Article

Normal Toeplitz Operators on the Bergman Space

Sumin Kim ${ }^{1(D)}$ and Jongrak Lee ${ }^{2, *(\mathbb{D})}$
1 Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea; suminkim@skku.edu
2 Department of Mathematics, Jeju National University, Jeju 63243, Korea
* Correspondence: jrlee@jejunu.ac.kr

Received: 21 July 2020; Accepted: 27 August 2020; Published: 1 September 2020

Abstract

In this paper, we give a characterization of normality of Toeplitz operator T_{φ} on the Bergman space $A^{2}(\mathbb{D})$. First, we state basic properties for Toeplitz operator T_{φ} on $A^{2}(\mathbb{D})$. Next, we consider the normal Toeplitz operator T_{φ} on $A^{2}(\mathbb{D})$ in terms of harmonic symbols φ. Finally, we characterize the normal Toeplitz operators T_{φ} with non-harmonic symbols acting on $A^{2}(\mathbb{D})$.

Keywords: Toeplitz operator; normal operator; Bergman space
MSC: Primary 47B35; 47B15; Secondary 30H20

1. Introduction

The purpose of this paper is to study the normality of Toeplitz operators acting on the Bergman space. Our interest is focused on Toeplitz operators with harmonic and non-harmonic symbols. Let $\mathcal{L}(\mathcal{H})$ be the algebra of bounded linear operators on a separable complex Hilbert space \mathcal{H}. An operator $T \in \mathcal{L}(\mathcal{H})$ is normal if its self-commutator $\left[T^{*}, T\right]:=T^{*} T-T T^{*}=0$, where T^{*} denotes the adjoint of T. Let \mathbb{D} denote the open unit disk in $\mathbb{C}, d A$ be the normalized area measure on \mathbb{D}. The space $L^{2}(\mathbb{D})$ is a Hilbert space with the inner product

$$
\langle f, g\rangle=\frac{1}{\pi} \int_{\mathbb{D}} f(z) \overline{g(z)} d A(z) .
$$

The Bergman space $A^{2}(\mathbb{D})$ is the subspace of $L^{2}(\mathbb{D})$ consisting of functions analytic on \mathbb{D} and $L^{\infty}(\mathbb{D})$ be the space of bounded area measurable functions on \mathbb{D}. The multiplication operator M_{ψ} with symbol $\psi \in L^{\infty}(\mathbb{D})$ is defined by $M_{\psi} f=\psi f$ for $f \in A^{2}(\mathbb{D})$. For any $\varphi \in L^{\infty}(\mathbb{D})$, the Toeplitz operator T_{φ} on the Bergman space is defined by the formula

$$
T_{\varphi} f=P(\varphi f)
$$

for $f \in A^{2}(\mathbb{D})$ and P denotes the orthogonal projection of $L^{2}(\mathbb{D})$ onto $A^{2}(\mathbb{D})$. In this case, the function φ is called the symbol of T_{φ}. It is clear that those operators are bounded if φ is in $L^{\infty}(\mathbb{D})$. Recall that the Bergman space $A^{2}(\mathbb{D})$ is the space of analytic functions in $L^{2}(\mathbb{D}, d A)$ with the power series representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \text { where } \sum_{n=0}^{\infty} \frac{1}{n+1}\left|a_{n}\right|^{2}<\infty .
$$

We will now consider the normality of Toeplitz operators on the Bergman space with various symbols. We shall list the well-known properties of Toeplitz operators T_{φ} on the Bergman space.

Let f, g are in $L^{\infty}(\mathbb{D})$ and $\alpha, \beta \in \mathbb{C}$, then we can easily check that
(i) $T_{\alpha f+\beta g}=\alpha T_{f}+\beta T_{g}$
(ii) $T_{f}^{*}=T_{\bar{f}}$
(iii) $T_{\bar{f}} T_{g}=T_{\bar{f} g^{\prime}}$, if f or g is analytic.

Many authors in [1-6] studied intensively Normal operators and Toeplitz operators. It is a natural ask of when Toeplitz operator becomes normal. In 1963, A. Brown and P. Halmos [7] characterized normal Toeplitz operators on the Hardy space. This contains many of the fundamental results on the algebraic properties of Toeplitz operators. It has been central significance in operator theory. Thus we will focus primarily on normality of Toeplitz operators on the Bergman space.

Recently, the authors in [3] gave a properties of T_{φ} with non-harmonic symbols on the Bergman space. In view of this, first, we characterize the normal Toeplitz operator T_{φ} on $A^{2}(\mathbb{D})$ in terms of harmonic symbols φ. Next, we characterize the normal Toeplitz operators T_{φ} with non-harmonic symbols acting on $A^{2}(\mathbb{D})$.

The remainder of the paper is organized as follows. In Section 2, we study the normal Toeplitz operators T_{φ} on $A^{2}(\mathbb{D})$ with harmonic symbols φ. In Section 3, we consider the normal Toeplitz operators T_{φ} with non-harmonic symbols acting on $A^{2}(\mathbb{D})$ and their applications.

2. Toeplitz Operators with Harmonic Symbols

First, we study the normality of Toeplitz operators on $A^{2}(\mathbb{D})$ with the general symbol. In [2], the authors study the normality of Toeplitz operators on the weighted Bergman spaces as follows.

Lemma 1 (Theorem 3.2 in [2]). Let $\varphi=\alpha z^{n}+\beta z^{m}+\gamma \bar{z}^{p}+\delta \bar{z}^{q}$ with $n<m, p<q, n-m=q-p$ and for nonzero $\alpha, \beta, \gamma, \delta$ and $\varphi+\bar{\varphi}$ is a constant. Then T_{φ} is normal if and only if $\lambda \in \mathbb{T}$ and φ is one of exactly three types;
(i) $\varphi=\alpha z^{n}-\lambda \overline{\alpha z}^{n}$,
(ii) $\varphi=\alpha z^{n}+\beta z^{m}-\lambda\left(\overline{\alpha z}^{n}+\bar{\beta} \bar{z}^{m}\right)$,
(iii) $\varphi=\beta z^{m}-\lambda \bar{\beta} \bar{z}^{m}$.

We need several auxiliary lemmas to prove the main theorem in this section. We begin with:
Lemma 2 ([8]). For any $s, t \in \mathbb{N}$,

$$
P\left(\bar{z}^{t} z^{s}\right)= \begin{cases}\frac{s-t+1}{s+1} z^{s-t} & \text { if } s \geq t \\ 0 & \text { if } s<t\end{cases}
$$

The proof for the Lemma 3 follows the proof of Theorem 2.1 in [8].
Lemma 3. For $0 \leq m \leq N$, we deduce that
(i) $\left\|\bar{z}^{m} \sum_{i=0}^{\infty} c_{i} z^{i}\right\|^{2}=\sum_{i=0}^{\infty} \frac{1}{i+m+1}\left|c_{i}\right|^{2}$,
(ii) $\left\|P\left(\bar{z}^{m} \sum_{i=0}^{\infty} c_{i} z^{i}\right)\right\|^{2}=\sum_{i=m}^{\infty} \frac{i-m+1}{(i+1)^{2}}\left|c_{i}\right|^{2}$.

Next, we characterize the normality of Toeplitz operators with harmonic symbols on $A^{2}(\mathbb{D})$.
Theorem 1. Let $\varphi(z)=\overline{g(z)}+f(z)$, where

$$
f(z)=\sum_{n=0}^{N} a_{n} z^{n} \quad \text { and } \quad g(z)=\sum_{n=1}^{m} a_{-n} z^{n}
$$

with $a_{-m} a_{N} \neq 0$. Then T_{φ} is normal on $A^{2}(\mathbb{D})$ if and only if $g(z)=e^{i \theta} f(z)$.
Proof. Observe that T_{φ} is normal if and only if $T_{\bar{f} f}+T_{g} T_{\bar{g}}=T_{f} T_{\bar{f}}+T_{\bar{g} g}$. First we show $N=m$. Without loss of generality, we assume that $N>m$. Then by acting z^{m} to the both side in the above relation, we have $T_{\bar{f} f} z^{m}=T_{f} T_{\bar{f}} z^{m}$, and so

Since

$$
P\left(\sum_{n=0}^{N}{\overline{a_{n}} z^{n}}_{n}^{n} \sum_{n=0}^{N} a_{n} z^{n} z^{m}\right)=P\left(\sum_{i=0}^{N} \sum_{j=\max \{0, i-m\}}^{N} \overline{a_{i}} z^{i} a_{j} z^{j+m}\right)
$$

and
for the coefficient of z^{m}, we deduce that

$$
\sum_{j=0}^{N} \frac{m+1}{m+j+1}\left|a_{j}\right|^{2}=\sum_{j=0}^{m} \frac{m-j+1}{m+1}\left|a_{j}\right|^{2}
$$

Moreover, since

$$
\frac{m+1}{m+j+1} \geq \frac{m-j+1}{m+1}
$$

for $1 \leq j \leq N$, we have $a_{j}=0$ for all $1 \leq j \leq N$. This contradicts the assumption $a_{N} \neq 0$.
Next, we find the necessary and sufficient condition of normality. Since T_{φ} is normal if and only if $T_{\bar{f} f}-T_{f} T_{\bar{f}}=T_{\bar{g} g}-T_{g} T_{\bar{g}}$, for any $k \in \mathbb{N}$,

$$
\begin{aligned}
\left(T_{\bar{f} f}-T_{f} T_{\bar{f}}\right) z^{k} & =P\left(\sum_{n=0}^{N} \overline{a_{n} z^{n}} \sum_{n=0}^{N} a_{n} z^{n} z^{k}\right)-\sum_{n=0}^{N} a_{n} z^{n} P\left(\sum_{n=0}^{N} \overline{a_{n}} z^{n} z^{k}\right) \\
& =\sum_{i=0}^{\min \{j+k, N\}} \sum_{j=0}^{N} \frac{k+j-i+1}{k+j+1} \overline{a_{i}} a_{j} z^{j+k-i}-\sum_{j=0}^{N} a_{j} z^{j} \sum_{i=0}^{k} \frac{k-i+1}{k+1} \bar{a}_{i} z^{k-i}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(T_{\bar{g} g}-T_{g} T_{\bar{g}}\right) z^{k} & =P\left(\sum_{n=1}^{N} \overline{a_{-n} z^{n}} \sum_{n=1}^{N} a_{-n} z^{n} z^{k}\right)-\sum_{n=1}^{N} a_{-n} z^{n} P\left(\sum_{n=1}^{N} \overline{a_{-n}} z^{n} z^{k}\right) \\
& =\sum_{i=1}^{\min \{j+k, N\}} \sum_{j=1}^{N} \frac{k+j-i+1}{k+j+1} \overline{a_{-i}} a_{-j} z^{j+k-i}-\sum_{j=1}^{N} a_{-j} z^{j} \sum_{i=1}^{k} \frac{k-i+1}{k+1} \overline{a_{-i}} z^{k-i} .
\end{aligned}
$$

By direct calculations of coefficients of z^{k+N-2}, we have

$$
\begin{aligned}
& \overline{a_{0}} a_{N-2}+\overline{a_{1}} a_{N-1} \frac{N+k-1}{N+k}+\overline{a_{2}} a_{N} \frac{N+k-1}{N+k+1}-\left(\overline{a_{0}} a_{N-2}+\overline{a_{1}} a_{N-1} \frac{k}{k+1}+\overline{a_{2}} a_{N} \frac{k-1}{k+1}\right) \\
& =\overline{a_{-1}} a_{-(N-1)} \frac{N+k-1}{N+k}+\overline{a_{-2}} a_{-N} \frac{N+k-1}{N+k+1}-\left(\overline{a_{-1}} a_{-(N-1)} \frac{k}{k+1}+\overline{a_{-2}} a_{-N} \frac{k-1}{k+1}\right)
\end{aligned}
$$

for any $k \in \mathbb{N}$. Therefore

$$
\left(\overline{a_{1}} a_{N-1}-\overline{a_{-1}} a_{-(N-1)}\right)\left(\frac{N+k-1}{N+k}-\frac{k}{k+1}\right)+\left(\overline{a_{2}} a_{N}-\overline{a_{-2}} a_{-N}\right)\left(\frac{N+k-1}{N+k+1}-\frac{k-1}{k+1}\right)=0
$$

for any $k \in \mathbb{N}$. Since k is arbitrary, so that $\overline{a_{1}} a_{N-1}=\overline{a_{-1}} a_{-(N-1)}$ and $\overline{a_{2}} a_{N}=\overline{a_{-2}} a_{-N}$. By the similar arguments, we have

$$
\overline{a_{i}} a_{j}=\overline{a_{-i}} a_{-j}
$$

for all i, j with $1 \leq i, j \leq N$. Therefore,

$$
a_{-j}=e^{i \theta} a_{j}
$$

for all $1 \leq j \leq N$ and so $g(z)=e^{i \theta} f(z)$.
If $g(z)=e^{i \theta} f(z)$, then

$$
T_{\varphi}^{*} T_{\varphi}=T_{\bar{f}+g} T_{\bar{g}+f}=T_{\bar{f}+e^{i \theta} f} T_{e^{-i \theta} \bar{f}+f}=T_{e^{-i \theta} \bar{f}+f} T_{\bar{f}+e^{i \theta} f}=T_{\varphi} T_{\varphi}^{*}
$$

Thus, T_{φ} is normal on $A^{2}(\mathbb{D})$. This completes the proof.

3. Toeplitz Operators with Non-Harmonic Symbols

In this section, we study the normality of T_{φ} on $A^{2}(\mathbb{D})$ with the non-harmonic symbol φ. In this case, we cannot apply the tool as in Theorem 1 to φ, since it cannot be devided into analytic and co-analytic parts. Hence we should calculate the self-commutator of T_{φ} for non-harmonic symbol φ. For this, we discuss about the symbol φ of the form $\varphi(z)=a_{m, n} z^{m} \bar{z}^{n}$ with $a_{m, n} \in \mathbb{C}$.

Lemma 4. Let $\varphi(z)=a_{m, n} z^{m} \bar{z}^{n}$ with $a_{m, n} \in \mathbb{C}$. Then T_{φ} on $A^{2}(\mathbb{D})$ is normal if and only if $m=n$.
Proof. For $\varphi(z)=a_{m, n} z^{m} \bar{z}^{n}, T_{\varphi}$ is normal if and only if

$$
\left\langle\left(T_{\varphi}^{*} T_{\varphi}-T_{\varphi} T_{\varphi}^{*}\right) \sum_{i=0}^{\infty} c_{i} z^{i}, \sum_{i=0}^{\infty} c_{i} z^{i}\right\rangle=0
$$

for all $c_{i} \in \mathbb{C}$. Using Lemmas 2 and 3, we have that

$$
\begin{aligned}
& \left\|T_{\varphi} \sum_{i=0}^{\infty} c_{i} z^{i}\right\|^{2}-\left\|T_{\varphi}^{*} \sum_{i=0}^{\infty} c_{i} z^{i}\right\|^{2} \\
& =\left\|T_{a_{m, n} z^{m} \bar{z}^{n}} \sum_{i=0}^{\infty} c_{i} z^{i}\right\|^{2}-\left\|T_{\bar{a}_{m, n} \bar{z}^{m} z^{n}} \sum_{i=0}^{\infty} c_{i} z^{i}\right\|^{2} \\
& =\left\|P\left(a_{m, n} z^{m} \bar{z}^{n} \sum_{i=0}^{\infty} c_{i} z^{i}\right)\right\|^{2}-\left\|P\left(\bar{a}_{m, n} \bar{z}^{m} z^{n} \sum_{i=0}^{\infty} c_{i} z^{i}\right)\right\|^{2} \\
& =\left|a_{m, n}\right|^{2} \sum_{i=\max \{n-m, 0\}}^{\infty} \frac{m+i-n+1}{(m+i+1)^{2}}\left|c_{i}\right|^{2}-\left|a_{m, n}\right|^{2} \sum_{i=\max \{m-n, 0\}}^{\infty} \frac{n+i-m+1}{(n+i+1)^{2}}\left|c_{i}\right|^{2}=0 .
\end{aligned}
$$

Hence T_{φ} is normal if and only if

$$
\sum_{i=\max \{n-m, 0\}}^{\infty} \frac{m+i-n+1}{(m+i+1)^{2}}\left|c_{i}\right|^{2}=\sum_{i=\max \{m-n, 0\}}^{\infty} \frac{n+i-m+1}{(n+i+1)^{2}}\left|c_{i}\right|^{2}
$$

for all $c_{i} \in \mathbb{C}$. Since c_{i} 's are arbitrary, we have that T_{φ} is normal if and only if $m=n$. This completes the proof.

We now consider the normality of Toeplitz operators with two terms of non-harmonic symbols. The following theorem gives a general characterization of normal Toeplitz operators with the symbols is of the form $\varphi(z)=a z^{m} \bar{z}^{n}+b z^{s} \bar{z}^{t}(m \geq n \geq 0, t \geq s \geq 0)$ with some assumptions.

Theorem 2. Let $\varphi(z)=a z^{m} \bar{z}^{n}+b z^{s} \bar{z}^{t}$ with $m \geq n \geq 0, t \geq s \geq 0$ and nonzeros $a, b \in \mathbb{C}$. Then T_{φ} is normal if and only if $\varphi(z)$ is of the form

$$
\varphi(z)=(a+b)|z|^{2 m} \text { or } \varphi(z)=a z^{m} \bar{z}^{n}+b z^{n} \bar{z}^{m} \quad(|a|=|b|) .
$$

Proof. Let $\varphi(z)=a z^{m} \bar{z}^{n}+b z^{s} \bar{z}^{t}$ with $m \geq n, t \geq s$. By similar arguments as in the proof of Lemma 4, T_{φ} is normal if and only if

$$
\begin{align*}
& \left\|T_{\varphi} \sum_{i=0}^{\infty} c_{i} z^{i}\right\|^{2}-\left\|T_{\varphi}^{*} \sum_{i=0}^{\infty} c_{i} z^{i}\right\|^{2} \\
& =\left\|T_{a z^{m} \bar{z}^{n}} \sum_{i=0}^{\infty} c_{i} z^{i}+T_{b z^{s} z^{t}} \sum_{i=0}^{\infty} c_{i} z^{i}\right\|^{2}-\left\|T_{\overline{a z^{m}} z^{n}} \sum_{i=0}^{\infty} c_{i} z^{i}+T_{\bar{b} \bar{z}^{s} z^{t}} \sum_{i=0}^{\infty} c_{i} z^{i}\right\|^{2} \\
& =\left\|P\left(a \bar{z}^{n} \sum_{i=0}^{\infty} c_{i} z^{i+m}\right)+P\left(b \bar{z}^{t} \sum_{i=0}^{\infty} c_{i} z^{i+s}\right)\right\|^{2} \tag{1}\\
& \quad-\left\|P\left(\overline{a z}^{m} \sum_{i=0}^{\infty} c_{i} z^{i+n}\right)+P\left(\bar{b} \bar{z}^{s} \sum_{i=0}^{\infty} c_{i} z^{i+t}\right)\right\|^{2} \\
& =|a|^{2} \sum_{i=0}^{\infty} \frac{m+i-n+1}{(m+i+1)^{2}}\left|c_{i}\right|^{2}+|b|^{2} \sum_{i=t-s}^{\infty} \frac{s+i-t+1}{(s+i+1)^{2}}\left|c_{i}\right|^{2} \\
& \quad-|a|^{2} \sum_{i=m-n}^{\infty} \frac{n+i-m+1}{(n+i+1)^{2}}\left|c_{i}\right|^{2}-|b|^{2} \sum_{i=0}^{\infty} \frac{t+i-s+1}{(t+i+1)^{2}}\left|c_{i}\right|^{2}=0
\end{align*}
$$

for any $c_{i} \in \mathbb{C}(i=0,1,2, \ldots)$.
Case (1) If $m=n, t=s$, then the equality (1) holds, and so T_{φ} is normal.
Case (2) If $m>n, t>s$, set $c_{0}=1$ and $c_{i}=0$ for $i \geq 1$, then

$$
\begin{equation*}
\frac{m-n+1}{(m+1)^{2}}|a|^{2}=\frac{t-s+1}{(t+1)^{2}}|b|^{2} \tag{2}
\end{equation*}
$$

(i) If $m=n+1, t=s+1$, then we have

$$
\frac{i+2}{(m+i+1)^{2}}|a|^{2}+\frac{i}{(t+i)^{2}}|b|^{2}=\frac{i}{(m+i)^{2}}|a|^{2}+\frac{i+2}{(t+i+1)^{2}}|b|^{2}
$$

for all $i \geq 1$. From the equality (2), we have

$$
\frac{i+2}{(m+i+1)^{2}} \frac{(m+1)^{2}}{(t+1)^{2}}+\frac{i}{(t+i)^{2}}=\frac{i}{(m+i)^{2}} \frac{(m+1)^{2}}{(t+1)^{2}}+\frac{i+2}{(t+i+1)^{2}}
$$

for all $i \geq 1$. Hence, for $i=1$,

$$
\frac{3}{(m+2)^{2}} \frac{(m+1)^{2}}{(t+1)^{2}}+\frac{1}{(t+1)^{2}}=\frac{1}{(m+1)^{2}} \frac{(m+1)^{2}}{(t+1)^{2}}+\frac{3}{(t+2)^{2}}
$$

or equivalently,

$$
\frac{(m+1)^{2}}{(t+1)^{2}}\left\{\frac{3}{(m+2)^{2}}-\frac{1}{(m+1)^{2}}\right\}=\frac{3}{(t+2)^{2}}-\frac{1}{(t+1)^{2}}
$$

By a direct calculation, we have

$$
m=t \text { or } m=-\frac{3 t+4}{2 t+3}
$$

Since m and t are nonnegative, we have $m=t$ and so $n=s$.
(ii) Let $m>n+1, t=s+1$. Suppose that T_{φ} is normal. For a sufficiently large k,

$$
\begin{aligned}
T_{\varphi} T_{\bar{\varphi}} z^{k}= & T_{\varphi} P\left(\overline{\overline{a z}}{ }^{m} z^{n} z^{k}+\bar{b} \bar{z}^{s} z^{s+1} z^{k}\right) \\
= & T_{\varphi}\left(\bar{a} \frac{n+k-m+1}{n+k+1} z^{n+k-m}+\bar{b} \frac{k+2}{s+k+2} z^{k+1}\right) \\
= & |a|^{2} \frac{(n+k-m+1)(k+1)}{(n+k+1)^{2}} z^{k}+\bar{a} b \frac{(n+k-m+1)(n+k-m)}{(n+k+1)(n+k-m+s+1)} z^{n+k-m-1} \\
& +a \bar{b} \frac{(k+2)(m+k-n+2)}{(s+k+2)(m+k+2)} z^{m+k-n+1}+|b|^{2} \frac{(k+1)(k+2)}{(s+k+2)^{2}} z^{k}
\end{aligned}
$$

and

$$
\begin{aligned}
T_{\bar{\varphi}} T_{\varphi} z^{k}= & T_{\bar{\varphi}} P\left(a z^{m} \bar{z}^{n} z^{k}+b z^{s} z^{s+1} z^{k}\right) \\
= & T_{\bar{\varphi}}\left(a \frac{m+k-n+1}{m+k+1} z^{m+k-n}+b \frac{k}{s+k+1} z^{k-1}\right) \\
= & |a|^{2} \frac{(m+k-n+1)(k+1)}{(m+k+1)^{2}} z^{k}+\bar{a} b \frac{k(n+k-m)}{(s+k+1)(n+k)} z^{n+k-m-1} \\
& +a \bar{b} \frac{(m+k-n+1)(m+k-n+2)}{(m+k+1)(m+k-n+s+2)} z^{m+k-n+1}+|b|^{2} \frac{k(k+1)}{(s+k+1)^{2}} z^{k} .
\end{aligned}
$$

Since T_{φ} is normal, we have that

$$
\frac{(k+2)(m+k-n+2)}{(s+k+2)(m+k+2)}=\frac{(m+k-n+1)(m+k-n+2)}{(m+k+1)(m+k-n+s+2)}
$$

for all sufficiently large k. By a direct calculation,

$$
\begin{aligned}
& \left(m^{2}-m n+m s+7 m-3 n+3 s+8\right) k+2(m+1)(m-n+s+2) \\
& \quad=\left(m^{2}-m n+2 m s-n s+3 s+7 m-4 n+8\right) k+(m-n+1)(s+2)(m+2)
\end{aligned}
$$

Since k is arbitrary,

$$
m^{2}-m n+m s+7 m-3 n+3 s+8=m^{2}-m n+2 m s-n s+3 s+7 m-4 n+8
$$

and

$$
2(m+1)(m-n+s+2)=(m-n+1)(s+2)(m+2),
$$

and so

$$
m s-n s-n=0 \text { and } m^{2} s-m n s-2 n-2 n s+m s=0 .
$$

By the first equality, $s=\frac{n}{m-n}$, and so $m n(m-n-1)=0$. Therefore, $m=0$ or $n=0$ or $m=n+1$, a contradiction. Hence T_{φ} is not normal.
(iii) If $m>n+1, t>s+1$, set $c_{1}=1$ and $c_{i}=0$ for $i \neq 1$, then by a similar argument as in (i), $m=t$.

By (i)-(iii), $m=t$ and so T_{φ} is normal if and only if

$$
\begin{align*}
& |a|^{2} \sum_{i=0}^{\infty} \frac{m+i-n+1}{(m+i+1)^{2}}\left|c_{i}\right|^{2}+|b|^{2} \sum_{i=m-s}^{\infty} \frac{s+i-m+1}{(s+i+1)^{2}}\left|c_{i}\right|^{2} \tag{3}\\
& \quad-|a|^{2} \sum_{i=m-n}^{\infty} \frac{n+i-m+1}{(n+i+1)^{2}}\left|c_{i}\right|^{2}-|b|^{2} \sum_{i=0}^{\infty} \frac{m+i-s+1}{(m+i+1)^{2}}\left|c_{i}\right|^{2}=0
\end{align*}
$$

for any $c_{i} \in \mathbb{C}(i=0,1,2, \ldots)$. If $n \neq s$, let $n>s$ and from (3) with $c_{1}=1$ and $c_{i}=0$ with $i \neq 1$. If $m-n=1$, then

$$
|a|^{2} \frac{m-n+2}{(m+2)^{2}}-|a|^{2} \frac{n-m+2}{(n+2)^{2}}-|b|^{2} \frac{m-s+2}{(m+2)^{2}}=0
$$

or equivalently,

$$
|a|^{2} \frac{3}{(m+2)^{2}}-|a|^{2} \frac{1}{(m+1)^{2}}-|b|^{2} \frac{m-s+2}{(m+2)^{2}}=0
$$

By direct calculations with (2), we have

$$
s=\frac{(m+1)(4 m+5)}{2 m+3}=2 m+1+\frac{m+2}{2 m+3} .
$$

Therefore s is not a nonnegative integer. If $m-n>1$, then

$$
|a|^{2} \frac{m-n+2}{(m+2)^{2}}-|b|^{2} \frac{m-s+2}{(m+2)^{2}}=0 .
$$

By (2), we have $n=s$, a contradiction. Therefore $n=s$ and so

$$
\begin{aligned}
& |a|^{2} \sum_{i=0}^{\infty} \frac{m+i-n+1}{(m+i+1)^{2}}\left|c_{i}\right|^{2}+|b|^{2} \sum_{i=m-n}^{\infty} \frac{n+i-m+1}{(n+i+1)^{2}}\left|c_{i}\right|^{2} \\
& \quad-|a|^{2} \sum_{i=m-n}^{\infty} \frac{n+i-m+1}{(n+i+1)^{2}}\left|c_{i}\right|^{2}-|b|^{2} \sum_{i=0}^{\infty} \frac{m+i-n+1}{(m+i+1)^{2}}\left|c_{i}\right|^{2}=0
\end{aligned}
$$

or equivalently,

$$
\left(|a|^{2}-|b|^{2}\right)\left(\sum_{i=0}^{\infty} \frac{m+i-n+1}{(m+i+1)^{2}}\left|c_{i}\right|^{2}-\sum_{i=m-n}^{\infty} \frac{n+i-m+1}{(n+i+1)^{2}}\left|c_{i}\right|^{2}\right)=0
$$

and hence we have the results.
Corollary 1. Consider the polynomial $\varphi(z)=z^{m}+\bar{z}^{m}$ with $m>0$. Then by Theorem $2, T_{\varphi}$ is normal.
The matrix representation of the Toeplitz operator T_{φ} with non-harmonic symbol φ has the following form:

Lemma 5. Suppose that $\varphi(z)=a_{m, n} z^{m} \bar{z}^{n}+e^{i \theta} a_{n, m} z^{n} \bar{z}^{m}$ with $0 \leq n \leq m$ and $\theta \in[0,2 \pi)$. Then the Toeplitz matrix with symbol φ given by

$$
T_{\varphi}=\left(\begin{array}{cccccc}
0 & \ldots & \frac{1}{m+1} e^{i \theta} a_{n, m} & 0 & 0 & \cdots \\
\vdots & 0 & \ldots & \frac{2}{m+2} a_{n, m} & 0 & \ddots \\
\frac{m-n+1}{m+1} a_{m, n} & \vdots & 0 & \ddots & \ddots & \ddots \\
0 & \frac{m-n+2}{m+2} a_{m, n} & \vdots & \ddots & \ddots & \ddots \\
0 & 0 & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $\frac{1}{m+1} e^{i \theta} a_{n, m}$ is a $(1, m-n)$-th entry and $\frac{m-n+1}{m+1} a_{m, n}$ is a $(m-n, 1)$-th entry.
We will give a necessary and sufficient condition that the sum of two normal Toeplitz operator with non-harmonic symbol is again a normal Toeplitz operator.

Theorem 3. For $a, b \in \mathbb{C}$, let $\varphi(z)=a \varphi_{1}(z)+b \varphi_{2}(z)$ be of the form

$$
\varphi_{1}(z)=z^{m} \bar{z}^{n}+e^{i \theta_{1}} z^{n} \bar{z}^{m}, \varphi_{2}(z)=z^{s} \bar{z}^{t}+e^{i \theta_{2}} z^{t} \bar{z}^{s}
$$

where $\theta_{1}, \theta_{2} \in[0,2 \pi), m \geq n \geq 0$ and $t \geq s \geq 0$. Then T_{φ} is normal if and only if either $\bar{a} b e^{i \theta_{1}}=a \bar{b} e^{i \theta_{2}}$ or $\varphi(z)=a\left(1+e^{i \theta_{1}}\right)|z|^{2 m}+b\left(1+e^{i \theta_{2}}\right)|z|^{2 s}$.

Proof. Let $\varphi(z)=a \varphi_{1}(z)+b \varphi_{2}(z)$ then T_{φ} is normal if and only if

$$
T_{a \varphi_{1}} T_{\overline{b \varphi_{2}}}+T_{b \varphi_{2}} T_{\overline{a \varphi_{1}}}=T_{\overline{a \varphi_{1}}} T_{b \varphi_{2}}+T_{\overline{b \varphi_{2}}} T_{a \varphi_{1}}
$$

or equivalently,

$$
a \bar{b} e^{i \theta_{2}} T_{\varphi_{1}} T_{\varphi_{2}}+\bar{a} b e^{i \theta_{1}} T_{\varphi_{2}} T_{\varphi_{1}}=\bar{a} b e^{i \theta_{1}} T_{\varphi_{1}} T_{\varphi_{2}}+a \bar{b} e^{i \theta_{2}} T_{\varphi_{2}} T_{\varphi_{1}}
$$

we have

$$
\left(\bar{a} b e^{i \theta_{1}}-a \bar{b} e^{i \theta_{2}}\right)\left(T_{\varphi_{1}} T_{\varphi_{2}}-T_{\varphi_{2}} T_{\varphi_{1}}\right)=0 .
$$

Therefore $T_{\varphi_{1}} T_{\varphi_{2}}=T_{\varphi_{2}} T_{\varphi_{1}}$ if and only if

$$
\begin{aligned}
& \frac{m-n+1}{m+1} \frac{s+m-n-t+1}{s+m-n+1} z^{s+m-n-t}+e^{i \theta_{1}} \frac{m-n+1}{m+1} \frac{t+m-n-s+1}{t+m-n+1} z^{m-n+t-s} \\
& =\frac{s-t+1}{s+1} \frac{s+m-t-n+1}{s+m-t+1} z^{s+m-n-t}+e^{i \theta_{2}} \frac{s-t+1}{s+1} \frac{s+n-t-m+1}{s+n-t+1} z^{s+n-m-t}
\end{aligned}
$$

If $m-n=s-t$ then

$$
\frac{m-n+1}{m+1} \frac{2(m-n)+1}{s+m-n+1} z^{2(m-n)}=\frac{m-n+1}{s+1} \frac{2(m-n)+1}{s+m-t+1} z^{2(m-n)}
$$

or equivalently,

$$
(m+1)(s+m-n+1)=(s+1)(s+m-t+1)
$$

By a direct calculation, $m=n$ and $s=t$, and so

$$
\varphi(z)=a\left(1+e^{i \theta_{1}}\right)|z|^{2 m}+b\left(1+e^{i \theta_{2}}\right)|z|^{2 s} .
$$

This completes the proof.
Corollary 2. Let $\varphi(z)=\overline{a z}^{m}+\bar{b} \bar{z}^{N}+c z^{m}+d z^{N}$. Then T_{φ} is normal on $A^{2}(\mathbb{D})$ if and only if $|b|=|d|$ and $\bar{c} d=\bar{a} b$.

Example 1. Let $\varphi(z)=a\left(z \bar{z}^{2}+e^{i \theta_{1}} z^{2} \bar{z}\right)+b\left(z \bar{z}^{3}+e^{i \theta_{2}} z^{3} \bar{z}\right)$. It follows from Theorem 3 , T_{φ} is normal if and only if $\varphi(z)$ is of the form

$$
\varphi(z)=1\left(z \bar{z}^{2}+\bar{z} z^{2}\right)+(1+i)\left(z \bar{z}^{3}+i \bar{z} z^{3}\right)
$$

We thus have:
Corollary 3. Let $\varphi(z)=a\left(z^{m} \bar{z}^{n}+e^{i \theta} z^{n} \bar{z}^{m}\right)$ with $m>n$ and nonzero $a \in \mathbb{C}$. Then $T_{\varphi^{2}}$ is normal if and only if $\theta=\frac{k}{2} \pi(k=\mathbb{Z})$.

Proof. Let $\varphi(z)=a\left(z^{m} \bar{z}^{n}+e^{i \theta} z^{n} \bar{z}^{m}\right)$ then

$$
\varphi^{2}(z)=a^{2}\left(z^{2 m} \bar{z}^{2 n}+e^{2 i \theta} \bar{z}^{2 m} z^{2 n}\right)+2 a^{2} e^{i \theta}|z|^{2(m+n)} .
$$

Put

$$
\begin{gathered}
\varphi_{1}(z)=a^{2}\left(z^{2 m} \bar{z}^{2 n}+e^{2 i \theta} \bar{z}^{2 m} z^{2 n}\right) \\
\varphi_{2}(z)=2 a^{2} e^{i \theta}|z|^{2(m+n)}=a^{2} e^{i \theta}\left(z^{m+n} \bar{z}^{m+n}+z^{m+n} \bar{z}^{m+n}\right) .
\end{gathered}
$$

Then by Theorem 3, we have $e^{4 i \theta}=1$.

As some applications of Theorems 2 and 3, we get the following result.
Corollary 4. Let

$$
\varphi(z)=\sum_{i=1}^{n} a_{i} \varphi_{i}(z)
$$

where $\varphi_{i}(z)=z^{m_{i}} \bar{z}^{n_{i}}+e^{i \theta_{i}} z^{n_{i}} \bar{z}^{m_{i}}$ with nonzero m_{i} and n_{i}, and $\theta_{i} \in \mathbb{R}$. If $a_{i} \overline{a_{j}} e^{i \theta_{j}}-\overline{a_{i}} a_{j} e^{i \theta_{i}}$ for all i, j, then T_{φ} is normal.

Proof. Let $\varphi(z)=\sum_{i=1}^{n} a_{i} \varphi_{i}(z)$ where $\varphi_{i}(z)=z^{m_{i}} \bar{z}^{n_{i}}+e^{i \theta_{i}} z^{n_{i}} \bar{z}^{m_{i}}$ with nonzero m_{i} and n_{i}, and $\theta_{i} \in \mathbb{R}$. Then by the similar arguments as in Theorem $3, T_{\varphi}$ is normal if and only if

$$
\begin{equation*}
\sum_{i, j=1, i \leq j}^{n}\left(a_{i} \overline{a_{j}} e^{i \theta_{j}}-\overline{a_{i}} a_{j} e^{i \theta_{i}}\right)\left(T_{\varphi_{i}} T_{\varphi_{j}}-T_{\varphi_{j}} T_{\varphi_{i}}\right)=0 . \tag{4}
\end{equation*}
$$

For any i, j, if $a_{i} \overline{a_{j}} e^{i \theta_{j}}-\overline{a_{i}} a_{j} e^{i \theta_{i}}$, then the relation (4) hold and so T_{φ} is normal. This completes the proof.

Author Contributions: Writing-original draft preparation, J.L.; writing-review and editing, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: The second author was supported by the 2020 education, research and student guidance grant funded by Jeju National University.

Acknowledgments: The author would like to appreciate the anonymous reviewers for their valuable comments and suggestions that have contributed to improve this manuscript. The work of the first author was undertaken during a visiting study at Jeju National University. She would like to take this opportunity to thank the Department of Mathematics, Jeju National University for the hospitality she received during her stay.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Axler, S.; Cuckovic, Z. Commuting Toeplitz operators with harmonic symbols. Integral Equ. Oper. Theory 1991, 14, 1-12. [CrossRef]
2. Cuckovi, Z.; Curto, R.E. A new necessary condition for the hyponormality of Toeplitz operators on the Bergman space. J. Oper. Theory 2018, 79, 287-300.
3. Fleeman, M.; Liaw, C. Hyponormal Toeplitz operators with non-harmonic symbol acting on the Bergman space. Oper. Matrices 2019, 13, 61-83. [CrossRef]
4. Gu, C.; Kang, D. Normal Toeplitz and Hankel operators with operator-valued symbols. Houst. J. Math. 2014, 40, 1155-1181.
5. Hedenmalm, H.; Korenblum, B.; Zhu, K. Theory of Bergman Spaces; Springer: New York, NY, USA, 2000.
6. Yousef, A. Two Problems in the Theory of Toeplitz Operators on the Bergman Space. Ph.D. Thesis, The University of Toledo, Toledo, OH, USA, 2009.
7. Brown, A.; Halmos, P.R. Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 1963, 213, 89-102.
8. Hwang, I.S. Hyponormal Toeplitz operators on the Bergman space. J. Korean Math. Soc. 2005, 42, 387-403. [CrossRef]
