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Abstract: This paper presents a novel lattice based biomimetic neural network trained by means of a
similarity measure derived from a lattice positive valuation. For a wide class of pattern recognition
problems, the proposed artificial neural network, implemented as a dendritic hetero-associative
memory delivers high percentages of successful classification. The memory is a feedforward dendritic
network whose arithmetical operations are based on lattice algebra and can be applied to real
multivalued inputs. In this approach, the realization of recognition tasks, shows the inherent
capability of prototype-class pattern associations in a fast and straightforward manner without
need of any iterative scheme subject to issues about convergence. Using an artificially designed data
set we show how the proposed trained neural net classifies a test input pattern. Application to a few
typical real-world data sets illustrate the overall network classification performance using different
training and testing sample subsets generated randomly.

Keywords: biomimetic neural networks; dendritic computing; lattice neural networks; lattice
valuations; pattern recognition; similarity measures

1. Introduction

The lattice neural network discussed in this paper is a biomimetic neural network.
The term biomimetic refers to man-made systems of processes that imitate nature. Accordingly,
biomimetic artificial neurons are man-made models of biological neurons, while biomimetic
computational systems deal mostly with information processing in the brain. More specifically,
biomimetic computational systems are concerned with such questions as how do neurons encode,
transform and transfer information, and how this encoding and transfer of information can be
expressed mathematically.

In the human as well as other mammal brains, every neuron has a cell body, named soma, and two
kinds of physiological processes called, respectively, dendrites and axons [1]. Multiple dendrites
conduct electric impulses toward the body of the cell whereas the axon conducts signals from the
soma. Usually, dendrites have many branches forming complicated large trees and various types of
dendrites are studded with many tiny branches known as spines. When present, dendrite spines are
the main postsynaptic target for synaptic input. The input surface of the neuron is composed of the
cell body and the dendrites. Those neurons receiving a firing signal coming from a presynaptic neuron
are called postsynaptic neurons.

The axon hillock, usually located in the opposite pole of a neural cell, gives rise to the axon which
is a long fiber whose branches form the axonal tree or arborization. In some neurons, besides its

Mathematics 2020, 8, 1439; doi:10.3390/math8091439 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-8641-2038
https://orcid.org/0000-0001-9700-390X
http://www.mdpi.com/2227-7390/8/9/1439?type=check_update&version=1
http://dx.doi.org/10.3390/math8091439
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 1439 2 of 18

terminal arborization, the axon may have branches at intervals along its length. In general, a branch of
an axon ends in several tips, called nerve terminals, synaptic knobs or boutons, and the axon, being the
main fiber branch of a neuron, carries electric signals to other neurons. An impulse traveling along
an axon from the axon hillock propagates all the way through the axonal tree to the nerve terminals.
The boutons of the branches make contact at synaptic sites of the cell body and the many dendrites of
other neurons. The synapse is a specialized structure whereby neurons communicate without actual
physical contact between the two neurons at the synaptic site. The synaptic knob is separated from the
surface of the soma or dendrite by a very short space known as the synaptic cleft. The mechanism
characteristics of a synaptic structure are basically well known and there are two types of synapses,
inhibitory synapses that prevent the neuron from firing impulses in response to excitatory synapses,
which tend to depolarize the postsynaptic membrane and consequently exciting the postsynaptic cell
to fire impulses.

In the cerebral cortex, the majority of synapses take place in the neural dendritic trees and
much of the information processing is realized by the dendrites as brain studies have revealed [2–8].
A human brain has around 85 billion neurons and the average number of synaptic connections a neuron
may have with other nearby neurons is about 7, 000 [9–12]. More specifically, a single neuron in the
cerebral cortex has a number of synapses within the range 500 to 200, 000, and an adult’s cerebral cortex
has an estimated number of synapses in the range of 100 to 500 trillion (1014 to 5× 1014) [10,13–15].
In both volume and surface area of the brain, dendrites make up the largest component spanning
all cortical layers in every region of the cerebral cortex [2,4,16]. Thus, in order to model an artificial
neural network that can represent more faithfully a biological brain network, it is not possible to
ignore dendrites and their spines, which cover the membrane of a neuron in more than 50%. This is
particularly true by considering that several brain researchers have proposed that dendrites (not the
neuron) are the basic computing devices of the brain. Neurons together with its associated dendritic
structure can work as multiple, almost independent, functional subunits where each subunit can
implement different logical operations [3,4,16–19]. The interested reader may peruse the works of
some researchers [3–8,16,20,21], that have proposed possible biophysical mechanisms for dendritic
computation of logical functions such as ‘AND’, ‘NOT’, ‘OR’, and ‘XOR’.

It is in light of these observations that we modeled biomimetic artificial neural networks based on
dendritic computing. The binary logic operations ‘AND’ and ‘OR’ are naturally extended to non-binary
numbers by considering their arithmetical equivalence, respectively, with finding the minimum and
maximum of two numbers. Thus, the logic unary operation ‘NOT’, min and max together with
addition belong to the class of machine operations that contribute to the high speed performance of
digital computers. The preceding fact suggests us to select as the principal computational foundation,
the algebraic structure provided by the bounded lattice ordered group (Rn

±∞,∨,∧,+,+∗) [22–24].
Recall that, R±∞ stands for the set of extended real numbers and the binary operations of maximum,
minimum, and extended additions are denoted, respectively, by ∨, ∧, and +/+∗.

The core issue in this research is a novel method for learning in biomimetic lattice neural networks.
However, currently biomimetic neural networks and lattice based computational intelligence are not
part of mainstream artificial neural networks (ANNs) and artificial intelligence (AI). To acquaint
readers that are unfamiliar with these topics, we organized this paper as follows: Section 2 deals with
basic concepts from lattice theory that are essential conceptual background, while Section 3 provides
a short introduction to lattice biomimetic neural networks. Section 4 discusses the construction of
the biomimetic neural network during the learning stages, and the illustrative examples provided
in Section 5 show that the proposed neural architecture based on lattice similarity measures can be
trained to give high percentages of correct classification in multiclass real-world pattern recognition
datasets. The paper ends with Section 6, where we give our conclusions and some relevant comments.
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2. Lattice Theory Background Material

Lattice theory is based on the concept of partially ordered sets, while partially ordered sets rest on
the notion of binary relations. More specifically, given a set X and R ⊂ X × X = {(x, y) : x, y ∈ X},
then R is called a binary relation on X. For example, set inclusion is a relation on any power set P(X)

of a set X. In particular, if X is a set and S = {(A, B) : A ⊂ B with A, B ∈ P(X)}, then S is a binary
relation on P(X). Note that this example shows that a pair of elements of P(X) need not be a member
pair of the binary relation. In contrast, the relation of less or equal, denoted by≤, between real numbers
is the set {(x, y) : x ≤ y} ⊂ R×R. Here, each pair of elements of R is related. The two examples of a
binary relation on a set belong to a special case of binary relations known as partial order relations.
We shall use the symbol 4 for denoting a binary relation on an unspecified set X.

Definition 1. A relation 4 on a set P is called a partial order on P if and only if for every x, y, z ∈ P, the
following three conditions are satisfied:

1. x 4 x (reflexivity),
2. x 4 y and y 4 x⇒ x = y (antisymmetry) and
3. x 4 y and y 4 z⇒ x 4 z (transitivity).

A set P together with a partial order 4, denoted by (P,4), is called a partially ordered set or
simply a poset. If x 4 y in a partially ordered set, then we say that x precedes y or that x is included
in y and that y follows x or that y includes x. If (P,4) is a poset, then we define the notation x ≺ y,
where x, y ∈ P, to mean that x 4 y and x 6= y. The following theorem is a trivial consequence of
these definitions.

Theorem 1. Suppose (P,4) is a poset. Consequently,

1. If Q ⊂ P, then (Q,4) is also a poset,
2. @ x ∈ P 3 x ≺ x, and
3. if x ≺ y and y ≺ z, then x ≺ z, where x, y, z ∈ P.

If X is a set, then for any pair C, D ∈ P(X) the set {C, D} has a least upper bound and a greatest
lower bound, namely C ∪ D and C ∩ D, respectively. Thus, (C ∩ D, C ∪ D) ∈ {(A, B) : A ⊂ B
with A, B ∈ P(X)}. The greatest lower bound and least upper bound of a subset are commonly
denoted by glb{C, D} and lub{C, D}, respectively. Similarly, if x, y ∈ Rn, then lub{x, y} = x ∨ y and
glb{x, y} = x ∧ y, so that (x ∧ y, x ∨ y) ∈ {(p, q) : p ≤ q and p, q ∈ Rn}. The notions of least upper
bound and greatest lower bound are key in defining the concept of a lattice.

More generally, if P is a poset and X ⊂ P, then the infimum denoted by inf(X), if it exist, is the
greatest element in P that is less than or equal to all elements of X. Likewise, the supremum written
as sup(X), if it exists, is the least element in P that is greater than or equal to all elements of X.
Consequently, the infimum and supremum correspond, respectively, to the greatest lower bound and
the least upper bound.

A few fundamental types of posets are described next: (1) A lattice is a partially ordered set L
such that for any two elements x, y ∈ L, inf{x, y} and sup{x, y} exist. If L is a lattice, then we denote
inf{x, y} by x ∧ y and sup{x, y} by x ∨ y, respectively. The expression x ∧ y is also referred to as the
meet or min of x and y, while x∨ y is referred to as the join or max of x and y. (2) A sublattice of a lattice
L is a subset X of L such that for each pair x, y ∈ X, we have that x ∧ y ∈ X and x ∨ y ∈ X. (3) A lattice
L is said to be complete if and only if for each of its subsets X, inf(X) and sup(X) exist. The symbols∧

X and
∨

X are also commonly used for inf(X) and sup(X), respectively.
Suppose L is a lattice and also an additive Abelian group, which we denote by (L,+).

Now, consider the function ϕ : L→ L defined by ϕ(x) = −x. If x 4 y, then ϕ(x ∨ y) = −(x ∨ y) = −y
and ϕ(x) ∧ ϕ(y) = −x ∧ −y = −y since −y 4 −x. Likewise, if y 4 x, then ϕ(x ∨ y) = −x and
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ϕ(x)∧ ϕ(y) = −x. Therefore, ϕ(x ∨ y) = ϕ(x)∧ ϕ(y). Similarly, ϕ(x ∧ y) = ϕ(x)∨ ϕ(y). This verifies
the dual equations:

−(a ∨ b) = −a ∧−b and a ∨ b = −(−a ∧−b), (1)

−(a ∧ b) = −a ∨−b and a ∧ b = −(−a ∨−b), (2)

signifying that the function ψ(x) = a + (−x) + b is a dual isomorphism for any fixed pair a, b ∈ L.
Thus, in any lattice Abelian group the following identities hold:

a +−(x ∨ y) + b = (a− x + b) ∧ (a− y + b), (3)

a +−(x ∧ y) + b = (a− x + b) ∨ (a− y + b). (4)

These equations easily generalize to,

a + (−
n∨

i=1

xi) + b =
n∧

i=1

(a− xi + b) and a + (−
n∧

i=1

xi) + b =
n∨

i=1

(a− xi + b), (5)

hence, if b = 0, then,

a +
(
−

n∨
i=1

xi
)
=

n∧
i=1

(a− xi) and a +
(
−

n∧
i=1

xi
)
=

n∨
i=1

(a− xi). (6)

Some of the most useful computational tools for applications of lattice theory to real data sets are
mappings of lattices to the real number system. One family of such mappings are valuation functions.

Definition 2. A valuation on a lattice L is a function v : L→ R that satisfies:

v(x) + v(y) = v(x ∨ y) + v(x ∧ y) ∀ x, y ∈ L. (7)

A valuation is said to be isotone if and only if x 4 y ⇒ v(x) ≤ v(y) and positive if and only if
x ≺ y⇒ v(x) < v(y).

The importance of valuations on lattices is due to their close association with various measures.
Among these measures are pseudometrics and metrics.

Theorem 2. If L is a lattice and v is an isotone valuation on L, then the function d : L× L→ R defined by:

d(x, y) = v(x ∨ y)− v(x ∧ y), (8)

satisfies, ∀ x, y, z, a ∈ L, the following conditions:

1. d(x, y) ≥ 0 and d(x, x) = 0,
2. d(x, y) = d(y, x),
3. d(x, y) ≤ d(x, z) + d(z, y), and
4. d(x, y) ≥ d(a ∨ x, a ∨ y) + d(a ∧ x, a ∧ y).

An elegant proof of this theorem is provided by Birkhoff in [25]. In fact, the condition:

x ∧ y ≺ x ∨ y⇔ v(x ∧ y) ≺ v(x ∨ y), (9)

or equivalently, d(x, y) = 0⇔ x = y, yields the following corollary of Theorem 2.

Corollary 1. Suppose L is a lattice and v is an isotone valuation on L. The function d(x, y) = v(x ∨ y)−
v(x ∧ y) is a metric on L if and only if the valuation v is positive.
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The metric d defined on a lattice L in terms of an isotone positive valuation is called a lattice
metric or simply an `-metric, and the pair (L, d) is called a metric lattice or a metric lattice space.
The importance of `-metrics is due to the fact that they can be computed using only the operations of
∨, ∧, and + for lattices that are additive Abelian groups. For the lattice group (Rn,+), they require far
less computational time than any `p metric whenever 1 < p < ∞. Just as different `p norms give rise
to different `p metrics on Rn, different positive valuations on a lattice will yield different `-metrics.
For instance, if L = Rn, then the two positive valuations v1(x) = ∑n

i=1 xi and v∞(x) =
∨n

i=1 xi define
two different `-metrics on L. In particular, we have:

Theorem 3. For x, y ∈ L, the induce metrics d1 and d∞ on L× L are given by,

d1(x, y) = v1(x ∨ y)− v1(x ∧ y) and d∞(x, y) = v∞(x ∨ y)− v∞(x ∧ y). (10)

Proof. Considering (1) through (4) establishes the following equalities:

v1(x ∨ y)− v1(x ∧ y) =
n

∑
i=1

(xi ∨ yi)−
n

∑
i=1

(xi ∧ yi) =
n

∑
i=1

[(xi ∨ yi)− (xi ∧ yi)]

=
n

∑
i=1

[(xi ∨ yi)− xi] ∨ [(xi ∨ yi)− yi]

=
n

∑
i=1

[(xi − xi) ∨ (yi − xi)] ∨ [(xi − yi) ∨ (yi − yi)]

=
n

∑
i=1

(yi − xi) ∨ (xi − yi) =
n

∑
i=1
|xi − yi| = d1(x, y).

Replacing the sum ∑ by the maximum operation
∨

and using an analogous argument proves the
second equality in (10) of the theorem.

In addition to `-metrics, valuations also give rise to similarity measures. A similarity measure
is a measure that for a given object x tries to decide how similar or dissimilar other objects are
when compared to x. For objects represented by vectors, distance measures such as metrics,
measure numerically how unlike or different two data points are, while similarity measures find
numerically how alike two data points are. In short, a similarity measure is the antithesis of a distance
measure since a higher value indicates a greater similarity, while for a distance measure a lower value
indicates greater similarity. There exists an assortment of different similarity measures, depending on
the sets, spaces, or lattices under consideration. Specifically, for lattices we have the following,

Definition 3. If L is a lattice with inf(L) = O, then a similarity measure for y ∈ L is a mapping s : L× L→
[0, 1] defined by the following conditions:

1. s(x, O) = 0, ∀ x 6= O,
2. s(x, x) = 1, ∀ x ∈ L, and
3. s(x, y) < 1, ∀ x 6= y.

The basic idea is that if y ∈ L has more features in common with z than any other x ∈ L
or if y is closer to z than any other x ∈ L in some meaningful way, then s(x, z) < s(y, z). As an
aside, there is a close relationship of similarity measures with fuzzy sets. Specifically, if X = L× L,
then F = {((x, y), s(x, y)) : (x, y) ∈ X} is a fuzzy set with membership function s : X → [0, 1].

3. Lattice Biomimetic Neural Networks

In ANNs endowed with dendrites whose computation is based on lattice algebra, a set
N1, . . . , Nn of presynaptic neurons provides information through its axonal arborization to the dendritic
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trees of some other set M1, . . . , Mm of postsynaptic neurons [26–28]. Figure 1 illustrates the neural
axons and branches that go from the presynaptic neurons to the postsynaptic neuron Mj, whose

dendritic tree has Kj branches, denoted by, τ
j
1, . . . , τ

j
Kj

and containing the synaptic sites upon which
the axonal fibers of the presynaptic neurons terminate. The address or location of a specific synapse
is defined by the quintuple (i, j, k, h, `), where i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, and k ∈ {1, . . . , Kj},
that a terminal axonal branch of Ni has a bouton on the k-th dendritic branch τ

j
k of Mj. The index

h ∈ {1, . . . , ρ} denotes the h-th synapse of Ni on τ
j
k since there may be more terminal axonal branches

of Ni synapsing on τ
j
k. The index ` ∈ {0, 1} classifies the type of the synapse, where ` = 0 indicates that

the synapse at (i, j, k, h, `) is inhibitory (i.e., releases inhibitory neurotransmitters) and ` = 1 indicates
that the synapse is excitatory (releases excitatory neurotransmitters).

1
N

iN
nNi n

1
x ix nx

2

j j

k
0

w

1

j

1
w 1

0

ijk
w

0

2n j
w 1

njkh
w

1 2j
w

1

2i j
w

0

njkh
w

j
M

1 1j
w 1

1i j
w ijk

j

j
y

Figure 1. Illustration of neural axons and branches from the presynaptic neurons Ni to the postsynaptic
neuron Mj. An inhibitory synaptic weight is shown as an open circle (◦), whereas an excitatory synapse
is represented with a solid circle (•). The information value xi is transferred from neuron Ni to the
synaptic sites of the output neuron Mj. Stemming from presynaptic neurons, boutons of axonal fibers

communicate with the synaptic sites on dendritic branches τ
j
k of Mj.

The strength of the synapse (i, j, k, h, `) corresponds to a real number, commonly referred to as
the synaptic weight and customarily denoted by w`

ijkh. Thus, if S denotes the set of synapses on the
dendritic branches of the set of the postsynaptic neurons M1, . . . , Mm, then w can be viewed as the
function, w : S → R, defined by w(i, j, k, h, `) = w`

ijkh where w`
ijkh ∈ R. In order to reduce notational

overhead we simplify the synapse location and type as follows:

1. (j, k, h, `) if n = 1 and set N = N1 (single input neuron),
2. (i, k, h, `) if m = 1, set M = M1 (single output neuron) and denote its dendritic branches by

τ1, . . . , τK (multiple dendrites) or simply τ if K = 1 (single dendrite), and
3. (i, j, k, `) if ρ = 1 (at most one synapse per dendrite).

The axon terminals of different presynaptic biological neurons that have synaptic sites on a single
branch of the dendritic tree of a postsynaptic neuron may release dissimilar neurotransmitters, which,
in turn, affect the receptors of the branch. Since the receptors serve as storage sites of the synaptic
strengths, the resulting electrical signal generated by the branch is the result of the combination
of the output of all its receptors. As the signal travels toward the cell’s body it again combines
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with signals generated in the other branches of the dendritic tree. In the lattice based biomimetic
model, the various biological synaptic processes due to dissimilar neurotransmitters are replaced by
different operations of a lattice group. More specifically, if Ω = {∨,∧,+} represents the operations
of a lattice group G, then the generic symbols ⊕, ⊗, and � will mean that ⊕,⊗,� ∈ Ω, but are
not explicitly specified numerical operations. For instance, if

⊕n
i=1 ai = a1 ⊕ · · · ⊕ an and ⊕ = ∨,

then
⊕n

i=1 ai =
∨n

i=1 ai = a1 ∨ · · · ∨ an, and if ⊕ = +, then
⊕n

i=1 ai = ∑n
i=1 ai = a1 + · · ·+ an.

Let x = (x1, . . . , xn) ∈ Gn and let pjk be the switching value that signals the final outflow
from the k-th branch reaching Mj; if excitatory, then pjk = 1 or if inhibitory then pjk = −1. Also,
let I(k) ⊆ {1, . . . , n} represent the index set corresponding to all presynaptic neurons with terminal
axonal fibers that synapse on the k-th dendrite of Mj, and let ρ be the number of synaptic knobs of Ni
contacting branch djk. Therefore, if Ni sends the information value xi ∈ G via its axon and attached

branches, the total output (or response) of a branch τ
j
k to the received input at its synaptic sites is given

by the general formula:

τ
j
k(x) = pjk

⊕
i∈I(k)

ρ⊗
h=1

(−1)1−`(xi � w`
ijkh), (11)

The cell body of Mj receives τ
j
k(x), and its state is a function of the combined values processed by

its dendritic structure. Hence, the state of Mj is computed as,

τ j(x) = pj

Kj⊙
k=1

τ
j
k(x), (12)

where pj = ±1 denotes the response of the cell to the received input. As explained before, pj =

1 (excitation) means acceptance of the received input and pj = −1 (inhibition) means rejection.
This mimics the summation that occurs in the axonal hillock of biological neurons. In many applications
of lattice neural networks (LNNs), the presynaptic neurons have at most one axonal bouton synapsing
(ρ = 1) on any given dendritic branch τ

j
k. In these cases, (11) simplifies to,

τ
j
k(x) = pjk

⊕
i∈I(k)

(−1)1−`(xi � w`
ijk). (13)

As in most ANNs, the next state of Mj is determined by an activation function f j,
which—depending on the problem domain—can be the identity function, a simple hard limiter,
or a more complex function. The next state refers to the information being transferred via Mj’s
axon to the next level neurons or the output if Mj is an output neuron. Any ANN that is based on
dendritic computing and employs equations of type (11) and (12), or (13) and (12), will be called
a lattice biomimetic neural network (LBNN). In the technical literature, there exist a multitude of
different models of lattice based neural networks. The matrix based lattice associative memories
(LAMs) discussed in [22,24,29,30] and LBNNs are just a few examples of LNNs. What sets LBNNs
apart from current ANNs are the inclusion of the following processes employed by biological neurons:

1. The use of dendrites and their synapses.
2. A presynaptic neuron Ni can have more than one terminal branch on the dendrites of a

postsynaptic neuron Mj.
3. If the axon of a presynaptic neuron Ni has two or more terminal branches that synapse on different

dendritic locations of the postsynaptic neuron Mj, then it is possible that some of the synapses are
excitatory and others are inhibitory to the same information received from Ni.

4. The basic computations resulting from the information received from the presynaptic neurons
takes place in the dendritic tree of Mj.

5. As in standard ANNs, the number of input and output neurons is problem dependent. However,
in contrast to standard ANNs where the number of neurons in a hidden layer, as well as the
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number of hidden layers are pre-set by the user or an optimization process, hidden layer neurons,
dendrites, synaptic sites and weights, and axonal structures are grown during the learning process.

Substituting specific lattice operations in the general Equations (11) and (12) results in a specific
model of the computations performed by the postsynaptic neuron Mj. For instance, two distinct
specific models are given by,

τ
j
k(x) = pjk ∑

i∈I(k)

[ ρ∧
h=1

(−1)1−`(xi + w`
ijkh)

]
and τ j(x) = pj

Kj∨
k=1

τ
j
k(x), (14)

or,

τ
j
k(x) = pjk

∧
i∈I(k)

[ ρ∧
h=1

(−1)1−`(xi + w`
ijk)
]

and τ j(x) = pj

Kj∨
k=1

τ
j
k(x). (15)

Unless otherwise mentioned, the lattice group (R,∧,∨,+) will be employed when implementing
Equations (11) and (12) or (13) and (12). In contrast to standard ANNs currently in vogue, we allow
both negative and positive synaptic weights as well as weights of value zero. The reason for this is that
these values correspond to positive weights if one chooses the algebraically equivalent lattice group
(R+,∧,∨,×), where R+ = {x ∈ R : x > 0}. The equivalence is given by the bijection f : R → R+,
which is defined by f (x) = exp(x). Consequently, negative weights correspond to small positive
weights and zero weights to one.

4. Similarity Measure Based Learning for LBNNs

The focus of this section is on the pattern recognition capabilities of LBNNs. In particular, on how
a lattice biomimetic neural network learns to recognize distinct patterns. However, since the learning
method presented here is based on a specific similarity measure, we begin our discussion by describing
the measure used [31]. The lattice of interest in our discussion is L = R∗ = {x ∈ Rn : x ≥ 0,
with inf(L) = 0, while the similarity measure for y ∈ L is the mapping s : L× L→ [0, 1] defined by:

s(x, y) =
v(y)

v(x ∨ y)
∧ v(x ∧ y)

v(y)
, (16)

where v is the isotone positive lattice valuation given by v(x) = ∑n
i=1 xi. We used the lattice L =

(R∗,∨,∧) in order to satisfy Condition (1) of Definition 3, and coordinates of pattern vectors considered
here are nonnegative. Since data sets are finite, data sets consisting of pattern vectors that are subsets
of Rn have always an infimum v and a supremum u. Thus, if Q ⊂ Rn is a dataset whose pattern
vectors have both negative and nonnegative coordinates, simply compute v =

∧
q∈Q q = inf(Q) and

u =
∨

q∈Q q = sup(Q). Note that the hyperbox LQ = [v, u] = {x ∈ Rn : vi ≤ xi ≤ ui ; i = 1, . . . , n} is
a complete lattice and Q ⊂ LQ. Setting x′ = x− v, then v′ = 0 and x′ ∈ R∗, ∀ x ∈ LQ. Finally, define
the mapping s′ : LQ → [0, 1] by setting s′(x, y) = s(x′, y′) where x′ = x− v and y′ = y− v. It follows
that s′(x, v) = s(x′, v′) = s(x− v, 0) = 0, which proves that Condition (1) of Definition 3 is satisfied,
and the remaining two conditions are similarly proven.

There exist several distinct methods for learning in LBNNs. The method described here is novel in
that it is based on the similarity measure given in (16). To begin with, suppose Q = {q1, . . . , qk} ⊂ Rn

is a data set consisting of prototype patterns, where each pattern qj belongs to one of m different
classes. Here 1 < m < k and we use the expression qj ∈ cλ if qj belongs to class λ ∈ {1, . . . , m} by
some predefined relationship. Letting Nm = {1, . . . , m}, then the association of patterns and their class
membership is a subset of Q×Nm specified by H = {(qj, cλ) : qj ∈ Q , λ ∈ Nm}.

As in most learning methods for artificial neural networks, a lattice biomimetic neural
network learns to recognize distinct patterns by using a subset of prototype patterns stored in a
hetero-associative memory. Given the data set Q, learning in LBNNs begins with selecting a family
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of prototypes Pp = {qs1 , . . . , qsη} ⊂ Q. The selection is random and the subscript p is a predefined
percentage p% of the total number of the k samples in Q.

After selecting the training set Pp, precompute the values v(qsj) = ∑n
i=1 q

sj
i for j = 1, . . . , η.

These values will be stored at the synaptic sites of the LBNN and in most practical situations η � n.
Knowing the dimension n and the size of the training set Pp, it is now an easy task to construct
the network. As illustrated in Figure 2, the network has n input neurons denoted by N1, . . . , Nn,
two hidden layer neurons, and a layer of output neurons. The first hidden layer neurons consist of
two different types of neurons denoted by Aj and Bj, where j = 1, . . . , η. Each neuron Aj and Bj will
have a single dendrite with each dendrite having n synaptic sites. For the sake of simplicity we denote
the dendrite of Aj and of Bj by aj and bj, respectively. The second hidden layer has η + 1 neurons
denoted by Cj, where j = 0, 1, . . . , η. Here C0 has multiple dendrites, i.e., η dendrites denoted by τ0

j ,
with each dendrite having two synaptic sites for j = 1, . . . , η. Any other neuron Cj with j 6= 0 has one
dendrite, with each dendrite having also two synaptic sites. The output layer is made up of η neurons,
denoted by Mj for j = 1, . . . , η, with each neuron Mj having a single dendrite with two synaptic sites.

i i i

1
A i i

1
x

nxix

1
B jA jB Aη Bηi i

1
C C C

1
N iN nNi i i

i i i i i i

1a ja
aη

1b jb
bη

1τ jτ
ητ

1
C

jC Cη

1
M jM Mη

0
C

0

1
τ 0

jτ 0

ητ

i i i i i i

i i i i i i

1d

jd

dη

Figure 2. The neural architecture of a LBNN that learns using a similarity measure. Different pathways
are shown between the input layer neurons Ni and the output neurons Mj. The value xi denotes the
information transferred from neuron Ni to the synaptic sites of neurons Aj, Bj (first hidden layer) and
terminal branches of axonal fibers originating in the AB neurons layer making contact with synaptic
sites on dendritic branches of the second hidden layer neurons Cj.

In what follows, we describe the internal workings of the network. For a given x ∈ R∗, the input
neuron Ni receives the input xi, and this information is sent to each of the neurons Aj and Bj. For each
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i = 1, . . . , n, the axonal arborization of Ni consists of 2η terminal branches with one terminal on
each aj and bj. The synaptic weight α`ij at the i-th synapse on aj is given by α`ij = q

sj
i with ` = 1.

Each synapse on aj at location (i, j) results in xi ∨ q
sj
i upon receiving the information xi. The total

response of the dendrite aj is given by the summation aj(x) = v(x ∨ qsj) = ∑n
i=1(xi ∨ q

sj
i ). In a similar

fashion, the synaptic weight β`
ij at the i-th synapse on bj is given by β`

ij = q
sj
i with ` = 1. However, here,

each synapse on bj at location (i, j) results in xi ∧ q
sj
i upon receiving the information xi, and each neuron

Bj computes bj(x) = v(x ∧ qsj) = ∑n
i=1(xi ∧ q

sj
i ). This information aj(x) and bj(x) travels through the

soma towards its axon hillock of the respective neurons where the corresponding activation functions
are given, for Aj and Bj respectively, by:

f j(x) =
v(qsj)

v(x ∨ qsj)
and gj(x) =

v(x ∧ qsj)

v(qsj)
. (17)

The information f j(x) and gj(x) is transferred via the axonal arborization of the first hidden layer
neurons to the dendrites of the second layer neurons. The presynaptic neurons of C0 are all the neurons
of the first hidden layer. A terminal axonal fibers of Aj and one from Bj terminate on τ0

j . The weight at

each of the two synapses is w`
aj0 = 0 = w`

bj0, where ` = 1 and aj, bj are address labels for the respective
terminal axonal fibers from Aj and Bj. Thus, each synapse accepts the information f j(x) and gj(x).
The total response of the dendrite is given by τ0

j (x) = f j(x) ∧ gj(x). However, the total response of the
neuron C0 is given by:

τ0(x) =
η∨

j=1

τ0
j (x) =

η∨
j=1

[ f j(x) ∧ gj(x)] =
η∨

j=1

[
v(qsj)

v(x ∨ qsj)
∧ v(x ∧ qsj)

v(qsj)

]
. (18)

For j = 1, . . . , η, the presynaptic neurons for the neuron Cj are the two neurons Aj and Bj.
Denoting the single dendrite of Cj by τ j, then a terminal axonal fibers of Aj and one from Bj terminate
on τ j. In lockstep with C0, the weight at each of the two synapses is w`

aj = 0 = w`
bj, where ` = 1 and aj,

bj are address labels for the respective terminal axonal fibers from Aj and Bj. Again, the two synapses
accept the information f j(x) and gj(x), and the response of the single dendrite is:

τ j(x) = f j(x) ∧ gj(x) =
v(qsj)

v(x ∨ qsj)
∧ v(x ∧ qsj)

v(qsj)
. (19)

The activation function for Cj is the identity function f (x) = x for all j ∈ {0, 1, . . . , η}. For the
output layer, the presynaptic neurons for Mj are the two neurons Cj and C0. As mentioned earlier,
each output neuron Mj has one dendrite dj with two synaptic regions, one for the terminal axonal
bouton of Cj and one for C0. The synaptic weight at the synapse of Cj on dj is given by w`

j , where ` = 1

and w1
j = 0, while the synaptic weight at the synapse of C0 on dj is given by w`

0, with ` = 0 and w0
0 = 0.

Because the activation function of Cj is the identity function, the input at the synapse with
weight w1

j is τ j(x), and since w1
j = 0, the synapse accepts the input. Likewise, the input from neuron

C0 at the synapse with weight w0
0 is τ0(x). However, because ` = 0, the weight negates the input

since (−1)(1−`)[τ0(x) + w0
0] = −τ0(x). The dendrite dj adds the results of the synapses so that,

dj(x) = τ j(x)− τ0(x). This information flows to the hillock of Mj, and the activation function of Mj is
the hard-limiter f [dj(x)] = 1⇔ dj(x) ≥ 0 and f [dj(x)] = 0 if dj(x) < 0.

Since τ j(x) ≤ τ0(x) for j = 1, 2, . . . , η, it follows that f [dj(x)] = 1⇔ τ j(x) = τ0(x). Suppose that
qsj ∈ cλ and f [dj(x)] = 1. If for any k ∈ {1, . . . , η} \ {j}, we have that f [dk(x)] = 0, then we say that
x ∈ cλ, i. e. winner takes all. If there is another winner that is not a member of cλ, then repeat the
steps with a new randomly obtained set Pp. If after several tries, a single winner cannot be found,
it becomes necessary to increase the percentage of points in Pp. Note that the method just described
can be simplified by eliminating the neuron C0 and using the C1 to Cη neurons as the output neurons.
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If there is one τ j(x) such that τk(x) < τ j(x) ∀ k ∈ {1, . . . , m} \ {j}, then x ∈ cλ, where cλ is the class of
qsj . If there is more than one winner where the other winner does belong to class cλ, then repeat the
steps with a new set Pp as described earlier.

We close our theoretical description by pointing out the important fact that an extensive
foundation with respect to the similarity measure given in Equation (16) or more precisely the two
separate expressions in (17) has been developed earlier, although with a different perspective in
mind, in related areas such as fuzzy sets [32–34], fuzzy logic [35,36], and fuzzy neural networks [37].
For example, the scalar lattice functions, defined by f : L → R and g : L → R, where f (x) =

v(y)/v(x ∨ y), g(x) = v(x ∧ y)/v(y), and v(x) = x for y ∈ L, were treated in [37]. Also, algorithms
for computing subsethood and similarity for interval-valued fuzzy sets for the vectorial counterparts
of f and g appear in [38].

5. Recognition Capability of Similarity Measure Based LNNs

Before discussing the issue of interest, we must mention that a previous LNN based on metrics
appears in [39]. The proposed LBNN is trained in a fairly simple way in order to be able to recognize
prototype-class associations in the presence of test or non-stored input patterns. As described in
Section 4, the network architecture is designed to work with a finite set of hetero-associations, that we
denote by H ⊂ Q×Nm. Using the prototype-class pairs of a training subset randomly generated from
the complete data set, all network weights are preassigned. After weight assignment, non-stored input
patterns chosen from a test set can be used to prove the memory network. A test set is defined as the
complement of the training set of exemplar or prototype patterns. Clearly, test patterns are elements of
one of the m classes that the LBNN can recognize. If the known class of a given non-stored pattern
matches the net output class, correct classification or a hit occurs, otherwise an error of misclassification
happens. Consequently, by computing the fraction of hits relative to each input set used to test the
network we can measure the recognition capability of the proposed LBNN.

In the following paragraphs, some pattern recognition problems are examined to show the
performance classification of our LBNN model based on the similarity measure given in (19). For each
one of the examples described next, a group of prototype subsets Pp were randomly generated by fixing
increasing percentages p%, of the total number k of samples in a given data set Q. Selected percentages
p belong to the range {50%, 60%, . . . , 90%} and generated test subsets, symbolized as Qp, were obtained
as complements of Pp with respect to Q. Computation of the average fraction of hits for each selected
percentage of all samples requires a finite number of trials or runs, here denoted by τ. Let µ and µr be
the average (over all runs) and the number of misclassified test patterns in each run, then the average
fraction of hits is given by,

f hits
p = 1− µ

k
where µ =

1
τ

τ

∑
r=1

µr . (20)

Note that, if |Q| = k, |Pp|, |Qp|, are the cardinalities of the data, prototype, and test sets,
respectively, then k = |Pp|+ |Qp|. In (20), we set the number of runs, τ = 50, for any percentage p of
the training population sample in order to stabilize the mean value µ. Although, for each run with the
same value of p, the number of elements of Pp and Qp does not change, the sample patterns belonging
to each subset are different since they are selected in random fashion. Also, observe that a lattice
biomimetic net trained for some p with a prototype subset Pp, can be tested either with the whole data
set Q = Pp ∪Qp or with the test set Qp.

We will use a table format to display the computational results obtained for LBNN learning
and classification of patterns for the example data sets, to give the mean capability performance
in recognizing any element in Q. Each table is composed of six columns; the first column gives
the dataset characteristics; the second column gives the percentage p of sample patterns used to
generate the prototype and test subsets; the third column provides the number of randomly selected
prototype patterns, and the fourth column gives the number of test patterns. The fifth column shows
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the average number of misclassified inputs calculated using the similarity lattice valuation measure
and the sixth column gives the corresponding average fraction of hits for correct classifications.

5.1. Classification Performance on Artificial Datasets

The following two examples are designed to illustrate simple data sets with two and three
attributes that can be represented graphically as scatter plots, respectively, in two and three dimensions.
We remark that both sets are build artificially and do not correspond to data sets coming from realistic
measurements taken from a real-world situation or application.

Our first artificial or synthetic data set Q forms a discrete planar “X” shape with 55 points
(samples) where coordinates x and y correspond to its two features. The points are distributed in
two classes cλ where λ ∈ {1, 2}. The corresponding 2D scatter plot is shown in Figure 3. Similarly,
the second synthetic set Q consists of 618 samples defined in the first octant of R3. Points in class
c1 belong randomly to a hemisphere of radius 3.5 centered at (5, 5, 5) with a hemispherical cavity of
radius 1.5 concentric to the larger hemisphere and class c2 points belong, also randomly, to a sphere of
radius 1.5 embedded in the cavity formed by class c1 points. Again, features are specified by the x, y,
and z coordinates and the corresponding three-dimensional scatter plot is depicted in Figure 4. Table 1
gives the numerical results for the “X-shape” (X-s) and “Hemisphere-sphere” (H-s) datasets.
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Figure 3. Data set “X-shape” has 55 points, 2 features (coordinates x, y), and 2 classes. Class c1 has 28
points (olive green dots) and class c2 has 27 points (red dots).

Table 1. Similarity valuation LBNN classification performance for the “X-shaped” (X-s) and “hemisphere-sphere”
(H-s) datasets.

Q p |Pp| |Qp| bµpc f hits
p

X-s 50% 28 27 0 0.994
k = 55 60% 33 22 0 0.998
m = 2 70% 39 16 0 0.999
n = 2 80% 44 11 0 1.000

90% 50 5 0 1.000
H-s 50% 309 309 13 0.978
k = 618 60% 370 248 11 0.982
m = 2 70% 432 186 8 0.987
n = 3 80% 494 124 5 0.992

90% 556 62 2 0.996
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Figure 4. Data set “Hemisphere-sphere” has 618 samples, 3 features (coordinates x, y, z), and 2 classes.
Class c1 has 499 points (blue dots) and class c2 has 119 points (red dots). Point projections on to the xy,
xz, and yz planes are drawn as circles (purple) for c1 data and as small dots (orange) for c2 data.

The last column in Table 1 shows the high classification rates achieved by training the similarity
valuation based LBNN with, at least half the number of samples, and repeating the learning procedure
several times in random fashion. For the sake of completeness, we explain graphically, using the
X-shaped dataset, how the lattice based neural network shown in Figure 2 assigns a class label to
input patterns once the network is trained with a randomly generated prototype subset Pp of Q setting
p = 55%. Specifically, Figure 5 displays the k = 55 points in Q that form the X-shaped set, where the
point circles crossed with the symbol “×” (in olive green) denote class c1 training data and the point
circles marked with a “+” sign (over the red circles) are class c2 training data totaling 29 elements
belonging to Pp. In the same figure, test points x5, x19, x34, and x50, selected from the 26 elements of
Qp, are shown as filled colored dots and its class is determined based on the neural similarity lattice
valuation measure response given in (18).

As can be seen in Figure 5, class λ = 1 is correctly attached to the test points, x5 = (3, 3) and
x19 = (9.5, 10.5), since the maximum similarity valuation measure computed using (18), is obtained,
respectively, for the training points, q5 = (3.5, 2) and q11 = (10.5, 9), which are elements of c1.
Analogously, class λ = 2 is correctly assigned to the test points, x34 = (3, 10.5) and x50 = (10.5, 4),
since the maximum similarity valuation measure is found for the training points, q18 = (1.5, 11.5) and
q28 = (12, 4), data elements of c2. More specifically, the explicit calculation expression corresponding
to (18) for testing any point xζ ∈ Qp is given by,

τ0(xζ) =
29∨

j=1

[
qj

1 + qj
2

(xζ
1 ∨ qj

1) + (xζ
2 ∨ qj

2)
∧
(xζ

1 ∧ qj
1) + (xζ

2 ∧ qj
2)

qj
1 + qj

2

]
. (21)

We end our discussion about the X-shaped artificial dataset by showing the similarity valuation
measure graphs of the selected test points, x5, x19, x34, x50 ∈ Qp. Hence, Figure 6 displays from top to
bottom the similarity measure curves whose domain is the data training subset Pp and with values
ranging on the interval [0, 1]. The maximum similarity value τ0(xζ) is represented with the symbol O
and the corresponding training pattern index within the set Pp is found at the bottom of the dropped
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vertical line (dashed). The LBNN then assigns the correct class to each one of the selected test points as
depicted in the same figure with respect to the line dividing both classes.
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Figure 5. X-shaped dataset with 55 samples. Training points in class c1 are marked with a cross
(×), training points in class c2 marked with a plus sign (+), and selected test points xζ ∈ Qp,
for ζ = 5, 19, 34, 50, shown as filled colored dots. The assigned class to test points corresponds,
respectively, to the class of the training points qj ∈ Pp where j = 5, 11, 18, 28.
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Figure 6. Similarity measure curves for xζ ∈ Qp where ζ = 5, 19, 34, 50. The assigned class to test
points corresponds to the class of the training points, qj ∈ Pp for j = 5, 11, 18, 28, where the maximum
similarity value occurs. Here, O = 0.846, 0.928, 0.896, and 0.906, respectively, for x5, x19, x34, and x50.

5.2. Classification Performance on Real-World Application Datasets

Various application examples available at the UCI Machine Learning Repository [40] are described
and discussed in this subsection in order to exhibit the similarity valuation LBNN classification
performance. The numeric results are compiled in Table 2 that has the same organization as explained
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in the previous subsection on artificial datasets. However, in Table 2 each block of rows in a given
example is separated by a horizontal line.

Example 1. The “Iris” dataset has 150 samples where each sample is described by four flower features
(sepal length, sepal width, petal length, petal width) and is equally distributed into three classes c1, c2, and c3,
corresponding, respectively, to the subspecies of Iris setosa, Iris versicolor, and Iris virginica. A high average
fraction of hits such as f hits

p > 0.97 is obtained for percentages p ≥ 50%. The similarity valuation trained LBNN
used as an individual classifier delivers similar performance against linear or quadratic Bayesian classifiers [41]
for which f hits

50 = 0.953 and f hits
50 = 0.973, respectively, or in comparison with an edge-effect fuzzy support

vector machine [42] whose f hits
60 = 0.978.

Example 2. The “Column” dataset with 310 patient samples is specified by six biomechanical attributes derived
from the shape and orientation of the pelvis and lumbar spine. Attributes 1 to 6 are numerical values of pelvic
incidence, pelvic tilt, lumbar lordosis angle, sacral slope, pelvic radius, and grade of spondylolisthesis. Class c1

of patients diagnosed with disk hernia has 60 samples, class c2 of patients diagnosed with spondylolisthesis
150 samples, and class c3 of normal patients 100 samples. Since feature 6 has several negative entries, the whole
set is displaced to the positive octant of R3 by adding | inf(Q)| = 11.06 to every vector in Q. In this case,
a high average fraction of hits occurs for percentages p greater than 80%, which is due to the presence of several
interclass outliers. However, the LBNN with much less computational effort is still good if compared with
other classifiers such as an SVM (support vector machine) or a GRNN (general regression neural network) [43]
(with all outliers removed), which both give f hits

80 = 0.965.

Example 3. The “Wine” dataset has 178 samples subject to chemical analysis of wines produced from three different
cultivars (classes) of the same region in Italy. The features in each sample represent the quantities of 13 constituents:
alcohol, malic acid, ash, alkalinity of ash, magnesium, phenols, flavonoids, nonflavonoid phenols, proanthocyanins,
color intensity, hue, diluted wines, and proline. Class c1 has 59 samples, class c2 71 samples, and class c3 48 samples.
In this last example, a high average fraction of hits occurs for percentages p greater than 80%, and the LBNN
performance is quite good if compared with other classifiers, based on the leave one-out technique, such as the 1-NN
(one-nearest neighbor), LDA (linear discriminant analysis), and QDA (quadratic discriminant analysis) [44], which
give, correspondingly, f hits

p = 0.961, f hits
p = 0.989, and f hits

p = 0.994, where p = 99.44%, and training must be
repeated τ = 178 times. Although not shown in Table 2, the LBNN net gives f hits

99 ' 1, since almost all samples in
the given dataset are stored by the memory as prototype patterns. However, our LBNN model is outperformed by a
short margin of misclassification error (0.055), since f hits

75 = 0.942, if compared to an FLNN classifier (fuzzy lattice
neural network) that gives f hits

75 = 0.997 (leave-25%-out) [45].

Table 2. Similarity valuation LBNN classification performance for the application datasets.

Q p |Pp| |Qp| bµpc f hits
p

Iris 50% 75 75 3 0.975
k = 150 60% 90 60 2 0.980
m = 3 70% 105 45 2 0.987
n = 4 80% 120 30 1 0.991

90% 135 15 0 0.997

Column 50% 155 155 33 0.893
k = 310 60% 186 124 25 0.917
m = 3 70% 217 93 19 0.939
n = 6 80% 248 62 13 0.958

90% 279 31 6 0.981

Wine 50% 89 89 23 0.871
k = 178 60% 107 71 17 0.902
m = 3 70% 125 53 12 0.930
n = 13 80% 142 36 8 0.956

90% 160 18 4 0.978
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6. Conclusions

This paper introduces a new lattice based biomimetic neural network structured as a two hidden
layer dendritic lattice hetero-associative memory whose total neural response is computed using a
similarity measure derived from a lattice positive valuation. The proposed model delivers a high ratio
of successful classification for any data pattern considering that the network learns random prototype
patterns with a percentage level from 50% up to 90% of the total number of patterns belonging to a
data set.

More specifically, the new LBNN model provides intrinsic capacity to tackle multivariate-
multiclass problems in pattern recognition pertaining to applications whose features are specified by
data measured numerically. Our network model incorporates a straightforward mechanism whose
topology implements a similarity function defined by simple lattice arithmetical operation used
to measure the resemblance between a set of n-dimensional real vectors (prototype patterns) and
a test input n-dimensional vector, in order to match its class. Representative examples, such as
the “Iris”, the “Column”, and the “Wine” datasets, were used to carry on several computational
experiments to obtain the average classification performance of the proposed LBNN for diverse
randomly generated test subsets. Furthermore, the proposed LBNN model can be applied in other
areas such as cryptography [46] or image processing [47–50].

The results given in this paper are competitive and look promising. However, future work
with the LBNN classifier contemplates computational enhancements and comparisons with other
challenging artificial and experimental data sets. Additionally, further analysis is required to deal
with important issues such as data test set design, theoretical developments based on different lattice
valuations, and comparisons with recently developed models based on lattice computing. We must
point out that our classification performance experiments are actually limited due to its implementation
in standard high-speed sequential machines. Nonetheless, LBNNs as described here and in early
writings, can work in parallel using dedicated software or implemented in hardware to increase
computational performance. Hence, a possible extension is to consider algorithm parallelization using
GPUs or hardware realization as a neuromorphic system.
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50. Saračević, M.; Adamović, S.; Miškovic, V.; Maček, N.; Šarak, M. A novel approach to steganography based
on the properties of Catalan numbers and Dyck words. Future Gener. Comput. Syst. 2019, 100, 186–197.
[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patrec.2013.05.015
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1109/34.588027
http://dx.doi.org/10.1109/72.712161
http://dx.doi.org/10.1007/s10851-011-0302-2
http://dx.doi.org/10.1016/j.future.2019.05.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Lattice Theory Background Material
	Lattice Biomimetic Neural Networks
	Similarity Measure Based Learning for LBNNs
	Recognition Capability of Similarity Measure Based LNNs
	Classification Performance on Artificial Datasets
	Classification Performance on Real-World Application Datasets

	Conclusions
	References

