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Abstract: In this paper, the stability of Ulam–Hyers and existence of solutions for semi-linear
time-delay systems with linear impulsive conditions are studied. The linear parts of the impulsive
systems are defined by non-permutable matrices. To obtain solution for linear impulsive delay
systems with non-permutable matrices in explicit form, a new concept of impulsive delayed matrix
exponential is introduced. Using the representation formula and norm estimation of the impulsive
delayed matrix exponential, sufficient conditions for stability of Ulam–Hyers and existence of
solutions are obtained.
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1. Introduction

The theory of functional differential equations has been attracted by many researchers.
Delay phenomena have applications in control engineering, biology, medicine, economy and other
sciences. Many processes are characterized by quick state changes. The duration of state changes
are relatively short compared with the total duration of the entire process. For the theory of
impulsive differential equations, we refer the reader to the monograph of Samoilenko et al. [1] and
references therein.

The phenomena with time delays appear in system theory, automatic engines, and engineering systems.
Recently, in [2], a concept of delayed matrix exponential is introduced providing an explicit formula of
solutions for linear time-delay continuous systems with commutative matrices. Congruently [3,4], it is also
used to find an explicit formula for solutions of linear discrete delay systems.

In general, it is difficult to get an explicit representation of the solution without knowing impulsive
delayed fundamental matrix for impulsive linear time-delay differential equations. Therefore, in [5]
authors adopted the idea of [2–4] obtaining the representation of solutions of linear time-delay
continuous systems with impulses. To do so, they introduced a concept of impulsive delayed matrix
function for commutative matrices.

These basic results are widely used in dealing with control theory, iterative learning control,
and stability analysis for time-delay continuous\discrete and impulsive equations; for example,
refer to [6–19]. For more details on the recent advances on the stability (Ulam–Hyers) of differential
equations, one can observe the monographs [20–22].

However, no study exists in the literature seeking an explicit solution for linear impulsive
time-delay differential equations with non-commutative matrices. Due to the double impact of
impulses and time-delay, it is a challenging task to attain a representation for a solution of a time-delay
impulsive differential equation of non-commutative matrices and study the stability concepts of
these equations.
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Motivated by the above articles, we have considered the representation of solutions of a linear
time-delay impulsive differential equation of the form:

y′ (t) = Ay (t) + By (t− h) + f (t) , t ∈ [0, T] , h > 0, t 6= tk,
∆y (tk) = y

(
t+k
)
− y

(
t−k
)
= Cky (tk) , k = 1, 2, ...p,

y (t) = ϕ (t) , −h ≤ t ≤ 0,
(1)

where A, B, Ck ∈ Rn×n are constant matrices, ϕ ∈ C1 ([−h, 0] ,Rn), f ∈ C ([0, T] ,Rn), {tk}.satisfies
0 = t0 < t1 < ... < tp < tp+1 = T, y

(
t+k
)
= limα→0+ y (tk + α), y

(
t−k
)
= y (tk) .

Moreover, we investigated existence, uniqueness, and the stability of Ulam–Hyers for the
following semi-linear time-delay impulsive differential equation:

y′ (t) = Ay (t) + By (t− h) + f (t, y (t)) , t ∈ [0, T] , h > 0, t 6= tk,
∆y (tk) = y

(
t+k
)
− y

(
t−k
)
= Cky (tk) , k = 1, 2, ...p,

y (t) = ϕ (t) , −h ≤ t ≤ 0,
(2)

The main contributions were as follows:

• We introduced a novel impulsive delayed matrix exponential function (impulsive delayed
exponential) and adhered its norm estimate. Using this impulsive delayed exponential and
the variation of constants method, we gave an explicit representation for solutions of impulsive
time-delay initial value problems with linear parts defined by non-permutable matrices.

• Based on the presentation of solutions and a norm estimation of the impulsive delayed exponential,
we obtained sufficient conditions for existence, uniqueness, and the stability of Ulam–Hyers.

In the next section, we introduced the impulsive delayed matrix exponential and showed that it is
the fundamental (Cauchy) matrix for linear time-delay impulsive differential equations. In Section 3,
we gave explicit formulae for solutions to linear homogeneous/nonhomogeneous time-delay impulsive
differential equations via an impulsive delayed matrix exponential. Section 4 is aimed at existence,
uniqueness, and stability of Ulam–Hyers for system (2). In Section 5, we studied the existence of the
solution for the system (2). Finally, some examples are presented in Section 6.

2. Impulsive Delayed Matrix Exponential

Let J = [0, T], J0 = [0, t1], ..., Jp−1 =
(
tp−1, tp

]
, ..., Jp =

(
tp, T

]
,..., tp+1 = T Furthermore, define

P = PC (J,Rn) := {y : J → Rn : y ∈ C (Jm,Rn) , m = 0, 1, ..., p

and there exist the left limit y (t−m) = y (tm) and right limit y (t+m)}. It is clear that P is a Banach space
endowed with norm defined by ‖y‖PC = supt∈J ‖y (t)‖.

We introduce the spaces:

• C1 (J,Rn) = {y ∈ C (J,Rn) : y′ ∈ C (J,Rn)}.
• PC1 (J,Rn) := {y : J → Rn : y′ ∈ PC (J,Rn)}.

Definition 1. A function y ∈ C1 ([−h, 0] ,Rn) ∪ PC1 (J,Rn) is said to be a solution of (1) if y satisfies
y (t) = ϕ (t) , −h ≤ t ≤ 0 and Equation (1) on J.

Definition 2. [2] A function eB
h (t) : R→ Rn×n is called delayed matrix exponential if

eB
h (t) :=


Θ, −∞ < t < −h, h > 0,
I, −h ≤ t < 0,

I + Bt + B2 (t−h)2

2 + ... + Bk (t−(k−1)h)k

k! , (k− 1) h ≤ t < kh,

(3)
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where k ∈ N, B ∈ Rn×n, Θ, and I are the zero and identity matrices, respectively.

For k ≥ 0, we define

X0 (t, s) = eA(t−s), t ≥ s,

X1 (t, s + h) =
{ ∫ t

s+h eA(t−r)BX0 (r− h, s) dr, s + h ≤ t,
Θ, s + h > t.

Xk (t, s + kh) =
{ ∫ t

s+kh eA(t−r)BXk−1 (r− h, s + (k− 1) h) dr, s + kh ≤ t,
Θ, s + kh > t.

Definition 3. Let A, B ∈ Rn×n. Delayed perturbation of matrix exponential function XA,B
h : R×R→ Rn×n

generated by A, B is defined by

XA,B
h (t, s) =


Θ, −∞ < t− s < 0,
I, t = s,
eA(t−s) + X1 (t, s + h) + ... + Xk (t, s + kh) , kh ≤ t− s < (k + 1) h, k = 0, 1, 2, ...

(4)

Lemma 1. Let XA,B
h (t, s) be defined as in Equation (4). Then, the following holds true:

(i) if A = Θ, then XA,B
h (t, 0) = eB

h (t− h) , kh ≤ t < (k + 1) h,

(ii) if B = Θ, then XA,B
h (t, s) = eA(t−s),

(iii) if AB = BA, then XA,B
h (t, s) = eA(t−s)eB1(t−h−s)

h , B1 = exp (−Ah) B, kh ≤ t− s < (k + 1) h.

Proof. (i) If A = Θ, then

X0 (t, s) = I, X1 (t, s + h) =
∫ t

s+h
Bdr = B (t− h− s) ,

X2 (t, s + 2h) =
∫ t

s+2h
B2 (r− 2h− s) dr = B2 (t− 2h− s)2

2!
,

Xk (t, s + kh) = Bk (t− kh− s)k

k!
, s + kh ≤ t < s + (k + 1) h.

Thus,

XA,B
h (t, s) =

k

∑
j=0

Bj (t− jh− s)j

j!
, s + kh ≤ t < s + (k + 1) h.

(ii) If B = Θ, then

X0 (t, s) = eA(t−s), Xk (t, s + kh) = Θ, k = 1, 2, ...,

and
XA,B

h (t, s) = eA(t−s).

(iii) We assumed A and B as commutative; consequently, eA(t−s)B = BeA(t−s). Using this property,
we obtained

X0 (t, s) = eA(t−s), X1 (t, s + h) =
∫ t

s+h
eA(t−r)BeA(r−h−s)dr = eA(t−s)Be−Ah (t− h− s) ,

X2 (t, s + 2h) =
∫ t

s+2h
eA(t−r)BeA(r−2h−s)B (t− 2h− s) dr = eA(t−s)B2e−A2h (t− 2h− s)2

2!

Xk (t, s + kh) = eA(t−s)Bke−Akh (t− kh− s)k

k!
, s + kh ≤ t < s + (k + 1) h.
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It follows that

XA,B
h (t, s) =

k

∑
j=0

Xj (t, s + jh) =
k

∑
j=0

eA(t−s)Bje−Ajh (t− jh− s)j

j!

= eA(t−s)eB1(t−h−s)
h , s + kh ≤ t < s + (k + 1) h.

The lemma is proved.

Lemma 2. For all t, s ∈ R, we have

∂

∂t
XA,B

h (t, s) = AXA,B
h (t, s) + BXA,B

h (t− h, s) .

Proof. The proof is based on the following formula:

∂

∂t

∫ t

s+jh
eA(t−r)BXj−1 (r− h, s + (j− 1) h) dr

= A
∫ t

s+jh
eA(t−r)BXj−1 (r− h, s + (j− 1) h) dr + BXj−1 (t− h, s + (j− 1) h) .

Indeed, for kh ≤ t− s < (k + 1) h, we have

∂

∂t
XA,B

h (t, s) =
∂

∂t

k

∑
j=0

Xj (t, s + jh)

=
k

∑
j=0

∂

∂t

∫ t

s+jh
eA(t−r)BXj−1 (r− h, s + (j− 1) h) dr

=
k

∑
j=0

[
A
∫ t

s+jh
eA(t−r)BXj−1 (r− h, s + (j− 1) h) dr + BXj−1 (t− h, s + (j− 1) h)

]

= A
k

∑
j=0

Xj (t, s + jh) + B
∞

∑
j=0

Xj−1 (t− h, s + (j− 1) h)

= A
k

∑
j=0

Xj (t, s + jh) + B
∞

∑
j=0

Xj (t− h, s + jh) .

We, then, introduced an impulsive analogue YA,B,C
h (t, s) of the delayed matrix exponential

XA,B
h (t, s). Since in Equation (1), the impulse has the linear form ∆y (tk) = Cky (tk), the impulsive

Cauchy matrix has to contain the matrices Ck, being the reason why we introduced the following
impulsive delayed matrix:

Definition 4. Let A, B, Ck ∈ Rn×n be constant matrices. Impulsive delayed matrix exponential function
YA,B

h (t, s) is defined by

YA,B,C
h (t, s) :=


Θ, t < s,
I, t = s,
XA,B

h (t, s) + ∑
s<tk<t

XA,B
h (t, tk)CkYA,B,C

h (tk, s) .
(5)

It should be emphasized that if, in a commutative case, A, B, Ck were commutative matrices,
the impulsive delayed matrix exponential function was then introduced in [13].
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Definition 5. [13] If A, B, Ck are commutative matrices, then impulsive delayed matrix exponential function is
defined as follows:

V (t, s) = eA(t−s)X (t, s + h) , (6)

X (t, s + h) = eB1(t−h−s)
h + ∑

s<tk<t
CkeB1(t−h−tk)

h X (tk, s + h) , B1 = exp (−Ah) B.

Lemma 3. Let YA,B,C
h (t, s) be defined by (5). If A, B, Ck are commutative, then YA,B,C

h (t, s) = V (t, s) .

Proof. Since AB = BA, then, by Lemma 1, we have XA,B
h (t, s) = exp (A (t− s)) eB1(t−h−s)

h . Thus,

YA,B,C
h (t, s) = XA,B

h (t, s) + ∑
s<tk<t

XA,B
h (t, tk)CkYA,B,C

h (tk, s)

= eA(t−s)eB1(t−h−s)
h + ∑

s<tk<t
eA(t−tk)eB1(t−h−tk)

h CkYA,B,C
h (tk, s)

= eA(t−s)

(
eB1(t−h−s)

h + ∑
s<tk<t

CkeB1(t−h−tk)
h eA(s−tk)YA,B,C

h (tk, s)

)

= eA(t−s)

(
eB1(t−h−s)

h + ∑
s<tk<t

CkeB1(t−h−tk)
h X (tk, s + h)

)
= eA(t−s)X (t, s + h) = V (t, s) .

Lemma 4. Impulsive delayed matrix exponential function YA,B,C
h (t, s) satisfies

∂

∂t
YA,B,C

h (t, s) = AYA,B,C
h (t, s) + BYA,B,C

h (t− h, s) , t 6= tk, (7)

YA,B,C
h

(
t+k , s

)
= YA,B,C

h (tk, s) + CkYA,B,C
h (tk, s) , (8)

∂

∂t
YA,B,C

h
(
t+k , s

)
=

∂

∂t
YA,B,C

h (tk, s) + ACkYA,B,C
h (tk, s) . (9)

Proof. Step 1: We verify that YA,B,C
h (t, s) satisfies the differential Equation (7).

∂

∂t
YA,B,C

h (t, s) =
∂

∂t
XA,B

h (t, s) + ∑
s<tk<t

∂

∂t
XA,B

h (t, tk)CkYA,B,C
h (tk, s) + ∑

s<tk<t

∂

∂t
XA,B

h (t, tk) φk

= AXA,B
h (t, s) + ∑

s<tk<t
AXA,B

h (t, tk)CkYA,B,C
h (tk, s) + ∑

s<tk<t
AXA,B

h (t, tk) φk

+ BXA,B
h (t− h, s) + ∑

s<tk<t−h
BXA,B

h (t− h, tk)CkYA,B,C
h (tk, s) + ∑

s<tk<t−h
BXA,B

h (t− h, tk) φk

= AYA,B,C
h (t, s) + BYA,B,C

h (t− h, s) .

Step 2: We verify the equality (8). Note that XA,B
h (t+, s) = XA,B

h (t, s) . Then,

YA,B,C
h

(
t+m , s

)
= XA,B

h
(
t+m , s

)
+ ∑

s<tk<t+m

XA,B
h
(
t+m , tk

)
CkYA,B,C

h (tk, s)

= XA,B
h
(
t−m , s

)
+ ∑

s<tk<t−m

XA,B
h
(
t+m , tk

)
CkYA,B,C

h (tk, s)

+ XA,B
h
(
t+m , tm

)
CmYA,B,C

h (tm, s)

= YA,B,C
h

(
t−m , s

)
+ CmYA,B,C

h (tm, s) .
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Step 3: The proof of (9) is similar to that of (8).

3. Representation of Solutions

In this section, we looked for an explicit formula for the solutions of the linear impulsive
inhomogeneous delay system, adopting the classical ideas in finding solutions for linear ordinary
differential equations.

Firstly, we drive two explicit formulae of solutions to a linear impulsive homogeneous
delay system:

Theorem 1. Let ϕ ∈ C1 ([−h, 0] ,Rn). Then, the solution of the initial value problem (1) with f = 0 has
the form

y (t) = YA,B,C
h (t,−h) ϕ (−h) +

∫ 0

−h
YA,B,C

h (t, s)
[
ϕ′ (s)− Aϕ (s)

]
ds, t ≥ −h, (10)

y (t) = YA,B,C
h (t, 0) ϕ (0) +

∫ 0

−h
YA,B,C

h (t, s + h) Bϕ (s) ds, t ≥ 0. (11)

Proof. To prove the formula (10), we looked for the solution in the form of

y (t) = YA,B,C
h (t,−h) g (0) +

∫ 0

−h
YA,B,C

h (t, s) g (s) ds, t ≥ 0, (12)

where g (t) : [−h, 0]→ Rn is an unknown continuously differentiable function and that it satisfies the
initial condition y (t) = ϕ (t), −h ≤ t ≤ 0 :

y (t) = YA,B,C
h (t,−h) g (0) +

∫ 0

−h
YA,B,C

h (t, s) g (s) ds = ϕ (t) , −h ≤ t ≤ 0.

If t = −h, we have

YA,B,C
h (−h,−h) g (0) +

∫ 0

−h
YA,B,C

h (−h, s) g (s) ds = g (0) = ϕ (−h) .

Thus, g (0) = ϕ (−h). On the interval −h ≤ t ≤ 0, one can easily derive that

ϕ (t) = YA,B,C
h (t,−h) ϕ (−h) +

(∫ t

−h
+
∫ 0

t

)
YA,B,C

h (t, s) g (s) ds

= eA(t+h)ϕ (−h) +
∫ t

−h
eA(t−s)g (s) ds.

Differentiating the above equality, we have

ϕ′ (t) = AeA(t+h)ϕ (−h) + A
∫ t

−h
eA(t−s)g (s) ds + g (t)

= Aϕ (t) + g (t) .

Therefore,
g (t) = ϕ′ (t)− Aϕ (t) .
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Next, we prove the equivalence of (10) and (11). To do this, we use the integration by parts formula

∫ 0

−h
YA,B,C

h (t, s) dϕ (s) = YA,B,C
h (t, s) ϕ (s)

∣∣∣s=0

s=−h
−
∫ 0

−h

∂

∂s
YA,B,C

h (t, s) ϕ (s) ds

= YA,B,C
h (t, 0) ϕ (0)−YA,B,C

h (t,−h) ϕ (−h)

+
∫ 0

−h
YA,B,C

h (t, s) Aϕ (s) ds +
∫ 0

−h
YA,B,C

h (t, s + h) Bϕ (s) ds.

Thus, we obtained

y (t) = YA,B,C
h (t,−h) ϕ (−h) +

∫ 0

−h
YA,B,C

h (t, s)
[
ϕ′ (s)− Aϕ (s)

]
ds

= YA,B,C
h (t, 0) ϕ (0) +

∫ 0

−h
YA,B,C

h (t, s + h) Bϕ (s) ds.

Next, we attained an explicit formula of solutions to linear impulsive a non-homogeneous delay
system with a zero initial condition.

Theorem 2. The solution yp (t) of (8) satisfying a zero initial condition has a form

yp (t) =
k−1

∑
j=0

∫ tj+1

tj

YA,B,C
h (t, s) f (s) ds +

∫ t

tk

YA,B,C
h (t, s) f (s) ds, t ≥ 0. (13)

Proof. We looked for the solution yp (t) in the form

yp (t) =
k−1

∑
j=0

∫ tj+1

tj

YA,B,C
h (t, s) gj (s) ds +

∫ t

tk

YA,B,C
h (t, s) gk (s) ds,

whereas gj (s) , j = 0, 1, ..., k are unknown vector functions. We split the proof into several steps:
Step 1: 0 < t ≤ t1. In this case, we have

yp (t) =
∫ t

0
YA,B,C

h (t, s) g0 (s) ds.

We differentiated yp and used the property YA,B
h (t− h, s) = Θ, t− h < s, to obtain

y′p (t) = A
∫ t

0
YA,B,C

h (t, s) g0 (s) ds + B
∫ t

0
YA,B,C

h (t− h, s) g0 (s) ds + g0 (t)

= A
∫ t

0
YA,B,C

h (t, s) g0 (s) ds + B
(∫ t−h

0
+
∫ t

t−h

)
YA,B,C

h (t− h, s) g0 (s) ds + g0 (t)

= A
∫ t

0
YA,B,C

h (t, s) g0 (s) ds + B
∫ t−h

0
YA,B,C

h (t− h, s) g0 (s) ds + g0 (t)

= Ayp (t) + Byp (t− h) + f (t) .

It follows that g0 (t) = f (t) .
Step 2: t1 < t ≤ t2. In this case,

yp (t) =
∫ t1

0
YA,B,C

h (t, s) f (s) ds +
∫ t

t1

YA,B,C
h (t, s) g1 (s) ds.
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We differentiated yp (t) again to obtain

y′p (t) =
∫ t1

0

[
AYA,B,C

h (t, s) + BYA,B,C
h (t− h, s)

]
f (s) ds

+
∫ t

t1

[
AYA,B,C

h (t, s) + BYA,B,C
h (t− h, s)

]
g1 (s) ds + g1 (t)

= Ayp (t) + Byp (t− h) + f (t) ,

which implies that g1 (t) = f (t) .
Step 3: Suppose that gk−1 (t) = f (t) holds on the subintervals (tk−1, tk], k = 2, 3, ... Then, for any

tk < t ≤ tk+1, we have

yp (t) =
k−1

∑
j=0

∫ tj+1

tj

YA,B,C
h (t, s) f (s) ds +

∫ t

tk

YA,B,C
h (t, s) gk (s) ds.

We differentiated yp (t) again to obtain

y′p (t) = Ayp (t) + B

[
k−1

∑
j=0

∫ tj+1

tj

YA,B,C
h (t− h, s) f (s) ds

]

+
∫ t−h

tk

YA,B,C
h (t− h, s) gk (s) ds + gk (t)

= Ayp (t) + Byp (t− h) + f (t) .

It follows that gk (t) = f (t) .
According to the mathematical induction, we obtained gk (t) = f (t), k = 0, 1, 2, . . .Thus,

the formula (13) is derived.

Combining Theorems 1 and 2, we obtained the following representation formula:

Theorem 3. Let ϕ ∈ C1 ([−h, 0] ,Rn), f ∈ C ([0, T] ,Rn). Then, the solution of the initial value problem (1)
has the form

y (t) =


ϕ (t) , −h ≤ t ≤ 0
YA,B,C

h (t, 0) ϕ (0) +
∫ 0
−h YA,B,C

h (t, s + h) Bϕ (s) ds

+∑k−1
j=0

∫ tj+1
tj

YA,B,C
h (t, s) f (s) ds +

∫ t
tk

YA,B,C
h (t, s) f (s) ds, t ≥ 0,

where k is the number of points tj in the interval (0, t) .

4. Ulam–Hyers Stability

In this section, we discussed the stability of Ulam–Hyers for (2). In the stability of Ulam–Hyers,
we compared the solution for the given differential equation with the solution of other differential
inequality. The solution for the differential equation was the stability of Ulam–Hyers if it stayed close
to a solution of other differential inequality in relation with the original equation. The stability of
Ulam–Hyers did not imply the asymptotic stability in general.

For problem (2), for some ε > 0, we focus on the following inequalities:∥∥y′ (t)− Ay (t)− By (t− h)− f (t, y (t))
∥∥ ≤ ε, 0 ≤ t ≤ T,

‖∆y (tk)− Cky (tk)‖ ≤ ε, k = 1, ..., p. (14)
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Definition 6. Equation (2) is Ulam–Hyers stable on [−h, T] if for every y ∈ PC [−h, T]∩ PC1 [0, T] satisfying
(14), there exists a solution x ∈ PC ([−h, T] ,Rn) ∩ PC1 ([0, T] ,Rn) of (2) with ‖y− x‖PC ≤ Lε, for all
t ∈ [−h, T].

Proposition 1. A function y ∈ PC1 ([0, T] ,Rn) satisfies (14) if and only if there is a function φ ∈
PC ([−h, T] ,Rn) and a sequence gk depending on y such that

(i) ‖φ‖PC ≤ ε for all t ∈ [−h, T], ‖gk‖ ≤ ε for all k = 1, ..., p;
(ii) y′ (t) = Ay (t) + By (t− h) + f (t, y (t)) + φ (t) , 0 ≤ t ≤ T;

(iii) ∆y (tk) = Cky (tk) + gk, k = 1, ..., p.

Lemma 5. For s < t, we have ∥∥∥XA,B
h (t, s)

∥∥∥ ≤ e(‖A‖+‖B‖)(t−s).

Proof. For k = 1, we have

‖X1 (t, s + h)‖ ≤ ‖B‖
∫ t

s+h

∥∥∥eA(t−r)
∥∥∥ ∥∥∥eA(r−h−s)

∥∥∥ dr ≤ ‖B‖
∫ t

s+h
e‖A‖(t−r)e‖A‖(r−h−s)dr

≤ ‖B‖
∫ t

s+h
e‖A‖(t−h−s)dr = ‖B‖ e‖A‖(t−h−s) (t− h− s) .

For k = 2, we get

‖X2 (t, s + 2h)‖ ≤
∫ t

s+2h

∥∥∥eA(t−r)
∥∥∥ ‖B‖ ‖X1 (r− h, s + h)‖ dr

≤
∫ t

s+2h
e‖A‖(t−r) ‖B‖ ‖B‖ e‖A‖(r−2h−s) (r− 2h− s) dr

≤ ‖B‖2 e‖A‖(t−2h−s)
∫ t

s+2h
(r− 2h− s) dr

= ‖B‖2 e‖A‖(t−2h−s) (t− 2h− s)2

2
.

By the mathematical induction assuming

‖Xk−1 (t, s + (k− 1) h)‖ ≤ ‖B‖k−1 e‖A‖(t−(k−1)h−s) (t− (k− 1) h− s)k

k!
,

one can get

‖Xk (t, s + kh)‖ ≤
∫ t

s+kh

∥∥∥eA(t−r)
∥∥∥ ‖B‖ ‖Xk−1 (r− h, s + (k− 1) h)‖ dr

≤
∫ t

s+kh
e‖A‖(t−r) ‖B‖ ‖B‖k−1 e‖A‖(r−(k−1)h−s) (r− kh− s)k−1

(k− 1)!
dr

≤ ‖B‖k e‖A‖(t−kh−s) (t− kh− s)k

k!
.
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Thus, for s + kh ≤ t < s + (k + 1) h, we get

∥∥∥XA,B
h (t, s)

∥∥∥ ≤ k

∑
j=0

∥∥Xj (t, s + jh)
∥∥

≤
k

∑
j=0
‖B‖j e‖A‖(t−jh−s) (t− jh− s)j

j!

= e‖A‖(t−kh−s)
k

∑
j=0
‖B‖j (t− jh− s)j

j!

≤ e(‖A‖+‖B‖)(t−s).

The impulsive delayed matrix exponential YA,B,C
h (t, s) for the problem in Proposition 1 was

defined as follows:

YA,B,C
h (t, s) :=


Θ, t < s,
I, t = s,

XA,B
h (t, s) + ∑

s<tk<t
XA,B

h (t, tk)
(

CkYA,B,C
h (tk, s) + gk

)
.

Lemma 6. For s < t, we have the following estimation:∥∥∥YA,B,C
h (t, s)

∥∥∥ ≤ ∏
s<tk<t

(1 + ‖gk‖+ ‖Ck‖) e(‖A‖+‖B‖)(t−s). (15)

Proof. Our proof is based on the mathematical induction. We may assume that tm < s ≤ tm+1 and
tm+n < t ≤ tm+n+1 for some natural number n.

(i) tm < s < t ≤ tm+1. By Lemma 5

YA,B,C
h (t, s) = XA,B

h (t, s) ,∥∥∥YA,B,C
h (t, s)

∥∥∥ ≤ e(‖A‖+‖B‖)(t−s).

(ii) tm+1 < t ≤ tm+2 : Then,

YA,B,C
h (t, s) = XA,B

h (t, s) + XA,B
h (t, tm+1)

(
Cm+1YA,B,C

h (tm+1, s) + gm+1

)
,∥∥∥YA,B,C

h (t, s)
∥∥∥ ≤ e(‖A‖+‖B‖)(t−s)

+ e(‖A‖+‖B‖)(t−tm+1)
(
‖Cm+1‖ e(‖A‖+‖B‖)(tm+1−s) + ‖gm+1‖

)
≤ (1 + ‖Cm+1‖) e(‖A‖+‖B‖)(t−s) + ‖gm+1‖ e(‖A‖+‖B‖)(t−tm+1)

≤ (1 + ‖gm+1‖+ ‖Cm+1‖) e(‖A‖+‖B‖)(t−s).

(iii) For tm+2 < t ≤ tm+3, we have

YA,B,C
h (t, s) = XA,B

h (t, s) + XA,B
h (t, tm+1)

(
Cm+1YA,B,C

h (tm+1, s) + gm+1

)
+ XA,B

h (t, tm+2)
(

Cm+2YA,B,C
h (tm+2, s) + gm+2

)
.
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Consequently,∥∥∥YA,B,C
h (t, s)

∥∥∥ ≤ e(‖A‖+‖B‖)(t−s) + e(‖A‖+‖B‖)(t−tm+1)
(
‖Cm+1‖ e(‖A‖+‖B‖)(tm+1−s) + ‖gm+1‖

)
+e(‖A‖+‖B‖)(t−tm+2)

(
‖Cm+2‖ (1 + ‖gm+1‖+ ‖Cm+1‖) e(‖A‖+‖B‖)(tm+2−s) + ‖gm+2‖

)
≤ e(‖A‖+‖B‖)(t−s) ((1 + ‖Cm+1‖+ ‖gm+1‖))

+e(‖A‖+‖B‖)(t−s) (‖Cm+2‖ (1 + ‖gm+1‖+ ‖Cm+1‖) + ‖gm+2‖)

≤ e(‖A‖+‖B‖)(t−s) (1 + ‖gm+1‖+ ‖Cm+1‖) (1 + ‖gm+2‖+ ‖Cm+2‖) .

We may use the mathematical induction on n to get (15).

Lemma 7. Every y ∈ PC ([−h, T] ,Rn) that satisfies (14) also satisfies the following inequality:∥∥∥∥y (t)−YA,B,C
h (t, 0) ϕ (0)−

∫ 0

−h
YA,B,C

h (t, s) Bϕ (s) ds

−
k−1

∑
j=0

∫ tj+1

tj

YA,B,C
h (t, s) f (s) ds−

∫ t

tk

YA,B,C
h (t, s) f (s, y (s)) ds

∥∥∥∥∥ ≤ Cε

for all t ∈ [0, T], where k is the number of points tj in the interval (0, t) and

C :=

 1
‖A‖+ ‖B‖ ∏

0<tk<T
(1 + ‖gk‖+ ‖Ck‖)

(
e(‖A‖+‖B‖)T − 1

)
+

k−1

∑
j=0

e(‖A‖+‖B‖)(t−tj)

 . (16)

Proof. If y ∈ PC ([−h, T] ,Rn) satisfies (14), then, by Proposition 1, we have

‖φ‖PC ≤ ε for all t ∈ [0, T] , ‖gk‖ ≤ ε for all k = 1, ..., p;

y′ (t) = Ay (t) + By (t− h) + f (t, y (t)) + φ (t) , 0 ≤ t ≤ T;

∆y (tk) = Cky (tk) + gk, k = 1, . . ., p.

Then, by Theorem 3, we have the following representation formula for the above problem:

y (t) = YA,B,C
h (t, 0) ϕ (0) +

∫ 0

−h
YA,B,C

h (t, s + h) Bϕ (s) ds +
k

∑
j=0

XA,B
h
(
t, tj
)

gj

+
k−1

∑
j=0

∫ tj+1

tj

YA,B,C
h (t, s) [ f (s, y (s)) + φ (s)] ds +

∫ t

tk

YA,B,C
h (t, s) [ f (s, y (s)) + φ (s)] ds, t ∈ (tk, tk+1] .
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It follows that ∥∥∥∥y (t)−YA,B,C
h (t, 0) ϕ (0)−

∫ 0

−h
YA,B,C

h (t, s + h) Bϕ (s) ds

−
k−1

∑
j=0

∫ tj+1

tj

YA,B,C
h (t, s) f (s, y (s)) ds−

∫ t

tk

YA,B,C
h (t, s) f (s, y (s)) ds

∥∥∥∥∥
≤
∫ t

0

∥∥∥YA,B,C
h (t, s)

∥∥∥ ‖φ (s)‖ ds +
k−1

∑
j=0

∥∥∥XA,B
h
(
t, tj
)∥∥∥ ∥∥gj

∥∥
≤
∫ t

0
∏

s<tk<t
(1 + ‖gk‖+ ‖Ck‖) e(‖A‖+‖B‖)(t−s)ds ‖φ‖PC +

k−1

∑
j=0

e(‖A‖+‖B‖)(t−tj)
∥∥gj
∥∥

≤
(

1
‖A‖+ ‖B‖ ∏

0<tk<T
(1 + ‖gk‖+ ‖Ck‖)

(
e(‖A‖+‖B‖)T − 1

)
+

k−1

∑
j=0

e(‖A‖+‖B‖)(t−tj)

)
ε.

Now, we are able to present our second main result on the stability of Ulam–Hyers.

Theorem 4. If f : [0, T]×Rn → Rn is continuous and satisfies the Lipschitz condition: there exists L f > 0
such that, for all (t, y1) , (t, y2) ∈ [0, T]×Rn

‖ f (t, y1)− f (t, y2)‖ ≤ L f ‖y1 − y2‖ .

Then,

(i) Equation (2) has a unique solution in PC ([−h, T] ,Rn) ∩ PC1 ([−h, T] ,Rn) ;
(ii) Equation (2) is stable in the sense of Ulam–Hyers.

Proof. We define

Πy (t) = YA,B,C
h (t, 0) ϕ (0) +

∫ 0

−h
YA,B,C

h (t, s + h) Bϕ (s) ds

+
k−1

∑
j=0

∫ tj+1

tj

YA,B,C
h (t, s) f (s, y (s)) ds +

∫ t

tk

YA,B,C
h (t, s) f (s, y (s)) ds

on the space PC ([−h, T] ,Rn). We applied the contraction mapping theorem to show that Π has
a unique fixed point. At first glance, it seems natural to use the supremum norm. However, the choice
of supremum norm only leads us to a local solution defined in the subinterval of [−h, T]. The idea was
to use the weighted supremum norm

‖y‖δ := sup
{

e−δt ‖y (t)‖ : −h ≤ t ≤ T
}

on PC ([−h, T] ,Rn). Observe that PC ([−h, T] ,Rn)) is a Banach space with this norm since it is
equivalent to the supremum norm.
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(i) We showed that Π is a contraction on PC ([−h, T] ,Rn). Indeed, for any y, x ∈ PC ([−h, T] ,Rn) ,
we have

e−δt ‖Πx (t)−Πy (t)‖

≤ e−δt
∫ t

0

∥∥∥YA,B,C
h (t, s)

∥∥∥ eδse−δs ‖ f (s, x (s))− f (s, y (s))‖ ds

≤ e−δt
∫ t

0
eδs
∥∥∥YA,B,C

h (t, s)
∥∥∥ dsL f ‖x− y‖δ

≤ ∏
s<tk<T

(1 + ‖Ck‖)
∫ t

0
e(‖A‖+‖B‖−δ)(t−s)dsL f ‖x− y‖δ

=
1

δ− ‖A‖ − ‖B‖ ∏
s<tk<T

(1 + ‖Ck‖)
(

1− e(‖A‖+‖B‖−δ)T
)
‖x− y‖δ . (17)

Taking supremum over [0, T], we get

‖Πx−Πy‖δ ≤
1

δ− ‖A‖ − ‖B‖ ∏
s<tk<T

(1 + ‖Ck‖)
(

1− e(‖A‖+‖B‖−δ)T
)
‖x− y‖δ .

We can choose δ > ‖A‖+ ‖B‖ so that the coefficient of ‖x− y‖δ become strictly less that one.
Hence, Π is a contractive operator and, by the Banach contraction principle, Π is a unique fixed point
in PC ([−h, T] ,Rn), and Equation (2) has a unique solution.

(ii) Let y ∈ PC ([−h, T] ,Rn) be a solution (14), and let x be a unique solution of (2). We see that
‖y (t)− x (t)‖ = 0 for −h ≤ t ≤ 0. For t ∈ [0, T], we have

‖y (t)− x (t)‖ = ‖y (t)−Πx (t)‖
≤ ‖y (t)−Πy (t)‖+ ‖Πy (t)−Πx (t)‖ .

Now, we use Lemma 7 and inequality (17) to get

e−δt ‖y (t)− x (t)‖ ≤ Cε +
1

δ− ‖A‖ − ‖B‖ ∏
s<tk<T

(1 + ‖Ck‖)
(

1− e(‖A‖+‖B‖−δ)T
)
‖x− y‖δ ,

where C is defined by (16). Consequently,

‖x− y‖δ ≤
C

1− 1
δ−‖A‖−‖B‖ ∏

s<tk<T
(1 + ‖Ck‖)

(
1− e(‖A‖+‖B‖−δ)T

) ε.

Hence, Equation (2) is Ulam–Hyers stable.

5. Existence Results

Our next result is based on the Schaefer’s fixed point theorem. For obtaining the desired results,
we assume the following:

(H1) The function f : J ×Rn → Rn is continuous.
(H2) There exists a constant M f > 0 such that

‖ f (t, y)‖ ≤ M f (1 + ‖y‖) , for t ∈ J and y ∈ Rn.

Theorem 5. If the assumptions (H1) and (H2) are satisfied, then problem (2) has at least one solution.
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Proof. Consider the operator Π defined in Theorem 4. We used Schaefer’s fixed point theorem to
show that Π has a fixed point. The proof is split into four steps.

Step 1. Π is continuous.
Take a sequence {yn} ⊂ P, such that yn converges to y ∈ P as n→ ∞. Then, for t ∈ Jm, we have

‖(Πyn) (t)− (Πy) (t)‖

≤
∫ t

tm

∥∥∥YA,B,C
h (t, s)

∥∥∥ ‖ f (s, yn (s))− f (s, y (s))‖ ds

≤
∫ T

0

∥∥∥YA,B,C
h (T, s)

∥∥∥ ‖ f (s, yn (s))− f (s, y (s))‖ ds.

As a consequence of the Lebesgue dominated convergent theorem, the right-hand side of the
above inequality tends to zero as n→ ∞, hence

‖(Πyn) (t)− (Πy) (t)‖ → 0 as n→ ∞,

which implies that
‖Πyn −Πy‖PC → 0 as n→ ∞.

Thus, T is continuous on J.
Step 2. Π maps bounded sets into bounded sets in P.
In fact, we just need to show that, for any positive constant r1, there existed a constant r2 > 0 such

that, for each
y ∈ Br1 :=

{
y ∈ P : ‖y‖PC ≤ r1

}
,

we have ‖Πy‖PC ≤ r2. For t ∈ Jm, m = 0, 1, ..., p, we have

‖Πy (t)‖ ≤
∥∥∥YA,B,C

h (t, 0)
∥∥∥ ‖ϕ (0)‖+

∫ 0

−h

∥∥∥YA,B,C
h (t, s + h)

∥∥∥ ‖B‖ ‖ϕ (s)‖ ds

+
∫ t

tm

∥∥∥YA,B,C
h (t, s)

∥∥∥ ‖ f (s, y (s))‖ ds

≤ C0 +
∥∥∥YA,B,C

h (T, 0)
∥∥∥M f T (1 + ‖y‖PC)

≤ C0 +
∥∥∥YA,B,C

h (T, 0)
∥∥∥M f T (1 + r1) := r2,

which implies that
‖Πy‖PC ≤ r2.

Step 3. Π maps bounded set into equicontinuous set of P.
Let t1, t2 ∈ Jm, m = 0, 1, ..., p, with t1 < t2 and Br1 be a ball as in the second step. Then, for y ∈ P,

we have

‖Πy (t2)−Πy (t1)‖ ≤
∥∥∥YA,B,C

h (t2, 0)−YA,B,C
h (t1, 0)

∥∥∥ ‖ϕ (0)‖

+
∫ 0

−h

∥∥∥YA,B,C
h (t2, s + h)−YA,B,C

h (t1, s + h)
∥∥∥ ‖B‖ ‖ϕ (s)‖ ds

+
∫ t1

tm

∥∥∥YA,B,C
h (t2, s)−YA,B,C

h (t1, s)
∥∥∥ ‖ f (s, y (s))‖ ds

+
∫ t2

t1

∥∥∥YA,B,C
h (t2, s)

∥∥∥ ‖ f (s, y (s))‖ ds.

We saw that the right-hand side of the above inequality tends to zero as t2 → t1, since YA,B
h (t, s)

is continuous in t ∈ Jm and f is bounded on Br1 .
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We can conclude that Π is completely continuous from Step 1–Step 3 with the Arzela–
Ascoli theorem.

Step 4. A priori bound.
Now, in the final step, we showed that the set defined by

W = {y ∈ P :y = λΠ (y) for some 0 < λ < 1}

is bounded. Let y ∈W, the for some 0 < λ < 1, y = λΠ (y). Therefore, for t ∈ J, as in Step 2, we have

‖y (t)‖ = λ ‖Πy (t)‖ ≤ C0 +
∥∥∥YA,B,C

h (T, 0)
∥∥∥M f T

+
∥∥∥YA,B,C

h (T, 0)
∥∥∥M f

∫ t

0
‖y (s)‖ ds.

Gronwall’s inequality yields

‖y (t)‖ ≤ C0 +
∥∥∥YA,B,C

h (T, 0)
∥∥∥M f T exp

(∥∥∥YA,B,C
h (T, 0)

∥∥∥M f T
)
< ∞.

Then, the set W is bounded.
Thus, using Schaefer’s fixed point theorem, we concluded that Π has a fixed point, which is the

corresponding solution of the proposed problem (2).

6. Illustrative Examples

Example 1. Consider the linear problem (1):
y′ (t) = Ay (t) + By (t− h) + f (t) , t ∈ [0, T] , h > 0, t 6= tk,
∆y (tk) = y

(
t+k
)
− y

(
t−k
)
= Cky (tk) , k = 1, 2, ...p,

y (t) = ϕ (t) , −h ≤ t ≤ 0,

where A, B, Ck ∈ Rn×n are constant matrices, ϕ ∈ C1 ([−h, 0] ,Rn), f ∈ C ([0, T] ,Rn), {tk}.satisfies
0 = t0 < t1 < ... < tp < tp+1 = T. This problem satisfies the conditions of Theorem 4 and this linear
impulsive system is stable in Ulam–Hyers sense.

Example 2. Consider (2) with h = 0.2

A =

(
−0.3 1

0 −0.3

)
, B =

(
0.8 0.2
0 0.6

)
, Cj =

(
1.2 0.5
0.2 1.5

)
, j = 1, 2, ...

φ(t) =

(
e−3

e−4

)
, f (t, x) =

(
0.25 sin(x1)

0.25 sin(x2)

)
and AB 6= BA, ACj 6= Cj A and BCj 6= CjB. Obviously, f satisfies the Lipschitz condition L f = 0.25 > 0,
the conditions of Theorem 4 are satisfied and Equation (2) has a uniqueness solution in PC[−h, 1] ∩ PC1[0, 1]
which is Ulam–Hyers stable on [−h, 1].
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Example 3. We consider the following fractional problem:

y′ (t) =

(
−60 0

0 −5.5

)
y (t) +

(
1 1
0 1

)
y (t− h) + f (t, y (t)) , t ∈ [0, 1] , h = 0.2, t 6= tk,

∆y (tk) = y
(
t+k
)
− y

(
t−k
)
=

2 +
1
k

0

1 2

 y (tk) , k = 1, 2, ...4,

y (t) =

(
e−3

e−4

)
, −h ≤ t ≤ 0,

Obviously, A, B, and Cj are mutually non-commutative

AB 6= BA, ACj 6= Cj A, BCj 6= CjB, j = 1, 2.

Assume that f : [0, 1]×R2 → R2 is any continuous function satisfying (H2) . Then, by Theorem 5,
Equation (2) has al least one solution on [−h, 1].

7. Conclusions

The main contribution of this paper is to introduce an impulsive delayed matrix exponential for
non-permutable matrices and use it to construct explicit solutions for the impulsive delay systems
with linear parts defined by non-permutable matrices. We applied fixed point methods to establish
existence, uniqueness, and the stability of Ulam–Hyers for the impulsive delay system. The study
on representation and stability of delay differential systems with impulses provides a potential for
the future research on fractional impulsive delay systems, on fractional multiple delay impulsive
problems, or in problems with delayed nonlinear terms.
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