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Abstract: When the additional sample for the second stage may not be available, one-stage multiple
comparisons for exponential median lifetimes with the control under heteroscedasticity including
one-sided and two-sided confidence intervals are proposed in this paper since the median is a more
robust measure of central tendency compared to the mean. These intervals can be used to identify
treatment populations that are better than the control or worse than the control in terms of median
lifetimes in agriculture, stock market, pharmaceutical industries. Tables of critical values are obtained
for practical use. An example of comparing the survival days for four categories of lung cancer in a
standard chemotherapeutic agent is given to demonstrate the proposed procedures.

Keywords: one-stage procedure; two-stage procedure; multiple comparison procedures with
the control

1. Introduction

In the lifetime test problems, the lifetime of some products follows an exponential distribution
(see Lawless [1]). As the lifetime of products possesses a two-parameter exponential distribution,
this research focuses on the development of multiple comparison procedures with the control
population in terms of median lifetime. We consider k (≥ 2) independent populations π1, · · · ,πk,
where πi possesses a two-parameter exponential distribution denoted by E(θi, σi), i = 1, · · · , k. The kth
population is regarded as the control population and the first k − 1 populations are regarded as
the treatment populations. The location parameters θ1, · · · ,θk are unknown and usually called the
guaranteed time in reliability analysis. The unequal and unknown scale parameters σ1, · · · , σk are
regarded as the mean lifetime minus their location parameters θ1, · · · ,θk since the mean lifetime
for the ith population is µi = θi + σi, i = 1, . . . , k. Regarding the multiple comparisons with the
control population, Ng et al. [2] proposed a procedure in terms of the location parameter under the
assumption of equal scale parameters. Under heteroscedasticity (unequal scale parameters), Lam and
Ng [3] developed a design-oriented two-stage multiple comparison procedure in terms of location
parameters. For the problem of multiple comparisons with the average under heteroscedasticity,
Wu and Wu [4] investigated the two-stage procedures in terms of exponential location parameters.
However, it may happen that the experimenters are not able to collect the additional sample for the
second stage for the two-stage procedure. Because of this reason, Wu et al. [5] propose one-stage
multiple comparisons with the average instead. Wu [6] proposes an one-stage multiple comparisons
with the control for exponential distributions in terms of mean lifetimes under heteroscedasticity.
Instead of doing the multiple comparisons with the control based on mean lifetimes, the median
lifetimes should be considered since the median lifetimes are more robust for measuring the central
tendency of the exponential lifetime distributions than mean lifetimes. Therefore, we consider the
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multiple comparisons with the control in terms of median lifetimes instead of mean lifetimes in this
study. The median lifetime for the ith population is obtained as δ0.5,i = θi + ln 2 σi, i = 1, · · · , k.
The one-sided and two-sided confidence interval of the ith median lifetime deviated from the control
median lifetime denoted by δ0.5,i − δ0.5,k, i = 1, · · · , k − 1 are proposed in the next section. All critical
values are computed and listed in a table for the application of users. In Section 3, an example of
comparing the survival days for four categories of lung cancer is considered for the illustrative aims
to illustrate the implementation of proposed methods. Finally, our conclusions are summarized in
Section 4.

2. One-Stage Multiple Comparisons with the Control for Exponential Median Lifetimes
under Heteroscedasticity

The exponential distribution is primarily used in reliability applications and this distribution is
used to model data with a constant failure rate, see for example, Johnson et al. [7]. The probability
density function (pdf) and cumulative distribution function (cdf) for the ith exponentially distributed
population are defined as

f (x) =
1
σi

exp
(
−

x− θi
σi

)
, x ≥ θi,θi > 0, σi > 0,

and

F(x) = 1− exp
(
−

x− θi
σi

)
, x ≥ θi,θi > 0, σi > 0, i = 1, · · · , k.

Location parameters θ1, · · · ,θk and scale parameters σ1, · · · , σk are unknown and possibly unequal.
The survival function for the ith exponentially distributed population is S(x) = exp

(
−

x−θi
σi

)
. The qth

quantile of the ith exponential distribution denoted by ηq,i can be obtained by solving F(x) =

1 − exp
(
−

x−θi
σi

)
= q and results in δq,i = θi − ln(1 − q) σi, i = 1, · · · , k. That is there are at least 1 − q

percentage of products having lifetime longer than δq,i units. Let q = 0.5 and then the median lifetimes
can be obtained as δ0.5,i = θi + ln 2 σi, i = 1, · · · , k. In other words, there are at least 50% of products
having lifetime longer than δ0.5,i units.

Lam and Ng [3] proposed two-stage multiple comparison procedures with the control. But for
some reasons like lacking budget or encountering experimental difficulties, it is possible that the
experimenters cannot collect the additional sample for the second stage. In this case, one-stage
procedures should be considered instead. Therefore, we propose one-stage multiple comparison
procedures for exponential median lifetimes with the control as follows:

Take a random sample of size m (≥ 2) fromπi denoted by Xi1, · · · , Xim for the one-stage procedures.
Let Yi = min(Xi1, · · · , Xim) and Si =

∑m
j=1 (Xi j −Yi)/(m− 1) and let

c∗ = max
i=1,··· ,k

Si
m

. (1)

It is well-known that the complete sufficient statistics for (θi, σi) are (Yi, Si). From Roussas [8],
the following three distributional results are observed.

(1) Qi = 2(m− 1)Si/σi =, i = 1, . . . , k has a chi-square distribution with 2m− 2 degrees of freedom
(df) denoted by χ2

2m−2.
(2) Ei = m(Yi − θi)/σi has a standard exponential distribution denoted by Exp(1).
(3) Ei and Qi are independent.
Using the distribution results of (1) and (2), we can find the uniformly minimum variance

unbiased estimator (UMVUE) for (θi, σi) as (Yi − Si/m, Si). Furthermore, the UMVUE for the ith
median lifetime δ0.5,i= θi + ln 2 σi is Yi − Si/m + ln 2Si = Yi + (m ln 2 − 1)Si/m. Then we find the
UMVUE for the ith median lifetime deviated from the control median lifetime denoted by δ0.5,i − δ0.5,k
as Yi + (m ln 2 − 1)Si/m − Yk − (m ln 2 − 1)Sk/m. Based on this estimator, we are going to propose



Mathematics 2020, 8, 1405 3 of 9

the simultaneous confidence intervals for δ0.5,i − δ0.5,k = θi + ln 2 σi − θk + ln 2 σk, i = 1, · · · , k − 1 in
Theorem 1.

For the ith population, we consider the pivotal quantity

Gi =
δ0.5,i−Yi−(m ln 2−1)Si/m

Si/m =
θi+ln 2 σi−Yi−(m ln 2−1)Si/m

Si/m ,

=
−(m ln 2−1)(Si/σi)+m ln 2−m(Yi−θi)/σi

Si/σi
, i = 1, · · · , k.

Based on these pivotal quantities, we propose the one-stage multiple comparison procedures with
the control in terms of median lifetimes in Theorem 1.

Theorem 1. For a given 0 < P∗ < 1, we can find the upper confidence bounds, lower confidence bounds, and
two-sided confidence intervals for δ0.5,i − δ0.5,k, i = 1, . . . , k−1 as follows:

(a) If s∗U is the 100Pth percentile of the distribution of U, where U =max(−Gk, Gi, Gi −Gk, i = 1, · · · , k− 1),
then the simultaneous P* upper confidence bounds for δ0.5,i − δ0.5,k are Yi + (m ln 2 − 1)Si/m − Yk −

(m ln 2− 1)Sk/m + c∗s∗U, i = 1, · · · , k− 1.

(b) If s∗L is the 100Pth percentile of the distribution of L, where L=max(−Gi, Gk, Gk −Gi, i = 1, · · · , k− 1),
then the simultaneous P* lower confidence bounds for δ0.5,i − δ0.5,k are Yi + (m ln 2 − 1)Si/m − Yk −

(m ln 2− 1)Sk/m− c∗s∗L, i = 1, · · · , k− 1.
(c) If s∗t is the 100Pth percentile of the distribution of T, where T = max(

∣∣∣Gi
∣∣∣, ∣∣∣Gk

∣∣∣, ∣∣∣Gk −Gi
∣∣∣, i = 1, · · · , k− 1) ,

then the simultaneous P* two-sided confidence intervals for δ0.5,i − δ0.5,k are

(Yi + (m ln 2− 1)Si/m−Yk − (m ln 2− 1)Sk/m± c∗s∗t), i = 1, · · · , k− 1.

The technique we use to prove the above Theorem is the following Lemma given in Lam [9,10]:

Lemma 1. Suppose X and Y are two random variables, a and b are two positive constants, then [aX ≥
bY − dmax(a, b)] ⊇ [X ≥ −d, Y ≤ d and X ≥ Y − d].

Proof of Theorem 1.
For (a), we have

P(δ0.5,i − δ0.5,k ≤ Yi + (m ln 2− 1)Si/m−Yk − (m ln 2− 1)Sk/m + c∗s∗U, i = 1, · · · , k− 1)
= P(θi + ln 2σi − θk − ln 2σk ≤ Yi + (m ln 2− 1)Si/m−Yk − (m ln 2− 1)Sk/m + c∗s∗U, i = 1, · · · , k− 1)
= P

(
−(m ln 2− 1)Si/m + ln 2σi + θi −Yi ≤ −(m ln 2− 1)Sk/m + ln 2σk + θk −Yk + c∗s∗U, i = 1, · · · , k− 1

)
= P

(
Si
m
σi
Si

m(−(m ln 2−1)Si/m+ln 2σi+θi−Yi)
σi

≤
Sk
m
σk
Sk

m(−(m ln 2−1)Sk/m+ln 2σk+θk−Yk)
σk

+c∗s∗U, i = 1, · · · , k− 1
)

= P
(Sk

m Gk ≥
Si
m Gi − c∗s∗U, i = 1, · · · , k− 1

)
≥ ES1,··· ,Sk P

(Sk
m Gk ≥

Si
m Gi −max( Si

m , Sk
m ) s∗U, i = 1, · · · , k− 1

)
≥ P(Gk ≥ −s∗U, Gi ≤ s∗U, Gk ≥ Gi − s∗U, i = 1, · · · , k− 1)(By using Lemma1)
= P(−Gk ≤ s∗U, Gi ≤ s∗U, Gi −Gk ≤ s∗U, i = 1, · · · , k− 1)
= P(max(−Gk, Gi, Gi −Gk, i = 1, · · · , k− 1) ≤ s∗U)= P∗

It is clear that s∗U represents the 100Pth percentile of the distribution of U and thus the proof
is completed.
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For (b), we have

P(δ0.5,i − δ0.5,k ≥ Yi + (m ln 2− 1)Si/m−Yk − (m ln 2− 1)Sk/m− c∗s∗L, i = 1, · · · , k− 1)
= P(θi + ln 2σi − θk − ln 2σk ≥ Yi + (m ln 2− 1)Si/m−Yk − (m ln 2− 1)Sk/m− c∗s∗L, i = 1, · · · , k− 1)

= P
(

Si
m
σi
Si

m(−(m ln 2−1)Si/m+ln 2σi+θi−Yi)
σi

≥
Sk
m
σk
Sk

m(−(m ln 2−1)Sk/m+ln 2σk+θk−Yk)
σk

−c∗s∗L, i = 1, · · · , k− 1
)

= P
(Si

m Gi ≥
Sk
m Gk − c∗s∗L, i = 1, · · · , k− 1

)
≥ ES1,··· ,Sk P

(Si
m Gi ≥

Sk
m Gk −max( Si

m , Sk
m )s∗L, i = 1, · · · , k− 1

)
≥ P(Gi ≥ −s∗L, Gk ≤ s∗L, Gi ≥ Gk − s∗L, i = 1, · · · , k− 1)(By using Lemma 1)
≥ P(−Gi ≤ s∗L, Gk ≤ s∗L, Gk −Gi ≤ s∗L, i = 1, · · · , k− 1)
= P(max(−Gi, Gk, Gk −Gi, i = 1, · · · , k− 1) ≤ s∗L)= P∗

It is clear that s∗L represents the 100Pth percentile of the distribution of L and thus the proof
is completed.

For (c), combining (a) and (b), we have

P(Yi + (m ln 2− 1)Si/m−Yk − (m ln 2− 1)Sk/m− c∗s∗t ≤ δ0.5,i − δ0.5,k
≤ Yi + (m ln 2− 1)Si/m−Yk − (m ln 2− 1)Sk/m + c∗s∗t , i = 1, · · · , k− 1)
= ES1,··· ,Sk P(−Gi ≤ s∗t , Gk ≤ s∗t , Gk −Gi ≤ s∗t∩

−Gk ≤ s∗t , Gi ≤ s∗t , Gi −Gk ≤ s∗t , i = 1, · · · , k− 1)
≥ P(max(

∣∣∣Gi
∣∣∣, ∣∣∣Gk

∣∣∣, ∣∣∣Gk −Gi
∣∣∣, i = 1, · · · , k− 1) ≤ s∗t , i = 1, · · · , k− 1 )= P∗.

It is clear that s∗t represents the 100Pth percentile of the distribution of T and thus the proof is
completed. �

When the lifetime of products follows a two-parameter exponential distribution, this theorem
can be used to find the upper confidence bounds and the lower confidence bounds for the
parameters of δ0.5,i − δ0.5,k, i = 1, . . . , k − 1, where δ0.5,k represents the median lifetime of the control
population. This theorem can also be used to find the two-sided simultaneous confidence intervals
for parameters δ0.5,i − δ0.5,k, i = 1, . . . , k − 1. Based on these estimations, experimenters can identify
better-than-the-control, worse-than-the-control, and not-much-different-from-the-control treatment
populations in terms of median lifetimes. The real-life example to demonstrate the application of this
theorem is given in Section 3.

It is very difficult to derive the p.d.f. or c.d.f. for U, L, and T. Using the above three distributional
results (1)~(3), we observe that

Gi =
−(m ln 2−1)(νSi/σi)+mν ln 2−mν(Yi−θi)/σi

νSi/σi
∼ −(m ln 2 − 1) + ν(mln 2−Exp(1))

χ2
2m−2

, i = 1, · · · , k, ν = 2 m−2.

If we can generate independent random variables Gi, i = 1, · · · , k, then we can find the empirical
distribution of U, L, and T and the critical values s∗U, s∗L, and s∗t are the empirical 100Pth percentiles of
the distributions of U, L, and T, through Monte-Carlo simulation methods.

The steps to find the critical values of s∗U, s∗L, and s∗t in theorem 1 are enumerated as follows:
Step 1: Generate k independent random variables Ei~Exp(1) and another k independent random

variables Qi~χ
2
2m−2 and then obtain the k independent random variables Gi = −(m ln 2 − 1) +

ν(mln 2−Ei)
Qi

, i = 1, . . . , k.
Step 2: Compute U = max(−Gk, Gi, Gi −Gk, i = 1, · · · , k− 1);
L = max(−Gi, Gk, Gk −Gi, i = 1, · · · , k− 1) and
T = max(

∣∣∣Gi
∣∣∣, ∣∣∣Gk

∣∣∣, ∣∣∣Gk −Gi
∣∣∣, i = 1, · · · , k− 1) , i = 1, · · · , k.

Step 3: Repeat Steps 1,2 for 100,000 times. After sorting, we have U(1) ≤ . . . ≤ U(100,000);
L(1) ≤ . . . ≤ L(100,000); T(1) ≤ . . . ≤ T(100,000).
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Step 4: The critical values are obtained as s∗U = U([100,000∗P∗]+1); s∗L = L([100,000∗P∗]+1); s∗t =

T([100,000∗P∗]+1), where [x] is the largest integer less than or equal to x.

Remark: For unequal initial sample sizes denoted as mi, i = 1, · · · , k, Theorem 1 can be modified by replacing
m by mi, i = 1, · · · , k.

For the practical use of application, we find the critical values s∗U, s∗L, and s∗t by using the above
algorithm under k = 3,4, . . . ,10, m = 2,3, . . . , 10,15,20,25,30 and P* = 0.90, 0.95 and 0.975. The critical
values are listed in the following table. From part (c) of Theorem 1, we observe that the length of the
two-sided confidence intervals for δ0.5,i − δ0.5,k is L1 = 2c∗s∗t . The larger the critical values, the larger the
confidence length when c* is fixed. From Table 1, we observe that the critical value s∗t increases when
P∗ increases for fixed k and m or when k increases for fixed P∗ and m. Therefore, the confidence length
L1 increases when P∗ increases for fixed k and m or when k increases for fixed P∗ and m.

Table 1. Approximate critical values of s∗U, s∗L, and s∗t .

k m
P* = 0.90 P* = 0.95 P* = 0.975

s*
U s*

L s*
t s*

U s*
L s*

t s*
U s*

L s*
t

3

2 14.78 11.28 26.26 30.40 23.10 53.50 61.52 46.58 107.45
3 7.31 5.71 9.92 11.16 8.79 14.78 16.55 13.00 21.59
4 6.32 5.03 8.00 8.89 7.16 10.94 12.03 9.78 14.56
5 6.12 4.94 7.52 8.28 6.77 9.85 10.74 8.87 12.60
6 6.12 5.00 7.40 8.08 6.72 9.48 10.27 8.61 11.82
7 6.22 5.14 7.45 8.07 6.81 9.39 10.08 8.62 11.52
8 6.36 5.32 7.57 8.14 6.97 9.43 10.06 8.71 11.42
9 6.52 5.47 7.72 8.30 7.12 9.53 10.13 8.86 11.46
10 6.70 5.67 7.90 8.44 7.31 9.66 10.24 9.01 11.53
15 7.55 6.53 8.83 9.33 8.29 10.60 11.11 10.02 12.37
20 8.36 7.38 9.77 10.25 9.26 11.59 12.05 11.06 13.37
25 9.12 8.13 10.62 11.08 10.12 12.52 12.97 12.01 14.36
30 9.81 8.83 11.43 11.90 10.95 13.44 13.87 12.95 15.34

4

2 21.05 13.94 34.96 42.87 28.48 70.77 85.82 57.02 142.45
3 9.17 6.33 11.72 13.87 9.58 17.36 20.37 14.06 25.14
4 7.64 5.44 9.14 10.56 7.63 12.37 14.10 10.29 16.34
5 7.24 5.27 8.44 9.58 7.13 10.93 12.29 9.27 13.86
6 7.18 5.33 8.26 9.28 7.07 10.45 11.63 8.99 12.93
7 7.23 5.47 8.27 9.20 7.14 10.30 11.34 8.95 12.51
8 7.34 5.65 8.35 9.24 7.30 10.27 11.25 9.05 12.34
9 7.48 5.84 8.49 9.32 7.49 10.36 11.23 9.22 12.32
10 7.64 6.03 8.66 9.46 7.69 10.49 11.32 9.40 12.38
15 8.53 6.98 9.60 10.33 8.72 11.38 12.11 10.45 13.19
20 9.40 7.87 10.59 11.28 9.75 12.43 13.09 11.57 14.23
25 10.20 8.68 11.49 12.16 10.68 13.38 14.01 12.58 15.22
30 10.95 9.45 12.35 13.00 11.56 14.32 14.93 13.55 16.22

5

2 27.21 16.50 43.64 55.78 33.61 88.55 112.91 66.81 178.20
3 10.75 6.88 13.27 16.09 10.35 19.53 23.52 15.07 28.26
4 8.69 5.77 10.08 11.86 7.99 13.49 15.80 10.67 17.71
5 8.12 5.56 9.21 10.65 7.43 11.84 13.60 9.59 14.91
6 7.96 5.61 8.94 10.19 7.36 11.23 12.67 9.30 13.80
7 7.97 5.72 8.88 10.02 7.40 10.97 12.26 9.20 13.30
8 8.07 5.87 8.94 10.02 7.53 10.94 12.12 9.30 13.07
9 8.19 6.08 9.07 10.07 7.75 10.98 12.06 9.48 13.00
10 8.37 6.28 9.25 10.22 7.95 11.10 12.12 9.67 13.04
15 9.24 7.28 10.19 11.05 9.05 11.98 12.85 10.78 13.78
20 10.13 8.22 11.17 12.01 10.08 13.01 13.84 11.89 14.82
25 10.96 9.10 12.12 12.92 11.09 14.02 14.78 12.99 15.84
30 11.74 9.88 12.99 13.78 11.98 14.97 15.71 13.98 16.85
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Table 1. Cont.

k m
P* = 0.90 P* = 0.95 P* = 0.975

s*
U s*

L s*
t s*

U s*
L s*

t s*
U s*

L s*
t

6

2 33.14 19.15 51.76 67.64 38.55 105.07 136.19 76.71 211.14
3 12.17 7.38 14.66 18.15 10.98 21.55 26.47 15.86 31.09
4 9.58 6.06 10.89 13.00 8.32 14.57 17.26 11.08 19.08
5 8.85 5.78 9.83 11.51 7.68 12.63 14.61 9.84 15.86
6 8.62 5.78 9.49 10.94 7.55 11.87 13.50 9.50 14.54
7 8.57 5.93 9.40 10.69 7.60 11.55 13.00 9.43 13.92
8 8.65 6.09 9.44 10.64 7.77 11.46 12.79 9.53 13.66
9 8.76 6.27 9.54 10.69 7.93 11.50 12.75 9.68 13.58
10 8.90 6.47 9.69 10.78 8.14 11.58 12.74 9.84 13.56
15 9.78 7.52 10.64 11.61 9.27 12.47 13.44 10.99 14.28
20 10.70 8.48 11.65 12.58 10.36 13.49 14.41 12.16 15.30
25 11.57 9.38 12.63 13.52 11.37 14.53 15.40 13.28 16.37
30 12.35 10.21 13.50 14.36 12.32 15.46 16.28 14.31 17.35

7

2 39.31 21.78 60.49 80.06 44.01 122.99 162.06 87.46 249.19
3 13.47 7.82 15.93 20.01 11.55 23.42 29.24 16.63 33.86
4 10.35 6.31 11.61 13.97 8.63 15.46 18.48 11.43 20.25
5 9.46 5.99 10.39 12.24 7.91 13.25 15.45 10.09 16.59
6 9.16 5.96 9.95 11.53 7.72 12.39 14.20 9.67 15.10
7 9.08 6.09 9.83 11.24 7.79 12.02 13.61 9.62 14.41
8 9.13 6.24 9.86 11.18 7.92 11.93 13.38 9.69 14.16
9 9.23 6.43 9.94 11.20 8.09 11.93 13.27 9.81 13.99
10 9.36 6.63 10.08 11.28 8.29 12.01 13.27 10.02 14.02
15 10.24 7.70 11.02 12.08 9.46 12.85 13.91 11.18 14.67
20 11.14 8.70 12.02 13.02 10.55 13.87 14.84 12.38 15.67
25 12.01 9.63 13.00 13.96 11.61 14.89 15.82 13.50 16.73
30 12.84 10.47 13.90 14.85 12.56 15.86 16.78 14.52 17.75

8

2 45.50 24.27 68.97 92.79 48.74 140.29 186.20 97.45 282.34
3 14.60 8.22 17.11 21.63 12.12 25.03 31.42 17.34 35.96
4 11.08 6.52 12.28 14.92 8.87 16.30 19.68 11.69 21.34
5 10.02 6.15 10.88 12.92 8.08 13.85 16.28 10.25 17.30
6 9.63 6.12 10.37 12.07 7.88 12.88 14.87 9.84 15.69
7 9.53 6.23 10.22 11.77 7.92 12.49 14.20 9.74 14.95
8 9.55 6.38 10.21 11.64 8.05 12.31 13.87 9.81 14.57
9 9.65 6.57 10.31 11.67 8.23 12.34 13.80 9.95 14.46
10 9.75 6.77 10.41 11.69 8.44 12.35 13.70 10.15 14.40
15 10.62 7.84 11.35 12.47 9.61 13.19 14.34 11.37 15.04
20 11.54 8.88 12.35 13.41 10.75 14.20 15.26 12.52 16.03
25 12.43 9.81 13.33 14.36 11.79 15.23 16.22 13.67 17.06
30 13.27 10.68 14.27 15.28 12.78 16.24 17.19 14.76 18.12

9

2 51.55 26.67 77.45 105.29 53.72 158.46 213.80 108.06 319.87
3 15.70 8.60 18.23 23.24 12.62 26.66 33.73 18.05 38.33
4 11.70 6.74 12.85 15.76 9.12 17.08 20.76 11.97 22.33
5 10.51 6.29 11.32 13.48 8.22 14.37 16.94 10.42 17.92
6 10.08 6.25 10.76 12.60 8.00 13.32 15.42 9.94 16.18
7 9.93 6.34 10.57 12.19 8.03 12.86 14.66 9.86 15.37
8 9.92 6.51 10.55 12.05 8.18 12.68 14.30 9.96 14.96
9 9.97 6.68 10.59 12.01 8.33 12.62 14.15 10.06 14.78
10 10.10 6.89 10.73 12.08 8.54 12.70 14.12 10.28 14.75
15 10.95 7.98 11.64 12.82 9.73 13.48 14.68 11.48 15.34
20 11.88 9.01 12.65 13.76 10.88 14.49 15.59 12.68 16.30
25 12.77 9.98 13.63 14.71 11.96 15.53 16.58 13.86 17.39
30 13.63 10.85 14.57 15.64 12.95 16.52 17.54 14.92 18.41
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Table 1. Cont.

k m
P* = 0.90 P* = 0.95 P* = 0.975

s*
U s*

L s*
t s*

U s*
L s*

t s*
U s*

L s*
t

10

2 57.40 29.34 86.01 117.14 59.19 175.47 237.09 118.10 352.95
3 16.70 8.95 19.24 24.59 13.04 28.02 35.59 18.63 40.30
4 12.28 6.92 13.39 16.46 9.34 17.79 21.66 12.24 23.22
5 10.94 6.45 11.72 14.00 8.40 14.87 17.58 10.61 18.54
6 10.45 6.35 11.11 13.02 8.13 13.73 15.93 10.09 16.68
7 10.27 6.43 10.88 12.59 8.14 13.20 15.10 9.96 15.78
8 10.23 6.60 10.81 12.38 8.27 12.99 14.69 10.05 15.31
9 10.33 6.79 10.90 12.41 8.45 12.98 14.55 10.18 15.14
10 10.43 6.98 11.01 12.41 8.65 13.00 14.51 10.37 15.09
15 11.23 8.09 11.88 13.11 9.85 13.73 14.99 11.59 15.62
20 12.17 9.14 12.88 14.04 10.99 14.74 15.89 12.79 16.57
25 13.08 10.10 13.89 15.02 12.08 15.78 16.88 13.95 17.65
30 13.95 11.02 14.84 15.94 13.09 16.79 17.83 15.06 18.66

3. Example

Referring to Maurya et al. [11], the example of survival days of patients with inoperable lung
cancer who were subjected to a standard chemotherapeutic agent is used to illustrate our proposed
multiple comparison procedures with the control in Theorem 1. The patients are divided into four
categories based on the histological type of their tumor: squamous, small, adeno, and large. The data
are a part of a larger data set collected by the Veterans Administrative Lung Cancer Study Group in the
United States. The survival days of 9 patients for four kinds of lung cancer are listed in Table 2:

Table 2. Survival times for four categories of lung cancer.

Category m Survival Times

1 Squamous 9 72 10 81 110 100 42 8 25 11

2 Small 9 30 13 23 16 21 18 20 27 31

3 Adeno 9 8 92 35 117 132 12 162 3 95

4 Large 9 177 162 553 200 156 182 143 105 103

Maurya et al. [11] had indicated that the data in the four categories may be assumed to be drawn
from the two-parameter exponential distributions E(θi, σi), i = 1, · · · , k. We regard the first category as
the control population.

The required statistics and critical values for P∗ = 0.90, 0.95 and 0.975 are summarized in Table 3.

Table 3. The required statistics and critical values.

Statistics Category 1 Category 2 Category 3 Category 4

Yi 8 13 3 103
Si 48.375 10.250 78.265 106.750
c∗ 11.861

Yi − Y1 5 −5 95
(m ln 2− 1)(Si − S1)/m −22.190 17.397 33.976

Yi − Y1 + (m ln 2− 1)(Si − S1)/m −17.190 12.397 128.976

P* s∗U s∗L s∗t
0.900 7.48 5.84 8.49
0.950 9.32 7.49 10.36
0.975 11.23 9.22 12.32
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The upper confidence bounds and the lower confidence bounds for δ0.5,i − δ0.5,1, i = 2,3,4 under
confidence coefficients 0.90, 0.95, and 0.975 are listed in Table 4 using parts (a) and (b) in Theorem 1.
Since all upper bounds are positive, no categories are selected in a subset of all treatment populations
which are worse than the control population (Category 1 lung cancer). Since only Category 4 has
positive lower bound for all confidence coefficients, we conclude that only Category 4 is selected in a
subset of all treatment populations which are better than the control population with the probability of
correct selection being at least 0.90, 0.95, and 0.975.

Table 4. The 90%, 95%, and 97.5% upper bounds (the number before comma) and lower bounds (the
number after comma) for three categories compared with the control category (Category 1).

Yi−Y4+(mln2−1)(Si−S4)/m+c*s*
U, Yi−Y4+(mln2−1)(Si−S4)/m−c*s*

L

90% 95% 97.5%

δ0.5,2 − δ0.5,1 71.530, −86.458 93.355, −106.029 116.009, −126.548
δ0.5,3 − δ0.5,1 101.117, −56.871 122.942, −76.442 145.596, −96.961
δ0.5,4 − δ0.5,1 217.696, 59.708 239.521, 40.137 262.175, 19.618

The two-sided confidence intervals for δ0.5,i − δ0.5,1, i = 2,3,4 with confidence coefficients 0.90, 0.95,
and 0.975 are computed using part (c) in Theorem 1 and the results are listed in Table 5. For confidence
levels of 0.90 and 0.95, only the confidence interval for Category 4 does not contain zero and the lower
limit is positive. We conclude that only Category 4 has median survival days better than Category 1.
For confidence level of 0.975, no categories are identified to have median survival days greater than
Category 1 in terms of median survival days.

Table 5. The 90%, 95% and 97.5% two-sided confidence intervals for three categories compared with
the control category (Category 1).

Yi−Y4+(mln2−1)(Si−S4)/m+c*s*
t , Yi−Y4+(mln2−1)(Si−S4)/m−c*s*

t

90% 95% 97.5%

δ0.5,2 − δ0.5,1 −117.89,83.51 −140.070, 105.690 −163.318, 128.937
δ0.5,3 − δ0.5,1 −88.303, 113.097 −110.483, 135.277 −133.730, 158.525
δ0.5,4 − δ0.5,1 28.276, 229.676 6.096, 251.856 −17.151, 275.104

4. Conclusions

We analyze the impact of confidence levels P* and number of population k on the confidence
length in this paper. Instead of doing multiple comparisons with the control for exponential mean
lifetimes, we propose multiple comparison procedures with the control in terms of median lifetimes
since the measurement of median lifetimes are more robust than mean lifetimes for the measurement
of central tendency for exponential lifetime distribution. For the illustrative aim, we give a real life
example to illustrate how to find the upper bounds, lower bounds, and two-sided confidence intervals
for our parameters related to median lifetimes.
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