% 

Gauss (GAUSS) NC NC NC 

Gompertz (GMPRTZ) NC NC NC 

Grossman (GROSMN) 0.424 0.222 100.00% 

Hayashi (HAYSHI) 0.209 0.201 100.00% 

Inverse quadratic polynomial (INVQPOL)  NC NC NC 

Inverse, linear Hyperbolic.(INVLINHY) 0.135 0.163 100.00% 

Johnson Schumacher (JOHNSCH) 0.237 0.211 100.00% 

Log Logistic (LOGLOG) NC NC NC 

Log Modified Weibull (LGMWEIB) NA NA 1.96% 

Logarithmic (LOGARITH) 0.186 0.194 100.00% 

Madalena (MADALN) 0.195 0.182 100.00% 

Michaelis Menten (MICHMEN) NC NC NC 

MilkBot (MILKBOT) NA NA 9.80% 

Molina and Boschini/Modal Linear (MOL & BOS) 0.255 0.194 100.00% 

Morgan Mercer Florin (MORMFLO) 0.275 0.242 100.00% 

Nelder, inverser polynomial, Yadav (NELDER) 0.441 0.233 100.00% 

Parabolic exponential model and Parabolic, Sikka 

(PEMSIK) 
0.331 0.230 100.00% 

Parabolic yield-density (PARYLDENS) NC NC NC 

Power (POWER) 0.178 0.187 100.00% 

Quadratic cum log model (QDCMLOG) 0.420 0.231 100.00% 

Quadratic (QUADRT) 0.210 0.230 100.00% 

Quadratic model Dave (DAVE) 0.328 0.230 100.00% 

Quadratic spline function with one knot 

(QUADSPL) 
0.328 0.230 100.00% 

Ratio Cubics/Partial Fraction with Cubic 

Denominator (RATCUB) 
0.340 0.228 100.00% 

Ratio Quadratics/Partial Fraction with Quadratic 

Denominator (RATQUAD) 
0.246 0.211 100.00% 
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Richards (RICHRDS) NA NA 7.84% 

Rook (ROOK) 0.314 0.233 100.00% 

Simple Linear (SIMLIN) 0.195 0.183 100.00% 

Singh And Gopal (SIN & GOP) 0.338 0.223 100.00% 

Third order Legendre orthogonal polynomial 

(3ORDLEG) 
NC NC NC 

Verhulst/Logistic differential equation/Pearl Reed 

(VERHLST) 
0.210 0.196 100.00% 

Von Bertalanffy (VBRTLNFY) 0.225 0.206 100.00% 

Weibull, Parametric Survival Models (PARSURW) NC NC NC 

Wilmink’s exponential (WILMINK) 0.342 0.227 100.00% 

Wood (WOOD) 0.342 0.227 100.00% 

NC: The model does not converge; NA: Not all animals converged, hence it was not possible to compute it. 

Residual sum of squares (RSS) is a statistical technique used to measure the amount of variance 

in a dataset that is not explained by a regression model. If we consider a regression to be a 

measurement of the strength of the relationship between a dependent variable and an independent 

variable in a set of independent variables, then the RSS measures the amount of error remaining 

between the regression function and the dataset. A smaller RSS figure represents a regression 

function. This essentially determines how well a regression model explains or represents the data in 

the model. 

Additionally, although Mean Square Residual or Error (MSE) have been used and widely 

reported to measure how close a regression line is to a set of points, that is, how well a certain model 

fits the data being observed and Minimum Mean-Square Residual or error (MMSE), mean square 

prediction error or MSPE (=RSS/no. of observations) was chosen to measure error variation given that 

MSE has been reported to be influenced by the number of parameters [22] in cases of reduced sample 

sizes like those in genotyping studies. 

R squared (R2) is a biased measure of the proportion of the variance explained by the model 

(from 0 to 1 = 0 to 100%), as the more terms are added into the model as predictors, the more it 

increases, causing overfitting in models with many parameters as it amplifies the border effect of 

polynomials. Hence, adjusted R squared or modified R squared (Adj. R2) was used given that it 

compensates for such overfitting by penalizing for the number of terms included as predictors. 

The coefficient of determination lies always between 0 and 1, and the fit of a model is satisfactory 

if R2 is close to unity. Contrastingly, negative Adjusted R2 appears when the Residual sum of squares 

approaches to the total sum of squares, which means the explanation towards response is very low 

or negligible. Hence, negative Adj. R2 may mean the insignificance of explanatory variables. 

However, results may be improved as sample size increases. 

The ratio of Adj. R2 to R2 is measured from 0 to 1 and accounts for the likely decrease in model 

fit when a certain model is applied to new data. The higher the ratio of Adj. R2 to R2, the less affected 

by overfitting the model will be. In this context, ideally, Adj. R2 should be as much close to R2 as 

possible for a good fit, which would also mean potential overfitting may have been considered and 

quantified. A ratio from 0 and 0.4 indicates severe overfitting problems. 

Following the premises of information theory, several methods have been described to compare 

models as regards their ability to explain or capture the variability observed in the dataset being 

studied (AIC and AICc) and the predictive potential (BIC) of the model designed for the data being 

modelled. 

Akaike information criterion (AIC), Corrected Akaike information criterion (AICc) and Bayesian 

information criterion (BIC), were calculated as follows 

��� =  ���(�
��

�
) + 2�  

where RSS is the residual sum of squares, N is the number of datapoints and K is the number of 

independent parameters of the model. 
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When a large number of observations (N) is not present, or for models containing a relatively 

large number of parameters, the corrected AICc may be more accurate, however, similar results of 

AIC and AICc are likely to be reported where a high number of observations is studied. AICc should 

be used when N/K < 40. 

���� = ��� + 2�
(� + 1)

�(� + 1)
  

where K is the number of parameters and N is the number of observations. 

Bayesian information criterion (BIC; [23]) is a model-order selection criterion and penalizes more 

complicated models for the inclusion of additional parameters and was computed after 

��� =  � ∗ � �� �
���

�
� + � ∗ ��(�)  

where RSS is the residual sum of squares, N is the number of observations or records and K is the 

number of independent parameters of the model. 

2.6. Bayesian Model Criteria Comparison 

As suggested by Tedeschi [18], the concordance correlation coefficient (CCC) measures if 

predicted values are precise and accurate. CCC is also known as a reproducibility index. According 

to the same authors [18], CCC is based on the Pearson’s correlation coefficient estimate (r), which 

measures precision. Bayesian inference Pearson correlation function was used to characterize the 

posterior distribution of the linear correlation between predicted values of curve shape parameters 

(b0, b1, b2, b3 and b4) across models. 

Additionally, Bayesian inference Pearson correlation function was used to characterize the 

posterior distribution of the linear correlation between curve shape parameters (b0, b1, b2, b3 and b4) 

in the same model. Correlation coefficients were analyzed to determine whether the values of some 

of these curve parameters could be related to other parameters in the curve, especially as model 

complexity increases. Bayesian inference for Pearson correlation was performed using the Pearson 

correlation task from the Bayesian statistics procedure in SPSS Statistics, Version 25.0, IBM Corp. 

(2017). 

A full description of the algorithms used by SPSS to perform Bayesian Inference on Pearson 

correlation in this study can be found in the public document IBM SPSS Statistics Algorithms version 

25.0 by IBM Corp. [17]. Once the relationship between curve shape parameters was determined, we 

evaluated whether model complexity could condition the better fitting properties of some models 

over others. 

Additionally, considering that the size of the sample used in this study was small and sample 

distribution violated parametric assumptions, Bayesian inference for ANOVA was run to test for 

statistical differences in the mean for determination coefficient (scored through Adjusted R2) and 

flexibility selection criteria (AIC, AICc and BIC) across models consisting of two, three, four or five 

regressors. This analysis was aimed at determining whether model complexity was a conditioning 

factor for the best fitting properties of variability capturing ability (Adj. R2), observed data 

explanation (AIC, AICc) and predictive potential (BIC). Smaller numerical values of flexibility 

selection criteria (AIC, AICc, BIC) have been reported to be indicative of better fit properties when 

comparing models. 

As suggested in public document IBM SPSS Statistics Algorithms version 25.0 by IBM Corp. [17], 

Bayesian inference of ANOVA is approached as a special case of the general multiple linear 

regression model. A full description of the algorithms used by SPSS to perform Bayesian Inference 

on Analysis of Variance (ANOVA) in this study can be found in the public document IBM SPSS 

Statistics Algorithms version 25.0 by IBM Corp. [17]. The tolerance value for the numerical methods 

and the number of method iterations were set as a default by SPSS v25.0 [15]. 

First, we interpreted the estimated effect of the factors considered in the predictive models, its 

interval and the posterior distribution statistics. The 95% Credibility Interval shows that there is a 

95% probability that posterior distribution mean value for each factor in the population lies within 
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the corresponding intervals. When 0 is not contained in the Credibility Interval, a significant effect 

for such a factor is detected. 

The Bayes factor (BF) measures the likelihood of null and alternative hypotheses or one model 

versus another based on the prior distribution and the data. It quantifies the change in the likelihood 

given in the prior to the posterior likelihood that is produced by the data. The BF is a measure of the 

strength of the evidence and is used instead of p values (from frequentist approaches) to reach a 

conclusion. A large BF implies that the evidence favours the alternative hypothesis compared to the 

null hypothesis, or of one model over the other. 

Among all the priors suggested by the manual, the Jeffrey–Zellner–Siow mixture of g-priors was 

used for both Bayesian inference on Pearson’s correlations and ANOVA. Jeffrey–Zellner–Siow’s prior 

somehow appears as a data-dependent prior through its dependence on Xi, but this has been reported 

not to be a drawback since regression models are conditional on Xi. As suggested by Heck [24], JZS 

prior could be an alternative that may satisfy several theoretical requirements, such as the equality 

constraint on the test-relevant parameters, for instance β, which leads to the null hypothesis H0 = β = 

β0 [25]. The benefits of JSZ prior distribution were also reported by and Liang, et al. [26]. Contextually, 

conditional on the residual variance (���
� ), the JZS prior defines a multivariate Cauchy distribution for 

the slope parameters of the full model, as follows 

(��|���
� )~���(0�, ��

����
� ��

��),  

which is defined by a P-dimensional zero vector (location vector) and a scale matrix. The constant �� 

determines the amount of scaling, which is chosen by the user a priori, the residual variance ���
� , and 

the matrix ��  =  ��
���/��, which is the covariance matrix of the centred design matrix ��. 

There are several qualities of the JZS prior which make it especially appropriate when 

performing ANOVA. Among others, the prior is symmetric and centered at zero, in line with the 

predictive matching criterion, as reported by Bayarri, et al. [27], hence positive and negative values 

of the slope parameters have a priori the same probability of occuring. Furthermore, JZS prior is scale-

invariant, thus the resulting Bayes factor does not depend on the scale of both the dependent variable 

and factors or covariates, hence the results do not change when different unit variables are evaluated 

together, which is common in field conditions studies. 

This independence from model regressors measurements is achieved by scaling the multivariate 

Cauchy distribution by the residual variance ���
�  (a priori, a larger residual variance implies larger 

slopes) and by the inverse of the covariance matrix �� (a priori, a covariate with a larger variance 

implies smaller slopes). It may be worth considering that the procedure of defining a scaled prior for 

unstandardized coefficients (βi) equals to the process of defining a prior for standardized coefficients 

(��
∗). 

Third, the scale parameter � is fixed to a constant by the user, which allows prior beliefs to be 

specified about the expected effect size. The IBM Corp. [17] algorithm guide reports that the 

algorithm of JZS prior for linear regression analyses, to compute the Bayes Factor uses the default 

value of � =  2√� = 3.5, which reflects a prior belief of a medium effect size. For a single covariate x, 

this choice implies that the standardized regression slope ��
∗  =  �� ·  ��(��)/��  has an a priori 

probability of 53.2% of being in the range [−0.50, +0.50]. 

2.7. Peak and Persistency Computation for Best Fitting Model 

Peak yield and persistency were computed following the premises proposed by the papers 

referenced in Table S1 and were specific to each of the functions considered. When provided with the 

nature of the best fitting model as suggested by statistical analyses, and when the computation of 

peak yield was not possible, change in variable units per event was computed as suggested in Table 

S2 and in Garson [28]. It has to be noted that theoretical definitions of persistency can be very 

different, but we decided to stay as close as possible to the definitions associated to the tested 

functions. Therefore, as Table S2 suggests, persistency could be computed differently depending on 

the model used as follows: descending rate of the curve after the lactation peak, rth relative rate of 

decline at the point halfway between peak yield and end of lactation or instantaneous rate of change. 
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When no specific function for these parameters was found in the literature, Symbolab® Mathematical 

calculation tool for education was used to determine relative maxima (peak yield) and descending 

rates in the curve depending on the model fitted (persistency). 

3. Results 

Table S4 shows a summary of the descriptive statistics for milk yield (Kg) records considered in 

this study, while Figure 1 shows a graphical representation of the evolution of milk yield through 

lactation across lactations (form first lactation to ninth lactation). The variation coefficient for milk 

yield (Kg) reported a value of 42.31%. Table 2 shows a summary of adjusted coefficients of 

determination (Adj. R2) of the models for milk yield (Kg) lactation curve fitting in Murciano-

Granadina goat. Adj, R2 for the model reporting the best ability to capture variability was 0.469 for 

the model of Ali and Schaeffer model (ALISCH), while the minimum for Adj. R2 values (0.80%) were 

reported for Compound/Exponential Growth (CEXPGR). Additionally, all goats converged for 

ALISCH, while the minimum fraction of goats converging for a specific model was 9.80% for 

CEXPGR (Table 2). 

 

Figure 1. Graphical representation of the evolution of milk yield (Kg) through lactation from first, 

second, third and fourth or later lactations in Murciano-Granadina goats. 

Parametric assumptions (normality, Shapiro–Francia test p < 0.05) and homoscedasticity, 

Levene’s test, p < 0.05 across groups) were violated in our study dataset, hence we opted for the use 

of a nonparametric statistical alternative. As the sample used in this study was small, Bayesian 

analyses were run in an attempt to preserve model accuracy and power of the techniques applied. 

Additionally, the Shapiro–Francia test was performed to test for residuals’ normality, reporting 

statistically significant results for all fitted models (p < 0.001). Thus, residuals were not normally 

distributed. The Durbin–Watson statistic showed that all values were within the range of 0 to 2; thus, 

the residuals of all models were positively autocorrelated. The run test in our study indicated that 

the residuals of all models were not independent. These results are consistent with the earlier studies 

reported by Mohanty, et al. [29] 
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Table S3 shows a summary of the model curve shape parameters (b0, b1, b2, b3 and b4), number 

of model regressors, measures for model fit and flexibility selection criteria computed through 

residual sum of squares (RSS), mean square prediction error (MSPE), variability explanation power 

through Akaike Information Criterion (AIC) and Corrected Akaike Information Criterion (AICc) and 

Predictive power through Bayesian Information Criterion of the models that were used to fit 

Murciano-Granadina lactation curves. Almost all models reported a value for b0 around 2 as shown 

in Table S3, except for those implying a higher computational complexity, which, in fact, may have 

conditioned their better explicative and predictive potential (CURVS, CUBSPL, DJKSTR, INVQPOL, 

HAYSHI, LOGLOG, MILKBOT, NELDER, PARYLDENS, RATCUB, RATQUAD, ROOK, VERHLST, 

VBRTLNFY and 3ORDLEG). 

Concretely, DENSITY, GAUSS, GMPRTZ, IVNQPOL, LOGLOG, MICHMEN, PARYLDENS, 

PARSURW and 3ORDEG failed to converge, hence no Adj. R2 is reported for them. When b0 shape 

parameter came close to 0, flexibility selection criteria slightly increased. However, when the values 

for b0 highly differed from 0 in absolute value, a higher poor ability to explain and predict was 

suggested as shown in Table S3. With only a few exceptions, values for b1, b2, b3 and b4, were 

maintained around 0, except for the models that were reported above to have highly increased or 

highly decreased values of b0. Table S4 shows a summary of Bayesian inference Posterior Mean 

Distribution for Pearson’s correlations between curve shape parameters (b0, b1, b2, b3, b4 and knot) 

across models. 

The correlations between curve shape parameters (b0, b1, b2, b3 and b4), are presented in Table 

3. A moderate evidence for the correlation between b0 and b1 and b3 was suggested by Pearson 

correlation Bayesian inference analysis (Table 3). However, the values for these correlations were 

negative and low. Higher positive and negative correlations were anecdotally evidenced between b2 

and b4, respectively. 

Table 3. Bayes factor inference on pairwise correlations among lactation curve parameters. 

Parameters b0 b1 b2 b3 b4 

b0 
Pearson Correlation 

1 
−0.017 0.256 0.031 −0.317 

Bayes Factor 8.709 2.453 5.263 2.644 

b1 
Pearson Correlation −0.017 

1 
−0.047 0.039 −0.401 

Bayes Factor 8.709 7.533 5.243 2.451 

b2 
Pearson Correlation 0.256 −0.047 

1 
0.040 −0.580 

Bayes Factor 2.453 7.533 5.093 1.907 

b3 
Pearson Correlation 0.031 0.039 0.04 

1 
0.999 

Bayes Factor 5.263 5.243 5.093 0.037 

b4 
Pearson Correlation −0.317 −0.401 −0.58 0.999 

1 
Bayes Factor 2.644 2.451 1.907 0.037 

Additionally, moderate evidence of correlation was found for b1 and b2 and b3 (though the 

value for these correlations were close to zero, almost equal in regards their significant value, but 

contrastingly, differed in sign, with b1 and b2 correlation being negative and b1 and b3 correlation 

being positive. The correlation between b1 and b4 was highly negative, but in this case, correlation 

found was only anecdotal. Correlation between b2 and b3 was moderately evidenced but poor, while 

correlation between b2 and b4 was anecdotally evidenced but highly negative. Contrastingly, there 

was anecdotal evidence of the lack of existence of a very high, almost complete correlation between 

b3 and b4. 

Table 4 shows a summary of Bayesian ANOVA to test for differences in the mean for Adjusted 

R2, AIC, AICc and BIC across models comprising two, three, four or five regressors. Significant 

differences were found for the mean of adjusted determination coefficient and flexibility selection 

criteria (AIC, AICc and BIC), when models comprised two, three, four or five regressors. An 

increasing trend was described with each element added to the model (0.10 to 0.12 points higher each 

time a new element was included). As regards flexibility selection criteria, the explicative and 
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predictive potential of models increased as the number of regressors considered in models decreased. 

However, the poorest values were reported for models involving three regressors (two plus the 

intercept). A poorer explicative and predictive performance was reported by models comprising an 

even number of regressors as opposed to those comprising an odd number of regressors. 

Table 4. Summary of Bayesian ANOVA to test for differences in the mean for Adjusted R2, AIC, AICc 

and BIC across models comprising two, three, four or five parametric regressors. 

 Adjusted 

R2 
AIC AICc BIC 

Sum of Squares 0.206 181.408 181.309 181.376 

df 3 3 3 3 

Mean Square 0.069 60.469 60.436 60.459 

F 5.792 0.427 0.426 0.427 

Sig. 0.002 0.735 0.735 0.735 

Bayes Factor 6.141 0.008 0.008 0.008 

2 regressors models Posterior 

Mean 
0.152 64.936 69.510 62.173 

2 regressors model 95% CI 0.079–0.226 
56.927–

72.944 

61.501–

77.519 

56.872–

72.888 

3 regressors models Posterior 

Mean 
0.266 68.766 73.337 68.713 

3 regressors model 95% CI 0.214–0.318 
63.643–

73.888 

68.214–

78.459 

63.591–

73.835 

4 regressors models Posterior 

Mean 
0.273 64.635 69.205 64.583 

4 regressors model 95% CI 0.203–0.342 57.39–71.879 61.961–76.45 
57.339–

71.826 

5 regressors models Posterior 

Mean 
0.418 64.928 69.498 64.878 

5 regressors model 95% CI 0.308–0.529 
52.914–

76.941 

57.484–

81.511 
52.865–76.89 

ALISCH was the best model not only with respect to its ability to capture population variability 

but also with regards to its explicative and predictive potential; this contrasts with our results for the 

comparison across the 49 models, as ALISCH involved five regressors, hence a higher parametric 

complexity could be presumed (Figure 2). This better performance could be attributed to the inclusion 

of logarithms in the model, as it was also reported for other models tested such as SIN and GOP, 

which, despite reporting a lower adjusted determination coefficient, presented a close value of 

flexibility selection criteria to those of the best fitting and performing models. In this case, model 

parametric complexity involved three regressors, which Table 4 had suggested to be the worst 

performing models on average with respect to explicative and predictive potential. Table 5 shows a 

summary of posterior distribution statistics and 95% credibility interval for milk yield (kg), peak yield 

and persistency. 
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Figure 2. Graphical representation of the evolution of milk yield (Kg) and Ali and Schaeffer (ALISCH) 

model fit in Murciano-Granadina. 

Table 5. Bayesian Posterior distribution estimates for milk yield (Kg), peak and persistence calculated 

for Ali and Schaeffer model (ALISCH) model in Murciano-Granadina goats. 

Parameter 
Posterior 95% Credible Interval 

Mode Mean Variance Lower Bound Upper Bound 

Milk yield (Kg) 12.456 12.473 0.103 11.859 13.118 

Peak 1311.836 1715.477 535,065.904 811.295 3561.277 

Persistence (b1) 0.031 0.040 0.000 0.019 0.083 

Persistence (b2) 0.000 0.000 0.000 0.000 0.000 

4. Discussion 

The relationship between variation and determination coefficient has been vaguely addressed 

in the literature. In these regards, in the linear dependence sense and in the context of our study, 

when the coefficient of determination is about 0.01, this means that only 1% of the variance in a 

measurement for milk yield could be explained by variation in time. The coefficient of variation (CV) 

shows the extent of variability in relation to the mean of the population [30]. Hence, if the ALISCH 

model reported an Adj. R2 value of 46.90% in the context of a value of 42.31% for variation coefficient 

for milk yield, we could infer that ALISCH model may capture all the variability that may be 

attributed to the evolution of milk yield in time, plus around 4% of linear dependence with other 

factors. This may support the better explicative and predictive potential reported for this model when 

compared to the 48 models remaining. Still, our results provide slightly lower values for Adj. R2 than 

other authors [2], which may be ascribed to the properties and characteristics of the sample that was 

used. 

As suggested by Table 2, lower values of Adj. R2 are related to lower percentages of successfully 

converging goats. Although ALISCH model could be considered a parametric complex model, due 

to the number of regressors that it comprises, our results suggest that the inclusion of logarithmic 

forms in the formula may somehow promote the adaptation of lactation curves described by each 

goat individually to the properties of the model, which may result in the improvement in the 

variability capturing ability of these models when compared to the rest. 
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González-Peña, et al. [2] suggested Ali and Schaeffer (ALISCH) [31] third-order Legendre′s 

orthogonal polynomial (3ORDLEG) can detect or identify nine to fourteen curve shapes. Higher 

values for the correlations between estimated curve shape parameters values were reported when 

the Ali-Schaeffer model was compared to Legendre’s polynomials. Thus, the differences across curve 

shapes that were identified when five-parameter models were applied could indeed be regarded as 

modifications of normal or abnormal curves, which are the two most frequent main forms of curve 

shape reported in the literature. 

Brotherstone, et al. [32] comparatively evaluated the performance to model for random effects 

of orthogonal Legendre polynomials, the ALISCH function and two variations of the WILMINK 

function. These authors reached the conclusion that, independent of the conditioning phenotypical 

effect to be expected after the modelling features of each model and their fitting performance, the 

function used influences the estimates of genetic parameter for milk production. The same authors 

addressed the parametric functions of ALISCH and WILMINK, which were the ones reporting the 

best fitting capacity, even in the context of the negative correlations that were found between test-

days at the beginning and the end of lactation. High values (Adj. R2 34.2%) were reported for 

Wilmink’s exponential (WILMINK) function in the context of our results, with all goats successfully 

converging for the model. This may suggest that not only do the logarithmic forms included in 

computational methods promote model fit, but exponential forms also do. 

Contrastingly, other authors such as [33] suggested that the fitting properties of orthogonal 

Legendre polynomials overcame those of ALISCH [31] and WILMINK functions to model random 

effects. 

According to [34], the theoretical basis which supports these disagreeing results relies on the fact 

that model fit may be counteracted by a higher predictive and/or explicative error, given that, when 

using third-, fourth- or higher order polynomials to model, random regression models report erratic 

and implausible estimates of variance components, as a result of genetic parameters. This event is 

especially promoted when limited and/or unbalanced data are considered in modelling studies. For 

instance, when animals belonging to different age ranges unequally contribute to the dataset and/or 

when few records per animal are present in analyses in which the animals have fewer records than 

the order of the polynomials considered to model the records. 

In line with these results, authors such as Pool and Meuwissen [35] suggested differences in 

regards to the goodness of fit depending on the order of the polynomial considered. This may be 

tightly related to the number of parameters estimated per animal but may also be limited by the 

computing capacity of the model used. Contextually, incomplete lactation records and heterogeneous 

milk yield variances may, therefore, require models with a higher parametric complexity (fifth-order 

of fit, etc.). 

Spline functions can act as alternatives that can help reduce to the polynomials’ degree. For this 

reason, spline functions have often been called segmented polynomials. Spline functions combine 

single segments of polynomials of low degree, which merge together in specific points which are 

called knots. Among the particularities of spline functions, they can be modeled using different bases 

which helps to minimize multicollinearity (depending on the method used), can be estimated easily 

given their linearity concerning the parameters that they involve, and are also easily and simply 

biologically interpretable. 

Although our results for spline functions (QUADSPL and CUBSPL with one knot) reported 

among the highest values (44.0%) for the ability to capture variability (Adj. R2), they did not 

outperform ALISCH model [31] in these regards. Thus, as flexibility selection criteria (AIC, AICc and 

BIC) were negligibly lower for CUBSPL with one knot, than for ALISCH or QUADSPL, respectively, 

the ALISCH model was still preferable when individualized lactation curves were to be fitted, due to 

their better ability to capture variability. 

Ducrocq, et al. [36] suggested that the LGMWEIB model reported an overall adequate goodness 

of fit for the length of productive life data. However, some models reported an inadequate 

performance for records for which the 305 Mature Equivalent Milk Production (305ME) was not 

known. The same authors suggested this drawback should be easy to correct, as 305ME records can 
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be approximately predicted from early lactation tests. Additionally, Ducrocq, et al. [36] would also 

state that when such a correction is not feasible, for instance in cases of extremely short lactations, the 

corresponding length of productive life records should be assumed to be censored at the end of the 

previous lactation. These findings may support our results provided that the model did converge, 

but it did not reach good fitness values, which could be attributed to our reduced sample size and 

the specific characteristics of the lactations comprised in our study. 

Gayawan and Ipinyomi [37] suggested, that in cases in which different models are chosen, a 

comparison of the ability of the competing models to reproduce the empirical data reveals that 

models chosen by R2, are able to reproduce the data more appropriately than others, however, 

frequently, these models tend to be the most parametrically complex ones. This property would be 

completely extensible to Adj. R2, in cases such as those, in which the model only uses one independent 

factor or covariate (days in milk). 

Macciotta, et al. [9] suggested that problems related to the existence of different lactation curve 

shapes are usually neglected or solved drastically by considering shapes markedly different from the 

standard as biologically atypical. These authors reported that the meaning of parameters and the 

range of their values and of their correlations are clearly different among groups of curves. Our 

results suggest that curve parameters and their biological interpretation (peak yield and persistency) 

may as well vary across models, as computational methods have been addressed as different in the 

literature and as suggested in Table S2. 

Additionally, our results contrast with those found in the literature for other species. For 

instance, the biological idiosyncrasies (time to peak, peak yield, number of peaks across lactation, 

total yield, value of persistence, among others) of the lactation of the different dairy species may 

condition the best fitting properties of certain models over the rest. For instance, cattle for which good 

outputs have been reported when the MILKBOT model was fitted [38], sheep and donkeys for which 

WOOD model has been suggested to fit well [39] and camels [40] for which the best model fit was 

found for fourth-order polynomials. Still, papers usually test the fitness ability of reduced numbers 

of models that have commonly been used in the literature. Hence, no direct comparison can possibly 

be made, as even if such models perform well, there is a lack of evidence of other potential models 

reporting better or worse results. 

The literature suggests that the analysis of relationships between mathematical properties of 

models and lactation patterns should not only focus on the evaluation of fitting performances [9], as 

curve modeling usually deals with data of homogeneous groups of animals, and almost all proposed 

functions were able to fit average patterns at a more than acceptable level of accuracy. Contrastingly, 

two main issues may arise when a wide polymorphism can be found in regards to the specific curve 

shape parameters for each animal. 

The first concern is the biological basis for the occurrence of different shapes or whether they 

may be conditioned by random perturbations like missing records or outliers. The second concern is 

related to the eventual differences that may occur both in the range of parameter values and in their 

mathematical interpretation when the same function is fitted to curves with different shapes. 

Contextually, Macciotta, et al. [9], in their study of the second derivative of the Wood (WOOD) 

function, reported that the absolute value of the b parameter may control the magnitude of the 

deviation of the lactation pattern from a straight line. When b is positive, the curve is concave while 

when b is negative, it is convex. In standard curves, larger values of b may be related to a more rapid 

rate of increase of estimated yields in the first part of lactation, whereas in atypical curves increasing 

values of b may result in a reduced rate of decline in this phase. 

Macciotta, et al. [9] also suggested that correlations may show higher absolute values for 

standard curves, resulting in a larger impact of b (b1 in our study) variations in the c (b2 in our study) 

parameter. These figures underline differences in the meaning of b (b1 in our study), hence its 

relevance in the determination of the atypical or typical nature of the curves fitted or the specific 

computation of the biological relationship between b and c and peak yield or persistency. 

In models like WILMINK, a scaling factor which acts as a constant is included in both groups. 

Afterwards, differing between standard or typical curves and atypical curves, is the behavior of this 
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exponential term b(kt). The exponential term b(kt) increases in typical curves and decreases in 

atypical ones. As a result, the curve shape parameter b (represented by b1 in our study), with its 

asymptotic value for t being equal to 0, controls the rate of variation in the variable that we would 

like to measure (either it is milk yield or any of the components) in the first half of the curve, even 

when higher absolute values of b1 may indirectly result in faster increasing (or decreasing) rates. 

Finally, the c parameter (b2 in our study, which quantifies the slope of the straight line ct), is 

directly related to the rate of decline in the second half of the curve (persistency of lactation or 

composition). 

Low correlations between b1 and b2 (b and c), which describe both halves of the curve, revealed 

a substantial independence between the first and second part of the curve regardless of the type of 

curve considered (typical/standard and atypical curves). Contextually, the degree of independence 

between both halves of the curve across models is found in those differences, in which the basis for a 

greater or lesser ability to detect the standard curve could be supported. 

Such differences in the ability of models to describe different lactation curve shapes was reported 

by Landete-Castillejos, et al. [41]. In line with their results, correlation values reported by our analyses 

may be supported by those in the study by Macciotta, et al. [9] as moderate evidence for the 

correlation between b0 (a) and b1 (b) and b3 (d) was suggested. However, the values for these 

correlations were negative and low. Higher positive and negative correlations were anecdotally 

evidenced between b2 (c) and b4 (e), respectively. Additionally, moderate evidence of low negative 

and positive correlations were found for b1 (b) and b2 (c) and b3 (d), respectively, which may also be 

supported by the aforementioned literature. 

This framework suggests that two different kinds of complexity should be considered. On the 

one hand, parametric complexity or the number of effective parameters as an increasing trend (0.10 

to 0.12 points higher each time) was observed to occur with each new element added to the model. 

On the other hand, the computational complexity (inclusion of operator different to the mere 

inclusion of the variables themselves) may mean increases in Adj. R2 ranging from 0.10 to 0.30, when 

base 10 logarithms or exponential regressors are comprised in the models being fitted. 

As regards flexibility selection criteria, the explicative and predictive potential of models 

decreased (AIC, AICc and BIC increased), as the number of regressors considered in models 

decreased (worst in parametric simpler models). However, the poorest values were reported for 

models involving three regressors (two plus the intercept) when compared to those models 

presenting less than three or over three parameters. This suggests that the model fitting decrease as 

a result of simpler models being used may be counteracted by the inclusion of complex computational 

regressors in the formulas. Simultaneously, a poorer explicative and predictive performance was 

reported by models comprising an even number of regressors as opposed to those comprising an odd 

number of regressors, but these may be attributed to random effects, as no reference has been found 

in these regards. 

Relative predictive potential (assessed using Bayesian Information Criterion (BIC)) has been 

reported to be heavily dependent on the degree of unobserved heterogeneity between datasets, hence 

if heterogeneity is large, BIC will often perform better, due to the stronger penalty afforded [42]. 

Contrastingly, when heterogeneity is small, AIC or AICc will likely perform better. 

Alternatively, our results that suggest values of AIC, AICc and BIC, due to their direct 

relationship with RSS and the number of observations/animals and parameters (through their cross 

relation as participating factors in their definition formulas), are normally attained to a similar 

proportional variation, and hence should not be determinant of a distinct model performance in 

regards to explicative or predictive potential. This could be attributed to individualized curve model 

fitting, as the specific treatment of the data belonging to each specific animal may mean the 

explication of intraindividual variability is maximized as much as possible in the context of the 

observations available for that particular animal. 

As suggested by Brewer, et al. [42], the objective of the penalties implied by the flexibility 

selection criteria (AIC, AICc and BIC) is to reduce the effects of overfitting derived from the inclusion 

of a larger number of parameters. The same authors also reported that the penalty may be stronger 
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for BIC than AIC for any reasonable sample size. However, for small n, a corrected version AICc may 

provide a stronger penalty than AIC for smaller sample sizes, and stronger than BIC for very small 

sample sizes. 

Since AICc is reported to have better small-sample behaviour, Burnham and Anderson [43] 

recommended the use of AICc as standard. The effect of a stronger penalty on the likelihood is to 

select smaller models, and so BIC tends to choose smaller models than AIC, and AICc also chooses 

relatively small models for smaller sample sizes. In consequence, BIC may tend, in realistic situations, 

to select models that are too simple (that is underfitted). This agrees with our results, although the 

relationship between complexity and flexibility selection criteria may not be strictly linear and may 

instead depend on the concepts of both computational and parametric complexity, with rather 

complex formulas acting as buffers for the decrease in the number of curve shape parameters. 

In this context, ALISCH was the best model not only in respect to its ability to capture population 

variability, but also in regards to its explicative and predictive potential. This should be highlighted 

in the context of our results, as ALISCH involved five regressors, hence a higher parametric 

complexity could be presumed. As has been discussed above, the better performance of ALISCH 

could be attributed to the inclusion of logarithms in the model (higher computational complexity) 

rather than to the inclusion of a larger number of parameters, as was also reported for other models 

such as SIN and GOP. For instance, despite SIN and GOP reported a slightly lower adjusted 

determination coefficient, it presented a close value of flexibility selection criteria to those by best 

fitting and performing models (ALISCH among others). In this case, SIN and GOP parametric 

complexity involved three regressors, which Table 5 had suggested to be the worst-performing 

models in regards explicative and predictive potential. 

Parametric complex models may benefit from the inclusion of logarithmic forms in their 

functions as this practice may promote the adaptation of lactation curves described by each goat 

individually to the properties of the model. In these contexts, spline functions (QUADSPL and 

CUBSPL with one known) do not outperform the ALISCH model. In the first 30–45 days of lactation, 

milk is often suckled by kids, then the first useful functional control can occur after the lactation peak 

or very close to it. Furthermore, goats are generally bred in extensive or semi-intensive systems. 

Under these conditions, the occurrence of a double peak, due to the high availability of pasture in the 

spring, has been widely reported [44]. Therefore, the relationship of early segments of goat lactations 

to total lactation milk yield has a high predictive value: for the first 69 days 68%, for 100 days of 87%, 

and for 140 days into lactation of 96%. 

5. Conclusions 

Parametric complex models may benefit from the inclusion of logarithmic forms in their 

functions as this practice may promote the adaptation of lactation curves described by each goat 

individually to the properties of the model. In these contexts, spline functions (QUADSPL and 

CUBSPL with one know,) do not outperform ALISCH model. Adj. R2 may be the best model selection 

parameter to consider especially in cases in which the model only uses one independent factor or 

covariate (days in milk). The differences between specific computational methods should be used to 

compute peak yield and persistency, which directly depend on curve shape parameters. Substantial 

independence between the first and the second part of the curve could be the reason for the larger 

number of standard curves detected across models. The relationship between complexity and 

flexibility selection criteria may not be strictly linear and may rather depend on the concepts of both 

computational and parametric complexity, with rather complex formulas acting as buffers for the 

increase in the number of curve shape parameters. The ALISCH model be preferable in studies in 

which reduced samples are used, and individualized automatized study of lactation curves for goat 

milk is performed, as it may capture all the variability that may be attributed to the evolution of milk 

yield in time, plus around 4% of linear dependence with other factors. 

Supplementary Materials: The following are available online at www.mdpi.com/2227-7390/8/9/1505/s1, Table 

S1: Lactation curve model equations and where to find them in literature; Table S2: Peak yield and persistence 

estimates for each lactation curve model for milk yield and where to find them in literature; Table S3: Summary 
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of model curve shape parameters (b0, b1, b2, b3, b4 and knot), number of regressors and flexibility selection 

criterion (RSS, AIC, AICc and BIC) for linear and non-linear models for milk yield in Murciano-Granadina goats; 

Table S4: Summary of descriptive statistics for milk yield (Kg) in the Murciano-Granadina goat breed; Table S5: 

Bayesian inference Posterior Mean Distribution for Pearson’s correlations between predicted values of curve 

shape parameters (b0, b1, b2, b3, b4 and knot) across models. 
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