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Abstract: Identifying vital nodes in complex networks is of paramount importance in understanding
and controlling the spreading dynamics. Currently, this study is facing great challenges in dealing
with big data in many real-life applications. With the deepening of the research, scholars began
to realize that the analysis on traditional graph model is insufficient because many nodes in a
multilayer network share connections among different layers. To address this problem both efficiently
and effectively, a novel algorithm for identifying vital nodes in both monolayer and multilayer
networks is proposed in this paper. Firstly, a node influence measure is employed to determine
the initial leader of a local community. Subsequently, the community structures are revealed via
the Maximum Influential Neighbors Expansion (MINE) strategy. Afterward, the communities are
regarded as super-nodes for an iteratively folding process till convergence, in order to identify
influencers hierarchically. Numerical experiments on 32 real-world datasets are conducted to verify
the performance of the proposed algorithm, which shows superiority to the competitors. Furthermore,
we apply the proposed algorithm in the graph of adjacencies derived from the maps of China and
USA. The comparison and analysis of the identified provinces (or states) suggest that the proposed
algorithm is feasible and reasonable on real-life applications.

Keywords: complex network; multilayer networks; node ranking; influence maximization

1. Introduction

The rapid development of information technology has witnessed a blossom of network science in
the last decade. Network theory is an important tool for representing and analyzing the structures and
functions of real-world complex systems such as social networks, power grids, transportation networks,
economical networks, biological networks and so on [1,2]. For the enormous data scale, most studies
merely focus on a small group of important nodes rather than the whole network, which has attracted
great focus on the promising topic, i.e., vital nodes identification. Identifying vital nodes in complex
networks is crucial in understanding and controlling the spreading dynamics, and it can be further
split into two processes: (1) ranking of vital nodes and (2) identification of a small group of nodes
that are able to maximize the influence. Similar research topics include node ranking [3], influence
maximization [4], node centrality [5] and so on. Inherently, all these topics are focusing on finding vital
nodes that exert maximum influence in the network. During the past decades, it has brought fruitful
applications such as maximizing the influential scope in viral marketing [6], controlling the outbreak
of epidemic diseases [7], preventing cascading failures in power grids [8] and so on [9].

We have entered the era of “big data”, in which an obvious feature is that the data are being
ubiquitously generated and continuously expanded [10]. Big data has brought us great challenges
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in identifying the vital notes within complex networks, summarized as the following: (1) “Volume”,
the huge data scale has become prohibitive in tracking with the full data set, which may require
the power of high-performance computing or distributed processing; (2) “Variety”, many real-life
complex systems are naturally heterogeneous networks, i.e., a more complicated structure that includes
multiple interactions among various channels, which may lead to traditional research on a single
channel insufficient to get integrated results; (3) “Velocity”, the dynamic changes of networks force an
efficient analysis to satisfy the real-time graph mining; (4) “Value”, the big data implies great practical
application value and requires an outstanding performance for the proposed algorithms.

With the in-depth study, more and more researchers come to realize that the traditional
graph model is insufficient to evaluate node importance in many real-world scenarios [11],
e.g., the individuals interact with each other across multiple social platforms, which shows the
reasonability in modeling with a multiplex social network. The negligence of the multiple relationships
between social actors may lead to incorrect or inaccurate results of the most versatile users [12]. Hence,
the study on multilayer networks [13,14] has been introduced to find influential spreaders to get more
accurate results. Specifically, many real-life complex systems are naturally hierarchical networks,
which suggests the reasonability of graph mining with different levels.

In this paper, we design a novel algorithm for identifying top-k vital nodes in complex networks
hierarchically. Firstly, a node influence measure is employed for ranking influential nodes that may be
the initial leaders of local communities. Subsequently, the community structures are revealed via the
Maximum Influential Neighbors Expansion (MINE) strategy. Afterward, the community structures
are regarded as super-nodes for an iteratively folding process till convergence, in order to identify
influencers hierarchically. The purpose of the proposed MINE algorithm is to accurately detect nodes
that are able to exert strong influence over both the monolayer and multilayer networks. The main
contributions of this paper are listed as follows:

(1) A novel algorithm for identifying vital nodes hierarchically is proposed in this paper, in which
community structures derived by maximum influential neighbors expansion strategy are regarded
as higher-level nodes.

(2) Based on the simulations on percolation theory and the epidemic model, 32 real-world datasets
(16 monolayer networks and 16 multilayer networks) are employed to verify the performance of
the proposed algorithm. Experimental results suggest its feasibility and superiority.

(3) The proposed algorithm is applied in the graph of adjacencies derived from the maps of China
and USA, respectively, which exhibits the significance in real-life applications.

The rest of this paper is organized as follows. Section 2 summarized the related works, which is
further classified into centrality measures, influence maximization in multilayer networks and
application areas. Section 3 introduces the definition of the research problem and presents the
mathematical models for both monolayer and multilayer networks, and subsequently, the algorithm
process for identifying top-k vital nodes is introduced in detail. Section 4 exhibits the experiments
and analysis, including comparison experiments on 32 real-world datasets, which verify the feasibility
and veracity of the proposed algorithm. Moreover, the application in the graph of adjacencies derived
from the maps of China and USA is analyzed. Section 5 summarizes the whole paper and provides
concluding remarks.

2. Related Works

The identification of top-k vital nodes can be resolved into Influence Maximization Problem (IMP),
which was first proposed by Domingos and Richardson [15], and later proved by Kempe et al. [16]
that it was an NP-hard (i.e., non-deterministic polynomial-time hardness) problem [17]. A plethora of
methods for IMP are proposed in the last decades [18,19], which can be mainly classified into centrality
measures, link topological ranking measures, entropy measures, and node embedding measures [20,21].
We hereby introduce several typical representative methods in the following subsections.
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2.1. Representative Centrality Measures

The simplest way to measure the node influence is by degree centrality [22] (DC), i.e., a focal node
with more neighbors implies greater influence. However, several vital nodes, which are holding a
lower degree but lying in a “bridge-like” position may exert enormous influence in the information
diffusion process [23]. Analogously, closeness centrality [24] (CC) emphasizes the shortest path
length of a focal node to all the others in the whole network, which suggests an optimal location is
crucial for resource allocation in complex networks. However, both of the betweenness and closeness
centralities are holding relatively high computational complexity, which becomes prohibitive in
applying for large-scale networks. Some other classical measures such as eigenvector centrality [25]
(EC), PageRank [26] (PR), H-index [27] and k-shell decomposition [28] are successful in many real-life
scenarios, but are criticized by some certain limitations. Inspired by the gravity formula in physics,
Ma et al. propose a gravity model [29] (GR) which considers the gravity between two nodes is
proportional to the product of k-core, and inversely proportional to the power of the distance between
them. Afterward, the node importance is measured by the gravity accumulation of the neighbors
within three steps of a focal node. However, the computing of k-shell decomposition is time-consuming
in large-scale networks. To improve the efficiency of GR, Li et al. propose a Local-Gravity [30] (LGR)
model by replacing k-core with degree centrality and merely consider the neighbors within R steps.
The parameter R can be further determined by half of the network diameter, approximately. Numerical
experiments on fourteen datasets suggest its superiority, while the determination of parameter R
requires calculating the shortest distance between all pairs of nodes, which also becomes prohibitive
in large-scale networks [31]. Fan et al. [32] define two cycle-based node characteristics, i.e., cycle
number and cycle ratio, which can be used to measure a node’s importance. The research opens a new
direction of understanding network structures, while the improvements in computational complexity
are expected for further applications. INF [33] is a novel centrality measure that merely considers
the local neighboring information of a focal node and can be further applied to multilayer networks.
Extensive experiments on real-world datasets suggest its capability in identifying influencers in social
networks. Several typical representative measures are summarized and compared, as shown in Table 1.

Table 1. A brief comparison of node centrality measures.

Metric Equation Topology Complexity

DC [22] DC(i) = ∑n
j aij Local O(n)

BC [23] BC(i) = ∑s 6=i,s 6=t,i 6=t
gst(i)

gst
Global O(nm + n2 log n)

CC [24] CC(i) = n−1
∑j 6=i dij

Global O(nm + n2 log n)

EC [25] EC(i) = k−1
1 ∑j Aijxj Global O(n + m)

PR [26] PRk(i) = ∑n
j=1 aji

PRk−1(j)
kout

j
i = 1, 2, . . . , n. Global O(n + m)

H-index [27] H(i) = arg maxh∈N {∀|Γ(j)| ≥ h, 1 ≤ h ≤ |Γ(i)|, j ∈ Γ(i)} Semi-local O(n + m)

k-core [28] ks(i) = k, s.t. i ∈ Sk
core, i /∈ Sk+1

core Global O(n + m)

LR [34] LRi = LRi(tc) +
LRg(tc)

n Global O(n + m)

GR, GR+ [29] G(i) = ∑j∈ψi

ks(i)ks(j)
d2

ij
, G+(i) = ∑j∈Γi

G(j) Global O(n3)

LGR [30] LGR(i) = ∑di j≤R,j 6=i
kik j

d2
ij

Semi-local O(n2)

INF [33] INF(i) = ∑j∈Γ(i)
wij
k j

Local O(nk)

Note: n denotes the number of nodes, Γ(i) denotes the neighbors of node i, k denotes the averaging degree, aij denotes the
element at the i-th row and j-column of the adjacency matrix A; N denotes the set of natural numbers; dij is the shortest
path length from node i to node j; gst in BC (i.e., betweenness centrality) is the total number of shortest paths, gst(i) is the
shortest path between s and t that passes through node i; in eigenvector centrality (EC), k−1

1 depicts the eigenvalue at the
stable state; in PageRank (PR), ∑N

i=1 PR0(i) = 0, kout
j is the number of edges from node j to i; in k-core, Sk

core represents the

node set after removing nodes with degree less or equal to k, likewise, Sk+1
core represents the node set after removing nodes

with degree less or equal to k + 1; in LR (i.e., LeaderRank), LRi(tc) denotes the score of node i at time t, LRg(tc) denotes the
score of the ground node at steady state; ψi in GR denotes the neighbors whose distance to node i is less than or equal to 3;
R in Local-Gravity (LGR) denotes the truncation radius, i.e., only nodes within R steps are under consideration; wij in INF
(i.e., the node influence) denotes the weight of edge (i, j) in a weighted network.
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2.2. Influence Maximization in Multilayer Networks

Until now, great endeavors have been made to addressing the influence maximization problem
in multilayer networks [35–39]. Wang et al. [12] propose a centrality measure (EDCPTD) to identify
essential nodes based on tensor decomposition, which incorporates the intralayer edges and interlayer
edges simultaneously to measure the node importance in multilayer networks. Tidke et al. [40] propose
a consensus-based aggregation method to identify top-k influential nodes in online social networks,
where a Twitter dataset covering two topics (Politics and Economy) is employed. The authors exploit
heterogeneous surface learning features to rank the nodes with low computational complexity (O(n)).
Li et al. [41] propose a novel approach to identify the influential nodes in network of networks (NON,
a special case of multilayer network) [42], where the influence of each node in different layers is
integrated by combination rules of evidence theory. Experimental results on China transport networks
show its feasibility in identifying vital cities. Pedroche et al. [43] propose an eigenvector centrality for
multiplex networks, which is adapted according to the idea behind the two-layer approach PageRank.
Wang et al. [44] design an extended independent cascade (IC) model to simulate the influence diffusion
process in multiplex networks, which aims at identifying influential nodes across all the network layers.
Notably, modern complex systems tend to have more complicated structures than ever, which brings
difficulties to the research on influence maximization problem via a traditional graph model. Hence,
identifying vital nodes in multilayer networks is still an open issue.

Recently, hierarchical analysis on large-scale networks has received continuous focus in scientific
society [45–47]. A typical k-shell method decomposes a network into hierarchically ordered shells by
recursively pruning the nodes with degree being less than the current shell index. Ye et al. [48] apply
this measure into time-varying networks, and propose a temporal k-shell decomposition method to
identify vital nodes in temporal networks. Extensive experiments on real-world datasets suggest that
the superiority of the proposed method. Chen et al. [49] propose a fusion index named as spreading
influence related centrality to identify the influence of nodes by extracting and synthesizing topology
feature information of traditional centrality indices and spreading influence. Zareie et al. [50] present a
hierarchical method (HKS) for the specification of the topological locations of nodes. Experimental
results on real-world and artificial datasets suggest that the proposed HKS method is superior to
similar approaches and has an acceptable run time. In short, the above-mentioned approaches provide
a hierarchical view on vital nodes identification, which suggests a promising field for further studies.

2.3. Application Areas

During the past decades, the identification of vital nodes in complex networks yields fruitful
applications in real-life scenarios, such as viral marketing [6], epidemic outbreak [7], cascading
failures [8], public safety networks [51] and so on.

Huang et al. [52] propose a community-based influence maximization method for viral marketing,
which enables consumers to spread information about a product to other people, much in the same
way that a virus spreads from one to another. Experimental results indicate that the community
structures benefit in improving the performance of influence maximization. Hu et al. [53] devise a
mitigation strategy against cascades in power grids. Different from vital nodes identification, in this
work, the vulnerable transmission lines are identified and then strengthened to prevent cascades
in power grids. The simulations on the IEEE-39 bus system and the IEEE 118 bus system suggest
the feasibility of the proposed method in reducing the power blackout risks. Nikolaou et al. [54]
propose an epidemiological model to identify critical airports for controlling global infectious disease
outbreak through European airports’ systems. Experimental results indicate the effectiveness of
European airports and controlling measures should be taken in order to break the chain of infections.
Fragkos et al. [55] introduce a novel evacuation-planning mechanism to support the distributed and
autonomous evacuation process within the operation of a public safety system. Simulations under
several scenarios exhibit the superiority of the proposed framework. In short, vital nodes identification
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in complex networks is of paramount importance in a variety of applications and that’s our purpose of
this writing.

3. Model and Method

The influence maximization problem in complex networks can be roughly explained as finding a
group of nodes (regarded as seeds) that can bring the maximum influence on the network dynamics,
described as

A = arg min
A⊂V

max{σ(A)}, (1)

where A is a subset of node set V that are identified as seeds, σ(A) denotes the final influenced node
set. This problem is simplified as top-k vital nodes identification by setting |A| = k, which has recently
received great attention [40,56–58]. In this paper, both monolayer and multilayer network models
are under consideration for addressing the influence maximization problem, as introduced in the
following subsection.

3.1. Mathematical Models

The monolayer network model for vital nodes identification in this paper can be represented by

G = (V, E), (2)

where V is the node set and E ⊆ V ×V is the edge set. The multilayer network model [14] that we
utilized in this paper is described as

M = (G, C), (3)

where G = {Gα; α ∈ {1, . . . , L}} represents a series of monolayer networks with Gα = (Vα, Eα) depict
the monolayer network at layer α, where Vα and Eα represent the nodes and intralayer edges at layer
α, respectively. C is the interlayer edges between the nodes of any two different layers, described as

C = {Eαβ ⊆ Vα ×Vβ; α, β ∈ 1, . . . , L, α 6= β}, (4)

where Eαβ represents the interlayers edges between the nodes at layer α and layer β, Vα and Vβ

represent the node set at layer α and layer β, respectively. Specifically, we utilize the supra-adjacency
matrix to model the a multilayer network, described as

M =


A1 I12 · · · I1L
I21 A2 · · · I2L
...

...
. . .

...
IL1 IL2 · · · AL

 ∈ RN×N , (5)

where the diagonal elements A1, A2, . . . , AL represent the adjacency matrix (i.e., intralayer edges) of
layer 1, 2, . . . , L, respectively. The non-diagonal elements represent all interlayer edges, which can be
represented by

⋃L
α,β=1,α 6=β Iαβ, where Iαβ represents the interlayer edges between layer α and layer β.

R is the set of real numbers, N = ∑1≤α≤L |Vα| is the total number of the nodes.
We employ the Susceptible–Infected–Recovered (SIR) epidemic model [59] for analyzing influence

maximization problem. It has three possible states:

• Susceptible (S) state, where a node is vulnerable to infection.
• Infectious (I) state, where a node is infected and tries to infect its susceptible neighbors.
• Recovered (R) state, where a node has recovered (or isolated) and can no longer infect others.
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In a network, two nodes are considered to have “contact” if they are connected by an edge in
the network. Within these two nodes, if one is infected with a certain epidemic, then the other is in
“susceptible” state and maybe later infected [60]. A node is considered to be recovered if it is isolated or
immune to the epidemic. In detail, to check the spreading ability of a focal node, we set this node as an
infected seed to infect its neighbors. At each time step, an infected node can infect its neighbors with
infection probability β, and then the infected nodes are recovered from the epidemic with probability
γ. The differential equations are given as

dS
dt = −βSI
dI
dt = βSI − γI
dR
dt = γI

. (6)

3.2. Algorithm Description

We employ the INF indicator [33] to measure the initial leader of communities and then design
a MINE algorithm to identify the vital nodes hierarchically. Suppose k is the number of nodes to be
identified, the process of MINE is described as the following steps.

Step 1: Load the network G and calculate the INF indicator for each node;
Step 2: Divide communities by identifying influential nodes and neighbors;

(a) Select the node i with maximum INF and mark it as the initial core of a community Ci;
(b) Select a neighbor j that has the maximum INF among the neighbors of node i, and set

j’s community label as i if C(i, j) > 0 is satisfied according to Equation (7);
(c) Repeat Step 2(b) until all the neighbors of node i are divided;
(d) Repeat Step 2(a) to (c), assign the undivided nodes with community labels according

to Equation (8) until all the nodes are marked with community labels;

Step 3: Identify vital nodes by folding communities hierarchically;

(a) Regard a community Ci as a node i′ in the new folded network G′;
(b) Update the INF of i′ with the sum of members’ INF in community Ci, as described in

Equation (9), add an edge (i′ j′) in G′ if there are connections between community Ci
and community Cj in G and set the weight of (i′, j′) according to Equation (10);

(c) Repeat Step 3(a) and (b) until the size of the folded network is stable;
(d) Traverse the nodes in the folded network and replace the INF of node i in the initial

network G as the INF of node i′ in the final folded network;

Step 4: Sort the nodes by influence in descending order and obtain the top-k nodes as the seeds.

The proposed MINE algorithm first identifies several influential nodes as the initial core of local
communities, and then divides the neighbors of these core nodes into a reasonable community.
To improve the reasonability of the division process, we define an evaluation function for the
contribution of each neighbor j, given as

C(i, j) = ∑
k∈Γ(j)

δ(ci, ck), (7)

where j is a neighbor of node i, Γ(j) denotes the neighbors of node j, ci and ck denote the community
labels of node i and node k, respectively. δ(ci, ck) = 1 if i and k are with the same community label
(i.e., ci = ck), and δ(ci, ck) = −1 otherwise.

Inspired by the label propagation algorithm [61], we define a rule for an undivided node j to be
with a community label as
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cj = arg max
ck

∑
k∈Γ(j)

|ck|, (8)

where cj and ck denote the community labels of node j and node k, respectively, Γ(j) denotes the
neighbors of node j, |ck| represents the amount of ck.

In the folding process from network G to G′, the INF of a node i′ in G′ is defined as the accumulated
INF of members in the community in G, described as

INF(i′) = ∑
m∈Ci

INF(m), (9)

where Ci denotes a community in network G, m is a member of the community Ci. The weight of an
edge (i′, j′) in G′ is defined as

wi′ j′ = ∑
i∈Ci ,j∈Cj ,Ci 6=Cj

wij, (10)

where wi′ j′ represents the weight of an edge (i′, j′) in the folded network G′, Ci and Cj represent two
communities in network G, wij is the weight of an edge (i, j) in network G.

The pseudo-code of the above process is shown as Algorithm 1, with illustration on real-world
datasets presented in Figure 1.

3.3. Complexity Analysis

Aiming at addressing the problem of influence maximization, the proposed MINE algorithm firstly
ranks the nodes by employing the INF measure and identifies several top-ranking nodes as an initial
leader of local communities. Subsequently, the communities are divided by the maximum influential
nodes expansion strategy. The community structures are formed by numerous local communities
which are further regarded as super-nodes in the folding process till convergence. Suppose m and n are
the numbers of edges and nodes, respectively, the average degree of nodes is k. At each folding process,
approximate n/k communities are obtained, the network size is shrinking exponentially, described as
n→ n/k, and the number of edges is reducing as m→ m− k× n/k, i.e., m→ m− n. Thus, the folding
process with maximum influential neighbors expansion strategy can be converged quickly.

A step-by-step analysis on time complexity is listed as follows: In Step 1, the calculation of INF
for all the nodes requires the complexity of O(nk); In Step 2, the sort of influential nodes requires
O(n log n), and ranking the neighbors of the initial core of local communities requires O(k2 log k).
The operation of contribution function (i.e., Equation (7)) for all the leaders’ neighbors requires
complexity less than O((n− n/k)× k), and the assignment of undivided nodes (i.e., Equation (8))
requires O(k2); In Step 3, the folding process converges quickly, which requires time complexity
of O(k2 log(n + k)); In Step 4, the sorting of vital nodes requires O(n log n). Thus, the total time
complexity of the proposed MINE algorithm is O(2n(k + log n) + k2 log k(1 + log n) − n). As k is
usually far less than n, therefore, the total time complexity can be simplified as O(n log n). Overall,
the complexity of the proposed method is acceptable, which holds a lower computational complexity
than BC or CC (O(nm + n2 log n)).

The storage of a network requires the space complexity of O(n2), the storage of node influence
and community labels requires O(2n). In the folding process, suppose the MINE algorithm converges
in l times, this process requires extra O(l ∗ n2) space complexity. As l is commonly far less than n,
thereby the total space complexity for MINE algorithm can be simplified as O(n2).
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(a) Two communities in Karate club network. (b) Top-two influencers in the folded Karate club
network.

(c) Communities in the Enron email network. (d) Top-five influencers in the folded Enron email
network.

(e) Communities in Football team network. (f) Top-seven influencers of the folded Football
team network.

Figure 1. Illustration of the proposed Maximum Influential Neighbors Expansion (MINE) algorithm.
Communities in three real-world networks (i.e., Karate Club network [62], Enron email network [63]
and College Football Team network [64]) are presented in the left three panels the and top-ranking
nodes are highlighted in the right three panels, which suggests that the MINE algorithm aims to
identifying vital nodes hierarchically.
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Algorithm 1 MINE
Input: A network G, the number of seeds k;
Output: A dict S that contains k items, where the key of each item is a node and the value is the node’s

influence;
1 ... ; // Load nodes V, edges E from G; # Step 1
2 for i in V do
3 // Calculate the influence for each node
4 i.group = null; // Initilize each node with no community label
5 for j in i.neighbors do
6 i.in f += γwij/kj; // γ = 1 for monolayer networks, while for multilayer networks, γ is

determined by the edge type [33]

7 I = sort(V, key=inf)↓; // Sorted V by node influence in descending order; # Step 2
8 for i in I do
9 if i.group == null then

10 i.group = i; // Mark the top influential nodes as the initial core of a community
11 i.neighbors = sort(i.neighbors, key=inf)↓;
12 for j in i.neighbors do
13 // Divide j to i’s community if j is not divided and C(i, j) > 0 is satisfied according to

Equation (7)
14 if j.group == null and C(i, j) > 0 then
15 j.group = i.group;

16 for i in I do
17 if i.group == null then
18 labels = {}; // A temp variable to store the labels of neighbors
19 for j in i.neighbors do
20 if j in labels then
21 labels[j] += 1;

22 else
23 labels[j] = 1;

24 i.group = arg maxc∈labels labels[c];

25 C = getCurrentCommunity(G); // Get current community by node.group
26 Vl = V; El = E; // # Step 3
27 for c in C do
28 // Fold the network by community structures
29 Vl+1.add_node(c, in f = ∑m∈c m.in f );
30 c.core.in f = c.in f ; // Update the influence of nodes in V
31 for c′ in c.neighbors do
32 El+1.add_edge((c, c′), wcc′ = ∑i∈c,j∈c′ wij); // Update the wieght of edges between c and c′

33 Gl+1 = (Vl+1, El+1); // Generate a folded network
34 while len(Vl+1) < len(Vl) do
35 ... ; // Divide communities according to the processes in Step 2 and folding process in Step 3
36 l ++;
37 Gl+1 = (Vl+1, El+1); // Re-generate a folded network based on the community structures
38 if Vl+1 == Vl then
39 break;

40 S = sort(V, key=inf)↓[:k]; // Obtain top-k influential nodes; # Step 4
41 return S;
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4. Experiments and Analysis

The proposed algorithm is implemented in Python 3.8.3, with relevant libraries NetworkX 2.4
and MultinetX. The operating system is 64 bit Windows 10, with configuration of Intel (R) Core (TM)
i7-7700 CPU @ 3.60 GHz (8 CPUs), 3.6 GHz and 16 GB ram installed. The goal of the experiments is to
compare the performance of the proposed MINE algorithm with competitors.

4.1. Experimental Datasets

In this paper, 32 real-world datasets are employed to verify the performance of the proposed
algorithm, which are classified into two groups: monolayer networks and multilayer networks.
The statistics of the two groups of datasets are shown in Tables 2 and 3, respectively. All the datasets
are available at https://www.neusncp.com/user/file?id=311&code=mine.

Table 2. Statistics of 16 monolayer network datasets that are utilized in this paper.

Dataset Name |V | |E| <k> <d> <C> r |H| βc

Club [62] 34 78 4.5882 2.4082 0.5706 –0.4756 1.6933 0.1477
Dolphins [65] 62 159 5.1290 3.3570 0.2590 –0.0436 1.3268 0.1723
911 [66] 69 159 4.6087 2.4672 0.4698 –0.0380 1.7304 0.1434
Lesmis [67] 77 254 6.5974 2.6411 0.5731 –0.1652 1.8273 0.0905
Voles [63] 89 143 3.2135 0.5610 0.6083 0.2877 1.3340 0.3043
Escherichia [68] 97 212 4.3711 5.5369 0.3675 0.4116 1.2367 0.2270
Polbooks [69] 105 441 8.4000 3.0788 0.4875 –0.1279 1.4207 0.0915
Football [64] 115 613 10.6609 2.5082 0.4032 0.1624 1.0069 0.1027
Enron [63] 143 623 8.7133 2.9670 0.4339 –0.0195 1.4829 0.0839
NEUSNCP [70] 167 465 5.5689 2.8810 0.3122 –0.3619 3.3624 0.0564
Jazz [71] 198 2742 27.6970 2.2350 0.6175 0.0202 1.3951 0.0266
USAir [72] 332 2126 12.8072 2.7381 0.6252 –0.2079 3.4639 0.0231
NS [73] 379 914 4.8232 6.0419 0.7412 –0.0817 1.6630 0.1424
DMLC [74] 659 1570 4.7648 2.6370 0.3279 –0.1914 14.8897 0.0143
Game of Thrones [75] 796 2823 7.0930 3.4162 0.4859 –0.1154 4.1941 0.0348
Power [69] 4941 6594 2.6691 18.9892 0.0801 0.0035 1.4504 0.3483

Note: |V| and |E| depict the number of nodes and edges, respectively. <k> denotes the average degree; <d> is
the average shortest path; <C> is the average clustering index; r is the assortativity coefficient; |H| is the degree
heterogeneity and βc represents the epidemic threshold of the Susceptible-Infected-Recovered (SIR) model;
Club represents a graph constructing from W.W. Zachary’s investigation on the karate club of a university in
USA in 1970-72, which contains 34 nodes and 78 edges based on the observation on the relationship of club
members; Dolphins contains an undirected social network of frequent associations between 62 dolphins in a
community living off Doubtful Sound, New Zealand, as compiled by Lusseau et al. in 2003; 911 represents
the social relationships of terrorists at Hamburg Cell (which started the planning for 9/11 and ultimately
participated in the attack); Lesmis is the coappearance network of characters in the novel “Les Miserables”;
Voles is an animal interaction network where the nodes represent voles and there will be an edge between
two voles if they have ever been caught in at least one common trap; Escherichia is transcriptional regulation
networks in cells orchestrate gene expression, where nodes represent operons, and each edge is directed
from an operon that encodes a transcription factor to an operon that it directly regulates; Polbooks is a
network of books about US politics published around the time of the 2004 presidential election and sold by
Amazon, where nodes represent books and there will be an edge between two books if they are frequent
co-purchased by the same buyers; Football describes the network of American football games between
Division IA colleges during regular season Fall 2000; Enron is an email network collected from Enron company,
where nodes represents; NEUSNCP collects the relationships of members in a social platform; Jazz represents
the network derived from the collaboration patterns of jazz musicians; USAir is an undirected, weighted
network representing US airports, where the nodes represent airports and the edges represent air travel
connections among them; NS represents the largest component of coauthorships between scientists working
on network theory and experiment; Game of Thrones represents the relationships of characters in the first five
volumes of the novel “A Song of Ice and Fire”; DMLC represents the inferred links by small/medium-scale
protein-protein interactions; Power is an undirected, unweighted network representing the topology of the
Western States Power Grid of the USA.

https://www.neusncp.com/user/file?id=311&code=mine
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Table 3. Statistics of 16 multilayer datasets that are utilized in this paper.

Dataset Name |L| |V | |E| |EA| |EC| <k> <d> <C> βc

Padgett [76] 2 26 46 35 11 3.5385 2.6923 1.1550 0.3239
HepatitusCVirus [77] 3 129 152 125 27 2.3566 2.3582 12.4008 0.0354
Oryctolagus [77] 3 151 145 138 7 1.9205 0.5642 11.7317 0.0464
LondonTransport [78] 3 399 472 441 31 2.3659 14.2989 1.1597 0.5735
CKM [79] 3 674 2005 1370 635 5.9496 1.1677 1.1879 0.1648
C.Elegans [80] 3 791 3857 3108 749 9.7522 3.5346 1.6895 0.0646
Plasmodium [81] 3 1206 2489 2486 3 4.1277 3.9403 2.9832 0.0884
HumanHerpes4 [77] 4 261 299 241 58 2.2912 2.9561 18.5515 0.0241
BOS [81] 4 369 360 311 49 1.9512 0.4116 2.0429 0.3349
DanioRerio [77] 5 180 206 173 33 2.2889 0.3325 1.6161 0.3705
Xenopus [77] 5 582 710 568 142 2.4399 2.8018 2.0464 0.2504
Gallus [81] 6 367 411 348 63 2.2398 1.277 12.5034 0.0370
Rattus [81] 6 3263 4670 3956 714 2.8624 3.9011 30.0001 0.0118
Candida [81] 7 418 446 386 60 2.1340 2.1034 28.0935 0.0170
PierreAuger [82] 16 965 8022 7153 869 16.6259 4.8105 2.8617 0.0215
EUAirTransportation [83] 37 2034 15199 3588 11611 14.9449 3.5087 1.6187 0.0431

Note: |L| represents the number of layers; |V| and |E| are the number of nodes and edges, respectively; |EA| and |EC | are
the number of intralayer edges and interlayer edges, respectively; <k> depicts the average degree; <d> depicts the average
shortest path; <C> represents the average clustering coefficient and βc represents the epidemic threshold of the SIR
model; Padgett is a two-layered network consists of 2 layers (marriage alliances and business relationships) describing
florentine families in the Renaissance; HepatitusCVirus represents the multiplex genetic and protein interactions network
of the Hepatitus C virus; Oryctolagus represents the multiplex genetic and protein interactions network of the Oryctolagus
Cuniculus, also known as European rabbit; LondonTransport is collected from the official website of Transport for London
(https://www.tfl.gov.uk/), where the nodes represent train stations in London and edges represent existing routes
between stations; CKM is collected by Coleman, Katz and Menzel (CKM, for short) on medical innovation, considering
physicians in four towns in Illinois, Peoria, Bloomington, Quincy and Galesburg; C.Elegans represents the edges of the
metabolic network of Caenorhabditis elegans; Plasmodium represents the protein interactions network of the Plasmodium
Falciparum; HumanHerpes4 represents the multiplex genetic and protein interactions network of the Epstein-Barr virus,
i.e., human herpes-virus 4 (HHV-4); BOS represents the multiplex genetic and protein interactions network of the Bos
Linnaeus; DanioRerio represents the multiplex genetic and protein interactions network of the Danio Rerio (zebrafish),
a tropical freshwater fish, composed of the following five layers: association, suppressive genetic interaction defined
by inequality, direct interaction, additive genetic interaction defined by inequality and physical association; Xenopus
represents the multiplex genetic and protein interactions network of the Xenopus Laevis, a species of African aquatic
frog of the Pipidae family; Gallus represents the interactions among Gullus with six layers: direct interaction, physical
association, synthetic genetic interaction defined by inequality colocalization, colocalization, additive genetic interaction
defined by inequality, and association; Rattus and Candida represent the multiplex genetic and protein interactions
network of the Rattus Norvegicus and Candida Albicans, respectively; PierreAuger represents the multiplex coauthorship
network in the internal report repository of the Pierre Auger Collaboration (http://www.auger.org/), the largest team of
scientists working about ultra-high energy cosmic rays; EUAirTransportation represents the air transportation network
in Europe composed of thirty-seven different layers, where each one is corresponding to a different airline operating.

4.2. Experimental Contents

To verify the performance of the proposed MINE algorithm, comparison experiments are
conducted on the above-mentioned monolayer and multilayer networks, respectively. Firstly,
a sequence of ranked nodes is calculated by each measure. Subsequently, the vital nodes are removed
in turn by the ranking in each sequence, which may result in the network being broken into several
subgraphs. We record the number of subgraphs at each removal and make a comparison on all the
competitors. This process repeats until all the nodes are removed. Hence, the variation tendency of the
subgraphs’ number exhibits the influence of a focal centrality measure. The experimental results are
plotted in Figures 2 and 3.

https://www.tfl.gov.uk/
http://www.auger.org/
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Figure 2. The comparison of varying subgraphs with the removal of the most influential nodes
repeatedly with each centrality method on 16 monolayer networks. The proposed MINE algorithm
(marked with blue triangles) shows superiority to the BC and LGR methods by obtaining more
subgraphs in the removal process.

As shown in Figures 2 and 3, with the removal of vital nodes (in descending order) computed
by each measure, the number of derived subgraphs is increasing and reaches a maximum when the
network is totally broken up (i.e., there are no edges). Afterward, the number of subgraphs is reducing,
and finally reaches zero when all the nodes are removed. Hence, we compare the maximum numbers of
subgraphs obtained by each measure, and find that the proposed MINE algorithm (as marked with blue
triangles) is able to get greater values than the competitors on all the datasets except HepatitusCVirus,
which suggests the superiority of MINE to the competitors. Furthermore, the maximum number
of subgraphs by the proposed MINE algorithm on the HepatitusCVirus dataset is very close to the
optimal result (i.e., obtained by LGR, as marked with green squares) and following the same trend,
which suggests the feasibility of the proposed MINE algorithm.
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Figure 3. The comparison of varying subgraphs with the removal of the most influential nodes
repeatedly with each centrality method on 16 multilayer networks. The proposed MINE algorithm
(marked with blue triangles) shows superiority to the BC and LGR methods on the majority of datasets
except for HepatitusCVirus, while it is close to the performance of the LGR method (marked with
green squares).

We apply the SIR model to compare the performance of competitive measures for further study
on the influence maximization problem. Initially, k nodes are set as infected seeds to infect neighboring
nodes with probability β. Afterward, the infected nodes are recovered and never be infected again
with probability γ. This spreading process repeats until there are no more infected nodes in the
network and the number of final recovered nodes are utilized to evaluate the effect of a focal measure.
To analyze the varying parameter k with the recovered nodes, we conducted experiments on the
above-mentioned 32 datasets and set the ratio as β = βc and γ = 1. Specifically, the range of k is set in
[0, 0.2N] according to Pareto Distributions [84], where N is the total number of nodes for each dataset.
We implement 1000 independent runs to eliminate accident errors and the comparison results are
plotted in Figures 4 and 5.
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Figure 4. The comparison of recovered nodes with varying k (from 0 to 20 percent of total nodes) on
16 monolayer networks. The proposed MINE algorithm (marked with blue triangles) shows superiority
to the competitors on Polbooks, Enron, NS, DMLC, Game of Thrones and Power datasets. While on the
Jazz dataset, the MINE algorithm is second to BC (marked with orange circles) when k is in the range
of [26, 34], while MINE achieves more recovered nodes (averaged 52.9888) than that of BC (averaged
52.5331) when k is set as 38 (i.e., twenty percent of the number of nodes in the Jazz dataset).

The performance of each measure is evaluated by the height of each curve. As shown in
Figures 4 and 5, with the increasing of k, the recovered nodes are increasing likewise. In most cases,
the proposed MINE algorithm shows superiority to the competitors, by obtaining relatively more
recovered nodes with the increasing of “infected” nodes.

To compare the efficiency of the proposed MINE algorithm with competitors, we record the
execution time (in seconds) for each measure on the 32 datasets, respectively, and make a brief
comparison as presented in Table 4.

As shown in Table 4, DC holds the minimum runtime on almost all the datasets and BC holds
maximum runtime in the majority of the experimental datasets. To compare the total runtime
comprehensively, we accumulated the runtime of each measure on all the datasets, and make an
intuitional comparison as shown in Figure 6.
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Figure 5. The comparison of recovered nodes with varying k (from 0 to 20 percent of total nodes)
on 16 multilayer networks. The proposed MINE algorithm (marked with blue triangles) shows
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0

20

40

60

80

BC CC DC INF LGR MINE
Methods

T
im

e 
(s

)

Monolayer networks    

Club

Dolphins

911

Lesmis

Voles

Escherichia

Polbooks

Football

Enron

NEUSNCP

Jazz

USAir

NS

DMLC

Game of Thrones

Power
0

20

40

BC CC DC INF LGR MINE
Methods

T
im

e 
(s

)

Multilayer networks    

Padgett

HepatitusCVirus

Oryctolagus

LondonTransport

CKM

C.Elegans

Plasmodium

HumanHerpes4

BOS

DanioRerio

Xenopus

Gallus

Rattus

Candida

PierreAuger

EUAirTransportation

Figure 6. Comparisons of accumulated execution time by performing the competitive measures on the
grouped datasets.



Mathematics 2020, 8, 1449 16 of 24

Table 4. Runtime comparison of DC, BC, CC, LGR, INF and MINE on 32 real-world datasets.

Network DC BC CC LGR INF MINE

Club <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Dolphins <0.0001 <0.0001 0.0156 0.0156 <0.0001 0.0156
911 <0.0001 0.0156 <0.0001 <0.0001 <0.0001 0.0156
Lesmis <0.0001 0.0156 0.0156 <0.0001 <0.0001 0.0156
Voles <0.0001 <0.0001 <0.0001 <0.0001 0.0156 0.0156
Escherichia <0.0001 0.0312 0.0156 <0.0001 <0.0001 0.0156
Polbooks <0.0001 0.0469 0.0312 <0.0001 0.0156 0.0156
Football <0.0001 0.0469 0.0469 <0.0001 0.0312 0.0312
Enron <0.0001 0.0625 0.0469 <0.0001 0.0156 0.0312
NEUSNCP <0.0001 0.0938 0.0625 <0.0001 0.0312 0.0156
Jazz <0.0001 0.1719 0.2188 <0.0001 0.0781 0.3750
USAir <0.0001 0.3594 0.4531 0.0156 0.0938 0.2188
NS <0.0001 0.3438 0.3438 0.0156 0.0156 0.0625
DMLC <0.0001 1.0312 0.9219 <0.0001 0.4219 0.7656
Game of Thrones <0.0001 1.8750 1.5312 0.0156 0.2344 0.4219
Power <0.0001 73.8594 48.2344 0.0156 0.1562 21.9531
Padgett <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
HepatitusCVirus <0.0001 0.0312 0.0312 <0.0001 0.0156 0.0156
Oryctolagus <0.0001 0.0156 <0.0001 <0.0001 0.0156 0.0156
LondonTransport <0.0001 0.4219 0.2969 <0.0001 <0.0001 0.2031
CKM <0.0001 0.4844 0.3281 <0.0001 0.0469 0.4219
C.Elegans <0.0001 2.0000 1.9219 0.0156 0.1406 0.7500
Plasmodium <0.0001 3.8281 2.7812 <0.0001 0.1562 1.5625
HumanHerpes4 <0.0001 0.0938 0.0781 <0.0001 0.0469 0.0312
BOS <0.0001 0.0469 0.0156 <0.0001 0.0156 0.1094
DanioRerio <0.0001 0.0156 0.0156 <0.0001 <0.0001 0.0312
Xenopus <0.0001 0.3750 0.2969 <0.0001 0.0156 0.4375
Gallus <0.0001 0.1094 0.0938 <0.0001 0.0469 0.1094
Rattus 0.0156 24.4375 17.9062 <0.0001 1.5000 9.8750
Candida <0.0001 0.2500 0.1719 <0.0001 0.0938 0.1250
PierreAuger <0.0001 3.0312 3.3438 0.0156 0.1719 0.9375
EUAirTransportation <0.0001 19.7656 18.7344 0.0312 0.7500 3.4062

Note: The maximum values of each row are in bold. <0.0001 in the cell represents the runtime
(recorded in seconds) is less than 0.0001 s. With the increasing of data size, the runtime of BC and CC
are increasing dramatically, while the proposed MINE algorithm is acceptable.

As shown in Figure 6, the left panel exhibits the accumulated execution time by performing DC,
CC, DC, INF, LGR and MINE measure on 16 monolayer networks, and analogously, the execution time
on 16 multilayer networks is presented in the right panel. The accumulated execution time for the
competitive measures can be roughly sorted as DC, INF, LGR, MINE, CC and BC (in ascending order).
Although inferior to DC, INF and LGR measures on the accumulated execution time, the proposed
MINE algorithm is acceptable for common applications with its performance in influence maximization
and superiority to BC and CC on efficiency.

4.3. Discussion

Influence Maximization is a research hotspot of complex networks with a variety of applications in
very different fields, such as information diffusion, social network analysis, viral marketing, epidemic
control and so on. Degree centrality [22], as the simplest measure, mainly considers a focal node
is crucial if it has large amounts of neighbors. However, it is probably to ignore some “bridge-like”
nodes (i.e., nodes that connect different components) if they have few neighbors. To overcome this
shortcoming, betweenness [23] and closeness [24] centralities are proposed which are able to identify
vital nodes from a global perspective. These two measures seem to be more reasonable, however,
they are also criticized by high computational complexity, which become prohibitive in large-scale
networks. Local gravity [30] is a balanced measure, however, the determination of parameter R
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requires computing network diameter, which is also a time-consuming process. INF performs well in
ranking nodes but lacks nodes selecting strategy, which is insufficient to exert maximum influence.
Thus, the MINE algorithm is proposed in this paper, which firstly computes the local neighboring
information of a focal node, and then considers the community structures hierarchically by a folding
process. The proposed MINE algorithm is capable of identifying vital nodes dispersedly and exerting
strong influence. Experimental results on 32 real-world datasets indicate the feasibility and efficiency
of the proposed algorithm.

Firstly, the experiments of comparing subgraphs with the removal of vital nodes exhibit the
superiority of the proposed algorithm, i.e., the vital nodes identified by the MINE algorithm are easier
to exert strong influence than the competitors. By comparing the maximum number of subgraphs
when removing the nodes according to the MINE algorithm, the networks are more easily broken up,
as shown in Figures 2 and 3. Secondly, we apply the SIR model to evaluate influence maximization
effect for each measure (as shown in Figures 4 and 5), with the increasing of infected seeds, the MINE
algorithm can obtain relatively more recovered nodes, which suggests that the proposed algorithm
is superior to the competitors in both monolayer and multilayer networks. Although inferior to
BC on the Jazz dataset and INF on the EUAirTransportation dataset, it is also quite competitive.
By analyzing the structures of these two networks, we find that the nodes in Jazz network are densely
connected (i.e., the average degree of 27.6970), and most of the nodes are holding the same number of
neighbors (approximately 28 neighbors), which brings difficulties to identify vital nodes to exert strong
influence. The EUAirTransportation network has 37 layers, and the clustering efficiency is relatively
lower (1.6187) than that of other multilayer networks. The proposed MINE algorithm is capable of
identifying influencers hierarchically, while the EUAirTransportation network is composed of airlines
that fail to form a “tree-like” structure in the folding process. However, the INF indicator considers
the local neighboring information of a focal node, which is more capable of identifying vital nodes in
the EUAirTransportation network. Nonetheless, the MINE algorithm outperforms other competitors
(i.e., BC, CC, DC, and LGR) except INF. Finally, we compare the running time of each indicator on the
32 real-world datasets. Experimental results show the efficiency of the proposed measure.

4.4. Application

Inspired by the graph of adjacencies (i.e., the network of shared borders between countries,
states, or provinces) [85], we collect the adjacencies of provinces in China, where each province is
represented as a node and there is an edge between any two nodes if the corresponding provinces
are geographically adjacent (i.e., share a border). By performing with the proposed MINE algorithm,
the vital provinces are plotted in dark blue, as shown in Figure 7, and the full comparisons of provinces
by different centrality measures are given in Table 5.

Meghanathan [86] proposes a normalization-based approach to obtain a comprehensive centrality
ranking of the states in the graph of adjacencies from the map of USA. As concluded in his research,
(i) the state of Missouri is the top-ranked node concerning all the commonly studied centrality measures,
(ii) the state of Idaho has the lowest non-zero local clustering coefficient, indicating that the state is the
most critical state with respect to facilitating communication between its neighboring states, (iii) the
vital states measured by a single centrality is likely to be insufficient to exert strong influence on the
whole network. Likewise, the vital nodes (marked in dark blue) identified by the proposed MINE
algorithm in the graph of adjacencies related to the lower 48 United States are presented in Figure 8,
and the full comparisons are shown in Table 6.
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Figure 7. The vital provinces of China measured by the proposed MINE algorithm, where Inner
Mongolia, Sichuan, Zhejiang and Guangdong hold more importance in the graph of the adjacencies
(formed by 34 vertices and 73 edges). By performing with the proposed MINE algorithm, we can
find that Inner Mongolia holds the maximum importance in the derived network model, which may
result from its huge span in longitude (97◦12′ E–126◦04′ E) and adjacencies to eight other provinces,
i.e., Gansu, Ningxia, Shaanxi, Shanxi, Hebei, Liaoning, Jilin and Heilongjiang. Zhejiang is the second
influential province measured by the MINE algorithm, which suggests its vital position in the southeast
of China.

Figure 8. The influence of the lower 48 United States is measured by the proposed MINE algorithm
based on the graph of adjacencies (formed by 48 vertices and 104 edges). By performing with MINE
algorithm, Missouri (with maximum importance which is same to the conclusion of Meghanathan’s
research), following by Massachusetts and Idaho (also pointed out by Meghanathan as a vital state) are
identified as the top-3 vital states, which are respectively located in the middle, east and west of the
lower 48 United States. By activating the top-3 nodes and their neighbors in the graph of adjacencies,
we are able to get a maximum collection of activated states that covers the majority of the United States,
which are probably to exert strong influence.
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Table 5. Comparison of provinces of China, measured by DC, BC, CC, LGR, INF and MINE.

Province DC BC CC LGR INF MINE

Inner Mongolia 0.2424 0.1823 0.3793 366.0000 2.1845 11.2417
Shaanxi 0.2424 0.2438 0.4400 474.0000 1.5512 1.5512
Hebei 0.2121 0.1733 0.3626 269.5000 2.1250 2.1250
Sichuan 0.2121 0.1170 0.3708 322.0000 1.4417 7.8988
Guangdong 0.2121 0.2065 0.3474 231.0000 2.8333 4.2619
Gansu 0.1818 0.0914 0.3667 271.5000 1.3095 1.3095
Henan 0.1818 0.1291 0.4177 295.5000 1.1012 1.1012
Hubei 0.1818 0.1856 0.4459 324.0000 0.9917 0.9917
Anhui 0.1818 0.1112 0.3882 250.5000 1.2000 1.2000
Jiangxi 0.1818 0.1658 0.3976 270.0000 1.0929 1.0929
Hunan 0.1818 0.1204 0.3976 265.5000 1.1262 1.1262
Chongqing 0.1515 0.0611 0.4074 237.5000 0.8012 0.8012
Guizhou 0.1515 0.0326 0.3511 181.2500 1.0095 1.0095
Zhejiang 0.1515 0.0589 0.3267 147.5000 1.3333 10.5976
Shanxi 0.1212 0.0119 0.3626 165.0000 0.5595 0.5595
Shandong 0.1212 0.0665 0.3626 138.0000 0.7262 0.7262
Qinghai 0.1212 0.0059 0.3028 113.0000 0.8929 0.8929
Jiangsu 0.1212 0.0342 0.3173 97.0000 1.1167 1.1167
Yunnan 0.1212 0.0431 0.3300 119.0000 0.8429 0.8429
Tibet 0.1212 0.0195 0.3000 100.0000 0.9762 0.9762
Fujian 0.1212 0.0737 0.3204 109.0000 1.5095 1.5095
Guangxi 0.1212 0.0588 0.3333 125.0000 0.7595 0.7595
Jilin 0.0909 0.0009 0.2821 60.0000 0.9583 0.9583
Liaoning 0.0909 0.0073 0.3028 81.7500 0.6012 0.6012
Ningxia 0.0909 0.0000 0.3402 103.5000 0.4167 0.4167
Xinjiang 0.0909 0.0039 0.2920 64.5000 0.6667 0.6667
Heilongjiang 0.0606 0.0000 0.2797 37.5000 0.4583 0.4583
Beijing 0.0606 0.0000 0.2705 30.5000 0.6429 0.6429
Tianjin 0.0606 0.0000 0.2705 30.5000 0.6429 0.6429
Shanghai 0.0606 0.0000 0.2661 28.0000 0.4500 0.4500
Hangkong 0.0606 0.0000 0.2619 28.5000 0.6429 0.6429
Macao 0.0606 0.0000 0.2619 28.5000 0.6429 0.6429
Taiwan 0.0303 0.0000 0.2444 8.5000 0.2500 0.2500
Hainan 0.0303 0.0000 0.2598 13.0000 0.1429 0.1429

Note: The maximum values of each column are in bold, and the second maximum
values of each column are underlined. By comparing the vital provinces measured by
these centrality measures, we can infer that the proposed MINE algorithm is able to
identify influential nodes dispersedly, which may benefit the influence maximization
effect.

By respectively comparing the vital provinces (or states) in China and the USA, we are able to
deduce that the proposed MINE algorithm is capable of identifying vital nodes dispersedly, which may
benefit the information diffusion process and exert a positive effect in influence maximization.
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Table 6. Comparison of the lower 48 United States, measured by DC, BC, CC, LGR, INF and MINE.

State DC BC CC LGR INF MINE

Missouri 0.1702 0.3703 0.3561 520.0000 1.4024 24.9286
Kentucky 0.1489 0.3437 0.3431 374.5000 1.3679 1.3679
Tennessee 0.1489 0.1862 0.3219 364.0000 1.3845 1.3845
Idaho 0.1277 0.0886 0.2271 198.0000 1.5667 7.0167
Wyoming 0.1277 0.1268 0.2717 273.0000 1.1167 1.1167
Colorado 0.1277 0.0658 0.2717 259.5000 1.2000 1.2000
Nebraska 0.1277 0.1606 0.3133 307.5000 1.0417 1.0417
South Dakota 0.1277 0.0590 0.2655 231.0000 1.3333 1.3333
Oklahoma 0.1277 0.1147 0.3032 271.5000 1.2083 1.2083
Iowa 0.1277 0.0820 0.3013 282.0000 1.1583 1.1583
Arkansas 0.1277 0.0733 0.2956 268.5000 1.2679 1.2679
Pennsylvania 0.1277 0.3018 0.2655 193.5000 1.5167 5.7690
Nevada 0.1064 0.0119 0.1992 137.5000 1.2000 1.2000
Utah 0.1064 0.0385 0.2327 183.7500 0.9500 0.9500
Illinois 0.1064 0.0451 0.3092 215.0000 0.9345 0.9345
Ohio 0.1064 0.1772 0.3032 178.7500 1.0929 1.0929
West Virginia 0.1064 0.1446 0.3013 182.5000 1.0095 1.0095
Georgia 0.1064 0.0380 0.2568 131.2500 1.6429 3.1857
New York 0.1064 0.2280 0.2238 127.5000 1.3667 1.3667
Massachusetts 0.1064 0.0634 0.1895 92.5000 1.7000 7.1000
Oregon 0.0851 0.0056 0.1918 83.0000 1.2000 1.2000
Montana 0.0851 0.0184 0.2293 122.0000 0.8333 0.8333
Arizona 0.0851 0.0481 0.2227 100.0000 0.9833 0.9833
Kansas 0.0851 0.0160 0.2956 160.0000 0.6250 0.6250
New Mexico 0.0851 0.0752 0.2582 126.0000 0.8333 0.8333
Minnesota 0.0851 0.0296 0.2655 108.0000 0.9167 0.9167
Texas 0.0851 0.0205 0.2527 109.0000 0.9167 0.9167
Wisconsin 0.0851 0.0475 0.2765 111.0000 0.9500 0.9500
Mississippi 0.0851 0.0148 0.2626 116.0000 0.8929 0.8929
Indiana 0.0851 0.0142 0.2883 120.0000 0.8762 0.8762
Virginia 0.0851 0.0581 0.2883 125.0000 0.8429 0.8429
Alabama 0.0851 0.0202 0.2527 102.0000 1.0929 1.0929
North Carolina 0.0851 0.0451 0.2733 112.0000 1.0929 1.0929
Maryland 0.0851 0.0334 0.2527 96.0000 0.9500 0.9500
California 0.0638 0.0031 0.1888 51.7500 0.7000 0.7000
North Dakota 0.0638 0.0046 0.2315 63.0000 0.6667 0.6667
Louisiana 0.0638 0.0032 0.2398 63.7500 0.6667 0.6667
Michigan 0.0638 0.0397 0.2626 63.7500 0.7000 0.7000
Delaware 0.0638 0.0017 0.2176 53.2500 0.7500 0.7500
New Jersey 0.0638 0.0032 0.2186 60.7500 0.7000 0.7000
Vermont 0.0638 0.0389 0.1880 50.2500 0.7333 0.7333
Connecticut 0.0638 0.0194 0.1873 47.2500 0.9000 0.9000
New Hampshire 0.0638 0.0426 0.1615 34.5000 1.5333 1.5333
Washington 0.0426 0.0000 0.1873 31.5000 0.4167 0.4167
Florida 0.0426 0.0000 0.2080 26.5000 0.4500 0.4500
South Carolina 0.0426 0.0000 0.2186 26.5000 0.4500 0.4500
Rhode Island 0.0426 0.0000 0.1604 21.5000 0.5333 0.5333
Maine 0.0213 0.0000 0.1395 5.0000 0.3333 0.3333

Note: The maximum values of each column are in bold, and second maximum values
of each column are underlined. As identified by DC, BC, CC, LGR, Missouri seems to
be the most vital states and Kentucky is next most important one. However, Kentucky
is close to Missouri in geography, which limits the scope of influence expansion. By
performing with INF measure, Massachusetts and Georgia are identified as the top-2
vital states, which are located in the east of the lower 48 United States and limited to the
local areas. The proposed MINE algorithm identifies Missouri (44.9286), Massachusetts
(7.1000) and Idaho (7.0167) as top-3 vital states, which are located dispersedly and are
easy to exert strong influence.
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5. Conclusions

Aiming at solving the influence maximization problem in complex networks, this paper
proposes a novel MINE algorithm based on the folding of community structures hierarchically.
Specifically, the complexity of MINE is O(n log n), which suggests its feasibility in large-scale networks.
Extensive experiments on 32 real-world datasets are conducted, including 16 monolayer networks and
16 multilayer networks, respectively. The experimental results suggest that the proposed algorithm
outperforms competitors in most cases. Afterward, the runtime comparison of the proposed method
with competitors verifies the efficiency of the proposed MINE algorithm. The applications in the
graph of adjacencies of provinces (states) in China and USA also exhibit its value in real-life scenarios.
Overall, the proposed MINE algorithm is capable of identifying vital nodes in complex networks and
is of paramount significance in the influence maximization problem. The contribution of this work is
likely to benefit many real-world applications, such as promoting network evolutions, preventing the
spreading of rumors, etc.

As part of future works, the improvement of identifying community structures can be
further studied (e.g., the complexity of O(n) or O(log n) may provide significant runtime savings).
The simplification of the folding process in MINE algorithm is also expected. In a word, we hope the
findings in this work will help to improve the research in this promising field.

Author Contributions: X.H. designed the algorithm and wrote the original draft; D.C. revised the manuscript;
T.R. and D.W. checked the manuscript and made some modifications. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partially supported by Liaoning Natural Science Foundation under Grant
No. 20170540320, the Doctoral Scientific Research Foundation of Liaoning Province under Grant No. 20170520358,
the National Natural Science Foundation of China under Grant No. 61473073, and the Fundamental Research
Funds for the Central Universities under Grant Nos. N161702001, N2017010 and N172410005-2.

Acknowledgments: We would like to thank the anonymous reviewers for their careful reading and useful
comments that helped us to improve the final version of this paper.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of
this paper.

References

1. Lü, L.; Chen, D.; Ren, X.L.; Zhang, Q.M.; Zhang, Y.C.; Zhou, T. Vital nodes identification in complex
networks. Phys. Rep. 2016, 650, 1–63. [CrossRef]

2. Basaras, P.; Iosifidis, G.; Katsaros, D.; Tassiulas, L. Identifying influential spreaders in complex multilayer
networks: A centrality perspective. IEEE Trans. Netw. Sci. Eng. 2017, 6, 31–45. [CrossRef]

3. Ren, X. Review of ranking nodes in complex networks. Chin. Sci. Bull. 2014, 59, 1175–1197. [CrossRef]
4. Morone, F.; Makse, H.A. Influence maximization in complex networks through optimal percolation. Nature

2015, 524, 65–68. [CrossRef]
5. Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and

shortest paths. Soc. Netw. 2010, 32, 245–251. [CrossRef]
6. Richardson, M.; Domingos, P. Mining knowledge-sharing sites for viral marketing. In Proceedings of the

Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB,
Canada, 23–26 July 2002; pp. 61–70.

7. Pastor-Satorras, R.; Vespignani, A. Immunization of complex networks. Phys. Rev. E 2002, 65, 036104.
[CrossRef] [PubMed]

8. Albert, R.; Albert, I.; Nakarado, G.L. Structural vulnerability of the North American power grid. Phys. Rev. E
2004, 69, 025103. [CrossRef]

9. Salavati, C.; Abdollahpouri, A.; Manbari, Z. BridgeRank: A novel fast centrality measure based on local
structure of the network. Phys. A Stat. Mech. Its Appl. 2018, 496, 635–653. [CrossRef]

10. Thai, M.T.; Wu, W.; Xiong, H. Big Data in Complex and Social Networks; CRC Press: Boca Raton, FL, USA, 2016.
11. Liu, W.; Suzumura, T.; Ji, H.; Hu, G. Finding overlapping communities in multilayer networks. PLoS ONE

2018, 13, e0188747. [CrossRef]

http://dx.doi.org/10.1016/j.physrep.2016.06.007
http://dx.doi.org/10.1109/TNSE.2017.2775152
http://dx.doi.org/10.1360/972013-1280
http://dx.doi.org/10.1038/nature14604
http://dx.doi.org/10.1016/j.socnet.2010.03.006
http://dx.doi.org/10.1103/PhysRevE.65.036104
http://www.ncbi.nlm.nih.gov/pubmed/11909162
http://dx.doi.org/10.1103/PhysRevE.69.025103
http://dx.doi.org/10.1016/j.physa.2017.12.087
http://dx.doi.org/10.1371/journal.pone.0188747


Mathematics 2020, 8, 1449 22 of 24

12. Wang, D.; Wang, H.; Zou, X. Identifying key nodes in multilayer networks based on tensor decomposition.
Chaos Interdiscip. J. Nonlinear Sci. 2017, 27, 063108. [CrossRef]

13. Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer networks.
J. Complex Netw. 2014, 2, 203–271. [CrossRef]

14. Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C.I.; Gómez-Gardenes, J.; Romance, M.; Sendina-Nadal,
I.; Wang, Z.; Zanin, M. The structure and dynamics of multilayer networks. Phys. Rep. 2014, 544, 1–122.
[CrossRef] [PubMed]

15. Domingos, P.; Richardson, M. Mining the network value of customers. In Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
26–29 August 2001; pp. 57–66.

16. Kempe, D.; Kleinberg, J.; Tardos, É. Maximizing the spread of influence through a social network.
In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, 24–27 August 2003; pp. 137–146.

17. Li, X.; Zhang, X.; Zhao, C.; Yi, D.; Li, G. Identifying highly influential nodes in multilayer networks based on
global propagation. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 061107. [CrossRef] [PubMed]

18. Ford, L.R.; Fulkerson, D.R. Maximal flow through a network. In Classic Papers in Combinatorics; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 243–248.

19. Corley, H., Jr.; Chang, H. Finding the n most vital nodes in a flow network. Manag. Sci. 1974, 21, 362–364.
[CrossRef]

20. Peng, S.; Zhou, Y.; Cao, L.; Yu, S.; Niu, J.; Jia, W. Influence analysis in social networks: A survey. J. Netw.
Comput. Appl. 2018, 106, 17–32. [CrossRef]

21. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
13–17 August 2016; pp. 855–864.

22. Bonacich, P. Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol.
1972, 2, 113–120. [CrossRef]

23. Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [CrossRef]
24. Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [CrossRef]
25. Bonacich, P. Power and centrality: A family of measures. Am. J. Sociol. 1987, 92, 1170–1182. [CrossRef]
26. Brin, S.; Page, L. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst.

1998, 30, 107–117. [CrossRef]
27. Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005,

102, 16569–16572. [CrossRef] [PubMed]
28. Kitsak, M.; Gallos, L.K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Stanley, H.E.; Makse, H.A. Identification of

influential spreaders in complex networks. Nat. Phys. 2010, 6, 888. [CrossRef]
29. Ma, L.l.; Ma, C.; Zhang, H.F.; Wang, B.H. Identifying influential spreaders in complex networks based on

gravity formula. Phys. A Stat. Mech. Its Appl. 2016, 451, 205–212. [CrossRef]
30. Li, Z.; Ren, T.; Ma, X.; Liu, S.; Zhang, Y.; Zhou, T. Identifying influential spreaders by gravity model. Sci. Rep.

2019, 9, 8387. [CrossRef] [PubMed]
31. Maji, G.; Mandal, S.; Sen, S. A systematic survey on influential spreaders identification in complex networks

with a focus on K-shell based techniques. Expert Syst. Appl. 2020, 161, 113681. [CrossRef]
32. Fan, T.; Lü, L.; Shi, D. Towards the cycle structures in complex network: A new perspective. arXiv 2019,

arXiv:1903.01397.
33. Huang, X.; Chen, D.; Wang, D.; Ren, T. Identifying Influencers in Social Networks. Entropy 2020, 22, 450.

[CrossRef]
34. Lü, L.; Zhang, Y.C.; Yeung, C.H.; Zhou, T. Leaders in social networks, the delicious case. PLoS ONE 2011,

6, e21202. [CrossRef]
35. Al-Garadi, M.A.; Varathan, K.D.; Ravana, S.D.; Ahmed, E.; Chang, V. Identifying the influential spreaders in

multilayer interactions of online social networks. J. Intell. Fuzzy Syst. 2016, 31, 2721–2735. [CrossRef]
36. Singh, S.S.; Singh, K.; Kumar, A.; Biswas, B. MIM2: Multiple influence maximization across multiple social

networks. Phys. A Stat. Mech. Its Appl. 2019, 526, 120902. [CrossRef]
37. Chen, X.; Zhou, J.; Liao, Z.; Liu, S.; Zhang, Y. A Novel Method to Rank Influential Nodes in Complex

Networks Based on Tsallis Entropy. Entropy 2020, 22, 848. [CrossRef]

http://dx.doi.org/10.1063/1.4985185
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://www.ncbi.nlm.nih.gov/pubmed/32834429
http://dx.doi.org/10.1063/5.0005602
http://www.ncbi.nlm.nih.gov/pubmed/32611121
http://dx.doi.org/10.1287/mnsc.21.3.362
http://dx.doi.org/10.1016/j.jnca.2018.01.005
http://dx.doi.org/10.1080/0022250X.1972.9989806
http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.1016/0378-8733(78)90021-7
http://dx.doi.org/10.1086/228631
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1073/pnas.0507655102
http://www.ncbi.nlm.nih.gov/pubmed/16275915
http://dx.doi.org/10.1038/nphys1746
http://dx.doi.org/10.1016/j.physa.2015.12.162
http://dx.doi.org/10.1038/s41598-019-44930-9
http://www.ncbi.nlm.nih.gov/pubmed/31182773
http://dx.doi.org/10.1016/j.eswa.2020.113681
http://dx.doi.org/10.3390/e22040450
http://dx.doi.org/10.1371/journal.pone.0021202
http://dx.doi.org/10.3233/JIFS-169112
http://dx.doi.org/10.1016/j.physa.2019.04.138
http://dx.doi.org/10.3390/e22080848


Mathematics 2020, 8, 1449 23 of 24

38. Molaei, S.; Farahbakhsh, R.; Salehi, M.; Crespi, N. Identifying Influential Nodes in Heterogeneous Networks.
Expert Syst. Appl. 2020, 160, 113580. [CrossRef]

39. Hosni, A.I.E.; Li, K.; Ahmad, S. Minimizing rumor influence in multiplex online social networks based on
human individual and social behaviors. Inf. Sci. 2020, 512, 1458–1480. [CrossRef]

40. Tidke, B.; Mehta, R.; Dhanani, J. Consensus-based aggregation for identification and ranking of top-k
influential nodes. Neural Comput. Appl. 2019, 32, 1–27. [CrossRef]

41. Li, M.; Zhang, Q.; Deng, Y. Evidential identification of influential nodes in network of networks.
Chaos Solitons Fractals 2018, 117, 283–296. [CrossRef]

42. Battiston, F.; Nicosia, V.; Latora, V. Structural measures for multiplex networks. Phys. Rev. E 2014, 89, 032804.
[CrossRef]

43. Pedroche, F.; Tortosa, L.; Vicent, J.F. An eigenvector centrality for multiplex networks with data. Symmetry
2019, 11, 763. [CrossRef]

44. Wang, S.; Liu, J.; Jin, Y. Finding influential nodes in multiplex networks using a memetic algorithm.
IEEE Trans. Cybern. 2019. [CrossRef]

45. Xie, W.B.; Lee, Y.L.; Wang, C.; Chen, D.B.; Zhou, T. Hierarchical clustering supported by reciprocal nearest
neighbors. Inf. Sci. 2020, 527, 279–292. [CrossRef]

46. Fu, G.; Hou, C.; Yao, X. Learning topological representation for networks via hierarchical sampling.
In Proceedings of the IEEE 2019 International Joint Conference on Neural Networks (IJCNN), Budapest,
Hungary, 14–19 July 2019; pp. 1–8.

47. Chen, H.; Perozzi, B.; Hu, Y.; Skiena, S. Harp: Hierarchical representation learning for networks.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
2–7 February 2018.

48. Ye, Z.; Zhan, X.; Zhou, Y.; Liu, C.; Zhang, Z.K. Identifying vital nodes on temporal networks: An edge-based
K-Shell decomposition. In Proceedings of the IEEE 2017 36th Chinese Control Conference (CCC), Dalian,
China, 26–28 July 2017; pp. 1402–1407.

49. Chen, X.; Tan, M.; Zhao, J.; Yang, T.; Wu, D.; Zhao, R. Identifying influential nodes in complex networks
based on a spreading influence related centrality. Phys. A Stat. Mech. Its Appl. 2019, 536, 122481. [CrossRef]

50. Zareie, A.; Sheikhahmadi, A. A hierarchical approach for influential node ranking in complex social
networks. Expert Syst. Appl. 2018, 93, 200–211. [CrossRef]

51. Tsiropoulou, E.; Koukas, K.; Papavassiliou, S. A socio-physical and mobility-aware coalition formation
mechanism in public safety networks. EAI Endorsed Trans. Future Internet 2018, 4, 154176. [CrossRef]

52. Huang, H.; Shen, H.; Meng, Z.; Chang, H.; He, H. Community-based influence maximization for viral
marketing. Appl. Intell. 2019, 49, 2137–2150. [CrossRef]

53. Hu, P.; Fan, W.L. Mitigation strategy against cascading failures considering vulnerable transmission line in
power grid. Phys. A Stat. Mech. Its Appl. 2020, 540, 123230. [CrossRef]

54. Nikolaou, P.; Dimitriou, L. Identification of critical airports for controlling global infectious disease outbreaks:
Stress-tests focusing in Europe. J. Air Transp. Manag. 2020, 85, 101819. [CrossRef] [PubMed]

55. Fragkos, G.; Apostolopoulos, P.A.; Tsiropoulou, E.E. ESCAPE: Evacuation strategy through clustering and
autonomous operation in public safety systems. Future Internet 2019, 11, 20. [CrossRef]

56. Peng, B.; Chen, W. Adaptive influence maximization with myopic feedback. In Proceedings of the Advances
in Neural Information Processing Systems, Vancouver, BC, Canada, 13 December 2019; pp. 5574–5583.

57. Guo, C.; Yang, L.; Chen, X.; Chen, D.; Gao, H.; Ma, J. Influential Nodes Identification in Complex Networks
via Information Entropy. Entropy 2020, 22, 242. [CrossRef]

58. Tidke, B.; Mehta, R.; Dhanani, J. Multimodal ensemble approach to identify and rank top-k influential nodes
of scholarly literature using Twitter network. J. Inf. Sci. 2020, 46, 437–458. [CrossRef]

59. Hethcote, H.W. The mathematics of infectious diseases. SIAM Rev. 2000, 42, 599–653. [CrossRef]
60. Guan-Rong, C.; Xiao-Fan, W.; Xiang, L. Introduction to Complex Networks: Models, Structures and Dynamics;

Higher Education Press: Beijing, China, 2012.
61. Raghavan, U.N.; Albert, R.; Kumara, S. Near linear time algorithm to detect community structures in

large-scale networks. Phys. Rev. E 2007, 76, 036106. [CrossRef]
62. Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 1977,

33, 452–473. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2020.113580
http://dx.doi.org/10.1016/j.ins.2019.10.063
http://dx.doi.org/10.1007/s00521-019-04568-0
http://dx.doi.org/10.1016/j.chaos.2018.04.033
http://dx.doi.org/10.1103/PhysRevE.89.032804
http://dx.doi.org/10.3390/sym11060763
http://dx.doi.org/10.1109/TCYB.2019.2917059
http://dx.doi.org/10.1016/j.ins.2020.04.016
http://dx.doi.org/10.1016/j.physa.2019.122481
http://dx.doi.org/10.1016/j.eswa.2017.10.018
http://dx.doi.org/10.4108/eai.12-1-2018.154176
http://dx.doi.org/10.1007/s10489-018-1387-8
http://dx.doi.org/10.1016/j.physa.2019.123230
http://dx.doi.org/10.1016/j.jairtraman.2020.101819
http://www.ncbi.nlm.nih.gov/pubmed/32501381
http://dx.doi.org/10.3390/fi11010020
http://dx.doi.org/10.3390/e22020242
http://dx.doi.org/10.1177/0165551519837190
http://dx.doi.org/10.1137/S0036144500371907
http://dx.doi.org/10.1103/PhysRevE.76.036106
http://dx.doi.org/10.1086/jar.33.4.3629752


Mathematics 2020, 8, 1449 24 of 24

63. Rossi, R.; Ahmed, N. The network data repository with interactive graph analytics and visualization.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA,
25–30 January 2015.

64. Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci.
USA 2002, 99, 7821–7826. [CrossRef] [PubMed]

65. Lusseau, D.; Schneider, K.; Boisseau, O.J.; Haase, P.; Slooten, E.; Dawson, S.M. The bottlenose dolphin
community of Doubtful Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol.
2003, 54, 396–405. [CrossRef]

66. Tsvetovat, M.; Kouznetsov, A. Social Network Analysis for Startups: Finding Connections on the Social Web;
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