
mathematics

Article

A Reactive Population Approach on the Dolphin
Echolocation Algorithm for Solving Cell
Manufacturing Systems

Ricardo Soto 1 , Broderick Crawford 1 , Rodrigo Olivares 2,* , César Carrasco 1,
Eduardo Rodriguez-Tello 3, Carlos Castro 4 , Fernando Paredes 5 and
Hanns de la Fuente-Mella 6

1 Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile;
ricardo.soto@pucv.cl (R.S.); broderick.crawford@pucv.cl (B.C.); ccarrascocarre@gmail.com (C.C.)

2 Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso 2362905, Chile
3 Cinvestav Tamaulipas, Km. 5.5 Carretera Victoria - Soto La Marina, Victoria Tamps. 87130, Mexico;

ertello@cinvestav.mx
4 Departamento de Informática, Universidad Técnica Federico Santa Maria, Valparaíso 2390123, Chile;

carlos.castro@inf.utfsm.cl
5 Escuela de Ingeniería Industrial, Universidad Diego Portales, Santiago 8370109, Chile;

fernando.paredes@udp.cl
6 Escuela de Comercio, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile;

hanns.delafuente@pucv.cl
* Correspondence: rodrigo.olivares@uv.cl

Received: 9 July 2020; Accepted: 17 August 2020; Published: 19 August 2020
����������
�������

Abstract: In this paper, we integrate the autonomous search paradigm on a swarm intelligence
algorithm in order to incorporate the auto-adjust capability on parameter values during the run.
We propose an independent procedure that begins to work when it detects a stagnation in a
local optimum, and it can be applied to any population-based algorithms. For that, we employ
the autonomous search technique which allows solvers to automatically re-configure its solving
parameters for enhancing the process when poor performances are detected. This feature is
dramatically crucial when swarm intelligence methods are developed and tested. Finding the
best parameter values that generate the best results is known as an optimization problem itself.
For that, we evaluate the behavior of the population size to autonomously be adapted and controlled
during the solving time according to the requirements of the problem. The proposal is testing on the
dolphin echolocation algorithm which is a recent swarm intelligence algorithm based on the dolphin
feature to navigate underwater and identify prey. As an optimization problem to solve, we test a
machine-part cell formation problem which is a widely used technique for improving production
flexibility, efficiency, and cost reduction in the manufacturing industry decomposing a manufacturing
plant in a set of clusters called cells. The goal is to design a cell layout in such a way that the
need for moving parts from one cell to another is minimized. Using statistical non-parametric tests,
we demonstrate that the proposed approach efficiently solves 160 well-known cell manufacturing
instances outperforming the classic optimization algorithm as well as other approaches reported in
the literature, while keeping excellent robustness levels.

Keywords: autonomous search; swarm intelligence; auto-adjust parameter values; cell manufacturing
systems

Mathematics 2020, 8, 1389; doi:10.3390/math8091389 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-5755-6929
https://orcid.org/0000-0001-5500-0188
https://orcid.org/0000-0003-0582-954X
https://orcid.org/0000-0003-4149-7730
https://orcid.org/0000-0003-2564-8770
http://dx.doi.org/10.3390/math8091389
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/9/1389?type=check_update&version=2

Mathematics 2020, 8, 1389 2 of 25

1. Introduction

Modern engineering tries to solve classical problems by combining new trends on technologies
with traditional models. For example [1–3], mathematical models formulated by widely-known
approaches are applied to improve industrial processes. In this context, the flexibility, efficiency,
and productiveness appear as outstanding features in the current competitive manufacturing
industries [4,5]. One of the most studied topics in this line of research is the manufacturing system.
Developing cellular manufacturing systems is known to be an efficient way for handling those complex
industry requirements. Competitive manufacturing industries have modeled their processes for
managing the key resources in order to maximize their profits [6–8]. A crucial step for building these
competitive systems is the machine-part cell formation (MPCF), which involves the decomposition of a
manufacturing industry in completely independent clusters called cells. Those cells contain machines
that process parts that share some features or belong to the same family. In an ideal decomposition,
each cell is fully dedicated to a family of parts; however, often machines are required by two or
more families. This leads to the generation of exceptional elements, that is, parts that need to visit
different cells. Unfortunately, such a part flow among cells negatively impacts production times,
inventory, and final costs among others [9]. As a consequence, the goal of the MPCF is to smartly
design an industry decomposition into a set of cells in such a way the amount of exceptional elements
is minimized.

Preliminary experiments were carried out by using classic exact methods such as linear
programming [10,11]. Complete techniques are powerful techniques that employ an analysis of
the entire search space to verify the global optimum value, and they often require a high amount of
computational time and memory. For example, goal programming [12,13] is proposed as an exact
method for solving this problem. In [14,15], the constraint programming paradigm is applied to the
manufacturing cell design problem, and Ref. [16] includes the boolean satisfiability method for cell
formation in group technology. As can be seen, these approaches are competitive when small and
medium instances are solved. However, they take too long to solve the hardest instances [17]. For this
reason, we believe that metaheuristics successfully work when a balance between the solving-time and
good solutions is needed. In this context, metaheuristics as tabu search [18,19], simulated annealing [9],
and particle swarm optimization [20] have become significant.

In this research, we solve the MPCF problem testing a swarm intelligence algorithm improved
by a self-tuning component for improving the search process, increasing or decreasing the area of
potential solutions. We propose a new procedure able to properly identify possible stagnation in a
local optimal using information provided by the algorithm performance itself while it moves in the
search space. This procedure is implemented by using modular architecture, and it is independent
from the optimization algorithm. Therefore, it can be included in any population-based technique.
To evaluate our procedure, we firstly employ the dolphin echolocation algorithm as a case study
because parameter tuning has been not included in this algorithm yet. This algorithm is a method
based on swarm intelligence that mimics the capabilities of dolphins, which employ their genetic
sonar for direction-finding and hunting [21]. Such a sonar can emit high-frequency sounds called
clicks to find prey. The algorithm represents the solutions as the dolphin positions, while the emission
of clicks’ balances the exploration and exploitation capabilities of the metaheuristic. To reach the
parameter setting paradigm on the dolphin echolocation algorithm, we use the promising capability
belonging to Autonomous Search (AS) systems, which promotes the self-configuration of complex
optimization solvers [22,23]. The main idea is to let the solver self-adjust some of its parameters in
order to alleviate the parameter-setting work of programmers, which is known to be a tedious task,
problem-dependent, and it is considered as an optimization problem itself. According to the No Free
Lunch theorem [24], there is no general optimal metaheuristic parameter setting. It is not obvious to
define a priori which parameter setting should be used. The optimal values for the parameters depend
mainly on the problem and even the instance to deal with and on the search time that the user wants

Mathematics 2020, 8, 1389 3 of 25

to spend on solving the problem. A universally optimal parameter value set for a given metaheuristic
does not exist [25].

Based on this approach, the improved dolphin echolocation algorithm is able to autonomously
adjust its population at runtime, according to its exhibited performance. We perform a set of
experiments on 160 well-known MPCF instances where the proposed algorithm outperforms the
classic algorithm as well as other metaheuristics reported in the literature while keeping excellent
robustness levels.

The remainder of this paper is organized as follows: First, in Section 2, we present a literature
review of the problem and several techniques to resolve it. Then, the machine-part cell formation
with its mathematical model is explained in Section 3. Later, in Section 4, the dolphin echolocation
algorithm is detailed. Next, our proposed variation is exposed in Section 5 explaining each one of its
steps. Finally, the experimental results, statistical comparisons of results, and conclusions of this work
are shown in Sections 6 and 7, respectively.

2. Literature Review

The design of productive cells has had a large impact in the last two decades, due to the importance
of establishing a strategy when organizing the location of each machine present in a manufactured
industry. However, the interdependence of each productive cell makes it difficult for a product not to
carry out transfers between cells. Therefore, the objective of the problem is to minimize the number of
inter-cell movements to be able to finalize a product. In this context, several approaches have already
been proposed, for instance, exact methods from the mathematical programming domain [10–13,26–28].
We may also find more modern exact methods such as constraint programming [15] and SAT [16].
In addition, exact methods combined with metaheuristics can also be found [29].

Now, considering metaheuristics for resolving the MPCF, we also find an extensive list of
works devoted to manufacturing systems, principally using genetic algorithms. For instance,
using a traditional approach [30], for the minimization of exceptional elements that conduces to
a multi-objective optimization standpoint [31], mixed with discrete event simulation [32] to solve
an MPCF mathematical model from the automobile industry, and combined with local search
procedures [33].

Predator–prey as a variant of the classic genetic algorithm has also been reported [34],
which proposes using as a fitness function a new grouping efficacy computation of cells.
The scatter search method has been employed as well for solving manufacturing systems problems,
but mostly oriented to multi-criteria group scheduling [35]. Classic simulated annealing [9],
tabu search [18,19,36–38], and differential evolution [39] algorithms also present in the literature.
These approaches are oriented to the grouping efficacy of cells in machine-part cell formation.
A combination of particle swarm optimization and data mining techniques has also been used [20]
to solve a well-known set of MPCF problems. More recent metaheuristics have also been employed
to solve the this problem, for instance, a migrating birds algorithm is used to solve 90 classic MPCF
problems efficiently [40]. An extended version of this work, where the several sorting processes of
the metaheuristic are paralleled, has also been published [41]. Finally, another group of modern
metaheuristics is proposed to solve this same set of problems efficiently, some examples are artificial
fish swarm algorithms [42], shuffled frog leaping algorithms [43], bat algorithms [44], and flower and
pollination algorithms [45].

Despite the long list of reported manuscripts being varied and extensive, currently few works are
designed to solve this problem using a self-adjusting approach. This work is focused on improving
the classic dolphin echolocation algorithm [46] by introducing autonomous search capabilities to the
core algorithm, which is able to balance the amount of population required to different parts of the
search space. We select this swarm intelligence method because a self-adaptive approach has not been
proposed for this algorithm yet. In this context, we investigate a recent proposal about a simplification
of the dolphin echolocation algorithm that it needs no empirical parameter to work [47]. In [48],

Mathematics 2020, 8, 1389 4 of 25

a modified dolphin echolocation algorithm based on the creation of the basic collapse mechanisms,
and it is proposed to optimize analysis of plastic structures. This work verifies the efficiency of the
algorithm by comparing results with exact solutions. Similar work can be seen in [49] where again an
improved dolphin echolocation algorithm is developed to solve a complex optimization problem.

Using statistical non-parametric tests, we compare the results with the classic algorithm and
several other metaheuristics, illustrating the efficiency of our AS algorithm. We additionally analyze a
larger and more complex set of instances composed of 160 benchmarks, providing new bounds for a
subset of instances whose global optimum is currently unknown.

3. Problem Statement

As previously explained, the MPCF consists of organizing a factory plant in productive cells,
where each cell contains machines that process product parts. The idea is to minimize the so-called
exceptional elements, which are indeed parts that move from one cell to another to satisfy the
production workflow [27]. The mathematical model representing this problem is described as follows:

• Indices.

– i: machine type, i ∈ {1, . . . , M}.
– j: part type, j =∈ {1, . . . , P}.
– k: cell type, k =∈ {1, . . . , C}.

• Parameters.

– M: the number of machines.
– P: the number of parts.
– C: the number of cells.
– Mmax: the maximum number of machines per cell.

• Variables.

– X = [xij]: the binary machine-part incidence matrix, where:

xij =

{
1 if machine i process the part j
0 otherwise

– Y = [yik]: the binary machine-cell incidence matrix, where:

yik =

{
1 if machine i belongs to cell k
0 otherwise

– Z = [zjk]: the binary part-cell incidence matrix, where:

zjk =

{
1 if part j belongs to cell k
0 otherwise

The objective function is given by:

minimize
C

∑
k=1

M

∑
i=1

P

∑
j=1

aij zjk (1− yik) (1)

subject to:
C

∑
k=1

yik = 1, ∀ i (2)

C

∑
k=1

zjk = 1, ∀ j (3)

Mathematics 2020, 8, 1389 5 of 25

M

∑
i=1

yik ≤ Mmax, ∀ k (4)

An example of binary machine-part incidence matrix is depicted in Figure 1 together with its
corresponding ideal configuration, where no exceptional elements are present.

Part
Machine 1 2 3 4 5 6 7 8 9 10

A 1 1 1
B 1 1 1
C 1 1 1
D 1 1
E 1 1
F 1 1
G 1 1
H 1 1
I 1 1 1
J 1 1 1

Part
Machine 3 7 10 1 2 6 9 4 5 8

A 1 1 1
E 1 1
F 1 1
H 1 1
B 1 1 1
C 1 1 1
I 1 1 1
D 1 1
G 1 1
J 1 1 1

Figure 1. Initial and ideal incidence machine-part matrices.

This organization is built using the solution of the problem, which is given by the binary
machine-cell incidence matrix depicted on the left side of Figure 2. Machines B, C, and I are stated
in cell 1; the machines D, G, and J in cell 2; the machines A, E, F, and H in cell 3. An analogous
representation of this matrix is depicted in Figure 2, which is employed in this paper as it allows for
avoiding the generation of unfeasible solutions when the same machine is assigned to more than one
cell by the metaheuristic.

Machine
Cell A B C D E F G H I J

1 1 1 1
2 1 1 1
3 1 1 1 1

Machine
A B C D E F G H I J

Cell 3 1 1 2 3 3 2 3 1 2

Figure 2. Two solution representations for the machine-cell matrix.

4. Dolphin Echolocalization Algorithm

Echolocation is an interesting exploration system present in some species of the animal kingdom.
One of them is the dolphin, which smartly uses this feature for locating objects over the sea, particularly

Mathematics 2020, 8, 1389 6 of 25

its prey. The dolphin echolocation operates by the emission of sounds, called clicks, and echoes.
Once the dolphin emits a click, an echo is returned when an object is hit by the sound. The time
interval between the click emission and echo reception is used by the dolphin to evaluate the distance
from the prey. Using this capability, the dolphin is able to track an object by continuously emitting
clicks and receiving its corresponding echo. The dolphin echolocation metaheuristic mimics those
behaviors and a general procedure of the algorithm is depicted in Algorithm 1.

• Parameters of the algorithm.

– NumberLoops: Maximum number of iterations (stop criteria).
– NL: The number of locations. Each location will correspond to a potential solution of

the problem.
– Re: The effective radius of search. This parameter is used to calculate the accumulated fitness

of the problem.
– Power: The degree of the convergence curve.

Algorithm 1: Dolphin echolocation algorithm.

1 initialPopulation();
2 while not isStopCriterionReached() do
3 calculatePP();
4 calculateFitness();
5 findBestLocation();
6 allocateProbabilities();
7 selectNext();
8 loopLocations();
9 end

The first phase of the algorithm is to sort in ascending or descending order the search space
of the problem. To this end, a matrix of alternatives is created. Then, for each decision variable j,
an associated vector Aj is created that holds the possible alternatives for j. Vectors for each decision
variable are grouped forming the AlternativesMA:NV matrix, where MA is Max(Aj)j=1:NV , and NV is
the number of variables of the problem. Then, NL random dolphin locations (solutions) are produced
and then stored in a LNL×NV matrix. For the present problem, each solution is composed of a set of
machines assigned to cells as depicted in Figure 2.

On line 3, a while loop encloses a set of actions to be performed until the stop criterion is met.
An interesting feature of the dolphin echolocation algorithm is the capability of balancing exploration
and exploitation capabilities by a user-defined convergence factor. Indeed, the convergence curve on
which the process should operate is defined by Equation (5):

PP(Iti) = PP1 + (1− PP1)
ItPower

i − 1
(ItNumber)Power − 1

(5)

where PP is the predefined probability, PP1 is the convergence factor of the first iteration, Iti is the
iteration i, and ItNumber is the number of iterations. Once PP is computed, the fitness for each location
must be calculated. On line 6, the accumulative fitness is computed according to Algorithm 2.

Mathematics 2020, 8, 1389 7 of 25

Algorithm 2: Calculate accumulative fitness.

1 for i = {1, . . . , numLocation} do
2 for j = {1, . . . , NV} do
3 autonomousSearch() and calculateFitness();
4 findPositionLij();
5 for k = {−Re, . . . , Re} do

6 AF(A+k)j ←
1

Re
(Re − |k|) f itness(i) + AF(A+k)j

7 end
8 end
9 end

where AF(A+k)j defines the accumulative fitness of the (A + k)th alternative for variable j.
The autonomous search method will be detailed in the next section.

Once the accumulative fitness is computed, the best location must be encountered, and the
alternatives allocated to the variables of the best location in the AF matrix are set to zero, as shown
in Algorithm 3.

Algorithm 3: Restart AF values.

1 for i = {1, . . . , alternatives} do
2 for j = {1, . . . , NV} do
3 if i = The best location(j) then
4 AFij ← 0;
5 end
6 end
7 end

5. Autonomous Search

The basic version of the dolphin echolocation algorithm does not have capability for controlling
its parameters. If the behavior of NL (numbers of location) is studied, we can see that it is
valuated before the run of the metaheuristic. When the loop statement of the algorithm is running,
the potential solutions are modified updating their location. However, the total number of solutions
remains unchanged.

On the one hand, we can observe that the second part of the metaheuristic uses a reset process for
the accumulate function. It is a static procedure and it is influenced by the best solution, resting always
according to the best location (solution). On the other hand, in the third part of the algorithm,
the assignment of probabilities is controlled by condition if the alternative is equal to the best location.
Again, the best solution dramatically impacts the performance of the procedure. For both cases,
that thought is not necessarily successful, since often a bad solution, sometimes, can lead the search to
the global best solution.

These concerns are very important for the efficiently of the algorithm, the reason why we have
decided to create an autonomous system approach for evaluating and calculating the value of the NL
in an autonomous way. For that, we use autonomous search, which is a particular case of adaptive
systems that improve their solving performance by modifying and adjusting themselves to the problem
at hand, either by adaptation or supervised adaptation [22,50]. This approach has successfully been
applied in constraint programming using bio-inspired algorithms [51] for controlling the process
resolution of solver tools [52]. The objective of autonomous search is to allow the metaheuristic to
self-adapt the value of the parameter NL during the run, according to the algorithm convergence.

Mathematics 2020, 8, 1389 8 of 25

Recent works illustrating how to improve evolutionary algorithms by dynamically controlling
parameters during solving time can be seen in [53–58]. Analyzing these works, we have considered
to modify the original dolphin echolocation algorithm taking the autonomous search principles
for creating a procedure that adaptively vary the number of potential solutions (NL parameter),
according to the exhibited efficiency during the search process. The dolphin echolocation algorithm
involves at least four parameters, but we vary only the NL parameter because, in a previous sample
phase, we observe that this component dramatically impacts the performance of the algorithm.
On the other hand, we are convinced that measuring the quality of an autonomous multi-proposal is
complicated, due to the fact that there would be no clarity on which parameter gives the best result.
As a consequence, we will have a much more straightforward implementation.

We believe this approach also provides know-how for future experiments involving adaptive
population for population-based algorithms. The procedure is described in Algorithm 4. Inputs of the
procedure are: the number of location NL, the number of variables NV, current iteration t, and number
of stagnation ls that represents the number of iterations where the best solution does not improve,
commonly called “local search”.

Algorithm 4: Adaptive approach for the NL parameter.
Data: NL, NV, t, and ls
Result: New value for the parameter NL and the locations updated

1 if t achieves ls then
2 α← |bestFitness−worstFitness|

∑NL
i=1 f itness(i)

;

3 if Random[0, 1) > α then
4 ns← roundup(NL× α);
5 rand← Random[0, 1];
6 NL← NL + ns;
7 if Random[0, 1) > α then
8 for i = {ns, . . . , NL} do
9 Li ← best(Li);

10 end
11 end
12 else
13 for i = {ns, . . . , NL} do
14 for j = {1, . . . , NV} do
15 Lij ← Random{0, 1};
16 end
17 end
18 end
19 end
20 else
21 rs← roundup(NL× α);
22 if NL ≥ rs then
23 NL← NL− rs;
24 end
25 end
26 end

Now, we calculate the difference between best and worst solutions, according to the cost of
each one and then it is divided by the sum of all costs (Line 2). This value describes the percentage
(Random[0, 1) > α) of maximum separation between solutions. A low percentage value indicates that

Mathematics 2020, 8, 1389 9 of 25

solutions are homogeneous skewed to the best solution, in which case the procedure creates new
solutions (Lines 4–18). To create these solutions, we reuse the percentage to determinate if they are
cloned from best solution (Lines 8–10) or they are randomly generated (Lines 13–17). On the other
hand, if α > Random[0, 1) means that solutions are heterogeneous, thus the procedure removes the
worst solutions (Lines 21–24). In both cases, the percentages calculated can also be seen as a mechanism
to support the exploration and exploitation phases. If solutions are homogeneous, this procedure
allows for exploring towards new solutions, while, if solutions are heterogeneous, the procedure
converges towards a set of similar solutions itself.

Finally, we implement Algorithm 4 for parameter tuning in a modular manner. If we closely
analyze this procedure, we can note that it operates independently of the main process of the
metaheuristic. When the dolphin echolocation algorithm is caught in a local optimal, the adaptive
approach is invoked to modify the population. In this context, we guarantee that this module can be
included as a plug and play plugin in more than 80 population-based metaheuristics [59] without an
over-effort. In this sense, the proposed contribution is framed to a more broad approach.

6. Experimental Results

In order to evaluate the performance of the autonomous algorithm, we have used two sets of
the machine-part cell formation, the first consisting of 90 instances proposed by Boctor [27], while the
second consists of 70 new instances which have a higher level of complexity. Parameter setting
is known to be a complex task, itself being recognized as an optimization problem. To select the
parameters of the algorithm, we performed a sampling test. Best results were obtained using the
following configuration taken from [60]:

• Number locations (NL): 10.
• Number loops (Iterations): 2000.
• Effective radius (Re): 1.
• Convergence factor (PP0): 0.1.
• Degree of the curve (Power): 1.
• Local search (ls): 20.

We performed variations only on the number of locations, due to its high level of impact on the
efficiency of the algorithm. Autonomous search indicates the changes that must be made will depend
on the performance of the algorithm in measurable periods. Thus, we can establish as a premise:
“a better quality of solutions leads to an increase in the number of solutions, while a lower quality of
solutions means a decrease in the number of solutions”.

Our approach has been implemented in Java 1.8 and run in a computer with an Intel Core i5 6600 k
3500 MHz processor, 8 GB RAM DDR4 2133 MHz with Windows 10 64 bits as an operating system.

6.1. Boctor Problems

For testing, Boctor refers to 10 basic problems which come out in 90 different instances, where there
are instances with two and three numbers of cells. In the first one, the maximum number of machines
per cell (Mmax) varies between 8 and 12. The second one presents variations between 6 and 9. Each of
these instances will be described in Table 1 where it is assigned an identifier number for each of them.

In this experiment, population variations were performed every 31 iterations, making
increases and decreases randomly. In order to measure the performance of the modified
algorithm, comparisons were made with the original algorithm, establishing fixed populations of
NL = {5, 10, 15, 20, 25, and 30}, which seeks to establish similar conditions to those presented by the
modified Dolphin Echolocation Algorithm. The obtained results can be seen in Table 2.

Mathematics 2020, 8, 1389 10 of 25

Table 1. Boctor instances.

Problem Instance Mmax C OPT Problem Instance Mmax C OPT

1 Boctor 01 8 2 11 10 Boctor 02 8 2 7
2 Boctor 01 9 2 11 11 Boctor 02 9 2 6
3 Boctor 01 10 2 11 12 Boctor 02 10 2 4
4 Boctor 01 11 2 11 13 Boctor 02 11 2 3
5 Boctor 01 12 2 11 14 Boctor 02 12 2 3
6 Boctor 01 6 3 27 15 Boctor 02 6 3 7
7 Boctor 01 7 3 18 16 Boctor 02 7 3 6
8 Boctor 01 8 3 11 17 Boctor 02 8 3 6
9 Boctor 01 9 3 11 18 Boctor 02 9 3 6

19 Boctor 03 8 2 4 28 Boctor 04 8 2 14
20 Boctor 03 9 2 4 29 Boctor 04 9 2 13
21 Boctor 03 10 2 4 30 Boctor 04 10 2 13
22 Boctor 03 11 2 3 31 Boctor 04 11 2 13
23 Boctor 03 12 2 1 32 Boctor 04 12 2 13
24 Boctor 03 6 3 9 33 Boctor 04 6 3 27
25 Boctor 03 7 3 4 34 Boctor 04 7 3 18
26 Boctor 03 8 3 4 35 Boctor 04 8 3 14
27 Boctor 03 9 3 4 36 Boctor 04 9 3 13

37 Boctor 05 8 2 9 46 Boctor 06 8 2 5
38 Boctor 05 9 2 6 47 Boctor 06 9 2 3
39 Boctor 05 10 2 6 48 Boctor 06 10 2 3
40 Boctor 05 11 2 5 49 Boctor 06 11 2 3
41 Boctor 05 12 2 4 50 Boctor 06 12 2 2
42 Boctor 05 6 3 11 51 Boctor 06 6 3 6
43 Boctor 05 7 3 8 52 Boctor 06 7 3 4
44 Boctor 05 8 3 8 53 Boctor 06 8 3 4
45 Boctor 05 9 3 6 54 Boctor 06 9 3 3

55 Boctor 07 8 2 7 64 Boctor 08 8 2 13
56 Boctor 07 9 2 4 65 Boctor 08 9 2 10
57 Boctor 07 10 2 4 66 Boctor 08 10 2 8
58 Boctor 07 11 2 4 67 Boctor 08 11 2 5
59 Boctor 07 12 2 4 68 Boctor 08 12 2 5
60 Boctor 07 6 3 11 69 Boctor 08 6 3 14
61 Boctor 07 7 3 5 70 Boctor 08 7 3 11
62 Boctor 07 8 3 5 71 Boctor 08 8 3 11
63 Boctor 07 9 3 4 72 Boctor 08 9 3 10

73 Boctor 09 8 2 8 82 Boctor 10 8 2 8
74 Boctor 09 9 2 8 83 Boctor 10 9 2 5
75 Boctor 09 10 2 8 84 Boctor 10 10 2 5
76 Boctor 09 11 2 5 85 Boctor 10 11 2 5
77 Boctor 09 12 2 5 86 Boctor 10 12 2 5
78 Boctor 09 6 3 12 87 Boctor 10 6 3 10
79 Boctor 09 7 3 12 88 Boctor 10 7 3 8
80 Boctor 09 8 3 8 89 Boctor 10 8 3 8
81 Boctor 09 9 3 8 90 Boctor 10 9 3 5

Mathematics 2020, 8, 1389 11 of 25

Table 2. Boctor and AS results. For space reasons, we renamed I instead of Iterations.

ID AS NL = 5 NL = 10 NL = 15 NL = 20 NL = 25 NL = 30

t I x̄ t I x̄ t I x̄ t I x̄ t I x̄ t I x̄ t I x̄

1 5 10 11 6 30 11.6 9 20 11.5 6 20 11.5 10 50 11.4 13 60 11.1 18 60 11
2 4 10 11 4 20 11.5 4 20 11.6 5 20 11.5 5 20 11.3 6 30 11.2 7 20 11
3 4 10 11 4 20 11.4 5 20 11.4 5 30 11.3 7 30 11.2 6 20 11.2 7 30 11
4 5 20 11 7 40 11.6 6 60 11.5 7 50 11.5 6 30 11.3 8 30 11.2 15 90 11.1
5 8 60 11 20 210 11.5 13 150 11.3 10 130 11.3 17 180 11.2 9 80 11.1 12 110 11
6 35 230 27 42 240 27.7 44 240 27.5 49 230 27.4 39 220 27.3 37 250 27.3 55 280 27.2
7 18 80 18 35 330 18.6 24 220 18.5 29 250 18.3 21 190 18.3 25 230 18.2 30 240 18.2
8 10 70 11 14 120 11.5 11 100 11.4 13 120 11.2 14 110 11.2 16 100 11.1 15 90 11.1
9 10 50 11 13 140 11.4 13 140 11.4 14 130 11.3 12 90 11.4 11 120 11.2 16 150 11.1
10 4 30 7 16 120 7.5 9 70 7.7 10 70 7.6 7 50 7.5 8 60 7.4 11 90 7.2
11 6 70 6 8 90 6.6 9 110 6.5 8 80 6.5 9 90 6.5 9 90 6.4 10 100 6.4
12 8 80 4.1 10 100 4.5 10 100 4.5 11 110 4.4 12 130 4.3 13 120 4.3 14 160 4.3
13 3 20 3 3 30 3.6 3 40 3.6 4 40 3.5 4 50 3.4 5 40 3.4 5 50 3.2
14 6 20 3 6 40 3.7 6 30 3.6 8 40 3.5 9 50 3.3 11 50 3.3 12 60 3.3
15 7 40 7 7 50 7.5 8 50 7.4 8 50 7.4 12 70 7.4 13 80 7.3 13 90 7.2
16 5 40 6 6 40 6.6 7 40 6.5 9 70 6.3 14 100 6.3 17 110 6.2 18 130 6.1
17 11 100 6 15 130 6.7 19 180 6.6 22 190 6.5 27 230 6.4 31 290 6.3 38 310 6.3
18 38 200 6 41 270 6.8 44 320 6.7 45 340 6.6 47 390 6.5 49 460 6.5 50 530 6.5
19 7 50 4 7 60 4.4 8 60 4.4 8 70 4.4 10 90 4.3 12 100 4.2 15 90 4.1
20 3 20 4 4 40 4.6 4 50 4.5 7 80 4.5 8 80 4.4 11 90 4.3 12 110 4.2
21 8 50 4.2 9 70 4.7 9 60 4.7 11 90 4.6 12 110 4.5 14 150 4.5 15 160 4.4
22 3 20 3 3 30 3.5 4 40 3.4 6 50 3.4 9 80 3.3 10 110 3.2 11 110 3.2
23 4 20 1.2 4 40 1.7 6 50 1.7 7 80 1.6 7 70 1.6 9 100 1.5 10 100 1.4
24 12 70 9 13 80 9.6 13 90 9.5 15 110 9.4 18 200 9.4 20 240 9.3 21 270 9.3
25 8 60 4 8 90 4.5 9 80 4.6 9 90 4.4 11 190 4.3 12 130 4.3 13 130 4.2
26 5 40 4 5 40 4.5 4 60 4.5 5 60 4.4 8 80 4.3 9 80 4.3 9 90 4.2
27 4 30 4 4 50 4.6 5 60 4.5 7 80 4.5 9 70 4.4 9 100 4.5 10 90 4.4
28 4 20 14 5 30 14.7 6 40 14.5 5 50 14.4 7 60 14.4 8 70 14.3 9 100 14.3
29 6 50 13 7 60 13.5 7 70 13.4 8 70 13.3 9 100 13.3 11 130 13.2 14 170 13.2
30 6 60 13 6 60 13.6 6 80 13.5 7 60 13.5 8 70 13.4 10 90 13.4 11 120 13.3
31 4 30 13 4 40 13.5 5 40 13.5 5 60 13.4 6 80 13.3 7 80 13.2 9 90 13.2
32 3 20 13 3 30 13.6 4 50 13.3 6 50 13.3 8 70 13.2 9 80 13.2 11 110 13.1
33 4 20 27 4 40 27.5 6 50 27.4 9 70 27.4 11 120 27.5 12 130 27.3 14 160 27.3
34 14 120 18 17 180 18.5 15 130 18.3 18 190 18.2 19 210 18.3 22 290 18.2 26 320 18.1
35 11 100 14 13 120 14.6 14 150 14.6 17 190 14.5 20 230 14.3 22 270 14.3 23 300 14.3
36 11 100 13 12 130 13.4 13 120 13.3 14 150 13.3 13 170 13.2 18 200 13.2 19 220 13.1
37 5 30 9.1 5 40 9.7 6 50 9.6 5 40 9.5 6 30 9.5 9 40 9.4 10 60 9.4
38 6 30 6.1 7 40 6.8 8 60 6.7 7 50 6.6 9 50 6.4 0 70 6.4 11 80 6.4
39 8 50 6.1 9 70 6.7 9 60 6.5 11 90 6.5 12 80 6.3 14 90 6.3 15 110 6.3
40 2 10 5 3 30 5.5 4 30 5.4 6 70 5.4 8 40 5.3 9 80 5.2 10 70 5.2
41 2 20 6.1 2 40 6.8 3 40 6.5 5 60 6.4 7 60 6.4 8 50 6.3 10 90 6.3
42 17 100 11 18 200 11.5 18 210 11.5 20 230 11.4 21 220 11.3 18 170 11.3 25 240 11.1
43 5 40 8 5 40 8.6 6 60 8.7 7 60 8.5 8 80 8.4 9 80 8.3 9 100 8.2
44 8 60 8 9 70 8.5 10 80 8.4 11 90 8.3 12 110 8.3 12 100 8.2 13 160 8.1
45 5 30 6 6 40 6.4 7 60 6.3 7 50 6.3 8 70 6.2 9 50 6.2 15 90 6.1

Mathematics 2020, 8, 1389 12 of 25

Table 2. Cont.

ID AS NL = 5 NL = 10 NL = 15 NL = 20 NL = 25 NL = 30

t I x̄ t I x̄ t I x̄ t I x̄ t I x̄ t I x̄ t I x̄

46 2 10 5 3 50 5.6 4 30 5.5 5 70 5.4 9 80 5.4 7 70 5.3 10 110 5.2
47 2 20 3 3 30 3.5 4 20 3.5 4 50 3.4 7 80 3.3 8 100 3.2 10 130 3.2
48 4 60 3.1 6 100 3.7 6 70 3.6 9 130 3.6 11 120 3.5 14 120 3.4 17 180 3.4
49 2 10 3 3 40 3.6 4 60 3.5 5 80 3.5 10 90 3.4 11 110 3.3 14 150 3.2
50 2 10 2.1 3 20 2.8 5 30 2.7 7 50 2.6 8 60 2.3 9 80 2.3 10 110 2.3
51 4 30 6 4 40 6.5 7 50 6.4 9 70 6.3 12 130 6.3 15 130 6.2 17 160 6.2
52 16 150 4 19 180 4.7 18 160 4.5 19 210 4.3 20 240 4.3 17 150 4.2 19 170 4.1
53 5 10 4 6 70 4.5 7 90 4.4 9 100 4.4 10 90 4.2 13 120 4.2 14 140 4.2
54 10 100 3 12 110 3.4 13 100 3.4 14 130 3.3 16 180 3.2 18 210 3.2 22 250 3.1
55 4 20 7 5 50 7.6 4 30 7.5 6 80 7.4 5 60 7.3 8 70 7.2 11 120 7.2
56 4 30 4 4 40 4.5 6 50 4.2 7 60 4.1 8 70 4.1 9 100 4.1 9 110 4
57 3 10 4 3 30 4.4 4 60 4.4 4 50 4.3 6 90 4.3 7 80 4.3 12 130 4.2
58 2 10 4 3 20 4.7 3 40 4.6 4 40 4.5 5 50 4.4 6 80 4.4 7 80 4.3
59 4 20 4 4 30 4.3 4 50 4.3 5 60 4.2 6 70 4.2 8 110 4.1 9 100 4.1
60 22 140 11 28 210 11.5 24 180 11.5 29 190 11.4 30 260 11.3 33 290 11.3 34 300 11.3
61 5 40 5 5 50 5.5 6 50 5.5 7 40 5.3 6 30 5.3 9 40 5.2 10 80 5.2
62 3 30 5.1 4 30 5.6 4 50 5.6 6 70 5.5 8 60 5.4 8 70 5.4 11 140 5.3
63 8 70 4 8 70 4.4 8 90 4.4 9 80 4.4 11 110 4.3 13 140 4.2 15 160 4.2
64 4 30 13 4 40 13.6 4 40 13.5 5 70 13.4 6 80 13.4 7 90 13.2 10 100 13.1
65 4 30 10 4 30 10.7 5 60 10.5 6 50 10.3 7 80 10.3 8 80 10.3 11 90 10.2
66 8 70 8 8 90 8.6 9 80 8.5 9 80 8.5 10 110 8.4 13 140 8.3 17 200 8.2
67 3 10 5 3 20 5.5 3 40 5.4 4 60 5.4 5 70 5.3 7 90 5.3 12 130 5.2
68 2 20 5 2 40 5.4 3 30 5.4 4 70 5.3 8 120 5.2 9 110 5.2 10 130 5.1
69 8 60 14 8 60 14.6 8 70 14.5 9 90 14.5 10 110 14.4 12 120 14.2 13 140 14.1
70 4 30 11 4 30 11.5 4 50 11.5 5 70 11.4 7 80 11.3 7 90 11.2 10 120 11.1
71 5 50 11 5 50 11.5 5 60 11.4 5 70 11.3 6 80 11.2 7 90 11.1 8 100 11
72 15 170 10 16 160 10.6 17 180 10.7 19 200 10.5 21 230 10.3 16 170 10.2 18 190 10.2
73 16 100 8 16 110 8.5 19 210 8.4 17 120 8.5 18 140 8.4 21 230 8.2 22 240 8.1
74 4 10 8 4 30 8.6 4 40 8.6 6 50 8.6 7 60 8.5 7 90 8.4 10 110 8.3
75 2 10 8 3 20 8.4 4 40 8.4 4 40 8.4 4 50 8.3 5 70 8.2 7 80 8.1
76 3 10 5 3 10 5.7 3 30 5.6 3 40 5.4 4 50 5.4 6 80 5.2 9 100 5.1
77 4 30 5 4 50 5.5 5 60 5.5 7 80 5.5 8 80 5.3 9 110 5.1 12 130 5.1
78 7 70 12 7 80 12.3 8 90 12.3 9 90 12.2 10 100 12.2 9 110 12.1 15 210 12.1
79 5 40 12 5 40 12.5 5 50 12.5 6 70 12.4 8 90 12.3 8 100 12.2 11 110 12.2
80 6 50 8 7 60 8.6 7 70 8.6 7 80 8.5 9 70 8.4 10 80 8.3 12 90 8.1
81 15 70 8 16 70 8.5 20 110 8.4 18 90 8.3 17 80 8.2 22 160 8.1 26 190 8
82 5 30 8 5 40 8.7 5 60 8.7 6 70 8.6 8 90 8.4 9 80 8.2 10 90 8.1
83 6 50 5 6 50 5.5 6 80 5.3 8 100 5.3 9 70 5.2 11 120 5.2 12 120 5.1
84 4 20 5 4 30 5.3 4 50 5.3 5 60 5.2 6 70 5.2 8 110 5.1 9 100 5
85 2 20 5 2 30 5.4 3 30 5.5 4 50 5.4 7 80 5.3 8 90 5.3 11 130 5.1
86 2 20 5 3 40 5.6 4 60 5.6 5 60 5.5 9 90 5.4 9 100 5.4 10 110 5.3
87 12 70 10 12 80 10.5 15 110 10.5 18 170 10.4 19 200 10.3 21 230 10.2 24 260 10.1
88 7 90 8 7 90 8.4 7 80 8.4 8 90 8.3 9 100 8.2 10 120 8.2 12 140 8.1
89 8 60 8 8 60 8.6 8 90 8.5 9 80 8.4 10 90 8.3 11 110 8.3 15 170 8.2
90 4 30 5 4 40 5.5 4 60 5.4 5 50 5.3 6 80 5.3 8 90 5.2 9 100 5.1

Avg 6.9 49 7.9 8.2 71.1 8.5 8.6 77.6 8.4 9.7 89.1 8.3 11 103.6 8.2 12.1 116.9 8.2 14.6 140.3 8.1

We already have used metrics to successfully evidence the performance of algorithms [52,61–64].
In this case study, we employ a similar formulation to measure the potential of the adaptive approach:

1. The time was established in milliseconds (t) to reach the global optimum.

Mathematics 2020, 8, 1389 13 of 25

2. We used the number of iterations (Iterations) necessary to obtain the global optimum.
3. We will use the robustness of the algorithm which is represented by the following formula:

robustness = x̄ =
∑ Zi
31

(6)

Within the obtained results, it can be seen that the conjunction of autonomous search with dolphin
echolocation algorithm has achieved in 91.1% of the cases to reach a 100% robustness. The experiments
that were executed by the original algorithm obtained the following results, NL = 5, only 10 instances
managed to obtain a robustness greater than 50%; NL = 10, 32 instances reached a percentage equal to
the previous one; NL = 15, 50 instances obtained a robustness greater than 60%; NL = 20, 52 instances
reached a percentage higher than 70%; NL = 25, 48 instances managed to overcome a robustness
of 80%; NL = 30, 8 instances achieved 100% robustness, which means 8.89% of the experiments
performed. However, this is achieved with a significant amount of time and Iterations needed to reach
the global optimum. On the other hand, in 100% of the cases, the autonomous approach managed
to obtain smaller execution times and Iterations quantity than the original algorithm. However,
with NL = 5, similar times and Iterations were obtained due to the small amount of population.
However, its robustness is largely affected.

With the obtained results, it can be established that, when using the technique of autonomous
search, the optimal solution is reached in a smaller amount of time and Iterations, which can be
observed in Figures 3 and 4. On the other hand, Figure 5 shows the robustness of the algorithm,
which is increased when using autonomous search. However, after updating the population with the
same robustness increments, but with a higher number of Iterations and execution time.

AS 5 10 15 20 25 30

8

10

12

14

Populaiton (NL)

Ti
m

e
(m

il
is

ec
on

ds
)

Figure 3. Average of Runtime.

Mathematics 2020, 8, 1389 14 of 25

AS 5 10 15 20 25 30
40

60

80

100

120

140

Populaiton (NL)

Lo
op

s

Figure 4. Average of Iterations.

AS 5 10 15 20 25 30

8

8.2

8.4

Populaiton (NL)

R
ob

us
tn

es
s

Figure 5. Average of Robustness.

6.2. Other Instances

To reaffirm the performance of the autonomous dolphin echolocation algorithm, proceed to a new
phase of experimentation with problems of a greater degree of difficulty, which consists of 70 new
instances depicted in Table 3.

As in previous experiments, population changes are performed every 20 iterations (local search
number ls, defined at the beginning of this section), which consist of increases or decreases in the
number of locations, according to Algorithm 4. To validate the performance of the technique used,
it will be compared with the original algorithm, with fixed populations of NL = {5, 10, 15, 20, 25 and
30}, in order to establish similar conditions. The obtained results are presented in Table 4.

Mathematics 2020, 8, 1389 15 of 25

Table 3. Hardest instances.

Instance M P Problem Mmax C Problem Mmax C

King–Nakornchai Problem [65] 5 7 1 3 2 2 2 3
Waghodekar–Sah Problem [66] 5 7 3 3 2 4 2 3

Seifoddini Problem [67] 5 18 5 3 2 6 2 3
Kusiak–Chow Problem [26] 6 8 7 3 2 8 2 3
Kusiak–Chow Problem [26] 7 11 9 4 2 10 3 3

Boctor Problem [27] 7 11 11 4 2 12 3 3
Seifoddini–Wolfe Problem [67] 8 12 13 4 2 14 3 3

Chandrasekharan–Rajagopalan Problem [68] 8 20 15 4 2 16 3 3
Chandrasekharan–Rajagopalan Problem [68] 8 20 17 4 2 18 3 3

Mosier–Taube Problem [69] 10 10 19 5 2 20 4 3
Chan and Milner Problem [70] 10 15 21 5 2 22 4 3

Askin–Subramanian Problem [71] 14 24 23 7 2 24 5 3
Stanfel Problem [72] 14 24 25 7 2 26 5 3

McCormick Problem [73] 16 24 27 8 2 28 6 3
Srinivasan Problem [74] 16 30 29 8 2 30 6 3

King Problem [65] 16 43 31 8 2 32 6 3
Carrie Problem [75] 18 24 33 9 2 34 6 3

Mosier–Taube Problem [69] 20 20 35 10 2 36 7 3
Kumar–Vannelli Problem [76] 20 23 37 10 2 38 7 3

Carrie Problem [75] 20 35 39 10 2 40 7 3
Boe–Cheng Problem [77] 20 35 41 10 2 42 7 3

Chandrasekharan–Rajagopalan Problem [68] 24 40 43 12 2 44 8 3
Chandrasekharan–Rajagopalan Problem [68] 24 40 45 12 2 46 8 3
Chandrasekharan–Rajagopalan Problem [68] 24 40 47 12 2 48 8 3
Chandrasekharan–Rajagopalan Problem [68] 24 40 49 12 2 50 8 3
Chandrasekharan–Rajagopalan Problem [68] 24 40 51 12 2 52 8 3
Chandrasekharan–Rajagopalan Problem [68] 24 40 53 12 2 54 8 3

McCormick Problem [73] 27 27 55 14 2 56 9 3
Carrie Problem [75] 28 46 57 14 2 58 10 3

Kumar–Vannelli Problem [76] 30 41 59 15 2 60 10 3
Stanfel Problem [72] 30 50 61 15 2 62 10 3
Stanfel Problem [72] 30 50 63 15 2 64 10 3

King–Nakornchai Problem [65] 30 90 65 18 2 66 12 3
McCormick Problem [73] 37 53 67 19 2 68 13 3

Chandrasekharan–Rajagopalan Problem [68] 40 100 69 20 2 70 14s 3

To measure the performance of the solution, we use the following metrics:

1. Determining the execution time necessary to reach the global optimum, which is expressed
in milliseconds.

2. The best optimal found (x).
3. Using Equation (6) to show the robustness (x̄) of the obtained results.

Through the obtained results, it is possible to affirm that an autonomous approach obtained in 90%
of the cases proposed 100% of the robustness. On the other hand, the experiments that were executed
by the original algorithm obtained the following results: when NL = 5, only 32% achieved 100%;
if NL = 10, then 37%; for NL = 15, 40% cases are successful; in the case of NL = 20, the percentage
with good results achieves a maximum of 46% while NL = 25 outperforms 58%. Finally, the best
results are given by NL = 30, where it is able to resolve 140 instances, equivalent to 87% of total.
However, these results need a longer execution time compared to the modified algorithm. Although
our proposal is better than all configurations of the original version, due to it finding almost 90% of the
known optimal, its solving time is overcome by the original version because of the fact that it includes
an extra computational-time to the self-adjustment of the NL.

Mathematics 2020, 8, 1389 16 of 25

Results allow asserting that using the proposed autonomous approach for the dolphin
echolocation algorithm to solve the machine-part cell formation problem is an efficient alternative.
We can see that this improvement reaches global optima in a shorter amount of time (see Figure 6).
More evidence of the performance of the algorithm is illustrated in Figure 7.

Finally, it can be stated that the use of the autonomous search technique on dolphin echolocation
algorithm causes positive impacts on it. Decreasing time and loops, with a considerable increase in
robustness, which can be verified in Tables 2 and 4 that were presented in this investigation.

Table 4. Hardest instances and AS results. For space reasons, we renamed I instead of Iterations.

ID AS NL = 5 NL = 10 NL = 15 NL = 20 NL = 25 NL = 30

t x x̄ t x x̄ t x x̄ t x x̄ t x x̄ t x x̄ t x x̄

1 1 2 2 1 2 2 2 2 2 3 2 2 2 2 2 4 2 2 4 2 2
2 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2 0 0 3 0 0
3 1 5 5 1 5 5 1 5 5 2 5 5 2 5 5 3 5 5 4 5 5
4 1 8 8 1 8 8 2 8 8 2 8 8 3 8 8 3 8 8 3 8 8
5 1 5 5 1 5 5 1 5 5 1 5 5 2 5 5 3 5 5 5 5 5
6 1 11 11 1 11 11 1 11 11 2 11 11 3 11 11 3 11 11 4 11 11
7 1 2 2 1 2 2 2 2 2 1 2 2 3 2 2 3 2 2 4 2 2
8 1 7 7 1 7 7 1 7 7 3 7 7 3 7 7 3 7 7 4 7 7
9 1 3 3 1 3 3 1 3 3 1 3 3 2 3 3 3 3 3 3 3 3
10 1 5 5 2 5 5 2 5 5 3 5 5 3 5 5 3 5 5 5 5 5
11 1 2 2 2 2 2 1 2 2 3 2 2 3 2 2 4 2 2 4 2 2
12 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2
13 1 6 6 1 6 6 1 6 6 1 6 6 3 6 6 2 6 6 4 6 6
14 1 7 7 2 7 7 2 7 7 1 7 7 2 7 7 3 7 7 5 7 7
15 1 7 7 1 7 7 1 7 7 2 7 7 4 7 7 3 7 7 4 7 7
16 1 14 14 1 14 14 2 14 14 3 14 14 4 14 14 5 14 14 5 14 14
17 1 28 28 1 28 28 2 28 28 4 28 28 5 28 28 6 28 28 5 28 28
18 1 39 39 1 39 39 4 39 39 4 39 39 6 39 39 6 39 39 7 39 39
19 1 1 1 1 1 1 2 1 1 2 1 1 3 1 1 4 1 1 5 1 1
20 1 0 0 2 0 0 2 0 0 3 0 0 4 0 0 4 0 0 4 0 0
21 1 4 4 1 4 4 2 4 4 2 4 4 4 4 4 5 4 4 6 4 4
22 1 0 0 2 0 0 3 0 0 4 0 0 4 0 0 5 0 0 6 0 0
23 3 1 1 4 1 1.1 4 1 1 5 1 1 5 1 1 6 1 1 7 1 1
24 2 2 2 2 2 2 3 2 2 4 2 2 5 2 2 5 2 2 6 2 2
25 2 2 2 4 2 2 3 2 2 3 2 2 4 2 2 4 2 2 5 2 2
26 3 2 2 3 2 2.1 4 2 2 5 2 2 7 2 2 7 2 2 8 2 2
27 4 16 16 5 16 16.2 7 16 16.1 7 16 16.1 8 16 16 8 16 16 9 16 16
28 3 22 22 3 22 22 4 22 22 4 22 22 5 22 22 7 22 22 8 22 22
29 2 12 12 3 12 12 3 12 12 4 12 12 4 12 12 5 12 12 6 12 12
30 4 17 17 5 17 17.1 5 17 17 5 17 17 5 17 17 6 17 17 7 17 17
31 4 15 15 5 15 15.1 6 15 15.1 6 15 15 7 15 15 7 15 15 8 15 15
32 6 21 21.3 7 21 21.8 8 21 21.6 10 21 21.5 11 21 21.5 13 21 21.4 15 21 21.4
33 3 13 13 4 13 13 4 13 13 5 13 13 6 13 13 7 13 13 7 13 13
34 4 18 18 5 18 18.1 5 18 18 6 18 18 7 18 18 8 18 18 8 18 18
35 5 27 27 6 27 27.1 6 27 27 7 27 27 8 27 27 8 27 27 8 27 27

Mathematics 2020, 8, 1389 17 of 25

Table 4. Cont.

ID AS NL = 5 NL = 10 NL = 15 NL = 20 NL = 25 NL = 30

t x x̄ t x x̄ t x x̄ t x x̄ t x x̄ t x x̄ t x x̄

36 7 41 41 9 41 41.3 8 41 41.2 8 41 41.2 10 41 41.1 12 41 41 13 41 41
37 4 25 25 4 25 25 5 25 25 5 25 25 6 25 25.1 7 25 25 9 25 25
38 9 34 34.2 9 34 34.8 10 34 34.5 13 34 34.4 14 34 34.3 17 34 34.2 20 34 34.2
39 10 1 1 7 1 1.1 9 1 1.1 10 1 1.1 12 1 1.1 14 1 1 16 1 1
40 12 13 13 13 13 13.4 13 13 13.3 15 13 13.3 16 13 13.1 17 13 13.2 20 13 13
41 11 21 21.3 11 21 21.9 12 21 21.8 13 21 21.8 15 21 21.7 18 21 21.8 23 21 21.7
42 13 34 34 13 34 34.2 15 34 34.2 15 34 34.1 17 34 34.1 16 34 34 17 34 34
43 14 0 0.1 13 0 0.4 15 0 0.3 18 0 0.2 19 0 0.2 21 0 0.1 23 0 0
44 9 3 3 13 3 3.9 14 3 3.5 17 3 3.4 20 3 3.2 23 3 3.1 31 3 3
45 16 3 3.3 18 3 3.9 19 3 3.7 21 3 3.6 24 3 3.5 25 3 3.6 33 3 3.4
46 15 4 4.1 15 4 4.8 16 4 4.8 18 4 4.7 21 4 4.4 25 4 4.4 26 4 4.3
47 12 9 9 13 9 9.5 15 9 9.5 16 9 9.4 19 9 9.3 21 9 9.3 26 9 9.1
48 7 13 13 8 13 13.3 9 13 13.2 11 13 13.2 14 13 13.1 15 13 13 20 13 13
49 10 19 19 11 19 19.1 12 19 19.1 13 19 19.1 12 19 19 14 19 19 16 19 19
50 14 28 28 15 28 28.4 15 28 28.3 16 28 28.2 17 28 28.1 18 28 28 18 28 28
51 18 22 22 19 22 22.3 24 22 22.2 24 22 22.2 25 22 22.1 27 22 22 28 22 22
52 14 32 32 15 32 32.3 15 32 32.2 17 32 32.1 17 32 32.1 18 32 32 20 32 32
53 13 22 22 16 22 22.1 17 22 22.1 19 22 22 20 22 22 21 22 22 25 22 22
54 16 31 31.2 17 31 31.9 18 31 31.7 19 31 31.7 20 31 31.4 23 31 31.3 25 31 31.2
55 17 32 32 18 32 32 18 32 32 19 32 32 20 32 32 21 32 32 20 32 32
56 19 66 66.1 20 66 66.5 22 66 66.4 23 66 66.3 26 66 66.2 29 66 66.1 34 66 66.1
57 9 36 36 9 36 36.3 10 36 36.2 13 36 36.1 14 36 36 17 36 36 20 36 36
58 17 49 49 19 49 49.2 18 49 49.2 18 49 49.2 20 49 49.1 22 49 49 23 49 49
59 12 5 5 12 5 5.2 13 5 5.1 16 5 5 17 5 5 18 5 5 19 5 5
60 11 7 7 11 7 7.4 13 7 7.3 12 7 7.3 14 7 7.2 16 7 7.1 20 7 7
61 20 5 5.1 23 5 5.7 25 5 5.6 24 5 5.4 27 5 5.3 28 5 5.3 29 5 5.2
62 18 9 9 19 9 9.3 20 9 9.2 22 9 9.1 24 9 9.1 27 9 9 30 9 9.1
63 12 23 23 13 23 23.3 13 23 23.4 15 23 23.3 16 23 23.2 17 23 23.2 20 23 23.1
64 11 33 33 13 33 33.9 14 33 33.5 17 33 33.4 20 33 33.2 23 33 33.1 31 33 33
65 21 28 28 25 28 28.3 25 28 28.2 26 28 28.1 27 28 28.1 28 28 28.1 33 28 28
66 15 47 47 16 47 47.2 16 47 47.2 17 47 47.1 18 47 47 21 47 47.1 28 47 47
67 31 212 212 33 212 212.3 36 212 212.2 37 212 212 39 212 212.1 43 212 212 47 212 212
68 28 304 304 29 304 304.1 31 304 304.1 32 304 304.2 35 304 304.1 40 304 304.1 44 304 304
69 14 13 13 15 13 13.3 16 13 13.2 17 13 13.1 18 13 13 19 13 13 21 13 13
70 15 19 19 17 19 19.3 18 19 19.3 20 19 19.2 22 19 19.1 24 19 19 26 19 19

Avg 8 22.4 22.4 8.8 22.4 22.6 9.6 22.4 22.6 10.4 22.4 22.5 11.8 22.4 22.5 13 22.4 22.5 15 22.4 22.5

Mathematics 2020, 8, 1389 18 of 25

AS 5 10 15 20 25 30

8

10

12

14

Populaiton (NL)

Ti
m

e
(M

il
is

ec
on

ds
)

Figure 6. Average of Runtime.

AS 5 10 15 20 25 30

22.4

22.45

22.5

22.55

22.6

Populaiton (NL)

R
ob

us
tn

es
s

Figure 7. Average of Robustness.

6.3. Statistical Analysis

To test a significant difference between the original version of the Dolphin Echolocation Algorithm
and our autonomous proposal, we tested with a statistical test for each instance through the
Kolmogorov–Smirnov–Lilliefors. This test allows us to determine if samples are independent [78],
and then we use Wilcoxon’s signed rank [79] for statistically comparing the results. For this evaluation,
the basic dolphin echolocation algorithm with NL = 30 was used, due to it reporting better results.

For the Kolmogorov–Smirnov–Lilliefors test, we consider a hypothesis evaluation
(p-value ≤ 0.05), smaller values that 0.05 determine that the null hypothesis will be reject.
For the Wilcoxon’s signed rank, we observe the averages of each instance and discover that there is not
a significant difference between the results of both approaches. This leads us to decrease the levels of
significance (p-value ≤ 0.01), and thus it has a higher precision. Both tests were conducted using GNU
Octave [80].

The Kolmogorov–Smirnov–Lilliefors test is necessary to study the independence of samples by
determining if the x̄ reaches from the 31 executions of each instance describe a Gaussian distribution.
For that, we use H0 as null hypotheses which states that x̄ follows a normal distribution. The alternative
hypotheses H1 state the opposite. We perform the test to demonstrate the alternative hypothesis.
The obtained result for the p-value was 0.071 ≥ 0.05; then, H1 must be rejected. This evidence implies

Mathematics 2020, 8, 1389 19 of 25

that applying the central limit theorem is not viable. Then, as the samples are not distributed normally,
we have chosen a non-parametric statistical hypothesis test, Wilcoxon’s signed rank to compare these
results. For the Wilcoxon’s signed rank test, H0 describes the null hypotheses and it states that x̄ achieved
by our autonomous approach is better than x̄ achieved by the dolphin echolocation algorithm.

Tables 5 and 6 compare the original algorithm versus the autonomous approach, for all tested
instances via the Wilcoxon’s signed rank test. As the significance level is also established to 0.05, smaller
values that 0.05 defines that H0 cannot be assumed. To know the winner, it is enough to observe the
row of the instance and identify the column where the p-value exists, for example in the problem 4
(Boctor 01), the autonomous approach is better than the basic DEA because its value is lower than 0.05,
then H1 cannot be assumed. In the other cases, there is no information.

Table 5. Statistical test. DEA vs. Autonomous approach solving the Boctor instance.

Problem Instance DEA (NL = 30) Autonomous DEA Problem Instance DEA (NL = 30) Autonomous DEA

1 Boctor 01 – – 10 Boctor 02 – 0.0016
2 Boctor 01 – – 11 Boctor 02 – 0.0029
3 Boctor 01 – – 12 Boctor 02 – –
4 Boctor 01 – 0.0017 13 Boctor 02 – 0.0015
5 Boctor 01 – – 14 Boctor 02 – 0.0012
6 Boctor 01 – 0.0013 15 Boctor 02 – 0.0012
7 Boctor 01 – 0.0022 16 Boctor 02 – 0.0029
8 Boctor 01 – – 17 Boctor 02 – 0.0011
9 Boctor 01 – 0.0181 18 Boctor 02 – 0.0022

19 Boctor 03 – – 28 Boctor 04 – 0.0013
20 Boctor 03 – 0.0023 29 Boctor 04 – 0.0018
21 Boctor 03 – – 30 Boctor 04 – 0.0016
22 Boctor 03 – 0.0025 31 Boctor 04 – 0.0018
23 Boctor 03 – – 32 Boctor 04 – 0.0025
24 Boctor 03 – 0.0021 33 Boctor 04 – 0.0018
25 Boctor 03 – 0.0018 34 Boctor 04 – 0.0015
26 Boctor 03 – 0.0012 35 Boctor 04 – 0.0021
27 Boctor 03 – 0.0019 36 Boctor 04 – 0.0012
37 Boctor 03 – 0.0021 46 Boctor 06 – 0.0022
38 Boctor 05 – 0.0017 47 Boctor 06 – 0.0018
39 Boctor 05 – 0.0028 48 Boctor 06 – –
40 Boctor 05 – 0.0017 49 Boctor 06 – 0.0014
41 Boctor 05 – 0.0014 50 Boctor 06 – –
42 Boctor 05 – 0.0018 51 Boctor 06 – 0.0025
43 Boctor 05 – 0.0021 52 Boctor 06 – 0.0028
44 Boctor 05 – 0.0016 53 Boctor 06 – 0.0017
45 Boctor 05 – 0.0017 54 Boctor 06 – 0.0022
55 Boctor 07 – 0.0018 64 Boctor 08 – 0.0019
56 Boctor 07 – 0.0029 65 Boctor 08 – 0.0018
57 Boctor 07 – 0.0019 66 Boctor 08 – 0.0015
58 Boctor 07 – 0.0017 67 Boctor 08 – 0.0021
59 Boctor 07 – 0.0024 68 Boctor 08 – 0.0018
60 Boctor 07 – 0.0025 69 Boctor 08 – 0.0021
61 Boctor 07 – 0.0025 70 Boctor 08 – 0.0029
62 Boctor 07 – – 71 Boctor 08 – 0.0022
63 Boctor 07 – 0.0023 72 Boctor 08 – 0.0028
73 Boctor 09 – 0.0021 82 Boctor 10 – 0.0025
74 Boctor 09 – 0.0021 83 Boctor 10 – 0.0022
75 Boctor 09 – 0.0014 84 Boctor 10 – 0.0018
76 Boctor 09 – 0.0029 85 Boctor 10 – 0.0018
77 Boctor 09 – 0.0024 86 Boctor 10 – 0.0018
78 Boctor 09 – 0.0017 87 Boctor 10 – 0.0017
79 Boctor 09 – 0.0011 88 Boctor 10 – 0.0015
80 Boctor 09 – 0.0016 89 Boctor 10 – 0.0015
81 Boctor 09 – 0.0019 90 Boctor 10 – 0.0017

Mathematics 2020, 8, 1389 20 of 25

Table 6. Statistical test. DEA vs. Autonomous approach solving the hardest instance.

Problem DEA (NL = 30) Autonomous DEA Problem DEA (NL = 30) Autonomous DEA

– 36 – –
2 – – 37 – –
3 – – 38 – 0.0008
4 – – 39 – –
5 – – 40 – –
6 – – 41 – 0.0012
7 – – 42 – –
8 – – 43 0.0011 –
9 – – 44 – –
10 – – 45 – 0.0011
11 – – 46 – 0.0015
12 – – 47 – 0.0013
13 – – 48 – –
14 – – 49 – –
15 – – 50 – –
16 – – 51 – –
17 – – 52 – –
18 – – 53 – –
19 – – 54 – 0.0008
20 – – 55 – –
21 – – 56 – 0.0011
22 – – 57 – –
23 – – 58 – –
24 – – 59 – –
25 – – 60 – –
26 – – 61 – 0.0014
27 – – 62 – 0.0008
28 – – 63 – 0.0014
29 – – 64 – –
30 – – 65 – –
31 – – 66 – –
32 – 0.0025 67 – –
33 – – 68 – –
34 – – 69 – –
35 – – 70 – –

According to results in the 90 first instances, for p-value lower than 0.01 (p-value ≤ 0.01) for
the original dolphin echolocation algorithm are 0, for the autonomous approach are 78. The rest of
tests do not provide significant information, due to p-values being greater than 0.01, but less than
0.99, or samples are equal. Now, considering the 70 hard instances, the original dolphin echolocation
algorithm achieves 1 p-value lower than 0.01, while our autonomous approach reaches 1 p-value below
0.01. For the rest of the tests, p-values are not significant or, again, samples are equal.

Summarizing, we can note that the improved algorithm exhibits a better performance concerning
its basic version only in the smaller Doctor’s instances and a few of the hardest instances. We believe
this behavior is due to the native algorithm operating appropriately when it faces complex optimization
problems. However, as previously mentioned, our proposed self-adaptive algorithm can be considered
a contribution itself and it can be applied to a wide set of population-based methods.

7. Conclusions

In this research, we have presented an adaptive procedure that allows for identifying a stagnation
in a local optimal. This feature appears when the variability of solutions is required to explore
different feasible regions of an optimization problem. The technique is implemented via modular
architecture and it is independent of the optimization algorithm, and therefore it can be included in
any population-based method. To test this approach, we employ the dolphin echolocation algorithm
to solve different instances of the machine-part cell formation. This approach is inspired by the
online control for number location parameter which is valuated before the run of the metaheuristic.

Mathematics 2020, 8, 1389 21 of 25

To this end, we use an autonomous search that is a particular case of adaptive systems that improve
their solving performance by modifying and adjusting themselves to the problem at hand, either by
adaptation or supervised adaptation. We have tested two sets of the machine-part cell formation,
the first one consisted of 90 instances proposed by Boctor, while the second one included 70 new
hard instances, where several global optimum values that were not reached using the basic dolphin
echolocation algorithm were achieved via the auto-adaptive approach. We have also compared the
proposed adaptive approach by using a nonparametric statistical tests and the results are conclusive.
As a conclusion, and as a way to compare the methods, the use of the autonomous search technique on
the dolphin echolocation algorithm causes positive impacts on it, decreasing time and loops, with a
considerable increase in robustness.

As future work, we plan to experiment auto-adaptive approaches in recent bio-inspired algorithms
and to provide a larger comparison of techniques for solving the machine-part cell formation.
The integration of autonomous search can lead the research toward new study lines, such as
dynamically selecting the best binarization strategy during solving according to performance indicators
as analogously studied in [81].

Author Contributions: Formal analysis, R.O. and C.C. (Cécar Carrasco); investigation, R.S., B.C., R.O.,
H.d.l.F.-M., and E.R.-T.; methodology, R.S. and B.C.; resources, R.S. and B.C.; software, R.O. and C.C.
(Cécar Carrasco); validation, H.d.l.F.-M. and E.R.-T., F.P., C.C. (Carlos Castro), and R.O.; writing—original
draft, C.C. (Cécar Carrasco); writing—review and editing, R.S., B.C., E.R.-T., and H.d.l.F.-M. All the authors of this
paper hold responsibility for every part of this manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1190129. Broderick
Crawford is supported by Grant CONICYT/FONDECYT/REGULAR/1171243. Hanns de la Fuente-Mella,
Ricardo Soto, and Broderick Crawford are supported by Grant Nucleo de Investigacion en Data
Analytics/VRIEA/PUCV/039.432/2020.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Božek, P.; Ivandić, Ž.; Lozhkin, A.; Lyalin, V.; Tarasov, V. Solutions to the characteristic equation for industrial
robot’s elliptic trajectories. Teh. Vjesn. Tech. Gaz. 2016, 23. [CrossRef]

2. Božek, P.; Al Akkad, M.A.; Blištan, P.; Ibrahim, N.I. Navigation control and stability investigation of a mobile
robot based on a hexacopter equipped with an integrated manipulator. Int. J. Adv. Robot. Syst. 2017, 14.
[CrossRef]

3. Kilin, A.; Božek, P.; Karavaev, Y.; Klekovkin, A.; Shestakov, V. Experimental investigations of a highly
maneuverable mobile omniwheel robot. Int. J. Adv. Robot. Syst. 2017, 14. [CrossRef]

4. Zhang, Z. Modeling complexity of cellular manufacturing systems. Appl. Math. Model. 2011, 35, 4189–4195.
[CrossRef]

5. Gu, P.; Monid, A. Design of cellular manufacturing systems. An industrial case study. Robot. Comput.
Integr. Manuf. 1993, 10, 147–151. [CrossRef]

6. Ah kioon, S.; Bulgak, A.A.; Bektas, T. Integrated cellular manufacturing systems design with production
planning and dynamic system reconfiguration. Eur. J. Oper. Res. 2009, 192, 414–428. [CrossRef]

7. Saxena, L.K.; Jain, P.K. Dynamic cellular manufacturing systems design—A comprehensive model. Int. J.
Adv. Manuf. Technol. 2011, 53, 11–34. [CrossRef]

8. De la Fuente-Mella, H.; Rojas Fuentes, J.L.; Leiva, V. Econometric modeling of productivity and technical
efficiency in the Chilean manufacturing industry. Comput. Ind. Eng. 2020, 139, 105793. [CrossRef]

9. Wu, T.H.; Chang, C.C.; Chung, S.H. A simulated annealing algorithm for manufacturing cell formation
problems. Expert Syst. Appl. 2008, 34, 1609–1617. [CrossRef]

10. Purcheck, G.F.K. A Linear–programming method for the combinatorial grouping of an incomplete power
set. J. Cybern. 1975, 5, 51–76. [CrossRef]

http://dx.doi.org/10.17559/tv-20150114112458
http://dx.doi.org/10.1177/1729881417738103
http://dx.doi.org/10.1177/1729881417744570
http://dx.doi.org/10.1016/j.apm.2011.02.044
http://dx.doi.org/10.1016/0736-5845(93)90037-K
http://dx.doi.org/10.1016/j.ejor.2007.09.023
http://dx.doi.org/10.1007/s00170-010-2842-9
http://dx.doi.org/10.1016/j.cie.2019.04.006
http://dx.doi.org/10.1016/j.eswa.2007.01.012
http://dx.doi.org/10.1080/01969727508545920

Mathematics 2020, 8, 1389 22 of 25

11. Oliva-Lopez, E.; Purcheck, G. Load balancing for group technology planning and control. Int. J. Mach. Tool
Des. Res. 1979, 19, 259–274. [CrossRef]

12. Sankaran, S.; Rodin, E.Y. Multiple objective decision-making approach to cell formation: A goal programming
model. Math. Comput. Model. 1990, 13, 71–81. [CrossRef]

13. Shafer, S.M.; Rogers, D.F. A goal programming approach to the cell formation problem. J. Oper. Manag. 1991,
10, 28–43. [CrossRef]

14. Soto, R.; Kjellerstrand, H.; Gutiérrez, J.; López, A.; Crawford, B.; Monfroy, E. Solving manufacturing
cell design problems using constraint programming. In Advanced Research in Applied Artificial Intelligence;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 400–406. [CrossRef]

15. Soto, R.; Crawford, B.; Almonacid, B.; Paredes, F.; Loyola, E. Machine-part cell formation problems with
constraint programming. In Proceedings of the 2015 34th International Conference of the Chilean Computer
Science Society (SCCC), Santiago, Chile, 9–13 November 2015. [CrossRef]

16. Soto, R.; Kjellerstrand, H.; Durán, O.; Crawford, B.; Monfroy, E.; Paredes, F. Cell formation in group
technology using constraint programming and Boolean satisfiability. Expert Syst. Appl. 2012, 39, 11423–11427.
[CrossRef]

17. Almonacid, B.; Aspée, F.; Soto, R.; Crawford, B.; Lama, J. Solving the manufacturing cell design problem
using the modified binary firefly algorithm and the egyptian vulture optimisation algorithm. IET Softw.
2017, 11, 105–115. [CrossRef]

18. Aljaber, N.; Baek, W.; Chen, C.L. A tabu search approach to the cell formation problem. Comput. Ind. Eng.
1997, 32, 169–185. [CrossRef]

19. Lozano, S.; Adenso-Diaz, B.; Eguia, I.; Onieva, L. A one-step tabu search algorithm for manufacturing cell
design. J. Oper. Res. Soc. 1999, 50, 509. [CrossRef]

20. Durán, O.; Rodriguez, N.; Consalter, L.A. Collaborative particle swarm optimization with a data mining
technique for manufacturing cell design. Expert Syst. Appl. 2010, 37, 1563–1567. [CrossRef]

21. Wu, T.Q.; Yao, M.; Hua Yang, J. Dolphin swarm algorithm. Front. Inf. Technol. Electron. Eng. 2016, 17, 717–729.
[CrossRef]

22. Hamadi, Y.; Monfroy, E.; Saubion, F. What is autonomous search? In Hybrid Optimization; Springer:
New York, NY, USA, 2010; pp. 357–391. [CrossRef]

23. Huang, C.; Li, Y.; Yao, X. A survey of automatic parameter tuning methods for metaheuristics. IEEE Trans.
Evol. Comput. 2020, 24, 201–216. [CrossRef]

24. Wolpert, D.; Macready, W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82.
[CrossRef]

25. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009.
26. Kusiak, A.; Chow, W.S. Efficient solving of the group technology problem. J. Manuf. Syst. 1987, 6, 117–124.

[CrossRef]
27. Boctor, F.F. A jinear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 1991,

29, 343–356. [CrossRef]
28. Albadawi, Z.; Bashir, H.A.; Chen, M. A mathematical approach for the formation of manufacturing cells.

Comput. Ind. Eng. 2005, 48, 3–21. [CrossRef]
29. Boulif, M.; Atif, K. A new branch-&-bound-enhanced genetic algorithm for the manufacturing cell formation

problem. Comput. Oper. Res. 2006, 33, 2219–2245. [CrossRef]
30. Venugopal, V.; Narendran, T. A genetic algorithm approach to the machine-component grouping problem

with multiple objectives. Comput. Ind. Eng. 1992, 22, 469–480. [CrossRef]
31. Gupta, Y.; Gupta, M.; Kumar, A.; Sundaram, C. A genetic algorithm-based approach to cell composition and

layout design problems. Int. J. Prod. Res. 1996, 34, 447–482. [CrossRef]
32. Imran, M.; Kang, C.; Lee, Y.H.; Jahanzaib, M.; Aziz, H. Cell formation in a cellular manufacturing system

using simulation integrated hybrid genetic algorithm. Comput. Ind. Eng. 2017, 105, 123–135. [CrossRef]
33. Nsakanda, A.L.; Diaby, M.; Price, W.L. Hybrid genetic approach for solving large-scale capacitated cell

formation problems with multiple routings. Eur. J. Oper. Res. 2006, 171, 1051–1070. [CrossRef]
34. Banerjee, I.; Das, P. Group technology based adaptive cell formation using predator–prey genetic algorithm.

Appl. Soft Comput. 2012, 12, 559–572. [CrossRef]

http://dx.doi.org/10.1016/0020-7357(79)90015-5
http://dx.doi.org/10.1016/0895-7177(90)90079-3
http://dx.doi.org/10.1016/0272-6963(91)90034-U
http://dx.doi.org/10.1007/978-3-642-31087-4_42
http://dx.doi.org/10.1109/sccc.2015.7416567
http://dx.doi.org/10.1016/j.eswa.2012.04.020
http://dx.doi.org/10.1049/iet-sen.2016.0196
http://dx.doi.org/10.1016/S0360-8352(96)00208-2
http://dx.doi.org/10.1057/palgrave.jors.2600704
http://dx.doi.org/10.1016/j.eswa.2009.06.061
http://dx.doi.org/10.1631/FITEE.1500287
http://dx.doi.org/10.1007/978-1-4419-1644-0_11
http://dx.doi.org/10.1109/TEVC.2019.2921598
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1016/0278-6125(87)90035-5
http://dx.doi.org/10.1080/00207549108930075
http://dx.doi.org/10.1016/j.cie.2004.06.008
http://dx.doi.org/10.1016/j.cor.2005.02.005
http://dx.doi.org/10.1016/0360-8352(92)90022-C
http://dx.doi.org/10.1080/00207549608904913
http://dx.doi.org/10.1016/j.cie.2016.12.028
http://dx.doi.org/10.1016/j.ejor.2005.01.017
http://dx.doi.org/10.1016/j.asoc.2011.07.021

Mathematics 2020, 8, 1389 23 of 25

35. Tavakkoli-Moghaddam, R.; Javadian, N.; Khorrami, A.; Gholipour-Kanani, Y. Design of a scatter
search method for a novel multi-criteria group scheduling problem in a cellular manufacturing system.
Expert Syst. Appl. 2010, 37, 2661–2669. [CrossRef]

36. Chang, C.C.; Wu, T.H.; Wu, C.W. An efficient approach to determine cell formation, cell layout and
intracellular machine sequence in cellular manufacturing systems. Comput. Ind. Eng. 2013, 66, 438–450.
[CrossRef]

37. Lei, D.; Wu, Z. Tabu search-based approach to multi-objective machine-part cell formation. Int. J. Prod. Res.
2005, 43, 5241–5252. [CrossRef]

38. Chung, S.H.; Wu, T.H.; Chang, C.C. An efficient tabu search algorithm to the cell formation problem with
alternative routings and machine reliability considerations. Comput. Ind. Eng. 2011, 60, 7–15. [CrossRef]

39. Noktehdan, A.; Karimi, B.; Kashan, A.H. A differential evolution algorithm for the manufacturing cell
formation problem using group based operators. Expert Syst. Appl. 2010, 37, 4822–4829. [CrossRef]

40. Soto, R.; Crawford, B.; Almonacid, B.; Paredes, F. A migrating birds optimization algorithm for machine-part
cell formation problems. In Advances in Artificial Intelligence and Soft Computing: 14th Mexican International
Conference on Artificial Intelligence, MICAI 2015, Cuernavaca, Morelos, Mexico, 25–31 October 2015, Proceedings,
Part I; Springer: Cham, Switzerland, 2015; pp. 270–281. [CrossRef]

41. Soto, R.; Crawford, B.; Almonacid, B.; Paredes, F. Efficient parallel sorting for migrating birds optimization
when solving machine-part cell formation problems. Sci. Program. 2016, 2016, 9402503, [CrossRef]

42. Soto, R.; Crawford, B.; Vega, E.; Paredes, F. Solving manufacturing cell design problems using an artificial
fish swarm algorithm. In Advances in Artificial Intelligence and Soft Computing: 14th Mexican International
Conference on Artificial Intelligence, MICAI 2015, Cuernavaca, Morelos, Mexico, 25–31 October 2015, Proceedings,
Part I; Springer: Cham, Switzerland, 2015; pp. 282–290. [CrossRef]

43. Soto, R.; Crawford, B.; Vega, E.; Johnson, F.; Paredes, F. Solving manufacturing cell design problems using
a shuffled frog leaping algorithm. In The 1st International Conference on Advanced Intelligent System and
Informatics (AISI2015), 28–30 November 2015, Beni Suef, Egypt; Springer: Cham, Switzerland, 2016; pp. 253–261.
[CrossRef]

44. Soto, R.; Crawford, B.; Alarcón, A.; Zec, C.; Vega, E.; Reyes, V.; Araya, I.; Olguín, E. Solving manufacturing
cell design problems by using a bat algorithm approach. In Advances in Swarm Intelligence: 7th International
Conference, ICSI 2016, Bali, Indonesia, 25–30 June 2016, Proceedings, Part I; Springer: Cham, Switzerland, 2016;
pp. 184–191. [CrossRef]

45. Soto, R.; Crawford, B.; Olivares, R.; De Conti, M.; Rubio, R.; Almonacid, B.; Niklander, S. Resolving the
manufacturing cell design problem using the flower pollination algorithm. In Multi-Disciplinary Trends
in Artificial Intelligence: 10th International Workshop, MIWAI 2016, Chiang Mai, Thailand, 7–9 December 2016,
Proceedings; Springer: Cham, Switzerland, 2016; pp. 184–195. [CrossRef]

46. Soto, R.; Crawford, B.; Carrasco, C.; Almonacid, B.; Reyes, V.; Araya, I.; Misra, S.; Olguín, E. Solving
manufacturing cell design problems by using a dolphin echolocation algorithm. In Computational Science and
Its Applications—ICCSA 2016; Springer: Cham, Switzerland, 2016; pp. 77–86. [CrossRef]

47. Kaveh, A.; Vaez, S.R.H.; Hosseini, P. Simplified dolphin echolocation algorithm for optimum design of frame.
Smart Struct. Syst. 2018, 21, 321–333. [CrossRef]

48. Daryan, A.S.; Palizi, S.; Farhoudi, N. Optimization of plastic analysis of moment frames using modified
dolphin echolocation algorithm. Adv. Struct. Eng. 2019, 22, 2504–2516. [CrossRef]

49. Gholizadeh, S.; Poorhoseini, H. Seismic layout optimization of steel braced frames by an improved dolphin
echolocation algorithm. Struct. Multidiscip. Optim. 2016, 54, 1011–1029. [CrossRef]

50. Hamadi, Y.; Monfroy, E.; Saubion, F. An introduction to autonomous search. In Autonomous Search; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 1–11. [CrossRef]

51. Soto, R.; Crawford, B.; Olivares, R.; Niklander, S.; Johnson, F.; Paredes, F.; Olguín, E. Online control of
enumeration strategies via bat algorithm and black hole optimization. Nat. Comput. 2016, 16, 241–257.
[CrossRef]

52. Soto, R.; Crawford, B.; Olivares, R.; Galleguillos, C.; Castro, C.; Johnson, F.; Paredes, F.; Norero, E.
Using autonomous search for solving constraint satisfaction problems via new modern approaches.
Swarm Evol. Comput. 2016, 30, 64–77. [CrossRef]

53. Salto, C.; Alba, E. Designing heterogeneous distributed GAs by efficiently self-adapting the migration period.
Appl. Intell. 2011, 36, 800–808. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2009.08.012
http://dx.doi.org/10.1016/j.cie.2013.07.009
http://dx.doi.org/10.1080/00207540500216516
http://dx.doi.org/10.1016/j.cie.2010.08.016
http://dx.doi.org/10.1016/j.eswa.2009.12.033
http://dx.doi.org/10.1007/978-3-319-27060-9_22
http://dx.doi.org/10.1155/2016/9402503
http://dx.doi.org/10.1007/978-3-319-27060-9_23
http://dx.doi.org/10.1007/978-3-319-26690-9_23
http://dx.doi.org/10.1007/978-3-319-41000-5_18
http://dx.doi.org/10.1007/978-3-319-49397-8_16
http://dx.doi.org/10.1007/978-3-319-42092-9_7
http://dx.doi.org/10.12989/SSS.2018.21.3.321
http://dx.doi.org/10.1177/1369433219845151
http://dx.doi.org/10.1007/s00158-016-1461-y
http://dx.doi.org/10.1007/978-3-642-21434-9_1
http://dx.doi.org/10.1007/s11047-016-9576-z
http://dx.doi.org/10.1016/j.swevo.2016.04.003
http://dx.doi.org/10.1007/s10489-011-0297-9

Mathematics 2020, 8, 1389 24 of 25

54. Qin, A.; Suganthan, P. Self-adaptive differential evolution algorithm for numerical optimization.
In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Scotland, UK, 2–5 September 2005;
pp. 1785–1791. [CrossRef]

55. Yi, W.; Gao, L.; Li, X.; Zhou, Y. A new differential evolution algorithm with a hybrid mutation operator and
self-adapting control parameters for global optimization problems. Appl. Intell. 2014, 42, 642–660. [CrossRef]

56. Han, M.F.; Liao, S.H.; Chang, J.Y.; Lin, C.T. Dynamic group-based differential evolution using a self-adaptive
strategy for global optimization problems. Appl. Intell. 2012, 39, 41–56. [CrossRef]

57. Liang, K.H.; Yao, X.; Newton, C.S. Adapting self-adaptive parameters in evolutionary algorithms. Appl. Intell.
2001, 15, 171–180. [CrossRef]

58. Nguyen, T.T.; Vo, D.N. Modified cuckoo search algorithm for short-term hydrothermal scheduling. Int. J.
Electr. Power Energy Syst. 2015, 65, 271–281. [CrossRef]

59. Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A survey on new generation metaheuristic algorithms.
Comput. Ind. Eng. 2019, 137, 106040. [CrossRef]

60. Kaveh, A.; Farhoudi, N. A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 2013, 59, 53–70.
[CrossRef]

61. Valdivia, S.; Soto, R.; Crawford, B.; Caselli, N.; Paredes, F.; Castro, C.; Olivares, R. Clustering-based
binarization methods applied to the crow search algorithm for 0/1 combinatorial problems. Mathematics
2020, 8, 1070. [CrossRef]

62. Taramasco, C.; Crawford, B.; Soto, R.; Cortés-Toro, E.M.; Olivares, R. A new metaheuristic based on
vapor-liquid equilibrium for solving a new patient bed assignment problem. Expert Syst. Appl. 2020,
158, 113506. [CrossRef]

63. Soto, R.; Crawford, B.; Lanza-Gutierrez, J.M.; Olivares, R.; Camacho, P.; Astorga, G.; de la Fuente-Mella, H.;
Paredes, F.; Castro, C. Solving the manufacturing cell design problem through an autonomous water cycle
algorithm. Appl. Sci. 2019, 9, 4736. [CrossRef]

64. Taramasco, C.; Olivares, R.; Munoz, R.; Soto, R.; Villas, M.; de Albuquerque, V.H.C. The patient bed
assignment problem solved by autonomous bat algorithm. Appl. Soft Comput. 2019, 81, 105484. [CrossRef]

65. King, J.R. Machine-component grouping in production flow analysis: An approach using a rank order
clustering algorithm. Int. J. Prod. Res. 1980, 18, 213–232. [CrossRef]

66. Waghodekar, P.H.; Sahu, S. Machine-component cell formation in group technology: MACE. Int. J. Prod. Res.
1984, 22, 937–948. [CrossRef]

67. Seifoddini, H.; Wolfe, P.M. Application of the similarity coefficient method in group technology. IIE Trans.
1986, 18, 271–277. [CrossRef]

68. Chandrasekharan, M.P.; Rajagopalan, R. An ideal seed non-hierarchical clustering algorithm for cellular
manufacturing. Int. J. Prod. Res. 1986, 24, 451–463. [CrossRef]

69. Mosier, C.; Taube, L. Weighted similarity measure heuristics for the group technology machine clustering
problem. Omega 1985, 13, 577–579. [CrossRef]

70. Chan, H.; Milner, D. Direct clustering algorithm for group formation in cellular manufacture. J. Manuf. Syst.
1982, 1, 65–75. [CrossRef]

71. Askin, R.G.; Chiu, K.S. A graph partitioning procedure for machine assignment and cell formation in group
technologyy. Int. J. Prod. Res. 1990, 28, 1555–1572. [CrossRef]

72. Stanfel, L.E. Machine clustering for economic production. Eng. Costs Prod. Econ. 1985, 9, 73–81. [CrossRef]
73. McCormick, S.T.; Pinedo, M.L.; Shenker, S.; Wolf, B. Sequencing in an assembly line with blocking to

minimize cycle time. Oper. Res. 1989, 37, 925–935. [CrossRef]
74. Srinivasan, V. A hybrid algorithm for the one machine sequencing problem to minimize total tardiness.

Nav. Res. Logist. Q. 1971, 18, 317–327. [CrossRef]
75. Carrie, A.S. Numerical taxonomy applied to group technology and plant layout. Int. J. Prod. Res. 1973,

11, 399–416. [CrossRef]
76. Kumar, C.S.; Chandrasekkharan, M.P. Grouping efficacy: A quantitative criterion for goodness of block

diagonal forms of binary matrices in group technology. Int. J. Prod. Res. 1990, 28, 233–243. [CrossRef]
77. Boe, W.J.; Cheng, C.H. A close neighbour algorithm for designing cellular manufacturing systems. Int. J.

Prod. Res. 1991, 29, 2097–2116. [CrossRef]
78. Lilliefors, H.W. On the kolmogorov-smirnov test for normality with mean and variance unknown. J. Am.

Stat. Assoc. 1967, 62, 399–402. [CrossRef]

http://dx.doi.org/10.1109/cec.2005.1554904
http://dx.doi.org/10.1007/s10489-014-0620-3
http://dx.doi.org/10.1007/s10489-012-0393-5
http://dx.doi.org/10.1023/A:1011286929823
http://dx.doi.org/10.1016/j.ijepes.2014.10.004
http://dx.doi.org/10.1016/j.cie.2019.106040
http://dx.doi.org/10.1016/j.advengsoft.2013.03.004
http://dx.doi.org/10.3390/math8071070
http://dx.doi.org/10.1016/j.eswa.2020.113506
http://dx.doi.org/10.3390/app9224736
http://dx.doi.org/10.1016/j.asoc.2019.105484
http://dx.doi.org/10.1080/00207548008919662
http://dx.doi.org/10.1080/00207548408942513
http://dx.doi.org/10.1080/07408178608974704
http://dx.doi.org/10.1080/00207548608919741
http://dx.doi.org/10.1016/0305-0483(85)90046-5
http://dx.doi.org/10.1016/S0278-6125(82)80068-X
http://dx.doi.org/10.1080/00207549008942812
http://dx.doi.org/10.1016/0167-188X(85)90012-6
http://dx.doi.org/10.1287/opre.37.6.925
http://dx.doi.org/10.1002/nav.3800180304
http://dx.doi.org/10.1080/00207547308929988
http://dx.doi.org/10.1080/00207549008942706
http://dx.doi.org/10.1080/00207549108948069
http://dx.doi.org/10.1080/01621459.1967.10482916

Mathematics 2020, 8, 1389 25 of 25

79. Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the
other. Ann. Math. Stat. 1947, 18, 50–60. [CrossRef]

80. Eaton, J.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 3.8.1 Manual: A High-Level Interactive
Language for Numerical Computations; CreateSpace Independent Publishing Platform: Coates Valley, CA, USA,
2014; ISBN 1441413006.

81. Soto, R.; Crawford, B.; Palma, W.; Monfroy, E.; Olivares, R.; Castro, C.; Paredes, F. Top-kBased adaptive
enumeration in constraint programming. Math. Probl. Eng. 2015, 2015, 580785. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1155/2015/580785
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Problem Statement
	Dolphin Echolocalization Algorithm
	Autonomous Search
	Experimental Results
	Boctor Problems
	Other Instances
	Statistical Analysis

	Conclusions
	References

