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Abstract: The conservative Swift–Hohenberg equation was introduced to reformulate the phase-field
crystal model. A challenge in solving the conservative Swift–Hohenberg equation numerically is
how to treat the nonlinear term to preserve mass conservation without compromising efficiency and
accuracy. To resolve this problem, we present a linear, high-order, and mass conservative method by
placing the linear and nonlinear terms in the implicit and explicit parts, respectively, and employing
the implicit-explicit Runge–Kutta method. We show analytically that the method inherits the mass
conservation. Numerical experiments are presented demonstrating the efficiency and accuracy of
the proposed method. In particular, long time simulation for pattern formation in 2D is carried out,
where the phase diagram can be observed clearly. The MATLAB code for numerical implementation
of the proposed method is provided in Appendix .

Keywords: conservative swift–hohenberg equation; linear method; high-order time accuracy;
mass conservation; fourier spectral method

1. Introduction

The phase-field crystal (PFC) model describes the microstructure of two-phase systems on
atomic length and diffusive time scales and has been used to study grain growth, dendritic and
eutectic solidification, and epitaxial growth [1,2]. The PFC model is the H−1-gradient flow for the
Swift–Hohenberg (SH) energy functional [3]:

E(φ) :=
∫

Ω

(
Φ(φ)− |∇φ|2 + 1

2
(∆φ)2

)
dx, (1)

where Ω is a domain in Rd (d = 1, 2, 3), φ is the density field, Φ(φ) = 1
4 φ4 − g

3 φ3 + 1−ε
2 φ2, and g ≥ 0

and ε > 0 are positive constants with physical significance.
Recently, conservative SH equations were introduced to reformulate the PFC model [4,5]. In [4],

Zhang and Yang derived the following equation:

∂φ

∂t
= −

(
Φ′(φ) + 2∆φ + ∆2φ

)
+ β̃(t), (2)

where β̃(t) is a nonlocal Lagrange multiplier and β̃(t) = 1
|Ω|
∫

Ω Φ′(φ(x, t)) dx, and developed a
second-order energy stable scheme by combining the invariant energy quadratization idea with the
stabilization technique. However, the scheme involves solving a linear system with complicated
variable coefficients. In [5], Lee introduced the following equation:

∂φ

∂t
= −

(
Φ′(φ) + 2∆φ + ∆2φ

)
+ (Φ(φ))r β(t), (3)
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where (Φ(φ))r β(t) is a nonlocal and local Lagrange multiplier and β(t) =
∫

Ω Φ′(φ(x,t)) dx∫
Ω(Φ(φ(x,t)))rdx ,

and proposed mass conservative first- and second-order operator splitting methods. However, the
methods lead to the necessity nonlinear equations to be solved at each time step thus require an
iterative solver for solving the nonlinear equations.

Therefore, the aim of this paper is to present an efficient and accurate method that preserves mass
conservation for solving the conservative SH Equation (3). We place the linear and nonlinear terms in
the implicit and explicit parts, respectively, where an extra linear stabilizing term is added to improve
the stability while preserving the simplicity. And we employ the implicit-explicit Runge–Kutta (RK)
method [6]. As a result, our method is linear, high-order accurate in time, and mass conservative.
We show analytically that the method inherits the mass conservation. In addition, the Fourier spectral
method [5,7–10] is used for the spatial discretization. The MATLAB code for numerical implementation
of the method in 2D is provided in Appendix A.

This paper is organized as follows. In Section 2, we construct the linear, high-order, and mass
conservative method and show analytically that the method inherits the mass conservation.
Numerical examples showing the efficiency and accuracy of the proposed method are presented
in Section 3. Finally, conclusions are drawn in Section 4. In Appendix A, we provide the MATLAB
code for numerical implementation of the proposed method in 2D.

2. Linear, High-Order, and Mass Conservative Method

For simplicity and clarity of exposition, we consider Equation (3) in one-dimensional space
Ω = [0, L] with a periodic boundary condition:

∂φ(x, t)
∂t

= −
(

Φ′(φ(x, t)) + 2
∂2φ(x, t)

∂x2 +
∂4φ(x, t)

∂x4

)
+ (Φ(φ(x, t)))r β(t), (4)

where β(t) =
∫

Ω Φ′(φ(x,t)) dx∫
Ω(Φ(φ(x,t)))rdx . Two- and three-dimensional cases are defined analogously. Let M

be a positive integer, ∆x = L
M be the space step size, and ∆t be the time step size. Let φn

m be an
approximation of φ(xm, tn), where xm = m∆x for m = 0, 1, . . . , M − 1 and tn = n∆t. The discrete
Fourier transform and its inverse transform are

φ̂k =
M−1

∑
m=0

φme−ixmξk (5)

and

φm =
1
M

M−1

∑
k=0

φ̂keixmξk , (6)

where ξk =
2πk

L .
To develop a linear, high-order (up to third-order), and mass conservative method for solving

Equation (4), we treat −
(

sφ(x, t) + 2 ∂2φ(x,t)
∂x2 + ∂4φ(x,t)

∂x4

)
implicitly and − (Φ′(φ(x, t))− sφ(x, t)) +

(Φ(φ(x, t)))r β(t) explicitly, where s is a non-negative number, and employ the implicit-explicit RK
method. First- (S1), second- (S2), and third- (S3) order methods are as follows:
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S1 : φn+1
m = φn

m + ∆t
(

p(φn+1
m ) + q(φn

m)
)

, (7)

S2 : φ
(1)
m = φn

m + ∆t
(

γp(φ(1)
m ) + γq(φn

m)
)

, (8)

φn+1
m = φn

m + ∆t
(

γp(φn+1
m ) + (1− γ)p(φ(1)

m ) + (1− δ)q(φ(1)
m ) + δq(φn

m)
)

, (9)

S3 : φ
(1)
m = φn

m + ∆t
(

1
2

p(φ(1)
m ) +

1
2

q(φn
m)

)
, (10)

φ
(2)
m = φn

m + ∆t
(

1
2

p(φ(2)
m ) +

1
6

p(φ(1)
m ) +

1
18

q(φ(1)
m ) +

11
18

q(φn
m)

)
, (11)

φ
(3)
m = φn

m + ∆t
(

1
2

p(φ(3)
m ) +

1
2

p(φ(2)
m )− 1

2
p(φ(1)

m )

+
1
2

q(φ(2)
m )− 5

6
q(φ(1)

m ) +
5
6

q(φn
m)

)
, (12)

φn+1
m = φn

m + ∆t
(

1
2

p(φn+1
m ) +

1
2

p(φ(3)
m )− 3

2
p(φ(2)

m ) +
3
2

p(φ(1)
m )

−7
4

q(φ(3)
m ) +

3
4

q(φ(2)
m ) +

7
4

q(φ(1)
m ) +

1
4

q(φn
m)

)
, (13)

where p(φ(·)
m ) = −

(
sφ

(·)
m + 2 ∂2φ

(·)
m

∂x2 + ∂4φ
(·)
m

∂x4

)
, q(φ(·)

m ) = −
(

Φ′(φ(·)
m )− sφ

(·)
m

)
+
(

Φ(φ
(·)
m )
)r

β(·),

β(·) = ∑M−1
m=0 Φ′(φ(·)

m )

∑M−1
m=0

(
Φ(φ

(·)
m )
)r , γ = 2−

√
2

2 , and δ = 1− 1
2γ .

For the method S1, Equation (7) can be transformed into the discrete Fourier space using (6):

φ̂n+1
k =

φ̂n
k + ∆tq̂n

k
1 + ∆t

(
s− 2ξ2

k + ξ4
k
) , (14)

where q̂(·)k = F [q(φ(·)
m )] and F denotes the discrete Fourier transform. After updating φ̂n+1

k with φ̂n
k ,

we recover φn+1
m from φ̂n+1

k using (6). To satisfy the mass conservation property, we should have
∑M−1

m=0 φn+1
m = ∑M−1

m=0 φn
m for n = 0, 1, . . .. From Equation (14), we get

M−1

∑
m=0

φn+1
m = φ̂n+1

0 =
φ̂n

0 + ∆tq̂n
0

1 + s∆t
=

φ̂n
0 + s∆tφ̂n

0
1 + s∆t

= φ̂n
0 =

M−1

∑
m=0

φn
m (15)

since

q̂(·)0 =
M−1

∑
m=0

q(φ(·)
m ) = −

M−1

∑
m=0

(Φ′(φ(·)
m )− sφ

(·)
m ) + β(·)

M−1

∑
m=0

(
Φ(φ

(·)
m )
)r

= −
M−1

∑
m=0

(Φ′(φ(·)
m )− sφ

(·)
m ) +

∑M−1
m=0 Φ′(φ(·)

m )

∑M−1
m=0

(
Φ(φ

(·)
m )
)r

M−1

∑
m=0

(
Φ(φ

(·)
m )
)r

= s
M−1

∑
m=0

φ
(·)
m = sφ̂

(·)
0 . (16)

Thus, the method S1 inherits the mass conservation. Next, for the method S2, we have

φ̂
(1)
0 =

φ̂n
0 + γ∆tq̂n

0
1 + γs∆t

=
φ̂n

0 + γs∆tφ̂n
0

1 + γs∆t
= φ̂n

0 (17)

from Equation (8) and
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M−1

∑
m=0

φn+1
m = φ̂n+1

0 =
φ̂n

0 + ∆t
(
−(1− γ)sφ̂

(1)
0 + (1− δ)q̂(1)0 + δq̂n

0

)
1 + γs∆t

=
φ̂n

0 + ∆t
(
−(1− γ)sφ̂n

0 + (1− δ)sφ̂n
0 + δsφ̂n

0
)

1 + γs∆t
= φ̂n

0 =
M−1

∑
m=0

φn
m (18)

from Equation (9). For the method S3, we have φ̂
(3)
0 = φ̂

(2)
0 = φ̂

(1)
0 = φ̂n

0 from Equations (10)–(12) and

M−1

∑
m=0

φn+1
m = φ̂n+1

0 =
φ̂n

0 + ∆t
(
− s

2 φ̂
(3)
0 + 3s

2 φ̂
(2)
0 − 3s

2 φ̂
(1)
0 − 7

4 q̂(3)0 + 3
4 q̂(2)0 + 7

4 q̂(1)0 + 1
4 q̂n

0

)
1 + s∆t

2

= φ̂n
0 =

M−1

∑
m=0

φn
m (19)

from Equation (13). Thus, the methods S2 and S3 also inherit the mass conservation.

3. Numerical Experiments

3.1. Convergence Test

We demonstrate the convergence of the proposed methods with the initial condition [11,12]

φ(x, 0) = 0.07− 0.02 cos
(

2π(x− 12)
32

)
+ 0.02 cos2

(
π(x + 10)

32

)
−0.01 sin2

(
4πx
32

)
(20)

on Ω = [0, 32]. We set ε = 0.25, g = 0, r = 0, and s = 0, and compute φ(x, t) for 0 < t ≤ 96. The grid
size is fixed to ∆x = 1

3 which provides enough spatial accuracy. To estimate the convergence rate with
respect to ∆t, simulations are performed by varying ∆t = 2−10, 2−9, . . . , 2−4. We take the quadruply
over-resolved numerical solution using the method S3 as the reference solution. Figure 1a shows the
relative l2-errors of φ(x, 40) for various time steps. Here, the errors are computed by comparison with
the reference solution. In addition, Figure 1b–d show the evolution of

∫
Ω(φ(x, t)− φ(x, 0)) dx using the

methods S1–S3, respectively. Here,
∫

Ω(φ(x, t)− φ(x, 0)) dx is approximated by ∑M−1
m=0 (φ

n
m − φ0

m) ∆x.
It is observed that the methods give desired order of accuracy in time and conserve the total mass.

3.2. Efficiency of the Proposed Method

To show the efficiency of the proposed method, we take the initial condition (20) and parameter
values used to create Figure 1. Figure 2 presents the CPU time (in seconds, averaged over 10 trials
performed on Intel Core i5-7500 CPU at 3.40 GHz with 8 GB RAM) consumed using the methods
S1–S3 for various time steps. The results suggest that the CPU time is almost linear with respect to the
number of steps and the methods S2 and S3 are about two and four times more expensive than the
method S1, respectively.
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Figure 1. (a) Relative l2-errors of φ(x, 40) for various time steps with ε = 0.25 and ∆x = 1
3 .

(b–d) Evolution of
∫

Ω(φ(x, t)− φ(x, 0)) dx for various time steps using the methods S1–S3.

10
-3

10
-2

10
-1

10
-1

10
0

10
1

10
2

Figure 2. CPU time versus time step. Each line segment is obtained by least squares fitting of all
corresponding points.

3.3. Phase Diagram in 2D

In 2D, the phase diagram contains striped, hexagonal, and constant states depending on the
values of φ̄ and ε [1] (see Figure 3a). To verify that the proposed method does lead to the expected
states, we take an initial condition as φ(x, y, 0) = φ̄ + rand on Ω = [0, 32]× [0, 32]. Here, rand is a
random number between −0.1 and 0.1 at the grid points, and we use g = 0, r = 0, ∆x = ∆y = 1

3 ,
s = 2, and the method S3. For saving computational time, we choose different time steps as the
solution evolves from random noisy stage to smooth stage: ∆t = 1

4 for 0 < t ≤ 128 and ∆t = 4 for
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128 < t ≤ 2176. To estimate the phase diagram numerically, we calculate the indicator function defined
similarly in [13]:

Λ(t) =

{ ∫
Ω |φ(x, t)− φ̄| dx if

∫
Ω |∇(φ(x, t)− φ̄)| dx ≈ 0∫

Ω |φ(x,t)−φ̄| dx∫
Ω |∇(φ(x,t)−φ̄)| dx otherwise

. (21)

Here, we set
∫

Ω |∇(φ(x, t) − φ̄)| dx ≈ 0 if
∫

Ω |∇(φ(x, t) − φ̄)| dx is less than 10−10. Figure 3b
shows Λ(t) at t = 2176 with various φ̄ = 0.02, 0.04, . . . , 0.3 and ε = 0.02, 0.04, . . . , 0.3. Results in
Figure 3b are consistent with the phase diagram in Figure 3a. Sample time evolutions of φ(x, y, t)
with (φ̄, ε) = (0.02, 0.1), (0.14, 0.1), and (0.26, 0.1) are shown in Figures 4–6, respectively. Figure 7
shows evolutions of E(t) and Λ(t) with (φ̄, ε) used in Figures 4–6. We remark that the solution
φ(x, y, t) with (φ̄, ε) = (0.26, 0.1) has a small but measurable perturbation from a constant state
until t = 128 (see Figure 6). In this case,

∫
Ω |∇(φ(x, t) − φ̄)| dx 6≈ 0 and Λ(t) is calculated

using
∫

Ω |φ(x, t) − φ̄| dx/
∫

Ω |∇(φ(x, t) − φ̄)| dx. Afterward, the solution evolves to a constant
state, i.e.,

∫
Ω |φ(x, t) − φ̄| dx ≈ 0 and

∫
Ω |∇(φ(x, t) − φ̄)| dx ≈ 0. Thus, Λ(t) is calculated using∫

Ω |φ(x, t)− φ̄| dx and approximately zero.

(a)

0.1 0.2 0.3

0.1

0.2

0.3

0

0.2

0.4

0.6

0.8

1

(b)

Figure 3. (a) Phase diagram (Reprinted with permission from [1]). Here, ψ̄ denotes the averaged field
(= φ̄). (b) Values of Λ(t) at t = 2176 with various φ̄ and ε.

t = 32 t = 64 t = 128 t = 2176
Figure 4. Evolution of φ(x, y, t) using the method S3 with (φ̄, ε) = (0.02, 0.1). In each snapshot,
the yellow, green, and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.
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t = 32 t = 64 t = 128 t = 2176
Figure 5. Evolution of φ(x, y, t) using the method S3 with (φ̄, ε) = (0.14, 0.1). In each snapshot,
the yellow, green, and blue regions indicate φ = 0.3926, 0.0108, and −0.3710, respectively.

t = 32 t = 64 t = 128 t = 2176
Figure 6. Evolution of φ(x, y, t) using the method S3 with (φ̄, ε) = (0.26, 0.1). In each snapshot,
the yellow, green, and blue regions indicate φ = 0.2610, 0.2600, and 0.2590, respectively.
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-5

0

5

10

15

20

25

30

35

40

(a)

0 32 64 128 2176

0

0.1

0.2

0.3
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0.7

0.8

0.9

1

(b)

Figure 7. Evolutions of (a) E(t) and (b) Λ(t) with (φ̄, ε) used in Figures 4–6.

3.4. Comparison with Other Method

To compare the proposed method with other method, we solve the conservative SH Equation (3)
using the proposed method S2 and the second-order operator splitting (OS2) method in [5] with the
initial condition and parameter values used to create Figure 4 except for ∆t. Figures 8 and 9 show
evolutions of φ(x, y, t) using the method OS2 with ∆t = 1

4 and 2, respectively. The method OS2 with
a smaller time step ∆t = 1

4 leads to the expected striped state, whereas a constant state is observed
for ∆t = 2. Figures 10 and 11 show evolutions of φ(x, y, t) using the method S2 with ∆t = 1

4 and 2,
respectively. The method S2 gives the striped state even for a large time step. Evolutions of E(t) for
Figures 8–11 are shown in Figure 12.
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t = 32 t = 64 t = 96 t = 128
Figure 8. Evolution of φ(x, y, t) using the method OS2 with ∆t = 1

4 . In each snapshot, the yellow, green,
and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.

t = 32 t = 64 t = 96 t = 128
Figure 9. Evolution of φ(x, y, t) using the method OS2 with ∆t = 2. In each snapshot, the yellow, green,
and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.

t = 32 t = 64 t = 96 t = 128
Figure 10. Evolution of φ(x, y, t) using the method S2 with ∆t = 1

4 . In each snapshot, the yellow, green,
and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.

t = 32 t = 64 t = 96 t = 128
Figure 11. Evolution of φ(x, y, t) using the method S2 with ∆t = 2. In each snapshot, the yellow, green,
and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.

0 32 64 96 128

-5

0

5

10

Figure 12. Evolutions of E(t) for Figures 8–11.
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4. Conclusions

In this paper, we developed linear, first-, second-, and third-order, and mass conservative methods
for the conservative SH equation by placing the linear and nonlinear terms in the implicit and explicit
parts, respectively, and employing the implicit-explicit RK method. We confirmed that the proposed
methods give desired order of accuracy in time, inherit the mass conservation, and are efficient
(the CPU time was almost linear with respect to the number of steps and of stages). And we performed
long time simulation for pattern formation in 2D, where the phase diagram can be observed clearly.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2019R1C1C1011112).
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Appendix A. Matlab Code

MATLAB code for numerical implementation of the methods S1–S3 (7)–(13) in 2D.
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t = 32 t = 64 t = 96 t = 128
Figure 11. Evolution of φ(x, y, t) using the method S2 with ∆t = 2. In each snapshot, the yellow, green,
and blue regions indicate φ = 0.3810, 0.0195, and −0.3420, respectively.
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Figure 12. Evolutions of E(t) for Figs. 8–11.

Appendix A MATLAB code134

MATLAB code for numerical implementation of the methods S1–S3 (7)–(13) in 2D135

136
1 clear; clc; clf;137

2138

3 Lx = 32; xleft = 0; xright = xleft+Lx;139

4 Ly = 32; yleft = 0; yright = yleft+Ly;140

5 Mx = 96; dx = Lx/Mx; x = xleft+(0:Mx-1)∗dx;141

6 My = 96; dy = Ly/My; y = yleft+(0:My-1)∗dy;142

7 xix = 2∗pi∗[0:Mx/2-1 -Mx/2:-1]/Lx;143

8 xiy = 2∗pi∗[0:My/2-1 -My/2:-1]/Ly; [kx,ky] = ndgrid(xix,xiy); dt = 1/4;144

9145

10 R = 0.1∗(2∗rand(Mx,My)-1); ophi = 0.02+(R-mean(mean(R)));146

11 epsilon = 0.1; g = 0; r = 0; s = 2; T = 128; order = 3;147

12 kp = -(s-2∗(kx.^2+ky.^2)+(kx.^2+ky.^2).^2);148

13149

14 switch order150

15 case 1151

16 MI = 1; ME = MI;152

17 case 2153

18 gamma = (2-sqrt(2))/2; ∆ = 1-1/(2∗gamma);154

19 MI = [gamma 0; 1-gamma gamma]; ME = [gamma 0; ∆ 1-∆];155

20 case 3156

21 MI = [1/2 0 0 0; 1/6 1/2 0 0; -1/2 1/2 1/2 0; 3/2 -3/2 1/2 1/2];157

22 ME = [1/2 0 0 0; 11/18 1/18 0 0; 5/6 -5/6 1/2 0; 1/4 7/4 3/4 -7/4];158

23 end159

24 ns = length(MI);160

25161

26 for n=1:round(T/dt)162

27163

28 ophi_hat = fft2(ophi);164

29 phis = zeros(Mx,My,ns); q = zeros(Mx,My,ns);165
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30 for i = 1:ns166

31 Phip = ophi.^3-g∗ophi.^2+(1-epsilon)∗ophi;167

32 Phir = (1/4∗ophi.^4-g/3∗ophi.^3+(1-epsilon)/2∗ophi.^2).^r;168

33 beta = sum(sum(Phip))/sum(sum(Phir));169

34 q(:,:,i) = -(Phip-s∗ophi)+Phir∗beta;170

35 IM = 0; EX = ME(i,i)∗q(:,:,i);171

36 for j=1:i-1172

37 IM = IM + MI(i,j)∗phis(:,:,j);173

38 EX = EX + ME(i,j)∗q(:,:,j);174

39 end175

40 phis(:,:,i) = (ophi_hat+dt∗(kp.∗IM+fft2(EX)))./(1-MI(i,i)∗dt∗kp);176

41 ophi = ifft2(phis(:,:,i));177

42 end178

43179

44 end180

45181

46 [xx,yy] = ndgrid(x,y); pcolor(xx,yy,ophi); shading interp; axis image off;182183
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