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Abstract: The purpose of this paper is to study intuitionistic fuzzy bases (IFBs) and the intuitive
structure of a G − V IFM. Firstly, the intuitionistic fuzzy basis (IFB) of a G − V IFM is defined;
then the h-range and properties of an IFB are presented and a necessary and sufficient condition of
a closed G− V IFM is studied. Especially, a necessary and sufficient condition of judging an IFB
is presented and the intuitive tree structure of a closed G− V IFM is proposed and its properties
are discussed.
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1. Introduction

Whitney’s 1935 article laid the groundwork for the field of combinatorial geometries and
matroid [1]. Matroid theory has been widely applied to combinatorial mathematics, combinatorial
optimization and group theory [2–8]. Based on the fuzzy set theory proposed by Zadeh in 1965 [9],
matroid theory has been generalized to various forms related to fuzzy sets. Shi [10,11] proposed the
(L, M)-fuzzy matroid based on latticevalued fuzzy set theory and studied the base axioms of fuzzitying
matroids [12–14]. Hsueh presented a fuzzification of matroids which extends the independence axioms
of matroids [15]. Al-Hawary introduced a method to the fuzzifying of matroids which is called fuzzy
C-matroids [16,17]. In 1988, Goetschel and Voxman proposed an important fuzzy matroid (briefly,
G − V fuzzy matroid) in [18]. They further studied some important concepts and their properties,
such as the fuzzy bases and the fuzzy rank function [19–22]. Following them, some scholars studied
the axioms, the connectedness and the structure of G−V fuzzy matroid, etc. [23–25].

The intuitionistic fuzzy set (IFS), introduced by Atanassov originally in 1983 [26] and made
widely accessible in 1986 [27], is a generalization of Zadeh’s fuzzy set. An IFS of each element is an
ordered pair which is called an intuitionistic fuzzy value (IFV) and each IFV is characterized by a
membership degree, a nonmembership degree and a hesitancy degree. From then on, many scholars
were attracted to study the IFS and obtained a lot of valuable results. For ranking the IFSs, Hong and
Choi proposed the accuracy function in 2000 [28] and Szmidt and Kacprzyk proposed a similarity
function of IFSs in 2004 [29]. Based on the accuracy function and the similarity function, Zhang and
Xu introduced a new method for ranking IFSs in 2012 [30]. In 2013, Rangasamy et al. proposed a
method by ranking to be done using the scores and accuracy for finding the shortest hyperpath in an
intuitionistic fuzzy weighted hypergraph [31]. Some other scholars studied the aggregation operators
and fuzzy clustering of IFSs [32–34]. After decades of effort from scholars, the relevant achievements of
intuitionistic fuzzy theory became very rich. In 1999, Atanassov completed his first monograph which
discussed the concept and operators of IFSs, the interval valued IFSs, some other extensions of IFSs,
the elements of IFSs and the applications of IFSs [35]. There are some other scholars’ results worthy
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of learning and researching; see [36–38]. In 2017, Li and Yi proposed an intuitionistic fuzzy matroid
based on matroids and intuitionistic fuzzy sets [39]. In [40], Li et al. extended G−V fuzzy matroids
and introduced a G−V intuitionistic fuzzy matroid and studied the induced matroid sequence and
the rank function. In this paper, based on the literature [19,25,40], we study the bases and the structure
of a G − V intuitionistic fuzzy matroid (briefly, G − V IFM), which are actually generalizations of
some conclusions of G−V fuzzy matroid.

This paper is arranged as follows. Some basic definitions and results are introduced in Section 2.
The IFBs of a G−V IFM are studied in Section 3. The judgment of an IFB is investigated in Section 4.
Finally, we propose the tree structure of a closed G−V IFM and study its properties in Section 5.

2. Preliminaries and Notations

We introduce some basic and useful concepts related to matroid theory here; see [41,42]. Firstly,
we introduce the concept of the matroid.

Definition 1. Let I be a nonempty family of subsets of a finite set E and satisfy:

1. ∅ ∈ I.
2. If X ∈ I, and Y ⊂ X, then Y ∈ I.
3. If X, Y ∈ I, and |Y| > |X|, then there exists an x ∈ Y\X such that X ∪ {x} ∈ I.

Then the pair M = (E, I) is called a matroid (or a crisp matroid). For any A ⊆ E, if A ∈ I, then A is
called an independent set; otherwise A is called a dependent set.

In matroid theory, rank function and its submodularity are very important. They are defined
as follows.

Definition 2. Let P(E) be the power set of finite set E and M = (E, I) be a matroid. R is called rank function
of M, where R : P(E)→ {0, 1, 2, · · · , |E|} is a mapping and is defined as follows:

R(X)=max{|Y||Y ⊆ X, and Y ∈ I}.

From the definition of R, the following properties can be easily obtained.

1. If X ⊆ Y, then R(X) ≤ R(Y);

2. R(X) ≤ |X| for any X ∈ P(E);

3. If X ∈ I, then R(X) = |X|,

where X, Y ∈ P(E).

Definition 3. Let σ : P(E) → [0, ∞) be a mapping, where P(E) is the power set of finite set E. σ is called
submodular if

σ(X) + σ(Y) ≥ σ(X ∩Y) + σ(X ∪Y),

for each X, Y ∈ P(E).

Theorem 1. The rank function R of a matroid M = (E, I) is submodular.

Next, some concepts and notations concerning fuzzy sets or intuitionistic fuzzy sets are cited;
see [9,18,19,26–38,40].

Definition 4. Let X be a fixed set. Then
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A = {(x, µA(x))|x ∈ X}

is called a fuzzy set, where µA(x) is the membership degree of x to A, 0 ≤ µA(x) ≤ 1. The collection of fuzzy
sets on X is denoted by FS(X).

Definition 5. Let X be a fixed set. Then

A = {(x, µA(x), νA(x))|x ∈ X}

is called an IFS (i.e., intuitionistic fuzzy set). For any x ∈ X, µA(x), νA(x) and πA(x) are called membership
degree, non-membership degree and hesitancy degree, respectively, where µA(x), νA(x), πA(x) ≥ 0 and
µA(x) + νA(x) + πA(x) = 1. The collection of IFSs on X is denoted by IFS(X). If for all x ∈ X, πA(x) = 0,
then µA(x) + νA(x) = 1 and IFS A is reduced to a fuzzy set. In this paper, we use (µα, να, πα) to denote
intuitionistic fuzzy set and (µα(x), να(x), πα(x)) to denote intuitionistic fuzzy value.

For convenience and suitable for the study of G−V intuitionistic fuzzy matroids later, an IFS
(µα, να, πα) is abbreviated as (µα, πα) and an IFV (µα(x), να(x), πα(x)) is denoted by (µα(x), πα(x)).
Note that this notation is different from that in Definition 5.

Definition 6. Let (µα, πα) ∈ IFS(X) be an IFS. Then the accuracy function H of (µα(x), πα(x)), (x ∈ X)

is denoted by

H(µα(x), πα(x)) = 1− πα(x)

Definition 7. Let (µα, πα) ∈ IFS(X) be an IFS. Then the similarity function h of (µα(x), πα(x)) for any
x ∈ X is

h(µα(x), πα(x)) = 1− 1−µα(x)
1+πα(x).

In the special case πα(x) = 0, we have h(µα(x), πα(x)) = µα(x).

Let X be a finite set and (µα, πα), (µβ, πβ) ∈ IFS(X) be IFSs and x ∈ X. We now introduce the
following notation and results; see [40]:

1. H(µα ,πα)(x) = H(µα(x), πα(x)).
h(µα ,πα)(x) = h(µα(x), πα(x)).
(µα, πα)(x) = (µα(x), πα(x)).

2. (µα, 0) = (µα, πα) if πα(x) = 0 for any x ∈ X.
3. h(µα, πα) ≤ h(µβ, πβ): for any x ∈ X, h(µα(x), πα(x)) ≤ h(µβ(x), πβ(x)).

h(µα, πα) = h(µβ, πβ): for any x ∈ X, h(µα(x), πα(x)) = h(µβ(x), πβ(x)).
h(µα, πα) < h(µβ, πβ): h(µα, πα) ≤ h(µβ, πβ) and h(µα(x), πα(x)) < h(µβ(x), πβ(x)) for some
x ∈ X.

4. H(µα, πα) ≤ H(µβ, πβ): for any x ∈ X, H(µα(x), πα(x)) ≤ H(µβ(x), πβ(x)).
H(µα, πα) = H(µβ, πβ): for any x ∈ X, H(µα(x), πα(x)) = H(µβ(x), πβ(x)).
H(µα, πα) < H(µβ, πβ):H(µα, πα) ≤ H(µβ, πβ) and H(µα(x), πα(x)) < H(µβ(x), πβ(x)) for
some x ∈ X.

5. (µα, πα) � (µβ, πβ):h(µα, πα) ≤ h(µβ, πβ) and H(µα, πα) ≤ H(µβ, πβ).
(µα, πα) ≺ (µβ, πβ):h(µα, πα) < h(µβ, πβ) and H(µα, πα) ≤ H(µβ, πβ).
(µα, πα) = (µβ, πβ):h(µα, πα) = h(µβ, πβ) and H(µα, πα) = H(µβ, πβ).

6. supp(µα, πα) = {x ∈ X|h(µα(x), πα(x)) > 0}.
7. m(µα, πα) = in f {h(µα(x), πα(x))|x ∈supp(µα, πα)}.
8. Cr(µα, πα) = {x ∈ X|h(µα(x), πα(x)) ≥ r}, where 0 ≤ r ≤ 1.
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9. R+(µα, πα) = {h(µα(x), πα(x))|h(µα(x), πα(x)) > 0, x ∈ X} is called the positive h− range of
(µα, πα).

10. |(µα, πα)| = ∑x∈X h(µα(x), πα(x)) is called the “cardinality” of an IFS.

Definition 8. Let (µα, πα), (µβ, πβ) be two intuitionistic fuzzy sets, x ∈ X. (µγ, πγ) = (µα, πα) ∨ (µβ, πβ)

and (µω, πω) = (µα, πα) ∧ (µβ, πβ) are called the union and intersection of (µα, πα) and (µβ, πβ),
respectively, where (µγ, πγ) is defined by

(µγ, πγ)(x) =



(µα, πα)(x), i f h(µα ,πα)(x) > h(µβ ,πβ)
(x),

(µβ, πβ)(x), i f h(µα ,πα)(x) < h(µβ ,πβ)
(x),

(µα, πα)(x), i f h(µα ,πα)(x) = h(µβ ,πβ)
(x) and H(µα ,πα)(x) ≥ H(µβ ,πβ)

(x),

(µβ, πβ)(x), i f h(µα ,πα)(x) = h(µβ ,πβ)
(x) and H(µα ,πα)(x) < H(µβ ,πβ)

(x).

and (µω, πω) is defined by

(µω, πω)(x) =



(µβ, πβ)(x), i f h(µα ,πα)(x) > h(µβ ,πβ)
(x),

(µα, πα)(x), i f h(µα ,πα)(x) < h(µβ ,πβ)
(x),

(µβ, πβ)(x), i f h(µα ,πα)(x) = h(µβ ,πβ)
(x) and H(µα ,πα)(x) ≥ H(µβ ,πβ)

(x),

(µα, πα)(x), i f h(µα ,πα)(x) = h(µβ ,πβ)
(x) and H(µα ,πα)(x) < H(µβ ,πβ)

(x).

Definition 9. Let E be a finite set and ψ ⊆ IFS(E) be a nonempty family of fuzzy sets. The pair (E, ψ) is
called a G−V IFM on E if it satisfies the following conditions:

1. If (µα, πα) ∈ ψ, (µβ, πβ) ∈ IFS(E), and (µβ, πβ) ≺ (µα, πα), then (µβ, πβ) ∈ ψ.
2. If (µα, πα), (µβ, πβ) ∈ ψ, and |supp(µα, πα)| < |supp(µβ, πβ)|, then there exists (µω, πω) ∈ ψ,

such that:

(a) (µα, πα) ≺ (µω, πω) � (µα, πα) ∨ (µβ, πβ);
(b) m(µω, πω) ≥ min{m(µα, πα), m(µβ, πβ)}.

Suppose that (E, ψ) is a G−V IFM. (µα, πα) ∈ ψ is called an independent IFS and ψ is called
the set of independent IFSs. (µβ, πβ) /∈ ψ is called a dependent IFS.

If for any (µα, πα) ∈ IFS(E) and for any x ∈ E, πα(x) = 0, then IFS(E) is actually FS(E). Thus,
(E, ψ) is reduced to G−V FM.

Theorem 2. Let (E, ψ) be a G−V IFM. For each r, 0 ≤ r ≤ 1, let

Ir = {Cr(µα, πα)|(µα, πα) ∈ ψ}

Then for each r, 0 < r ≤ 1,

Mr = (E, Ir)

is a matroid.

Theorem 3. Let (E, ψ) be a G − V IFM. Let Mr = (E, Ir) be a matroid on E defined in Theorem 2,
where 0 < r ≤ 1. Then there is a finite sequence r0 < r1 < · · · < rn such that:

(i) r0 = 0,rn = 1.

(ii) Is 6= {φ} if 0 < s ≤ rn,Is = {φ} if s > rn.
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(iii) If ri < s, t < ri+1, then Is = It, where 0 ≤ i ≤ n− 1.

(iv) If ri < s < ri+1 < t < ri+2, then Is ⊂ It, where 0 ≤ i ≤ n− 2.

Then the sequence r0, r1, r2, · · · , rn is called the fundamental sequence of (E, ψ). Moreover, if for any i,
1 ≤ i ≤ n, let r̄i =

ri−1
ri

, then we can get a sequence of matroids Mr̄n ⊂ Mr̄n−1 ⊂ · · · ⊂ Mr̄2 ⊂ Mr̄1 which is
called the induced matroid sequence.

Note that Cr(µα, πα) = {x ∈ E|h(µα(x), πα(x)) ≥ r}, where 0 < r ≤ 1, and Ir =

{Cr(µα, πα)|(µα, πα) ∈ ψ}, so Is = {φ} not but Is = {φ} when s > rn.

A matroid sequence can be constructed from a G−V IFM above. On the contrary, a G−V IFM
can be constructed from a matroid sequence.

Theorem 4. Let 0 = s0 < s1 < s2 < · · · < sn ≤ 1 be a finite sequence. Suppose that
Ms1 , Ms2 , · · · , Msn−1 , Msn (Msi = (E, Isi ), 1 ≤ i ≤ n) is a matroid sequence on a finite set E and satisfies
Isi+1 ⊂ Isi (0 ≤ i ≤ n− 1). For any 0 ≤ s ≤ 1, let

Is =

{
Isi , i f si−1 < s ≤ si, 0 ≤ i ≤ n,

{φ}, i f sn < s ≤ 1.

and let

ψ∗ = {(µα, πα) ∈ IFS(E)|Cs(µα, πα) ∈ Is, 0 < s ≤ 1}.

Then (E, ψ∗) is a G−V IFM and its induced matroid sequence is Msn ⊂ Msn−1 ⊂ · · · ⊂ Ms2 ⊂ Ms1 ,
where for 1 ≤ i ≤ n, Msi = (E, Isi ).

Theorem 5. Let (E, ψ) be a G−V IFM, and for each r, let 0 < r ≤ 1, Mr = (E, Ir) be a matroid defined by
Theorem 2. Let ψ∗ = {(µα, πα) ∈ IFS(E)|Cr(µα, πα) ∈ Ir, 0 < r ≤ 1}. Then ψ = ψ∗.

Theorem 6. Let (E, ψ) be a G − V IFM and (µα, πα) ∈ IFS(E). Then (µα, πα) ∈ ψ if and only if
Cλ(µα, πα) ∈ Iλ for each λ ∈ R+(µα, πα).

Theorem 7. Suppose that (E, ψ) is a G−V IFM with the fundamental sequence 0 = r0 < r1 < r2 < · · · <
rn ≤ 1. If Ir = Iri for any ri−1 < r ≤ ri (0 ≤ i ≤ n), then (E, ψ) is called a closed G−V IFM.

3. Bases of G − V IFMs

Based on G−V IFMs and bases of matroids or fuzzy matroids, we propose the concept of the
intuitionistic fuzzy basis of a G−V IFM.

Definition 10. Let (E, ψ) be a G−V IFM. (µα, πα) ∈ ψ is said to be maximal in ψ. If for any (µβ, πβ) ∈ ψ

and (µα, πα) � (µβ, πβ), then (µα, πα) = (µβ, πβ). I.e., there does not exist (µβ, πβ) ∈ ψ such that
(µα, πα) ≺ (µβ, πβ)).

An intuitionistic fuzzy basis (IFB for short) of a G − V IFM (E, ψ) is a maximal member
(µα, πα) ∈ ψ.

Suppose that (µα, πα) is an IFB and (µβ, πβ) ∈ IFS(E). Let h(µβ, πβ) = h(µα, πα) and
H(µβ, πβ) < H(µα, πα); then (µβ, πβ) � (µα, πα) and |(µβ, πβ)| = |(µα, πα)|. Obviously, (µβ, πβ) ∈ ψ.
Therefore, (µβ, πβ) here is called an intuitionistic fuzzy sub-basis (IFSB for short) with respect to
IFB (µα, πα) for a G− V IFM (E, ψ). Generally, there are infinite IFSBs for a G− V IFM and their
cardinality is the same as that of the corresponding IFB.
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Definition 11. An IFS (µα, πα) is an elementary IFS if R+(µα, πα) = 1. If (µα, πα) is an elementary IFS
with A =supp(µα, πα) and R+(µα, πα) = {r}, then (µα, πα) is denoted by ω(A, r) with support A and
height r.

Theorem 8. Suppose that (µα, πα) ∈ ψ is an IFB of a G−V IFM (E, ψ), then πα(x) = 0 for each x ∈ E.

Proof. Assume that there exists an x0 ∈ E such that πα(x0) = η > 0. Let h(µβ, πβ) = h(µα, πα) for
each x ∈ E and

πβ(x) =

πα(x), i f x ∈ E and x 6= x0,
η

2
, i f x = x0.

Then H(µα, πα) < H(µβ, πβ). It follows that (µα, πα) � (µβ, πβ). However, for each λ ∈
R+(µα, πα), we have Cλ(µβ, πβ) = Cλ(µα, πα) ∈ Iλ. Then (µβ, πβ) ∈ ψ from Theorem 6. This
contradicts the hypothesis.

Here, we will use Theorem 6 to prove the next theorem.

Theorem 9. Let (E, ψ) be a G−V IFM with the fundamental sequence 0 = r0 < r1 < r2 < · · · < rn ≤ 1
and suppose (µα, πα) is an IFB of (E, ψ); then

R+(µα, πα) ⊆ {r1, r2, · · · , rn}.

Proof. Let (µα, πα) be an IFB of (E, ψ). Then (µα, πα) ∈ ψ. It follows that Cλ(µα, πα) ∈ Iλ for each
λ ∈ R+(µα, πα).

Assume that there is an s ∈ R+(µα, πα) such that ri < s < ri+1. We take ε = (ri+1 − s)/2 and let
(µβ, πβ) be the elementary IFS which is defined by supp(µβ, πβ) = Cs(µα, πα) and R+(µβ, πβ) = s + ε.

If we let (µω, πω) = (µα, πα) ∨ (µβ, πβ), then for each r ∈ (0, 1], we have

Cr(µω, πω) =

{
Cs(µα, πα) ∈ Is, i f r ∈ (s, s + ε],

Cr(µα, πα) ∈ Ir, i f r 6∈ (s, s + ε].

By Theorem 6, we have (µω, πω) ∈ ψ.
By the hypothesis, for (µα, πα), we have that there exists x0 ∈ supp(µα, πα) such that

h(µα(x0), πα(x0)) = s. Thus h(µω(x0), πω(x0)) = s + ε. Since (µα, πα) � (µω, πω), (µα, πα) ≺
(µω, πω). This contradicts that (µα, πα) is an IFB.

Theorem 10. Suppose that (E, ψ) is a G−V IFM and 0 = r0 < r1 < r2 < · · · < rn ≤ 1 is the fundamental
sequence of (E, ψ). Then (E, ψ) is closed if and only if for any (µα, πα) ∈ ψ, there exists an IFB (µβ, πβ) ∈ ψ

such that (µα, πα) � (µβ, πβ).

Proof. Assume that for any (µα, πα) ∈ ψ, there exists an IFB (µβ, πβ) ∈ ψ such that (µα, πα) �
(µβ, πβ). If (E, ψ) is not closed.

Let i0 be a positive integer such that if ri0−1 < t < ri0 , then Iri0
⊂ It, where

Ir = {Cr(µα, πα)|(µα, πα) ∈ ψ}.

Let A be a basis of It but not a basis of Iri0
. Let ω(A, t) be the elementary IFS. Obviously,

Cr(ω(A, t)) = A ∈ Ir for any r ∈ (0, t], and Cr(ω(A, t)) = ∅ ∈ Ir for any r ∈ (t, 1]. It follows that
ω(A, t) ∈ ψ.

Suppose that (µβ, πβ) ∈ ψ is an IFB and ω(A, t) � (µβ, πβ). Then Ct(µβ, πβ) ∈ It and A ⊆
Ct(µβ, πβ). Since A is a crisp basis of It, A = Ct(µβ, πβ).

Since Iri0
⊆ It and by Theorem 5 and Theorem 9, we have

A = Ct(µβ, πβ) = Cri0
(µβ, πβ) ∈ Iri0

.
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Conversely, suppose that (E, ψ) is closed. Let (µα, πα) ∈ ψ and R+(µα, πα) = {t1, t2, · · · , tk},
where t1 < t2 < · · · < tk. Let {tp1 , tp2 , · · · , tps} be a subsequence of {t1, t2, · · · , tk} and
{rq1 , rq2 , · · · , rqs} be a subsequence of {r0, r1, · · · , rn} such that tp1 = t1, and for a given tpj , there is
rqj = min{ri|ri ≥ tpj}, and for a given rqj there is tpj+1 = min{ti|ti > rqj}. It follows that

(1) tp1 = t1;
(2) rqj−1 < tpj < rqj , j = 1, 2, · · · , s;
(3) If tpj < ti < tpj+1 , then rqj−1 < ti ≤ rqj ;
(4) If tps > ti, then rqs−1 < ti ≤ rqs .

Let An ⊆ An−1 ⊆ · · · ⊆ A1 be a nested sequence such that

(a) supp(µα, πα) ⊆ A1, where A1 is a basis of (E, Ir1);
(b) For i ≥ 2 (where i is an integer), we have qj−1 < i < qj(q0 = 0) and Ai is a maximal subset of

Ai−1 in Iri that contains Ctpj
(µα, πα);

(c) For qt < i ≤ n (where i is an integer), we have A is a maximal subset of Ai−1 in Iri .

Let (µβi , πβi ) be the elementary IFS ω(Ai, ri), where i ∈ [1, n]. If (µβ, πβ) =
∨n

i=1(µβi , πβi ),
then we can easily get Cr(µβ, πβ) ∈ Ir, r ∈ (0, 1]. By Theorem 6, (µβ, πβ) ∈ ψ. From the construction of
(µβ, πβ), (µα, πα) � (µβ, πβ) ∈ ψ and (µβ, πβ) is an IFB for (E, ψ), the conclusion is established.

4. The Judgement of an IFB for a G − V IFM

From the proof of Theorem 10, we can get the following result.

Theorem 11. Suppose that (E, ψ) is a closed G−V IFM with the fundamental sequence 0 = r0 < r1 < r2 <

· · · < rn ≤ 1 and the induced matroid sequence Mr1 ⊃ Mr2 ⊃ · · · ⊃ Mrn , where Mri = (E, Iri )(1 ≤ i ≤ n).
Let (µα, πα) ∈ IFS(E). If (µα, πα) is an IFB of (E, ψ), then supp(µα, πα) = Cm(µα ,πα)(µα, πα) is a basis of
matroid (E, Ir1).

Proof. Suppose that m(µα, πα) is an IFB of IFM. Then R+(µα, πα) ⊆ {r1, r2, · · · , rn} and Cr(µα, πα)

∈ Ir for any r ∈ R+(µα, πα).
Assume that supp(µα, πα) = Cm(µα ,πα)(µα, πα) is not a basis of matroid (E, Ir1); then there exists

a basis A of (E, Ir1) such that supp(µα, πα) = Cm(µα ,πα)(µα, πα) ⊂ A. Let

h(µω(x), πω(x)) =


r1 , i f x ∈ A \ Cm(µα ,πα)(µα, πα),

h(µα(x), πα(x)), i f x ∈ Cm(µα ,πα)(µα, πα),

0 , otherwise.

Then (µα, πα) ≺ (µω, πω), R+(µω, πω) ⊆ {r1, r2, · · · , rn} and Cr1(µω, πω) = A ∈ Ir1 . Thus,
for any r1 < r < m(µα, πα),

Cr(µω, πω) = Cm(µα ,πα)(µα, πα) ∈ Im(µα ,πα) ⊆ Ir,

and for any m(µα, πα) ≤ r ≤ 1,

Cr(µω, πω) = Cr(µα, πα) ∈ Ir.

From Theorem 6, it follows that (µω, πω) ∈ ψ. Since (µα, πα) ≺ (µω, πω), it contradicts that
(µα, πα) is an IFB of IFM.

The following necessary and sufficient condition can be used to judge whether a fuzzy set is a
fuzzy basis.
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Theorem 12 ([25]). Let (E, ψ) be a closed G−V fuzzy matroid on E and 0 = r0 < r1 < · · · < rn ≤ 1 be the
fundamental sequence. Let µ ∈ FS(E). Suppose Mr1 ⊃ Mr2 ⊃ · · · ⊃ Mrn is the induced matroid sequence
(where Mri = (E, Iri ),i = 1, 2, · · · , n). Then µ is a fuzzy basis of (E, ψ) if and only if µ satisfies:

(i) A1=suppµ is a basis of matroid (E, Ir1).
(ii) There exists a sequence A2, · · · , An−1, An (Ai ∈ Iri ) which satisfies Ai is a maximal subset of Ai−1 in

Iri (i = 2, 3, 4, · · · , n) and A1 ⊇ A2 ⊇ · · · ⊇ An−1 ⊇ An such that for any x ∈ An, µ(x) = rn and
for any x ∈ Ai \ Ai+1, µ(x) = ri, where i = 1, 2, 3, · · · , n− 1.

This result can be extended to intuitionistic fuzzy sets.

Theorem 13. Suppose (E, ψ) is a closed G− V IFM with the fundamental sequence 0 = r0 < r1 < r2 <

· · · < rn ≤ 1 and the induced matroid sequence Mr1 ⊃ Mr2 ⊃ · · · ⊃ Mrn , where Mri = (E, Iri ) (1 ≤ i ≤ n).
Let (µα, πα) ∈ IFS(E); then (µα, πα) is an IFB of (E, ψ) if and only if (µα, πα) satisfies:

(I) πα(x) = 0 for each x ∈ E;
(II) The set A1 = supp(µα, πα) is a crisp basis of matroid (E, Ir1);

(III) There exists a sequence A2, · · · , An−1, An (Ai ∈ Iri ) which satisfies Ai is a maximal subset of Ai−1 in Iri

(i = 2, 3, · · · , n) and A1 ⊇ A2 ⊇ · · · ⊇ An−1 ⊇ An such that for any x ∈ An, h(µα(x), πα(x)) = rn,
and for any x ∈ Ai \ Ai+1 (i = 1, 2, · · · , n− 1), h(µα(x), πα(x)) = ri.

Proof. By Theorem 8 and Theorem 11, we have

(I) πα(x) = 0 for each x ∈ E;
(II) The set A1=supp(µα, πα) is a basis of matroid (E, Ir1).

Now we just prove that (III) holds.
Let Ai = Cri (µα, πα) (2 ≤ i ≤ n). By the hypothesis, we have Crn(µα, πα) ⊆ Crn−1(µα, πα) ⊆ · · · ⊆

Cr2(µα, πα) ⊆ Cr1(µα, πα), That is An ⊆ An−1 ⊆ · · · ⊆ A2 ⊆ A1.
Next, we will prove Ai is a maximal subset of Ai−1 in Iri , where k + 1 ≤ i ≤ n.
Note that A1=supp(µα, πα) is the basis of (E, Ir1).
Assume that there exists Ai ∈ Iri (2 ≤ i ≤ n) such that Ai is not a maximal subset of Ai−1 in Iri−1 .

Then there is B ∈ Iri such that Ai ⊂ B and B is a maximal subset of Ai−1.
Let (µβ, πβ) ∈ IFS(E) and πβ(x) = 0 for each x ∈ E, and if i = 2, let

h(µβ(x), πβ(x)) =


r1 , x ∈ A1 \ B,

r2 , x ∈ B \ A2,

h(µα(x), πα(x)), x ∈ A2.

If 3 ≤ i ≤ n, let

h(µβ(x), πβ(x)) =


rj , x ∈ Aj \ Aj+1,

ri−1 , x ∈ Ai−1 \ B,

ri , x ∈ B \ Ai,

h(µα(x), πα(x)), x ∈ Ai.

where j = 1, 2, · · · , i − 2. Then (µα, πα) � (µβ, πβ). Since Cri (µβ, πβ) = B ∈ Iri , it follows that
Crj(µβ, πβ) = Aj ∈ Irj , for any 1 ≤ j ≤ i− 1, and Crj(µβ, πβ) = Crj(µα, πα) ∈ Irj for any i + 1 ≤ j ≤ n.
Then, by Theorem 6, (µβ, πβ) ∈ ψ, which contradicts that (µα, πα) is an IFB of (E, ψ).

Conversely, from condition (II) (III), A1 =supp(µα, πα) is a crisp basis of matroid (E, Ir1),
R+(µα, πα) ⊆ {r1, r2, · · · , rn} and Cri (µα, πα) = Ai ∈ Iri for any ri ∈ R+(µα, πα) (i = 1, 2, · · · , n).
It follows that (µα, πα) ∈ ψ from Theorem 6.
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(µα, πα) is not an IFB of (E, ψ). Since (µα, πα) ∈ ψ and (E, ψ) is a closed IFM, there
exists an IFB (µβ, πβ) of (E, ψ) such that (µα, πα) ≺ (µβ, πβ), so m(µα, πα) ≤ m(µβ, πβ) and
supp(µα, πα) ⊆supp(µβ, πβ).

Case 1. supp(µα, πα) = supp(µβ, πβ). Since (µβ, πβ) is an IFB of (E, ψ), then πβ(x) = 0 for
each x ∈ E and A1 =supp(µα, πα) =supp(µβ, πβ) is a basis of matroid (E, Ir1). As A1 ⊇ A2 ⊇ · · · ⊇
An−1 ⊇ An and Ai is a maximal subset of Ai−1, where Ai ∈ Iri (i = 2, 3, · · · , n), for any x ∈ An,
h(µβ(x), πβ(x)) = rn and for any x ∈ Ai \ Ai+1 (i = 1, 2, · · · , n− 1), h(µβ(x), πβ(x)) = ri, for any x ∈
supp(µα, πα) =supp(µβ, πβ), we have h(µα(x), πα(x)) = h(µβ(x), πβ(x)). Since πα(x) = πβ(x) = 0
for each x ∈ E, H(µα(x), πα(x)) = H(µβ(x), πβ(x)). It follows that (µα, πα) = (µβ, πβ), which
contradicts that (µα, πα) ≺ (µβ, πβ), m(µα, πα) ≤ m(µβ, πβ).

Case 2. supp(µα, πα) ⊂ supp(µβ, πβ). Since (µβ, πβ) is an IFB of (E, ψ), Cm(µβ ,πβ)
(µβ, πβ) =

supp(µβ, πβ) is a basis of matroid (E, Ir1). From condition (II), Cm(µα ,πα)(µα, πα) =supp(µα, πα) is
also a basis of matroid (E, Ir1). Then supp(µα, πα) =supp(µβ, πβ), which is in contradiction with
supp(µα, πα) ⊂supp(µβ, πβ).

Therefore, (µα, πα) is an IFB of (E, ψ).

The following corollary is obvious.

Corollary 1. Suppose (E, ψ) is a closed G − V IFM with the fundamental sequence 0 = r0 < r1 < r2 <

· · · < rn ≤ 1 and the induced matroid sequence Mr1 ⊃ Mr2 ⊃ · · · ⊃ Mrn , where Mri = (E, Iri ) (1 ≤ i ≤ n).
Let (µα, 0) ∈ IFS(E). Then (µα, 0) is an IFB of (E, ψ) if and only if the IFS (µα, 0) satisfies:

(1) A1 is a crisp basis of (E, Ir1), where A1 = supp(µα, 0).
(2) There exist A2, · · · , An−1, An (Ai ∈ Iri ) which satisfy A1 ⊇ A2 ⊇ · · · ⊇ An−1 ⊇ An and Ai is

a maximal subset of Ai−1 (i = 2, 3, · · · , n) such that h(µα(x), 0) = µα(x) = rn for any x ∈ An,
and h(µα(x), 0) = µα(x) = ri for any x ∈ Ai \ Ai+1, i = 1, 2, · · · , n− 1.

Theorem 14. Let E be a finite set. Suppose that there is the same fundamental sequence 0 = r0 < r1 < r2 <

· · · < rn ≤ 1 and the same induced matroid sequence Mr1 ⊃ Mr2 ⊃ · · · ⊃ Mrn for G − V fuzzy matroid
(E, ψ) and G−V IFM (E, ψ), where Mri = (E, Iri ) (i = 1, 2, · · · , n− 1). Then µα ∈ FS(E) is a fuzzy basis
of FM = (E, ψ) if and only if (µα, 0) ∈ IFS(E) is an IFB of (E, ψ).

Proof. By the hypothesis and Theorem 12, we have µα is a fuzzy basis of (E, ψ) if and only if the fuzzy
set µα satisfies:

(1) A1 is a basis of (E, Ir1), where A1=suppµα.
(2) There exist A2, · · · , An−1, An which satisfy Ai is a maximal subset of Ai−1 (i = 2, 3, · · · , n) and

A1 ⊇ A2 ⊇ · · · ⊇ An−1 ⊇ An such that for any x ∈ An, µα(x) = rn, and for any x ∈ Ai \ Ai+1
(i = 1, 2, · · · , n− 1), µα(x) = ri.

These two conditions hold if and only if (µα, 0) satisfies:

(1) A1 = supp(µα, 0) is a crisp basis of matroid (E, Ir1).
(2) For the above Ai, i = 1, 2, · · · , n, we have for any x ∈ An, h(µα(x), 0) = µα(x) = rn, and for any

x ∈ Ai \ Ai+1 (i = 1, 2, · · · , n− 1), h(µα(x), 0) = µα(x) = ri.

5. A Tree Structure of a Closed G − V IFM

From Theorem 13, a tree structure of a closed G−V IFM is proposed below, which is similar to
the tree structure introduced in [25].

Let (E, ψ) be a closed G − V IFM on E, 0 = r0 < r1 < r2 < · · · < rn ≤ 1 be the fundamental
sequence and Mr1 ⊃ Mr2 ⊃ · · · ⊃ Mrn be the IFM-induced matroid sequence (where Mri = (E, Iri )
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(1 ≤ i ≤ n)). Suppose that (µα, πα) is an IFB of (E, ψ) and B1 =supp(µα, πα) is a crisp basis of matroid
(E, Ir1). Then, from Theorem 13, there exists a sequence B2,1, · · · , Bn−1,1, Bn,1 (Bi,1 ∈ Iri , i = 2, 3, · · · , n)
such that Bi,1 is a maximal subset of Bi−1,1 (i = 2, 3, · · · , n) in Iri and B1 ⊇ B2,1 ⊇ · · · ⊇ Bn−1,1 ⊇ Bn,1.
Obviously, Cri (µα, πα) = Bi,1, i = 1, 2, · · · , n. The number of the sequence B1, B2,1, · · · , Bn−1,1, Bn,1 is
determined by the number of the maximal subsets of the previous maximal subset in the next level
based on the same IFB (µα, πα). Obviously, each of the sequence can be constructed a brunch of a tree.
All the sequences of the same IFB (µα, πα) can be constructed a tree. Since there are many IFBs, there
are many trees which become a forest. The forest is called a tree structure of the closed G−V IFM
(E, ψ) (Figure 1).

Figure 1. The tree structure of a closed G-V IFM.

Definition 12. The set of trees constructed by the sequences in Theorem 13 is the tree structure of a closed
G−V IFM (E, ψ), denoted by T(E, ψ) (T for short) (Figure 1), which is defined below.

Remark 1. There is one branch corresponding to a leaf in T and vice versa. From Theorem 13 and the
construction of T, a branch of T and an IFB of (E, ψ) are one-to-one corresponding. Thus, for (E, ψ), the number
of the IFB is equal to the number of leaves (Bn,j) of T.

Example 1. Let E = {a, b, c}, I1 = {∅, {a}, {b}}, I1/3 = {∅, {a}, {b}, {c}, {a, b}, {a, c}}, I1/5 =

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Then (E, I1), (E, I1/3) and (E, I1/5) are all matroids, and I1/5, I1/3,
I1. Let

Ir =


I1/5, 0 < r ≤ 1

5
,

I1/3,
1
5
< r ≤ 1

3
,

I1 ,
1
3
< r ≤ 1.

and let ψ = {(µα, πα) ∈ IFS(E)|Cr(µα, πα) ∈ Ir}, where r ∈ (0, 1]. From Definition 2.16, (E, ψ) is a closed
G−V IFM. The tree structure T is shown in Figure 2.

Figure 2. The tree structure of Example 5.3.
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From Figure 2, there are three trees and five leaves in T. By Remark 1, there are five IFBs of (E, ψ),
which are as follows:

(µα1(x), πα1(x)) =


(1, 0), x = a,

(
1
3

, 0), x = b,

(0, 0), x = c.

(µα2(x), πα2(x)) =


(

1
3

, 0), x = a,

(1, 0), x = b,

(0, 0), x = c.

(µα3(x), πα3(x)) =


(1, 0), x = a,

(0, 0), x = b,

(
1
3

, 0), x = c.

(µα4(x), πα4(x)) =


(0, 0), x = a,

(1, 0), x = b,

(
1
5

, 0), x = c.

(µα5(x), πα5(x)) =


(0, 0), x = a,

(
1
5

, 0), x = b,

(
1
3

, 0), x = c.

Then the values of the similarity function h for the five IFBs are below:

h(µα1(x), πα1(x)) =


1, x = a,
1
3

, x = b,

0, x = c.

h(µα2(x), πα2(x)) =


1
3

, x = a,

1, x = b,

0, x = c.

h(µα3(x), πα3(x)) =


1, x = a,

0, x = b,
1
3

, x = c.

h(µα4(x), πα4(x)) =


0, x = a,

1, x = b,
1
5

, x = c.

h(µα5(x), πα5(x)) =


0, x = a,
1
5

, x = b,

1
3

, x = c.
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Next, we discuss the properties of T for (E, ψ).

Theorem 15. Let (E, ψ) be a closed G − V IFM on E, 0 = r0 < r1 < · · · < rn ≤ 1 be the fundamental
sequence and Mr1 ⊃ Mr2 ⊃ · · · ⊃ Mrn (where Mri = (E, Iri ) (1 ≤ i ≤ n)) be the induced matroid sequence.
Let T be the tree structure of (E, ψ). Then each basis Bki

i of the induced matroid (E, Iri )(i = 1, 2, · · · , n. ki is a
positive integer) is in ri level of T.

Proof. For any i(i = 1, 2, · · · , n), if i = 1, since each basis Bk1
1 of matriod Mr1 = (E, Ir1) is the root of

each tree in T, Bk1
1 is in r1 level.

If i 6= 1(i = 2, 3, · · · , n), for any basis Bki
i of matroid Mri = (E, Iri )—since (E, Iri ) ⊂ (E, Iri−1),

it follows that Bki
i ∈ Iri−1—then there exists a basis Bki−1

i−1 of (E, Iri−1) such that Bki
i ⊆ Bki−1

i−1 . Obviously,

Bki
i is a maximal subset of Bki−1

i−1 in Iri . It implies that Bki
i is in ri level of T.

Note that the converse of Theorem 15 does not hold. In Example 1, {a, b},{a, c} are both the bases
of matroid (E, I1/3) in the second level, but {b},{c} are not the bases.

Theorem 16. Let (E, ψ) be a closed G − V IFM on E, 0 = r0 < r1 < · · · < rn ≤ 1 be the fundamental
sequence and Mr1 ⊃ Mr2 ⊃ · · · ⊃ Mrn (where Mri = (E, Iri ) (1 ≤ i ≤ n)) be the induced matroid
sequence. Let T be the tree structure of (E, ψ). Suppose that Bi is the collection of the sets in ri level of T,
where i = 1, 2, · · · , n. Let Jri = {X | X ⊆ B, B ∈ Bi}. Then Jri = Iri .

Proof. For any Y ∈ Iri , by the hypothesis, there is a basis B of matroid (E, Iri ) such that Y ⊆ B.
By Theorem 15, all bases of (E, Iri ) are in ri level T, where i = 1, 2, · · · , n. Then B ∈ Bi. It implies that
Y ∈ {X|X ⊆ B, B ∈ Bi} = Jri . Thus, Iri ⊆ Jri .

On the other hand, for any Y ∈ Jri , there exists a set B ∈ Bi in ri (i = 1, 2, · · · , n) level of T such
that Y ⊆ B. By Theorem 13, B ∈ Iri , Y ∈ Iri . That implies that Jri ⊆ Iri .

Therefore, Jri = Iri .

Remark 2. Let (E, ψ) be a closed G−V IFM on E and T be its tree structure. Suppose that Bi is the collection
of the maximal subsets in ri level of T. Then the bases of Mri = (E, Iri ) (i = 1, 2, · · · , n) belong to Bi.

Theorem 17. Let (E, ψ) be a closed G−V IFM on E and T be its tree structure. Suppose that the sequence
B1, B2, · · · , Bn (Bi is in i − th level) of T satisfying Bn 6= ∅ and B1 ⊃ B2 ⊃ · · · ⊃ Bn. For any x ∈ Bn,
let (µα, πα) ∈ IFS(E) and kn = h(µα(x), πα(x)) and for any x ∈ Bi \ Bi+1 (i = 1, 2, · · · , n− 1), let ki =

h(µα(x), πα(x)). Then 0 = k0, k1, k2, · · · , kn is the fundamental sequence of (E, ψ).

Proof. Let 0 = r0 < r1 < r2 < · · · < rn ≤ 1 be the fundamental sequence of (E, ψ). By the
hypothesis and Theorem 13, (µα, πα) is a fuzzy basis of (E, ψ). Thus R+(µα, πα) ⊆ {r1, r2, · · · , rn}.
Suppose that a sequence B1, B2, · · · , Bn satisfies Bn 6= ∅ and B1 ⊃ B2 ⊃ · · · ⊃ Bn. It follows
that Bi\Bi+1 6= ∅ (i = 1, 2, · · · , n − 1). Then ki = h(µα, πα) 6= 0 for any i (i = 1, 2, · · · , n − 1)
and R+(µα, πα) = {k1, k2, · · · , kn}. Thus {k1, k2, · · · , kn} ⊆ {r1, r2, · · · , rn}. That implies that
{k1, k2, · · · , kn} = {r1, r2, · · · , rn}.

Therefore, k0, k1, k2, · · · , kn is the fundamental sequence of (E, ψ).

6. Conclusions

In this paper, the IFB of G−V IFMs was defined by using the related concept of G−V fuzzy
matroids. Some conclusions of G−V fuzzy matroids have been extended to G−V IFMs. Especially,
the judgement of an IFB was presented and proven, and the tree structure of closed G−V IFMs and
its properties were discussed. We will discuss another important concept and its properties of G−V
IFMs–intuitionistic fuzzy circuits in a subsequent article.
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