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Abstract: In this paper we consider a kind of Geraghty contractions by using mw -distances in the
setting of complete quasi-metric spaces. We provide fixed point theorems for this type of mappings
and illustrate with some examples the results obtained.
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1. Introduction and Preliminaries

In 1973, Geraghty proved the following fixed point theorem which generalizes the classical Banach
fixed point theorem.

Theorem 1 ([1]). Let (X , d ) be a complete metric space and consider the set

B = {β : [0, ∞)→ [0, 1) | β(κn)→ 1 implies κn → 0} .

The mapping T : X → X has a unique fixed point provided that there exists β ∈ B such that

d (Tκ, Tν) ≤ β(d (κ, ν))d (κ, ν), for all κ, ν ∈ X .

Since then, different authors have proved versions of this theorem in various frameworks
(see, for example, [2] and the references quoted therein).

Cho et al. [3] defined the notion of α-Geraghty contraction in the context of a metric space,
as follows:

A maping T is called a α-Geraghty contraction if

α(κ, ν)d (Tκ, Tν) ≤ β(d (κ, ν))max{d (κ, ν), d (ν, Tν), d (κ, Tκ)}, for all κ,ν ∈ X ,

where α : X × X → [0, ∞) is a function with the property
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α(κ, ν) ≥ 1⇒ α(Tκ, Tν) ≥ 1 for all κ, ν ∈ X .
In addition, in [3], the authors provided fixed point theorems for this type of maps in the

framework of a complete metric space.
Inspired from the recent results [4,5], we consider a Geraghty type contraction via mw -distances

in the context of a complete quasi-metric space.
Before stating our main result, we shall collect fundamental notions and useful results for the

sake of completeness. First, we shall state what we understand by the notion of the quasi-metric space.
Note that in the literature, “quasi-metric” was used to express several different structure.

Definition 1. Let X be a nonempty set. A function q : X × X → [0, ∞) is a quasi-metric if it satisfies the
following axioms for all κ, ν, θ ∈ X

(q1) reflexivity, that is

q(κ, ν) = q(ν,κ) = 0⇔ ν = κ

(q2) the triangle inequality,

q(κ, ν) ≤ q(κ, θ) + q(θ, ν).

The pair (X , q) denotes a quasi-metric space.

Remark 1 ([6]). On a set X , a quasi-metric q induces a topology τ(q). This topology has as a base the family of
open balls

{
Bq (κ, ε)|κ ∈ X , ε > 0

}
, where Bq (κ, ε) = {ν ∈ X |q(κ, ν)) < ε} .

On a non-empty set X , each quasi-metric q yields a metric by letting

q s(κ, ν) = max{q(κ, ν), q(ν,κ)}.

On the other hand, if q is quasi-metric on X , the function q∗ defined as q∗(κ, θ) = q(θ,κ) for all
κ, θ ∈ X , is also a quasi-metric on X and it is called the conjugate quasi-metric of q .

A sequence {κn} ⊂ X converges to κ ∈ X in the quasi-metric space (X , q) if {κn} converges to κ
with respect to the topology τ(q), in other words, lim

n→∞
q(κ,κn) = 0.

A quasi-metric space (X , q) is called complete ([4,6]) if every Cauchy sequence {κn} in the
metric space (X , q s) converges with respect to the topology τ(q∗) (i.e., there exists κ ∈ X such that
lim

n→∞
q(κn,κ) = 0).

We shall recall another distance (w -distance, [7,8]) which is defined via a quasi-metric.

Definition 2 ([6]). A function p : X × X → [0, ∞) is a w -distance on a quasi-metric space (X , q) if the
following conditions are satisfied:

(w1) p(κ, ν) ≤ p(κ, θ) + p(θ, ν) for any κ, ν, θ ∈ X ;
(w2) p(κ, ·) : X → R+

0 is lower semi-continuous on (X , τ(q∗)) for all κ ∈ X ;
(w3) for each ε > 0 there exists δ > 0 such that if p(κ, ν) ≤ δ and p(κ, θ) ≤ δ then q(ν, θ) ≤ ε.

In the paper [4] the authors remark that a quasi-metric is not necessarily a w -distance and illustrate
it by the following example.
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Example 1 ([4]). The function qS(κ, ν) =

{
ν−κ, if ν ≥ κ

1, if ν < κ
is a quasi-metric on R but is not a

w-distance because the condition (w3) is not satisfied. Taking δ > 0 and ε = 1/2, for ν = κ + δ/2
and θ = κ + δ/3, we have:

qS(κ, ν) = δ/2 < δ, qS(κ, θ) = δ/3 < δ, but qS(θ, ν) = 1 > 1/2.

In what follows, we recall the main tool of this paper, namely, mw -distance:

Definition 3 ([4]). On a quasi-metric space (X , q), a function p : X × X → R+
0 is an mw -distance if it satisfies

the following conditions:

(mw1) p(κ, ν) ≤ p(κ, θ) + p(θ, ν) for any κ, ν, θ ∈ X ;
(mw2) p(κ, ·) : X → R+

0 is lower semi-continuous on (X , τ(q∗)) for all κ ∈ X ;
(mw3) for each ε > 0 there exists δ > 0 such that if p(ν,κ) ≤ δ and p(κ, θ) ≤ δ then q(ν, θ) ≤ ε.

A quasi-metric q on X is an mw -distance on (X , q).
We say that a mω-distance p : X × X → R+

0 on a quasi-metric space (X , q) is a strong mw -distance
(see [4]) if it satisfies the following condition:

(mw∗2 ) p(·,κ) : X → R+
0 is lower semi-continuous on (X , τ(q∗)) for all κ ∈ X .

Definition 4. Let (X , q) be a quasi-metric space and let p be an mw -distance. A mapping T : X → X is said to
be p-lower semi-continuous if the function κ → p(κ, Tκ) is lower semi-continuous on the metric space (X , q s).

2. Main Results

We start this section by introducing the notion of the p-Geraghty contraction:

Definition 5. A self-mapping T on a quasi-metric space (X , q) is a p-Geraghty contraction if there exist a
strong mw -distance p on (X , q) and a function β ∈ B such that for any κ, ν ∈ X

p(Tκ, Tν) ≤ β (M1(κ, ν)) M1(κ, ν) (1)

and
p(Tκ, Tν) ≤ β (M2(κ, ν)) M2(κ, ν) (2)

where

M1(κ, ν) = max {p(κ, ν), p(κ, Tκ), p(ν, Tν)} , and,
M2(κ, ν) = max {p(κ, ν), p(Tκ,κ), p(Tν, ν)} .

Theorem 2. Let (X , q) be a complete quasi-metric space and T : X → X a p-Geraghty contraction. If T is a
p-lower semi-continuous mapping, then T has a unique fixed point.

Proof. Let κ0 be a point on X and consider the sequence {κn}, where κn = Tnκ0 for any n ∈ N. If we
can find n0 ∈ N such that p(κn0 ,κn0+1) = 0, replacing κ by κn0 and ν by κn0+1 in (1) and since β ∈ B,
we have

p(κn0+1,κn0+2) = p(Tκn0 , Tκn0+1) ≤ β
(

M1(κn0 ,κn0+1)
)

M1(κn0 ,κn0+1)

< M1(κn0 ,κn0+1) = max
{

p(κn0 ,κn0+1), p(κn0 , Tκn0), p(κn0+1, Tκn0+1)
}

= p(κn0+1,κn0+2).

Consequently, p(κn0+1,κn0+2) = 0. By induction, for every j ∈ N, we can easily get that
p(κn0+j,κn0+j+1) = 0 and by (mw1), p(κn,κm) = 0 for m > n ≥ n0.
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• Suppose that p(κn,κn+1) 6= 0 for n ∈ N. From (1),

p(κn+1,κn+2) = p(Tκn, Tκn+1) ≤ β (M1(κn,κn+1)) M1(κn,κn+1) < M1(κn,κn+1), (3)

where

M1(κn,κn+1) = max {p(κn,κn+1), p(κn, Tκn), p(κn+1, Tκn+1)} = max {p(κn,κn+1), p(κn+1,κn+2)} .

As if M1(κn,κn+1) = p(κn+1,κn+2), we obtain p(κn+1,κn+2) < p(κn+1,κn+2), a contradiction,
we conclude that p(κn,κn+1)>p(κn+1,κn+2). Thus, the sequence {p(κn,κn+1)} converges to some
a ≥ 0. If we suppose that a > 0, because lim

n→∞
M1(κn,κn+1) = a, by taking the limit as n → ∞ in (3),

we get lim
n→∞

β(M1(κn,κn+1)) = 1. Since β ∈ B, we obtain a = lim
n→∞

M1(κn,κn+1) = 0, which is

a contradiction.
Similarly, from (2),

p(κn+2,κn+1) = p(Tκn+1, Tκn) ≤ β (M2(κn+1,κn)) M2(κn+1,κn) < M2(κn+1,κn)

= max {p(κn+1,κn), p(Tκn+1,κn+1), p(Tκn,κn)} = max {p(κn+1,κn), p(κn+2,κn+1)} ,
(4)

and using the same arguments we get that the sequence {p(κn+1,κn)} converges to 0.
Consequently,

lim
n→∞

p(κn,κn+1) = 0 = lim
n→∞

p(κn+1,κn). (5)

Note that limn→∞ p(κn,κn) = 0.

• As a next step, we aim to prove that {κn} is a Cauchy sequence in the metric space (X , q s).

First, we shall prove that given ε > 0 there exists n0 ∈ N such that p(κn,κm) < ε for all n > m ≥ n0.
Assume the contrary. Then, there exists ε > 0 and two sequences of positive integers {n(l)}∞

l=1
and {m(l)}∞

l=1 such that n(l) > m(l) ≥ l, for any l ∈ N and

p(κn(l),κm(l)) ≥ ε, p(κn(l)−1,κm(l)) < ε.

Taking into account (mw1), we have

ε ≤ p(κn(l),κm(l)) ≤ p(κn(l),κn(l)−1) + p(κn(l)−1,κm(l)) < p(κn(l),κn(l)−1) + ε

and from (5) it follows that
lim
l→∞

p(κn(l),κm(l)) = ε. (6)

Again, by (mw1) we have

p(κn(l)+1,κm(l)+1) ≤ p(κn(l)+1,κn(l)) + p(κn(l),κm(l)) + p(κm(l),κm(l)+1),
p(κn(l),κm(l)) ≤ p(κn(l),κn(l)+1) + p(κn(l)+1,κm(l)+1) + p(κm(l)+1,κm(l)),

which means that

p(κn(l),κm(l))− p(κn(l),κn(l)+1)− p(κm(l)+1,κm(l)) ≤ p(κn(l)+1,κm(l)+1)

≤ p(κn(l)+1,κn(l)) + p(κn(l),κm(l)) + p(κm(l),κm(l)+1).

Furthermore,

lim
l→∞

p(κn(l)+1,κm(l)+1) = ε. (7)



Mathematics 2020, 8, 1437 5 of 10

Consequently,

lim
l→∞

M1(κn(l),κm(l)) = lim
l→∞

max
{

p(κn(l),κm(l)), p(κn(l),κn(l)+1), p(κm(l),κm(l)+1)
}
= ε

and since β ∈ B it follows that

ε = lim
l→∞

p(κn(l)+1,κm(l)+1) = lim
l→∞

p(Tκn(l), Tκm(l))

≤ lim
l→∞

β
(

M1(κn(l),κm(l))
)

M1(κn(l),κm(l))

≤ lim
l→∞

M1(κn(l),κm(l)) = ε.

Therefore, lim
l→∞

β
(

M1(κn(l),κm(l))
)

= 1, by which ε = lim
l→∞

M1(κn(l),κm(l)) = 0. This is a

contradiction. Therefore,

lim
l→∞

p(κn(l),κm(l)) = 0 for all n(l) > m(l) ≥ l. (8)

Then, taking into account (5) and (8), for each δ > 0 there exists n1 ∈ N such that p(κn,κn−1) ≤ δ
2

and p(κn−1,κm) ≤ δ
2 , ∀n > m ≥ n1. Accordingly, since p is a mw -distance, by (mw3) we get that

q(κn,κm) < ε.
Similarly, we prove that given ε > 0 there exists n2 ∈ N such that q(κm,κn) < ε, ∀m > n ≥ n2.

Therefore,
q s(κn,κm) < ε

for all n, m ≥ max{n1, n2} so that {κn} is a Cauchy sequence in the metric space (X , q s). Then there
exists a point ω ∈ X such that lim

n→∞
q(κn, ω) = 0.

• We have to prove now that lim
n→∞

p(κn, ω) = 0 = lim
n→∞

p(ω,κn).

Let ε > 0. Since lim
n→∞

q(κn, ω) = 0 , we observe by (mw2) that

p(κn, ω) ≤ p(κn,κm) + ε

for n, m ∈ N sufficiently large. Then, lim
n→∞

p(κn, ω) = 0.

As well, since p is a strong mw -distance, due to (mw∗2 ) we have also

p(ω,κn) ≤ p(κm,κn) + ε

for n, m ∈ N sufficiently large. Therefore, lim
n→∞

p(ω,κn) = 0 and by (mw1), p(ω, ω) = 0.

• Taking into account that lim
n→∞

p(ω,κn) = 0 and lim
n→∞

p(κn,κn) = 0, by (mw3), we obtain that

lim
n→∞

q(ω,κn) = 0. Consequently, {κn} converges to ω in the metric space (X , q∗). Then, because T

is p-lower semi-continuous, we have that given ε > 0 there exists n′ ∈ N such that

p(ω, Tω)− p(κn, Tκn) < ε,

for all n ≥ n′. Therefore, p(ω, Tω) = 0, and so, by (mw3), we get lim
n→∞

q(κn, Tω) = 0. On the

other hand, by (1), we have

p(κn, Tω) = p(Tκn−1, Tω) ≤ β (M1(κn−1, ω)) M1(κn−1, ω) < M1(κn−1, ω)

= max {p(κn−1, ω), p(κn−1,κn), p(ω, Tω)} .
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Hence, since lim
n→∞

p(κn, ω) = 0 and p(ω, Tω) = 0, by (mw1) we get

lim
n→∞

p(κn, Tω) = 0. (9)

Since lim
n→∞

q(κn, Tω) = 0 and taking into account that p is a strong mw -distance, we have by

(mw∗2 ) that the function p(·,κ) is lower semi-continuous on (X , τ(q∗)), so that for every ε > 0 there
exists µ(ε) ∈ N such that

p(Tω, ω) ≤ p(κn, ω) + ε, for all n ≥ µ(ε).

Since lim
n→∞

p(κn, ω) = 0, we get p(Tω, ω) = 0 and from (mw1),

p(Tω, Tω) = 0,

from where, using (mw3) we obtain q(Tω, ω) = 0 = q(ω, Tω). Hence Tω = ω, that is, ω is a fixed
point of T.

• Assuming this point is not unique, we can find ς ∈ X such that Tω = ω 6= ς = Tς and from (1)
we have

p(ς, ς) = p(Tς, Tς) ≤ β (M1(ς, ς)) M1(ς, ς)

< M1(ς, ς) = max {p(ς, ς), p(ς, Tς)} = p(ς, ς).
(10)

This is a contradiction. Hence, p(ς, ς) = 0. On the other hand,

p(ω, ς) = p(Tω, Tς) ≤ β (M1(ω, ς)) M1(ω, ς)

< M1(ω, ς) = max {p(ω, ς), p(ω, Tω), p(ς, Tς)}
= max {p(ω, ς), p(ω, ω), p(ς, ς)} = p(ω, ς),

(11)

which is a contradiction, so that p(ω, ς) = 0. Furthermore, from (mw3), together with (10) and (11),
we obtain that

q(ω, ς) = 0.

We prove that q(ς, ω) = 0 in a similar way, hence ς = ω. Then, T has exactly one fixed point.

In the following, we will show that if the conditions (1) and (2) are modified, the p-lower
semi-continuity of T can be replaced by p-lower semi-continuity of T2 or even eliminated.

Theorem 3. Let (X , q) be a complete quasi-metric space and T: X → X a mapping such that there exist a
strong mw -distance p on (X , q) and a function β ∈ B such that for any κ, ν ∈ X

p(Tκ, Tν) ≤ β (m1(κ, ν))m1(κ, ν) (12)

and
p(Tκ, Tν) ≤ β (m2(κ, ν))m2(κ, ν) (13)

where

m1(κ, ν) = max {p(κ, ν), p(ν, Tν)} , m2(κ, ν) = max {p(κ, ν), p(Tν, ν)} .

Suppose also that T2 is p-lower semi-continuous. Then T has a unique fixed point.

Proof. Let us consider a point κ0 ∈ X and as in Theorem 2 we can prove that the sequence
{κn}, where κn = Tκn−1 for any n ∈ N is a Cauchy sequence on the metric space (X , q s).
Therefore, there exists ω ∈ X such that
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lim
n→∞

q(κn, ω) = 0,

lim
n→∞

p(κn, ω) = lim
n→∞

p(ω,κn) = 0 = p(ω, ω),

and

lim
n→∞

q(ω,κn) = 0.

Since T2 is p-lower semi-continuous, we have that p(ω, T2ω) = 0 and taking into account that
limn→∞ p(κn, ω) = 0 by (mw3), we get q(κn, T2ω) = 0. Withal, from (mw∗2 ) we know that for every
ε > 0 there exists n0 ∈ N such that

p(T2ω, ω) < p(κn, ω) + ε, for any n ≥ n0.

Hence, p(T2ω, ω) = 0 and thus p(T2ω, T2ω) ≤ p(T2ω, ω) + p(ω, T2ω) = 0.
Therefore, by (mw3) q(T2ω, ω) = 0 and so T2ω = ω.

Finally, we must show that ω is a fixed point for T. Indeed, by (13), and taking into account that
T2ω = ω, we have

p(ω, Tω) = p(T2ω, Tω) ≤ β(m2(Tω, ω))m2(Tω, ω)

< m2(Tω, ω) = max {p(Tω, ω), p(Tω, ω)}
= p(Tω, ω)

(14)

and

p(Tω, ω) = p(Tω, T2ω) ≤ β(m2(ω, Tω))m2(ω, Tω)

< m2(ω, Tω) = max
{

p(ω, Tω), p(T2ω, Tω)
}

= p(ω, Tω).
(15)

This is a contradiction, so p(Tω, ω) = p(ω, Tω) = 0. Moreover, by (mw1) we have p(Tω, Tω) = 0.
Therefore, by (mw3) we get that q(ω, Tω) = q(Tω, ω) = 0, that is, ω is a fixed point of T.
The uniqueness of the fixed point is proved as in the previous theorem.

Theorem 4. Let (X , q) be a complete quasi-metric space and T : X → X a mapping such that there exist a
strong mw -distance p on (X , q) and a function β ∈ B such that for any κ, ν ∈ X

p(Tκ, Tν) ≤ β (m∗1(κ, ν))m∗1(κ, ν) (16)

and
p(Tκ, Tν) ≤ β (m∗2(κ, ν))m∗2(κ, ν) (17)

where

m∗1(κ, ν) = max {p(κ, ν), p(κ, Tκ)} , m∗2(κ, ν) = max {p(κ, ν), p(Tκ,κ)} .

Then T has a unique fixed point.

Proof. Following the same steps as in the proof of Theorem 2 we obtain that

lim
n→∞

p(κn,κn−1) = lim
n→∞

p(κn−1,κn) = 0, for any n ∈ N (18)

and there exists ω ∈ X such that

lim
n→∞

p(κn, ω) = lim
n→∞

p(ω,κn) = 0 = p(ω, ω). (19)
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Therefore, by (16), since β ∈ B we have

p(κn, Tω) = p(Tκn−1, Tω) ≤ β(m∗1(κn−1, ω))m∗1(κn−1, ω) < m∗1(κn−1, ω)

= max {p(κn−1, ω), p(κn−1,κn)}

which together with (18) and (19) gives us that p(κn, Tω) → 0. Moreover, by (mw3), we obtain
q(ω, Tω) = 0.

Since p(ω,κn)→ 0 and p(κn, Tω)→ 0, by (mw1) we have that p(ω, Tω) = 0. Then,

p(Tω,κn) = p(Tω, Tκn−1) < max {p(ω,κn−1), p(ω, Tω)} = p(ω,κn−1).

Therefore, p(Tω,κn)→ 0, and from (18) and (mw3), we obtain that q(Tω, ω) = 0.
Hence, q(ω, Tω) = q(Tω, ω) = 0, and so Tω = ω.
Let now ζ ∈ X be a point such that Tζ = ζ. Then by (16)

p(ω, ζ) = p(Tω, Tζ) ≤ β(m∗1(ω, ζ))m∗1(ω, ζ) < max {p(ω, ζ), p(ω, Tω)} = p(ω, ζ).

This is a contradiction, so that p(ω, ζ) = 0. Since p(ω, ω) = 0, by (mw3) we obtain that q(ω, ζ) = 0.
Now we shall prove that q(ζ, ω) = 0.

p(ζ, ζ) = p(Tζ, Tζ) ≤ β(m∗1(ζ, ζ))m∗1(ζ, ζ) < m∗1(ζ, ζ)

= max {p(ζ, ζ), p(ζ, ζ)} = p(ζ, ζ)

Then, p(ζ, ζ) = 0.

p(ζ, ω) = p(Tζ, Tω) ≤ β(m∗1(ζ, ω))m∗1(ζ, ω) < max {p(ζ, ω), p(ζ, Tζ)} = p(ζ, ω).

So that p(ζ, ω) = 0. Since p(ζ, ζ) = 0, by (mw3) we obtain that q(ζ, ω) = 0.

Now we give an example where Theorems 3 and 4 can be used but it is not possible to apply
Theorem 2.

Example 2. Let q be the quasi-metric on R+ defined as q(κ, ν) = max {ν−κ, 0} for κ, ν ∈ R+.
Then (R+, q) is a complete quasi-metric space and p(κ, ν) = ν is a strong mw -distance (see Example 11
of [4]). Let us consider the mapping T : R+ → R+,

T(κ) =
{ 1

1+κ , κ ≥ 1

0, κ < 1

and the function β ∈ B, β(t) = 1
1+t . Then,

• If ν < 1 and κ ∈ R+ then p(Tκ, Tν) = 0, so that the conditions (16) and (17) hold.
• If ν ≥ 1 and κ < 1, then

m∗1(κ, ν) = max{ν, 0} = ν,

m∗2(κ, ν) = max{ν,κ} = ν

and

β(m∗i (κ, ν))m∗i (κ, ν) = β(ν)ν =
ν

1 + ν
≥ 1

1 + ν
= p(Tκ, Tν).

Therefore (16) and (17) are fulfilled.

• If ν ≥ 1, κ ≥ 1, and ν ≥ κ, then

m∗1(κ, ν) = max{ν,
1

1 +κ } = ν,



Mathematics 2020, 8, 1437 9 of 10

m∗2(κ, ν) = max{ν,κ} = ν

and, as before, (16) and (17) hold.
• If ν ≥ 1, κ ≥ 1, and ν ≤ κ, then

m∗1(κ, ν) = ν,

m∗2(κ, ν) = κ

and

β(m∗2(κ, ν))m∗2(κ, ν) = β(κ)κ =
κ

1 +κ ≥
ν

1 + ν
≥ 1

1 + ν
= p(Tκ, Tν).

Then (16) and (17) are also satisfied.
Consequently, from Theorem 4, the mapping T has a unique fixed point.
In this example we can also apply Theorem 3 because (12) and (13) hold and T2 = 0. Nevertheless, it is not

possible to apply Theorem 2 because T is not a p-lower semi-continuous mapping. Indeed, the sequence {κn}
where κn = 1− 1

n converges to 1 but p(1, T1)− p(κn, Tκn) = 1/2, for all n ∈ N.

The condition that the mw -distance is strong cannot be eliminated in the statement of Theorem 4.
The following example shows this.

Example 3. Let q be the quasi-metric on N given by q(κ,κ) = 0 and q(κ, ν) = 1
κ if κ 6= ν. Clearly, (N, q) is

complete because if {κn} is a Cauchy sequence in (N, q s), then {κn} converges to κ in (X , q∗) for all κ ∈ N.
Let p = q . Then p is an mw -distance which is not strong.

Indeed, the sequence {n} converges to κ in (N, q∗) for all κ ∈ N but

p(κ, ν)− p(n, ν) =
1
κ −

1
n

,

i.e., p(·, ν) is not lower semi-continuous on (X , τ(q∗)).
Let T : N→ N given by Tκ = 2κ and let β ∈ B, β(t) = 1

1+t . Then

m∗1(κ, ν) = max{p(κ, ν), p(κ, Tκ)} = 1
κ ,

m∗2(κ, ν) = max{p(κ, ν), p(Tκ,κ)} = 1
κ

and

β(m∗i (κ, ν))m∗i (κ, ν) = β(
1
κ )

1
κ =

1
1 +κ ≥

1
2κ = p(Tκ, Tν).

Therefore, (16) and (17) are fulfilled but T has no fixed point.
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