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Abstract: Using kernel methods, Lepski and Willer study a convolution structure density model and
establish adaptive and optimal Lp risk estimations over an anisotropic Nikol’skii space (Lepski, O.;
Willer, T. Oracle inequalities and adaptive estimation in the convolution structure density model.
Ann. Stat. 2019, 47, 233–287). Motivated by their work, we consider the same problem over Besov
balls by wavelets in this paper and first provide a linear wavelet estimate. Subsequently, a non-linear
wavelet estimator is introduced for adaptivity, which attains nearly-optimal convergence rates in
some cases.

Keywords: generalized deconvolution; adaptive density estimation; wavelet; Besov space

1. Introduction

The estimation of a probability density from independent and identically distributed (i.i.d.)
random observations X1, X2, · · · , Xn of X is a classical problem in statistics. The representative work
is Donoho et al. [1], they established an adaptive and nearly-optimal estimate (up to a logarithmic
factor) over Besov spaces using wavelets.

However, the observed data are always polluted by noises in many real-life applications. One of
the important problems is the density estimation with an additive noise. Let Z1, Z2, · · · , Zn be i.i.d.
random variables and have the same distribution as

Z = X + Y, (1)

where X denotes a real-valued random variable with unknown probability density function f and Y
stands for an independent random noise (error) with a known probability density g. The problem is
to estimate f by Z1, Z2, · · · , Zn in some sense. Moreover, it is also called a denconvolution problem
(model), because the density h of Z equals the convolution of f and g. Fan and Koo [2] studied the
MISE performance (L2-risk) of linear wavelet deconvolution estimator over a Besov ball. The L∞ risk
optimal wavelet estimations were investigated by Lounici and Nickl [3]. Furthermore, Li and Liu [4]
provided Lp (1 ≤ p ≤ ∞) risk optimal deconvolution estimations using wavelet bases.

In this paper, we consider a generalized deconvolution model introduced by Lepski & Willer [5,6].
More precisely, let (Ω,F , P) be a probability space and Z1, Z2, · · · , Zn be i.i.d. random variables having
the same distribution as

Z = X + εY, (2)

where the symbols X and Y are same as model (1), f and g are the corresponding densities respectively.
Moreover, the biggest difference with model (1) is that a Bernoulli random variable ε ∈ {0, 1} with
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P{ε = 1} = α is added in (2), and α ∈ [0, 1] is known. The problem is also to estimate f by the observed
data Z1, Z2, · · · , Zn in some sense.

When α = 1, model (2) reduces to the deconvolution one (see [2–4,7,8] et al.), while α = 0
corresponds to the classical density model with no errors (see [1,9–11] et al.). Clearly, the density
function h of Z in (2) satisfies

h = (1− α) f + α f ∗ g.

Here, f ∗ g stands for the convolution of f and g. Furthermore, when the function Gα(t) := 1− α +

αg f t(t) 6= 0 for t ∈ R, we have

f f t(t) = [(1− α) + αg f t(t)]−1h f t(t) = (Gα(t))−1h f t(t),

where g, α are known and f f t is the Fourier transform of f ∈ L1(R) given by

f f t(t) :=
∫
R

f (x)e−itxdx.

Based on the model (2) with some mild assumptions on Gα, Lepski and Willer [5] provided a
lower bound estimation over Lp risk on an anistropic Nikol’skii space. Moreover, they investigated
an adaptive and optimal Lp estimate by using kernel method in Ref. [6]. Recently, Wu et al. [12]
established a pointwise lower bound estimation for model (2) under the local Hölder condition.

When compared with the classical kernel estimation of density functions, the wavelet estimations
provide more local information and fast algorithm [13]. We will consider the Lp (1 ≤ p < ∞)

risk estimations under the model (2) over Besov balls by using wavelets and expect to obtain the
corresponding convergence rates.

The same as Assumption 4 in [6], we also need the following condition on Y,

|Gα(t)| & (1 + |t|2)−
β(α)

2 (3)

with β(α) = β ≥ 0 for α = 1 and β(α) = 0 for others. It is reasonable, because it holds automatically
for α = 0, while the same condition for α = 1 is necessary for the deconvolution estimations [4,7].
In addition, when 0 < α < 1

2 , β(α) = 0 and |Gα(t)| ≥ 1− α− α|g f t(t)| & 1 thanks to ‖g f t‖∞ ≤ 1.
In fact, the condition (3) is necessary to prove Lemmas 2 and 3 in Section 2. Here and after, A . B
denotes A ≤ cB for a fixed constant c > 0; A & B means B . A; A ∼ B stands for both A . B and
A & B.

It is well-known that the wavelet estimation depends on an orthonormal wavelet expansion in
L2(R), even in Lp(R). Let {Vj : j ∈ N} be a classical Multiresolution Analysis of L2(R) with scaling
function ϕ and ψ being the corresponding wavelet. Subsequently, for f ∈ L2(R),

f = ∑
k∈Z

αj0k ϕj0k +
∞

∑
j=j0

∑
k∈Z

β jkψjk, (4)

where αjk := 〈 f , ϕjk〉, β jk := 〈 f , ψjk〉 and ϑjk(·) := 2
j
2 ϑ(2j · −k) (ϑ = ϕ or ψ). A scaling function ϕ is

called m-regular (m ∈ N), if ϕ ∈ Cm(R) and |ϕ(k)(x)| . (1 + |x|2)−l for each l ∈ N (k = 0, 1, · · · , m).
Clearly, the m-regularity of ϕ implies that of the corresponding ψ, and |ϕ f t(t)| . (1 + |t|2)−m

2 due to
the integration by parts. An important example is Daubechies’ function D2N with N large enough.

As usual, let Pj be the orthogonal projection from L2(R) onto Vj,

Pj f := ∑
k∈Z

αjk ϕjk. (5)
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If ϕ is m-regular, then Pj f is well-defined for f ∈ Lp(R). Moreover, the identity (4) holds in Lp(R)
for 1 ≤ p ≤ ∞.

The following lemma is needed for later discussions.

Lemma 1 ([13]). Let ϑ be an orthogonal scaling function or a wavelet satisfying m-regularity. Subsequently,
there exist C2 ≥ C1 > 0, such that, for λ = {λk} ∈ lp(Z) and 1 ≤ p ≤ ∞,

C12j( 1
2−

1
p )‖λ‖lp ≤ ‖ ∑

k∈Z
λkϑjk‖p ≤ C22j( 1

2−
1
p )‖λ‖lp .

One of the advantages of wavelet bases is that they can characterize Besov spaces, which contain
the L2-Sobolev spaces and Hölder spaces as special examples.

Proposition 1 ([13]). Let scaling function ϕ be m-regular with m > s > 0 and ψ be the corresponding wavelet.
Afterwards, for r, q ∈ [1, ∞] and f ∈ Lr(R), the following conditions are equivalent:

(i). f ∈ Bs
r,q(R);

(ii). {2js‖Pj f − f ‖r}j≥0 ∈ lq; and,

(iii). ‖α0·‖lr + ‖(2j(s+ 1
2−

1
r )‖β j·‖lr )‖lq < ∞.

The Besov norm can be defined by

‖ f ‖Bs
r,q := ‖αj0·‖lr + ‖(2

j(s+ 1
2−

1
r )‖β j·‖lr )‖lq .

When s > 0 and 1 ≤ r, p, q ≤ ∞, it is well-known that

(1) Bs
r,q ↪→ Bs

r,∞ ↪→ Bs− 1
r

∞,∞ for s > 1
r ;

(2) Bs
r,q ↪→ Bs′

p,q for r ≤ p and s− 1
r = s′ − 1

p ,

where A ↪→ B stands for a Banach space A continuously embedded in another Banach space B.
More precisely, ‖u‖B ≤ c‖u‖A (u ∈ A) holds for some c > 0.

In this paper, we use the notation Bs
r,q(L, M) with some constants L, M > 0 to stand for a Besov

ball, i.e.,

Bs
r,q(L, M) := { f ∈ Lr(R), f is a density, ‖ f ‖Bs

r,q ≤ L and supp f ⊆ [−M, M]}.

Next, we will estimate f with Lp risk by constructing wavelet estimators from the observed data
Z1, Z2, · · · , Zn. To introduce wavelet estimators, we take ϕ having compact support and m-regularity
with m ≥ β(α) + 2 in this paper. Moreover, denote

α̂jk :=
1
n

n

∑
l=1

(Kϕjk)(Zl),

where

(Kϕjk)(x) :=
1

2π

∫
R

e−itx(ϕjk)
f t(t)G−1

α (t)dt (6)

and Kψjk is defined by the way. Clearly, Eα̂jk = αjk due to the Plancherel formula. Subsequently, the linear
wavelet estimator is given by

f̂ lin
n := ∑

k∈Λj0

α̂j0k ϕj0k, (7)
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where Λj := {k ∈ Z, supp f ∩ supp ϕjk 6= ∅} ∪ {k ∈ Z, supp f ∩ supp ψjk 6= ∅}. In particular,
the cardinality of Λj satisfies that |Λj| ∼ 2j, when f and ϕ have compact supports.

Now, we are in a position to state the first result of this paper.

Theorem 1. For r, p ∈ [1,+∞), q ∈ [1,+∞] and 1
r < s < m, the estimator f̂ lin

n in (7) with 2j0 ∼ n
1

2s′+2β(α)+1 satisfies

sup
f∈Bs

r,q(L, M)

E‖ f̂ lin
n − f ‖p

p . n
− s′ p

2s′+2β(α)+1 ,

where s′ = s− ( 1
r −

1
p )+ and a+ = max{a, 0}.

Remark 1. When α = 1, β(α) = β, the conclusion of Theorem 1 reduces to Theorem 3 of Li & Liu [4].

Note that the estimator f̂ lin
n is non-adaptive, because the choice of j0 depends on the unknown

parameter s. To obtain an adaptive estimate, define

β̂ jk :=
1
n

n

∑
l=1

(Kψjk)(Zl) and β̃ jk := β̂ jk I{|β̂ jk |>τj,n}. (8)

Here, τj,n = cγ2jβ(α)
√

j
n and the constants c, γ will be determined later on. Subsequently, the non-linear

wavelet estimator is defined by

f̂ non
n := ∑

k∈Λj0

α̂j0k ϕj0k +
j1

∑
j=j0

∑
k∈Λj

β̃ jkψjk, (9)

where j0, j1 are positive integers satisfying 2j0 ∼ n
1

2m+2β(α)+1 and 2j1 ∼ n
ln n respectively. Clearly, j0 and

j1 do not depend on the unknown parameters s, r, q, which means that the estimator f̂ non
n in (9)

is adaptive.

Theorem 2. Let r, p ∈ [1,+∞), q ∈ [1,+∞] and 1
r < s < m. Then the estimator f̂ non

n in (9) satisfies

sup
f∈Bs

r,q(L,M)

E‖ f̂ non
n − f ‖p

p . (ln n)p
( ln n

n

)θp
,

where θ := min{ s
2s+2β(α)+1 ,

s− 1
r +

1
p

2(s− 1
r )+2β(α)+1

}.

Remark 2. When α = 0, β(α) = 0 and θ = min{ s
2s+1 ,

s− 1
r +

1
p

2(s− 1
r )+1
}, the convergence rate of Theorem 2 coincides

with that of Theorem 3 in Donoho et al. [1]. On the other hand, β(α) = β and θ = min{ s
2s+2β+1 ,

s− 1
r +

1
p

2(s− 1
r )+2β+1

}
for the case α = 1, while the conclusion of Theorem 4 in Li & Liu [4] can follow directly from this theorem.

Remark 3. When comparing the result of Theorem 2 with Theorem 1, we find easily that for the case r ≤ p,

the convergence rate of non-linear estimator is better than that of the linear one with n
− s′ p

2s′+2β(α)+1 and s′ =
s− 1

r +
1
p .

Remark 4. The convergence rates of Theorem 2 with the cases α = 0 and α = 1 are nearly-optimal (up to
a logarithmic factor) by Donoho et al. [1] and Li & Liu [4] respectively. However, it is not clear whether the
estimation in Theorem 2 is optimal (nearly-optimal) or not for α ∈ (0, 1). Therefore, one of our future work is to
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determine a low bound estimate for model (2) with α ∈ (0, 1). This problem may be much more complicated than
the cases of α = 0 and α = 1.

2. Preliminaries

This section is devoted to introduce some useful lemmas. The following inequality is necessary in
the proof of Lemma 2.

Rosenthal’s inequality ([13]). Let p > 0 and X1, X2, · · · , Xn be the independent random variables such that
EXl = 0 and E|Xl |p < ∞ (l = 1, 2, · · · , n). Subsequently, there exists C(p) > 0, such that

E

∣∣∣∣∣ n

∑
l=1

Xl

∣∣∣∣∣
p

≤ C(p)

 n

∑
l=1

E|Xl |p I{p>2} +

(
n

∑
l=1

EX2
l

) p
2
 .

Lemma 2. Let 1 ≤ 2j ≤ n and ‖ f ‖∞ . 1. Then for p ∈ [1,+∞),

E|α̂jk − αjk|p . n−
p
2 2jβ(α)p and E|β̂ jk − β jk|p . n−

p
2 2jβ(α)p.

Proof. Obviously, one only needs to prove the first inequality and the second one is similar.
Define ξl := (Kϕjk)(Zl)− E(Kϕjk)(Zl) (l = 1, · · · , n). Subsequently, {ξl}n

l=1 are i.i.d. samples and
Eξl = 0 (l = 1, · · · , n). By the definitions of αjk and α̂jk, Eα̂jk = αjk and

E|α̂jk − αjk|p =
1

np E

∣∣∣∣∣ n

∑
l=1

[(Kϕjk)(Zl)− E(Kϕjk)(Zl)]

∣∣∣∣∣
p

=
1

np E

∣∣∣∣∣ n

∑
l=1

ξl

∣∣∣∣∣
p

. (10)

According to (6), one obtains that

|(Kϕjk)(Zl)| .
∫
R
|(ϕjk)

f t(t)G−1
α (t)|dt = 2−

j
2

∫
R
|ϕ f t(2−jt)G−1

α (t)|dt.

This with (3), m (m ≥ β(α) + 2) regularity of ϕ and 2j ≥ 1 shows

|(Kϕjk)(Zl)| . 2
j
2

∫
R
(1 + |t|2)−

m
2 (1 + |2jt|2)

β(α)
2 dt . 2j( 1

2+β(α)). (11)

Hence, for l = 1, 2, · · · , n,

‖ξl‖∞ . 2j( 1
2+β(α)). (12)

On the other hand, ‖h‖∞ = ‖(1− α) f + α( f ∗ g)‖∞ . 1 follows from ‖ f ‖∞ . 1. Afterwards,

E|ξl |2 ≤ E(Kϕjk)
2(Zl) =

∫
R
|Kϕjk(z)|2h(z)dz .

∫
R
|Kϕjk(z)|2dz.

Furthermore, E|ξl |2 .
∫
R |(ϕjk)

f t(z)G−1
α (z)|2dz due to the Plancherel formula. The same

arguments as (11) imply that

E|ξl |2 .
∫
R
(1 + |t|2)−m(1 + |2jt|2)β(α)dt . 22jβ(α). (13)

By Rosenthal’s inequality, E|∑n
l=1 ξl |p . ∑n

l=1 E|ξl |p I{p>2} + (∑n
l=1 Eξ2

l )
p
2 . This with (12) and (13)

and 2j ≤ n shows

E

∣∣∣∣∣ n

∑
l=1

ξl

∣∣∣∣∣
p

. n
p
2 2jβ(α)p[(n−12j)

p
2−1 I{p>2} + 1] . n

p
2 2jβ(α)p. (14)
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Finally, the desired conclusion is concluded from (10) and (14).

We state another classical inequality, before giving the proof of Lemma 3.

Bernstein’s inequality ([13]). Let X1, X2, · · · , Xn be independent random variables with EXl = 0, EX2
l ≤ M

and |Xl | ≤ ‖X‖∞ (l = 1, 2, · · · , n). Then for each ε > 0,

P

{∣∣∣∣∣ 1n n

∑
l=1

Xl

∣∣∣∣∣ > ε

}
≤ 2 exp

{
− nε2

2 (M + ‖X‖∞ε/3)

}
.

Lemma 3. If j2j ≤ n, 2j ≥ 1 and ‖ f ‖∞ . 1, then there exists some constat c > 0 such that for any γ > 0,

P
{
|β̂ jk − β jk| >

τj,n

2

}
. 2−γj,

where τj,n = cγ2jβ(α)
√

j
n .

Proof. Denote ηl := (Kψjk)(Zl) − E(Kψjk)(Zl), l = 1, · · · , n. Then {ηl}n
l=1 are i.i.d., Eηl = 0 and

|β̂ jk − β jk| = | 1n ∑n
l=1 ηl | by (8). Moreover, the same arguments as (12) and (13) show

‖ηl‖∞ ≤ H12j( 1
2+β(α)) and Eη2

l ≤ H222jβ(α)

with some positive constants H1, H2.
According to Bernstein’s inequality,

P
{
|β̂ jk − β jk| >

τj,n

2

}
≤ 2 exp

{
−

nτ2
j,n

8[H222jβ(α) + H12j( 1
2+β(α))τj,n/6]

}
. (15)

Note that for j2j ≤ n,

8[H222jβ(α) + H12j( 1
2+β(α))τj,n/6] ≤ H22jβ(α)(1 + cγ

√
j2j

n
) ≤ (1 + cγ)H22jβ(α)

with some positive constant H. Hence,

nτ2
j,n

8[H222jβ(α) + H12j( 1
2+β(α))τj,n/6]

≥ nc2γ2 jn−122jβ(α)

(1 + cγ)H22jβ(α)
=

c2γ2 j
(1 + cγ)H

.

Furthermore, (15) reduces to

P
{
|β̂ jk − β jk| >

τj,n

2

}
≤ 2e−

c2γ2 j
(1+cγ)H . 2−γj

by choosing c ≥ max{2H ln 2,
√

2Hγ−1 ln 2}. This completes the proof.

3. Proofs of Main Results

We shall show the proofs of Theorems 1 and 2 in this section.

Proof of Theorem 1. It is sufficient to prove the case for r ≤ p. In fact, when r > p and f has a
compact support, f̂ lin

n does because of ϕ having the same property. Subsequently, it follows from
Hölder inequality and Jensen’s inequality that
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sup
f∈Bs

r,q(L,M)

E‖ f̂ lin
n − f ‖p

p . sup
f∈Bs

r,q(L,M)

(E‖ f̂ lin
n − f ‖r

r)
p
r . n

− s′ p
2s′+2β(α)+1 .

According to (5) and (7), one easily finds that

E‖ f̂ lin
n − f ‖p

p . ‖Pj0 f − f ‖p
p + E‖ f̂ lin

n − E f̂ lin
n ‖

p
p. (16)

Clearly, by Proposition 1, ‖Pj0 f − f ‖p
p . 2−j0s′p thanks to the well-known embedding theorem

Bs
r,q ↪→ Bs′

p,q for r ≤ p.

On the other hand, s > 1
r implies ‖ f ‖∞ . 1 and Lemma 2 tells that E|α̂jk − αjk|p . 2jβ(α)pn−

p
2 .

This with Lemma 1 and |Λj0 | ∼ 2j0 shows that

E‖ f̂ lin
n − E f̂ lin

n ‖
p
p . 2j0(

p
2−1) ∑

k∈Λj0

E|α̂j0k − αj0k|p . 2j0(β(α)+ 1
2 )pn−

p
2 . (17)

Finally, (16) reduces to

E‖ f̂ lin
n − f ‖p

p . 2−j0s′p + 2j0(β(α)+ 1
2 )pn−

p
2 . n

− s′ p
2s′+2β(α)+1

because of 2j0 ∼ n
1

2s′+2β(α)+1 . The proof is done.

Now, we give a proof of Theorem 2, which is the most important result.

Proof of Theorem 2. The same arguments as the proof of Theorem 1, one only needs to prove the case
for r ≤ p.

According to (4), (5) and (9), E‖ f̂ non
n − f ‖p

p . An + Bn + Cn, where

An = E‖ ∑
k∈Λj0

(α̂j0k − αj0k)ϕj0k‖
p
p, Bn = E‖

j1

∑
j=j0

∑
k∈Λj

(β̃ jk − β jk)ψjk‖
p
p

and Cn = ‖ f − Pj1 f ‖p
p.

It is known that Bs
r,q ↪→ Bs′

p,q for r ≤ p with s′ = s − 1
r + 1

p . Hence, Cn = ‖ f − Pj1 f ‖p
p .

2−j1s′p due to Proposition 1. Moreover, it follows from the choice of 2j1 ∼ n
ln n , s > 1

r and θ :=

min{ s
2s+2β(α)+1 ,

s− 1
r +

1
p

2(s− 1
r )+2β(α)+1

} that

Cn .
( ln n

n

)s′p
.
( ln n

n

)θp
.

Similar to (17), one obtains

An = E‖ ∑
k∈Λj0

(α̂j0k − αj0k)ϕj0k‖
p
p . 2j0(β(α)+ 1

2 )pn−
p
2 .

( ln n
n

)θp

by 2j0 ∼ n
1

2m+2β(α)+1 , s < m and the definition of θ.
Next, the main work of this proof is to estimate Bn. By Lemma 1,

Bn = E‖
j1

∑
j=j0

∑
k∈Λj

(β̃ jk − β jk)ψjk‖
p
p . jp−1

1

j1

∑
j=j0

2j( p
2−1) ∑

k∈Λj

E|β̃ jk − β jk|p.
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Define B̂j := {k : |β̂ jk| > τj,n}, Bj := {k : |β jk| >
τj,n
2 }, Cj := {k : |β jk| > 2τj,n} and ξ jk :=

β̂ jk − β jk. Subsequently, Bn . (ln n)p−1 ∑4
l=1 Eel , where

e1 :=
j1

∑
j=j0

2j( p
2−1) ∑

k∈Λj

|ξ jk|p I{k∈B̂j∩Bc
j }

,

e2 :=
j1

∑
j=j0

2j( p
2−1) ∑

k∈Λj

|ξ jk|p I{k∈B̂j∩Bj},

e3 :=
j1

∑
j=j0

2j( p
2−1) ∑

k∈Λj

|β jk|p I{k∈B̂c
j∩Cj},

e4 :=
j1

∑
j=j0

2j( p
2−1) ∑

k∈Λj

|β jk|p I{k∈B̂c
j∩Cc

j }

with Ac denoting the complement of A in Z. Hence, it suffices to prove Eel . ln n( ln n
n )θp (l = 1, 2, 3, 4).

To estimate Ee1, note that |β̂ jk− β jk| ≥
τj,n
2 follows from k ∈ B̂j ∩ Bc

j . Moreover, E|ξ jk|p I{k∈B̂j∩Bc
j }
≤

(E|ξ jk|2p)
1
2 P

1
2 (|ξ jk| >

τj,n
2 ) by the Hölder inequality. Afterwards, for large γ,

Ee1 .
j1

∑
j=j0

2j( p
2−1) ∑

k∈Λj

n−
p
2 2jβ(α)p2−

γj
2 . 2j0(

p
2 +β(α)p− γ

2 )n−
p
2 .

( ln n
n

)θp

thanks to |Λj| ∼ 2j, Lemmas 2 and 3.
For e3, |β̂ jk − β jk| ≥

τj,n
2 due to k ∈ B̂c

j ∩ Cj. Combining this with Lemma 3, one knows

EI{k∈B̂c
j∩Cj} ≤ P(|ξ jk| ≥

τj,n
2 ) . 2−γj. Therefore, by |β jk| . 2

j
2 , |Λj| ∼ 2j and large γ,

Ee3 .
j1

∑
j=j0

2j( p
2−1) ∑

k∈Λj

2
pj
2 2−γj . 2−(γ−p)j0 .

( ln n
n

)θp
.

In order to estimate e2 and e4, one defines j∗0 , j∗1 ∈ Z satisfying

2j∗0 ∼
( n

ln n

) 1−2θ
2β(α)+1 and 2j∗1 ∼

( n
ln n

) θ

s− 1
r +

1
p .

Recall that θ := min{ s
2s+2β(α)+1 ,

s− 1
r +

1
p

2(s− 1
r )+2β(α)+1

}, 2j0 ∼ n
1

2m+2β(α)+1 and 2j1 ∼ n
ln n . Then j0 ≤ j∗0 ≤

j∗1 ≤ j1 due to 1
r < s < m and r ≤ p.

To estimate Ee2, one divides e2 into

e2 = (
j∗0

∑
j=j0

+
j1

∑
j=j∗0+1

)2j( p
2−1) ∑

k∈Λj

|ξ jk|p I{k∈B̂j∩Bj} := e21 + e22.

Similar to (17), according to 2j∗0 ∼ ( n
ln n )

1−2θ
2β(α)+1 ,

Ee21 . 2j∗0 (β(α)+ 1
2 )pn−

p
2 .

( ln n
n

)θp
.

Define
ω :=

(
s + β(α) +

1
2

)
r−

(
β(α) +

1
2

)
p.
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When ω ≥ 0, θ := min{ s
2s+2β(α)+1 , s−1/r+1/p

2(s−1/r)+2β(α)+1} =
s

2s+2β(α)+1 . It is easy to see that
|β jk |

τj,n/2 > 1 for
k ∈ Bj. Hence,

Ee22 .
j1

∑
j=j∗0+1

2j( p
2−1) ∑

k∈Λj

E|ξ jk|p
( |β jk|

τj,n/2

)r
. (18)

In addition, E|ξ jk|p . 2jβ(α)pn−
p
2 by Lemma 2 and ∑k |β jk|r . 2−j(sr+ r

2−1) due to Proposition 1

and f ∈ Bs
r,q. These with (18), τj,n ∼ 2jβ(α)

√
j
n and 2j∗0 ∼ ( n

ln n )
1−2θ

2β(α)+1 lead to

Ee22 .
j1

∑
j=j∗0+1

( ln n
n

) p−r
2

2−jω .
( ln n

n

) p−r
2

2−j∗0 ω .
( ln n

n

)θp
.

For the case ω < 0, θ := min{ s
2s+2β(α)+1 , s−1/r+1/p

2(s−1/r)+2β(α)+1} = s−1/r+1/p
2(s−1/r)+2β(α)+1 . Denote r1 :=

(1− 2θ)p. Then r ≤ r1 ≤ p. Hence, the same arguments as (18) show that

Ee22 .
j1

∑
j=j∗0+1

2j( p
2−1) ∑

k∈Λj

E|ξ jk|p
( |β jk|

τj,n/2

)r1
. (19)

On the other hand, ∑k |β jk|r1 . (∑k |β jk|r)
r1
r . 2−jr1(s+ 1

2−
1
r ) follows from f ∈ Bs

r,q and

Proposition 1. Furthermore, E|ξ jk|p . 2jβ(α)pn−
p
2 thanks to Lemma 2. These with (19) and τj,n ∼

2jβ(α)
√

j
n imply that

Ee22 .
j1

∑
j=j∗0+1

2j[ p
2−1+β(α)p−β(α)r1−r1(s+ 1

2−
1
r )]
( ln n

n

) p−r1
2

. ln n
( ln n

n

)θp
,

because p−r1
2 = θp and p

2 − 1 + β(α)p− β(α)r1 − r1(s + 1
2 −

1
r ) = 0.

Finally, it remains to estimate Ee4. Obviously, θ = s
2s+2β(α)+1 for ω ≥ 0. Thus,

e4 = (
j∗0

∑
j=j0

+
j1

∑
j=j∗0+1

)2j( p
2−1) ∑

k∈Λj

|β jk|p I{k∈B̂c
j∩Cc

j }
:= e41 + e42. (20)

Because k ∈ Cc
j and τj,n ∼ 2jβ(α)

√
j
n , |β jk| < 2τj,n ∼ 2jβ(α)

√
j
n . This with |Λj| ∼ 2j implies that

Ee41 .
j∗0

∑
j=j0

2j( p
2−1) ∑

k∈Λj

τ
p
j,n . 2j∗0 p(β(α)+ 1

2 )
( ln n

n

) p
2
. (21)

Note that
2τj,n
|βjk|

> 1 by k ∈ Cc
j , and ∑k |βjk|r . 2−j(sr+ r

2−1) due to f ∈ Bs
r,q. Subsequently, with r ≤ p

and τj,n ∼ 2jβ(α)
√

j
n ,

Ee42 .
j1

∑
j=j∗0+1

2j( p
2−1) ∑

k
|β jk|p

(2τj,n

|β jk|

)p−r
. 2−j∗0 ω

( ln n
n

) p−r
2

. (22)

Combining (20)–(22) with 2j∗0 ∼ ( n
ln n )

1−2θ
2β(α)+1 and θ = s

2s+2β(α)+1 (ω ≥ 0), one obtains that
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Ee4 = Ee41 + Ee42 .
( ln n

n

)θp

holds for ω ≥ 0.
At last, one shows Ee4 . ( ln n

n )θp for the case ω < 0. Subsequently,

e4 = (
j∗1

∑
j=j0

+
j1

∑
j=j∗1+1

)2j( p
2−1) ∑

k∈Λj

|β jk|p I{k∈B̂c
j∩Cc

j }
:= e′41 + e′42. (23)

The same arguments as (22), one finds

Ee′41 . 2−j∗1 ω
( ln n

n

) p−r
2

. (24)

On the other hand, ∑k |β jk|p . (∑k |β jk|r)
p
r . 2−jp(s+ 1

2−
1
r ) by f ∈ Bs

r,q (r ≤ p) and Proposition 1.
Furthermore,

Ee′42 ≤
j1

∑
j=j∗1+1

2j( p
2−1) ∑

k∈Λj

|β jk|p . 2−j∗1 p(s− 1
r +

1
p )

because of s > 1
r . This with (23) and (24) and 2j∗1 ∼ ( n

ln n )
θ

s− 1
r +

1
p leads to

Ee4 = Ee′41 + Ee′42 .
( ln n

n

)θp

thanks to θ = s−1/r+1/p
2(s−1/r)+2β(α)+1 for ω < 0. The proof is completed.

4. Conclusions

This current paper shows Lp (1 ≤ p < ∞) risk estimations of both linear and non-linear
wavelet estimators under a convolution structure density model over Besov balls. The corresponding
conclusions are introduced by Theorems 1 and 2 in this paper, which can be seen as an extension of the
works of Donoho et al. [1] and Li & Liu [4].

It should be pointed out that the non-linear wavelet estimator is adaptive, and the convergence
rate of non-linear estimator are better than that of linear one for the case r ≤ p. However, it is not clear
whether the estimations are optimal (nearly-optimal) or not for α ∈ (0, 1). Therefore, one of our future
work is to determine a low bound estimate for model (2) with α ∈ (0, 1).
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