
mathematics

Article

An Efficient and Accurate Method for the
Conservative Swift–Hohenberg Equation and Its
Numerical Implementation

Hyun Geun Lee

Department of Mathematics, Kwangwoon University, Seoul 01897, Korea; leeh1@kw.ac.kr

Received: 21 August 2020; Accepted: 2 September 2020; Published: 4 September 2020
����������
�������

Abstract: The conservative Swift–Hohenberg equation was introduced to reformulate the phase-field
crystal model. A challenge in solving the conservative Swift–Hohenberg equation numerically is
how to treat the nonlinear term to preserve mass conservation without compromising efficiency and
accuracy. To resolve this problem, we present a linear, high-order, and mass conservative method by
placing the linear and nonlinear terms in the implicit and explicit parts, respectively, and employing
the implicit-explicit Runge–Kutta method. We show analytically that the method inherits the mass
conservation. Numerical experiments are presented demonstrating the efficiency and accuracy of
the proposed method. In particular, long time simulation for pattern formation in 2D is carried out,
where the phase diagram can be observed clearly. The MATLAB code for numerical implementation
of the proposed method is provided in Appendix .

Keywords: conservative swift–hohenberg equation; linear method; high-order time accuracy;
mass conservation; fourier spectral method

1. Introduction

The phase-field crystal (PFC) model describes the microstructure of two-phase systems on
atomic length and diffusive time scales and has been used to study grain growth, dendritic and
eutectic solidification, and epitaxial growth [1,2]. The PFC model is the H−1-gradient flow for the
Swift–Hohenberg (SH) energy functional [3]:

E(φ) :=
∫

Ω

(
Φ(φ)− |∇φ|2 + 1

2
(∆φ)2

)
dx, (1)

where Ω is a domain in Rd (d = 1, 2, 3), φ is the density field, Φ(φ) = 1
4 φ4 − g

3 φ3 + 1−ε
2 φ2, and g ≥ 0

and ε > 0 are positive constants with physical significance.
Recently, conservative SH equations were introduced to reformulate the PFC model [4,5]. In [4],

Zhang and Yang derived the following equation:

∂φ

∂t
= −

(
Φ′(φ) + 2∆φ + ∆2φ

)
+ β̃(t), (2)

where β̃(t) is a nonlocal Lagrange multiplier and β̃(t) = 1
|Ω|
∫

Ω Φ′(φ(x, t)) dx, and developed a
second-order energy stable scheme by combining the invariant energy quadratization idea with the
stabilization technique. However, the scheme involves solving a linear system with complicated
variable coefficients. In [5], Lee introduced the following equation:

∂φ

∂t
= −

(
Φ′(φ) + 2∆φ + ∆2φ

)
+ (Φ(φ))r β(t), (3)

Mathematics 2020, 8, 1502; doi:10.3390/math8091502 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/8/9/1502?type=check_update&version=1
http://dx.doi.org/10.3390/math8091502
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 1502 2 of 10

where (Φ(φ))r β(t) is a nonlocal and local Lagrange multiplier and β(t) =
∫

Ω Φ′(φ(x,t)) dx∫
Ω(Φ(φ(x,t)))rdx ,

and proposed mass conservative first- and second-order operator splitting methods. However, the
methods lead to the necessity nonlinear equations to be solved at each time step thus require an
iterative solver for solving the nonlinear equations.

Therefore, the aim of this paper is to present an efficient and accurate method that preserves mass
conservation for solving the conservative SH Equation (3). We place the linear and nonlinear terms in
the implicit and explicit parts, respectively, where an extra linear stabilizing term is added to improve
the stability while preserving the simplicity. And we employ the implicit-explicit Runge–Kutta (RK)
method [6]. As a result, our method is linear, high-order accurate in time, and mass conservative.
We show analytically that the method inherits the mass conservation. In addition, the Fourier spectral
method [5,7–10] is used for the spatial discretization. The MATLAB code for numerical implementation
of the method in 2D is provided in Appendix A.

This paper is organized as follows. In Section 2, we construct the linear, high-order, and mass
conservative method and show analytically that the method inherits the mass conservation.
Numerical examples showing the efficiency and accuracy of the proposed method are presented
in Section 3. Finally, conclusions are drawn in Section 4. In Appendix A, we provide the MATLAB
code for numerical implementation of the proposed method in 2D.

2. Linear, High-Order, and Mass Conservative Method

For simplicity and clarity of exposition, we consider Equation (3) in one-dimensional space
Ω = [0, L] with a periodic boundary condition:

∂φ(x, t)
∂t

= −
(

Φ′(φ(x, t)) + 2
∂2φ(x, t)

∂x2 +
∂4φ(x, t)

∂x4

)
+ (Φ(φ(x, t)))r β(t), (4)

where β(t) =
∫

Ω Φ′(φ(x,t)) dx∫
Ω(Φ(φ(x,t)))rdx . Two- and three-dimensional cases are defined analogously. Let M

be a positive integer, ∆x = L
M be the space step size, and ∆t be the time step size. Let φn

m be an
approximation of φ(xm, tn), where xm = m∆x for m = 0, 1, . . . , M − 1 and tn = n∆t. The discrete
Fourier transform and its inverse transform are

φ̂k =
M−1

∑
m=0

φme−ixmξk (5)

and

φm =
1
M

M−1

∑
k=0

φ̂keixmξk , (6)

where ξk =
2πk

L .
To develop a linear, high-order (up to third-order), and mass conservative method for solving

Equation (4), we treat −
(

sφ(x, t) + 2 ∂2φ(x,t)
∂x2 + ∂4φ(x,t)

∂x4

)
implicitly and − (Φ′(φ(x, t))− sφ(x, t)) +

(Φ(φ(x, t)))r β(t) explicitly, where s is a non-negative number, and employ the implicit-explicit RK
method. First- (S1), second- (S2), and third- (S3) order methods are as follows:



Mathematics 2020, 8, 1502 3 of 10

S1 : φn+1
m = φn

m + ∆t
(

p(φn+1
m ) + q(φn

m)
)

, (7)

S2 : φ
(1)
m = φn

m + ∆t
(

γp(φ(1)
m ) + γq(φn

m)
)

, (8)

φn+1
m = φn

m + ∆t
(

γp(φn+1
m ) + (1− γ)p(φ(1)

m ) + (1− δ)q(φ(1)
m ) + δq(φn

m)
)

, (9)

S3 : φ
(1)
m = φn

m + ∆t
(

1
2

p(φ(1)
m ) +

1
2

q(φn
m)

)
, (10)

φ
(2)
m = φn

m + ∆t
(

1
2

p(φ(2)
m ) +

1
6

p(φ(1)
m ) +

1
18

q(φ(1)
m ) +

11
18

q(φn
m)

)
, (11)

φ
(3)
m = φn

m + ∆t
(

1
2

p(φ(3)
m ) +

1
2

p(φ(2)
m )− 1

2
p(φ(1)

m )

+
1
2

q(φ(2)
m )− 5

6
q(φ(1)

m ) +
5
6

q(φn
m)

)
, (12)

φn+1
m = φn

m + ∆t
(

1
2

p(φn+1
m ) +

1
2

p(φ(3)
m )− 3

2
p(φ(2)

m ) +
3
2

p(φ(1)
m )

−7
4

q(φ(3)
m ) +

3
4

q(φ(2)
m ) +

7
4

q(φ(1)
m ) +

1
4

q(φn
m)

)
, (13)

where p(φ(·)
m ) = −

(
sφ

(·)
m + 2 ∂2φ

(·)
m

∂x2 + ∂4φ
(·)
m

∂x4

)
, q(φ(·)

m ) = −
(

Φ′(φ(·)
m )− sφ

(·)
m

)
+
(

Φ(φ
(·)
m )
)r

β(·),

β(·) = ∑M−1
m=0 Φ′(φ(·)

m )

∑M−1
m=0

(
Φ(φ

(·)
m )
)r , γ = 2−

√
2

2 , and δ = 1− 1
2γ .

For the method S1, Equation (7) can be transformed into the discrete Fourier space using (6):

φ̂n+1
k =

φ̂n
k + ∆tq̂n

k
1 + ∆t

(
s− 2ξ2

k + ξ4
k
) , (14)

where q̂(·)k = F [q(φ(·)
m )] and F denotes the discrete Fourier transform. After updating φ̂n+1

k with φ̂n
k ,

we recover φn+1
m from φ̂n+1

k using (6). To satisfy the mass conservation property, we should have
∑M−1

m=0 φn+1
m = ∑M−1

m=0 φn
m for n = 0, 1, . . .. From Equation (14), we get

M−1

∑
m=0

φn+1
m = φ̂n+1

0 =
φ̂n

0 + ∆tq̂n
0

1 + s∆t
=

φ̂n
0 + s∆tφ̂n

0
1 + s∆t

= φ̂n
0 =

M−1

∑
m=0

φn
m (15)

since

q̂(·)0 =
M−1

∑
m=0

q(φ(·)
m ) = −

M−1

∑
m=0

(Φ′(φ(·)
m )− sφ

(·)
m ) + β(·)

M−1

∑
m=0

(
Φ(φ

(·)
m )
)r

= −
M−1

∑
m=0

(Φ′(φ(·)
m )− sφ

(·)
m ) +

∑M−1
m=0 Φ′(φ(·)

m )

∑M−1
m=0

(
Φ(φ

(·)
m )
)r

M−1

∑
m=0

(
Φ(φ

(·)
m )
)r

= s
M−1

∑
m=0

φ
(·)
m = sφ̂

(·)
0 . (16)

Thus, the method S1 inherits the mass conservation. Next, for the method S2, we have

φ̂
(1)
0 =

φ̂n
0 + γ∆tq̂n

0
1 + γs∆t

=
φ̂n

0 + γs∆tφ̂n
0

1 + γs∆t
= φ̂n

0 (17)

from Equation (8) and



Mathematics 2020, 8, 1502 4 of 10

M−1

∑
m=0

φn+1
m = φ̂n+1

0 =
φ̂n

0 + ∆t
(
−(1− γ)sφ̂

(1)
0 + (1− δ)q̂(1)0 + δq̂n

0

)
1 + γs∆t

=
φ̂n

0 + ∆t
(
−(1− γ)sφ̂n

0 + (1− δ)sφ̂n
0 + δsφ̂n

0
)

1 + γs∆t
= φ̂n

0 =
M−1

∑
m=0

φn
m (18)

from Equation (9). For the method S3, we have φ̂
(3)
0 = φ̂

(2)
0 = φ̂

(1)
0 = φ̂n

0 from Equations (10)–(12) and

M−1

∑
m=0

φn+1
m = φ̂n+1

0 =
φ̂n

0 + ∆t
(
− s

2 φ̂
(3)
0 + 3s

2 φ̂
(2)
0 − 3s

2 φ̂
(1)
0 − 7

4 q̂(3)0 + 3
4 q̂(2)0 + 7

4 q̂(1)0 + 1
4 q̂n

0

)
1 + s∆t

2

= φ̂n
0 =

M−1

∑
m=0

φn
m (19)

from Equation (13). Thus, the methods S2 and S3 also inherit the mass conservation.

3. Numerical Experiments

3.1. Convergence Test

We demonstrate the convergence of the proposed methods with the initial condition [11,12]

φ(x, 0) = 0.07− 0.02 cos
(

2π(x− 12)
32

)
+ 0.02 cos2

(
π(x + 10)

32

)
−0.01 sin2

(
4πx
32

)
(20)

on Ω = [0, 32]. We set ε = 0.25, g = 0, r = 0, and s = 0, and compute φ(x, t) for 0 < t ≤ 96. The grid
size is fixed to ∆x = 1

3 which provides enough spatial accuracy. To estimate the convergence rate with
respect to ∆t, simulations are performed by varying ∆t = 2−10, 2−9, . . . , 2−4. We take the quadruply
over-resolved numerical solution using the method S3 as the reference solution. Figure 1a shows the
relative l2-errors of φ(x, 40) for various time steps. Here, the errors are computed by comparison with
the reference solution. In addition, Figure 1b–d show the evolution of

∫
Ω(φ(x, t)− φ(x, 0)) dx using the

methods S1–S3, respectively. Here,
∫

Ω(φ(x, t)− φ(x, 0)) dx is approximated by ∑M−1
m=0 (φ

n
m − φ0

m) ∆x.
It is observed that the methods give desired order of accuracy in time and conserve the total mass.

3.2. Efficiency of the Proposed Method

To show the efficiency of the proposed method, we take the initial condition (20) and parameter
values used to create Figure 1. Figure 2 presents the CPU time (in seconds, averaged over 10 trials
performed on Intel Core i5-7500 CPU at 3.40 GHz with 8 GB RAM) consumed using the methods
S1–S3 for various time steps. The results suggest that the CPU time is almost linear with respect to the
number of steps and the methods S2 and S3 are about two and four times more expensive than the
method S1, respectively.



Mathematics 2020, 8, 1502 5 of 10

10
-3

10
-2

10
-1

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(a)

0 8 16 24 32 40 48 56 64 72 80 88 96

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
10

-10

(b)

0 8 16 24 32 40 48 56 64 72 80 88 96

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
10

-10

(c)

0 8 16 24 32 40 48 56 64 72 80 88 96

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
10

-10

(d)

Figure 1. (a) Relative l2-errors of φ(x, 40) for various time steps with ε = 0.25 and ∆x = 1
3 .

(b–d) Evolution of
∫

Ω(φ(x, t)− φ(x, 0)) dx for various time steps using the methods S1–S3.

10
-3

10
-2

10
-1

10
-1

10
0

10
1

10
2

Figure 2. CPU time versus time step. Each line segment is obtained by least squares fitting of all
corresponding points.

3.3. Phase Diagram in 2D

In 2D, the phase diagram contains striped, hexagonal, and constant states depending on the
values of φ̄ and ε [1] (see Figure 3a). To verify that the proposed method does lead to the expected
states, we take an initial condition as φ(x, y, 0) = φ̄ + rand on Ω = [0, 32]× [0, 32]. Here, rand is a
random number between −0.1 and 0.1 at the grid points, and we use g = 0, r = 0, ∆x = ∆y = 1

3 ,
s = 2, and the method S3. For saving computational time, we choose different time steps as the
solution evolves from random noisy stage to smooth stage: ∆t = 1

4 for 0 < t ≤ 128 and ∆t = 4 for



Mathematics 2020, 8, 1502 6 of 10

128 < t ≤ 2176. To estimate the phase diagram numerically, we calculate the indicator function defined
similarly in [13]:

Λ(t) =

{ ∫
Ω |φ(x, t)− φ̄| dx if

∫
Ω |∇(φ(x, t)− φ̄)| dx ≈ 0∫

Ω |φ(x,t)−φ̄| dx∫
Ω |∇(φ(x,t)−φ̄)| dx otherwise

. (21)

Here, we set
∫

Ω |∇(φ(x, t) − φ̄)| dx ≈ 0 if
∫

Ω |∇(φ(x, t) − φ̄)| dx is less than 10−10. Figure 3b
shows Λ(t) at t = 2176 with various φ̄ = 0.02, 0.04, . . . , 0.3 and ε = 0.02, 0.04, . . . , 0.3. Results in
Figure 3b are consistent with the phase diagram in Figure 3a. Sample time evolutions of φ(x, y, t)
with (φ̄, ε) = (0.02, 0.1), (0.14, 0.1), and (0.26, 0.1) are shown in Figures 4–6, respectively. Figure 7
shows evolutions of E(t) and Λ(t) with (φ̄, ε) used in Figures 4–6. We remark that the solution
φ(x, y, t) with (φ̄, ε) = (0.26, 0.1) has a small but measurable perturbation from a constant state
until t = 128 (see Figure 6). In this case,

∫
Ω |∇(φ(x, t) − φ̄)| dx 6≈ 0 and Λ(t) is calculated

using
∫

Ω |φ(x, t) − φ̄| dx/
∫

Ω |∇(φ(x, t) − φ̄)| dx. Afterward, the solution evolves to a constant
state, i.e.,

∫
Ω |φ(x, t) − φ̄| dx ≈ 0 and

∫
Ω |∇(φ(x, t) − φ̄)| dx ≈ 0. Thus, Λ(t) is calculated using∫

Ω |φ(x, t)− φ̄| dx and approximately zero.

(a)

0.1 0.2 0.3

0.1

0.2

0.3

0

0.2

0.4

0.6

0.8

1

(b)

Figure 3. (a) Phase diagram (Reprinted with permission from [1]). Here, ψ̄ denotes the averaged field
(= φ̄). (b) Values of Λ(t) at t = 2176 with various φ̄ and ε.

t = 32 t = 64 t = 128 t = 2176
Figure 4. Evolution of φ(x, y, t) using the method S3 with (φ̄, ε) = (0.02, 0.1). In each snapshot,
the yellow, green, and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.



Mathematics 2020, 8, 1502 7 of 10

t = 32 t = 64 t = 128 t = 2176
Figure 5. Evolution of φ(x, y, t) using the method S3 with (φ̄, ε) = (0.14, 0.1). In each snapshot,
the yellow, green, and blue regions indicate φ = 0.3926, 0.0108, and −0.3710, respectively.

t = 32 t = 64 t = 128 t = 2176
Figure 6. Evolution of φ(x, y, t) using the method S3 with (φ̄, ε) = (0.26, 0.1). In each snapshot,
the yellow, green, and blue regions indicate φ = 0.2610, 0.2600, and 0.2590, respectively.

0 32 64 128 2176

-5

0

5

10

15

20

25

30

35

40

(a)

0 32 64 128 2176

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 7. Evolutions of (a) E(t) and (b) Λ(t) with (φ̄, ε) used in Figures 4–6.

3.4. Comparison with Other Method

To compare the proposed method with other method, we solve the conservative SH Equation (3)
using the proposed method S2 and the second-order operator splitting (OS2) method in [5] with the
initial condition and parameter values used to create Figure 4 except for ∆t. Figures 8 and 9 show
evolutions of φ(x, y, t) using the method OS2 with ∆t = 1

4 and 2, respectively. The method OS2 with
a smaller time step ∆t = 1

4 leads to the expected striped state, whereas a constant state is observed
for ∆t = 2. Figures 10 and 11 show evolutions of φ(x, y, t) using the method S2 with ∆t = 1

4 and 2,
respectively. The method S2 gives the striped state even for a large time step. Evolutions of E(t) for
Figures 8–11 are shown in Figure 12.



Mathematics 2020, 8, 1502 8 of 10

t = 32 t = 64 t = 96 t = 128
Figure 8. Evolution of φ(x, y, t) using the method OS2 with ∆t = 1

4 . In each snapshot, the yellow, green,
and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.

t = 32 t = 64 t = 96 t = 128
Figure 9. Evolution of φ(x, y, t) using the method OS2 with ∆t = 2. In each snapshot, the yellow, green,
and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.

t = 32 t = 64 t = 96 t = 128
Figure 10. Evolution of φ(x, y, t) using the method S2 with ∆t = 1

4 . In each snapshot, the yellow, green,
and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.

t = 32 t = 64 t = 96 t = 128
Figure 11. Evolution of φ(x, y, t) using the method S2 with ∆t = 2. In each snapshot, the yellow, green,
and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.

0 32 64 96 128

-5

0

5

10

Figure 12. Evolutions of E(t) for Figures 8–11.



Mathematics 2020, 8, 1502 9 of 10

4. Conclusions

In this paper, we developed linear, first-, second-, and third-order, and mass conservative methods
for the conservative SH equation by placing the linear and nonlinear terms in the implicit and explicit
parts, respectively, and employing the implicit-explicit RK method. We confirmed that the proposed
methods give desired order of accuracy in time, inherit the mass conservation, and are efficient
(the CPU time was almost linear with respect to the number of steps and of stages). And we performed
long time simulation for pattern formation in 2D, where the phase diagram can be observed clearly.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2019R1C1C1011112).

Acknowledgments: The corresponding author thanks the reviewers for the constructive and helpful comments
on the revision of this article

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Matlab Code

MATLAB code for numerical implementation of the methods S1–S3 (7)–(13) in 2D.

Mathematics 2020, xx, 5 9 of 10

t = 32 t = 64 t = 96 t = 128
Figure 11. Evolution of φ(x, y, t) using the method S2 with ∆t = 2. In each snapshot, the yellow, green,
and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.

0 32 64 96 128

-5

0

5

10

Figure 12. Evolutions of E(t) for Figs. 8–11.

Appendix A MATLAB code134

MATLAB code for numerical implementation of the methods S1–S3 (7)–(13) in 2D135

136
1 clear; clc; clf;137

2138

3 Lx = 32; xleft = 0; xright = xleft+Lx;139

4 Ly = 32; yleft = 0; yright = yleft+Ly;140

5 Mx = 96; dx = Lx/Mx; x = xleft+(0:Mx-1)∗dx;141

6 My = 96; dy = Ly/My; y = yleft+(0:My-1)∗dy;142

7 xix = 2∗pi∗[0:Mx/2-1 -Mx/2:-1]/Lx;143

8 xiy = 2∗pi∗[0:My/2-1 -My/2:-1]/Ly; [kx,ky] = ndgrid(xix,xiy); dt = 1/4;144

9145

10 R = 0.1∗(2∗rand(Mx,My)-1); ophi = 0.02+(R-mean(mean(R)));146

11 epsilon = 0.1; g = 0; r = 0; s = 2; T = 128; order = 3;147

12 kp = -(s-2∗(kx.^2+ky.^2)+(kx.^2+ky.^2).^2);148

13149

14 switch order150

15 case 1151

16 MI = 1; ME = MI;152

17 case 2153

18 gamma = (2-sqrt(2))/2; ∆ = 1-1/(2∗gamma);154

19 MI = [gamma 0; 1-gamma gamma]; ME = [gamma 0; ∆ 1-∆];155

20 case 3156

21 MI = [1/2 0 0 0; 1/6 1/2 0 0; -1/2 1/2 1/2 0; 3/2 -3/2 1/2 1/2];157

22 ME = [1/2 0 0 0; 11/18 1/18 0 0; 5/6 -5/6 1/2 0; 1/4 7/4 3/4 -7/4];158

23 end159

24 ns = length(MI);160

25161

26 for n=1:round(T/dt)162

27163

28 ophi_hat = fft2(ophi);164

29 phis = zeros(Mx,My,ns); q = zeros(Mx,My,ns);165



Mathematics 2020, 8, 1502 10 of 10Mathematics 2020, xx, 5 10 of 10

30 for i = 1:ns166

31 Phip = ophi.^3-g∗ophi.^2+(1-epsilon)∗ophi;167

32 Phir = (1/4∗ophi.^4-g/3∗ophi.^3+(1-epsilon)/2∗ophi.^2).^r;168

33 beta = sum(sum(Phip))/sum(sum(Phir));169

34 q(:,:,i) = -(Phip-s∗ophi)+Phir∗beta;170

35 IM = 0; EX = ME(i,i)∗q(:,:,i);171

36 for j=1:i-1172

37 IM = IM + MI(i,j)∗phis(:,:,j);173

38 EX = EX + ME(i,j)∗q(:,:,j);174

39 end175

40 phis(:,:,i) = (ophi_hat+dt∗(kp.∗IM+fft2(EX)))./(1-MI(i,i)∗dt∗kp);176

41 ophi = ifft2(phis(:,:,i));177

42 end178

43179

44 end180

45181

46 [xx,yy] = ndgrid(x,y); pcolor(xx,yy,ophi); shading interp; axis image off;182183

References184

1. Elder, K.R., Katakowski, M., Haataja, M., Grant, M. Modeling elasticity in crystal growth. Phys. Rev. Lett.185

2002, 88, 245701.186

2. Elder, K.R., Grant, M. Modeling elastic and plastic deformations in nonequilibrium processing using phase187

field crystals. Phys. Rev. E 2004, 70, 051605.188

3. Swift, J., Hohenberg, P.C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 1977, 15,189

319–328.190

4. Zhang, J., Yang, X. Numerical approximations for a new L2-gradient flow based Phase field crystal model191

with precise nonlocal mass conservation. Comput. Phys. Commun. 2019, 243, 51–67.192

5. Lee, H.G. A new conservative Swift–Hohenberg equation and its mass conservative method. J. Comput. Appl.193

Math. 2020, 375, 112815.194

6. Ascher, U.M., Ruuth, S.J., Spiteri, R.J. Implicit–explicit Runge–Kutta methods for time-dependent partial195

differential equations. Appl. Numer. Math. 1997, 25, 151–167.196

7. Lee, H.G. A semi-analytical Fourier spectral method for the Swift–Hohenberg equation. Comput. Math. Appl.197

2017, 74, 1885–1896.198

8. Lee, H.G. An energy stable method for the Swift–Hohenberg equation with quadratic–cubic nonlinearity.199

Comput. Methods Appl. Mech. Engrg. 2019, 343, 40–51.200

9. Chen, X., Song, M., Song, S. A fourth order energy dissipative scheme for a traffic flow model. Mathematics201

2020, 8, 1238.202

10. Yoon, S., Jeong, D., Lee, C., Kim, H., Kim, S., Lee, H.G., Kim, J. Fourier-spectral method for the phase-field203

equations. Mathematics 2020, 8, 1385.204

11. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S. Stable and efficient finite-difference nonlinear-multigrid205

schemes for the phase field crystal equation. J. Comput. Phys. 2009, 228, 5323–5339.206

12. Baskaran, A., Hu, Z., Lowengrub, J.S., Wang, C., Wise, S.M., Zhou, P. Energy stable and efficient207

finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput.208

Phys. 2013, 250, 270–292.209

13. Shin, J., Lee, H.G., Lee, J.-Y. Long-time simulation of the phase-field crystal equation using high-order210

energy-stable CSRK methods. Comput. Methods Appl. Mech. Engrg. 2020, 364, 112981.211

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

212

213

References

1. Elder, K.R.; Katakowski, M.; Haataja, M.; Grant, M. Modeling elasticity in crystal growth. Phys. Rev. Lett.
2002, 88, 245701. [CrossRef]

2. Elder, K.R.; Grant, M. Modeling elastic and plastic deformations in nonequilibrium processing using phase
field crystals. Phys. Rev. E 2004, 70, 051605. [CrossRef] [PubMed]

3. Swift, J.; Hohenberg, P.C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 1977,
15, 319–328. [CrossRef]

4. Zhang, J.; Yang, X. Numerical approximations for a new L2-gradient flow based Phase field crystal model
with precise nonlocal mass conservation. Comput. Phys. Commun. 2019, 243, 51–67. [CrossRef]

5. Lee, H.G. A new conservative Swift-Hohenberg equation and its mass conservative method. J. Comput.
Appl. Math. 2020, 375, 112815. [CrossRef]

6. Ascher, U.M.; Ruuth, S.J.; Spiteri, R.J. Implicit-explicit Runge-Kutta methods for time-dependent partial
differential equations. Appl. Numer. Math. 1997, 25, 151–167. [CrossRef]

7. Lee, H.G. A semi-analytical Fourier spectral method for the Swift-Hohenberg equation. Comput. Math. Appl.
2017, 74, 1885–1896. [CrossRef]

8. Lee, H.G. An energy stable method for the Swift-Hohenberg equation with quadratic-cubic nonlinearity.
Comput. Methods Appl. Mech. Eng. 2019, 343, 40–51. [CrossRef]

9. Chen, X.; Song, M.; Song, S. A fourth order energy dissipative scheme for a traffic flow model.
Mathematics 2020, 8, 1238. [CrossRef]

10. Yoon, S.; Jeong, D.; Lee, C.; Kim, H.; Kim, S.; Lee, H.G.; Kim, J. Fourier-spectral method for the phase-field
equations. Mathematics 2020, 8, 1385. [CrossRef]

11. Hu, Z.; Wise, S.M.; Wang, C.; Lowengrub, J.S. Stable and efficient finite-difference nonlinear-multigrid
schemes for the phase field crystal equation. J. Comput. Phys. 2009, 228, 5323–5339. [CrossRef]

12. Baskaran, A.; Hu, Z.; Lowengrub, J.S.; Wang, C.; Wise, S.M.; Zhou, P. Energy stable and efficient finite-difference
nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 2013, 250, 270–292.
[CrossRef]

13. Shin, J.; Lee, H.G.; Lee, J.-Y. Long-time simulation of the phase-field crystal equation using high-order
energy-stable CSRK methods. Comput. Methods Appl. Mech. Eng. 2020, 364, 112981. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevE.70.051605
http://www.ncbi.nlm.nih.gov/pubmed/15600626
http://dx.doi.org/10.1103/PhysRevA.15.319
http://dx.doi.org/10.1016/j.cpc.2019.05.006
http://dx.doi.org/10.1016/j.cam.2020.112815
http://dx.doi.org/10.1016/S0168-9274(97)00056-1
http://dx.doi.org/10.1016/j.camwa.2017.06.053
http://dx.doi.org/10.1016/j.cma.2018.08.019
http://dx.doi.org/10.3390/math8081238
http://dx.doi.org/10.3390/math8081385
http://dx.doi.org/10.1016/j.jcp.2009.04.020
http://dx.doi.org/10.1016/j.jcp.2013.04.024
http://dx.doi.org/10.1016/j.cma.2020.112981
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Linear, High-Order, and Mass Conservative Method
	Numerical Experiments
	Convergence Test
	Efficiency of the Proposed Method
	Phase Diagram in 2D
	Comparison with Other Method

	Conclusions
	Matlab Code
	References

