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Abstract: In 2008, I. Włoch introduced a new generalization of Pell numbers. She used special initial
conditions so that this sequence describes the total number of special families of subsets of the set of n
integers. In this paper, we prove some results about the roots of the characteristic polynomial of this
sequence, but we will consider general initial conditions. Since there are currently several types of
generalizations of the Pell sequence, it is very difficult for anyone to realize what type of sequence an
author really means. Thus, we will call this sequence the generalized k-distance Tribonacci sequence
(T(k)

n )n≥0.

Keywords: Fibonacci numbers; Tribonacci numbers; generalized Fibonacci numbers; characteristic
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1. Introduction

The Fibonacci numbers (Fn)n was first described in connection with computing the number of
descendants of a pair of rabbits in the book Liber Abaci in 1202 (see [1], pp. 404–405). This sequence is
probably one of the best known recurrent sequences and it is defined by the second order recurrence
(firstly used by Albert Girard in 1634, see [2], p. 393)

Fn = Fn−1 + Fn−2, for n ≥ 2, (1)

with initial values F0 = 0 and F1 = 1. The Fibonacci numbers have the a closed form expression for
the computation (without appealing to its recurrence) of the nth Fibonacci number. It is called Binet’s
formula in honor of Jacques Binet, which discovered this formula in 1843 (see [2] or [3] , p. 394),

Fn =
αn − βn
√

5
,

where α := (1+
√

5)/2 and β := (1−
√

5)/2 are the roots of the characteristic equation x2− x− 1 = 0.
The Fibonacci numbers have been the main object of many books and papers (see for example [4–9]
and some references therein). Many generalizations of the Fibonacci sequence have appeared in the
literature. Probably the most well-known generalization are the k-generalized Fibonacci sequence
(F(k)

n )n≥−(k−2) (also known as the k-bonacci, the k-fold Fibonacci or k-th order Fibonacci), satisfying

F(k)
n = F(k)

n−1 + F(k)
n−2 + · · ·+ F(k)

n−k,

with initial values F(k)
−j = 0 (for j = 0, 1, 2, . . . k − 2) and F(k)

1 = 1. For instance, for k = 2, we

have the usual Fibonacci numbers (F(2)
n )n and for k = 3, (F(3)

n )n we get the Tribonacci numbers
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(see Feinberg’s introductory paper [10] and Spickerman’s paper [11] with properties of roots of its
characteristic equation). Miles [12] seems to be the introductory paper of this generalization. In
1971, Miller [13] proved some basic facts on the geometry of the roots of their characteristic equation
xk − xk−1 − xk−2 − · · · − x− 1 = 0, what was the bases for gradually finding the “Binet-like” formula
for the sequence (F(k)

n )n (see [14–16]) and for some properties of this sequence, see, for instance [17–29].
In 2008, Włoch [30] studied the total number of k-independent sets in some special simple,

undirected graphs. She showed that this number is equal to the terms of the sequence (T(k)
n )n≥0,

where these numbers are defined for an integer k ≥ 2 by

T(k)
n = T(k)

n−1 + T(k)
n−k+1 + T(k)

n−k, for n ≥ k + 3 , (2)

with initial values

T(k)
i = 2k− 2, for 3 ≤ i ≤ k , T(k)

k+1 = 2k + 1 , T(k)
k+2 =

{
12, if k = 2;

2k + 7, if k ≥ 3 .

She called these numbers the generalized Pell numbers, but we think that this notation is quite
unclear as there are already many types of generalized Pell sequences and as this sequence is defined
by “four terms recurrence relation” as the Tribonacci sequence, so we will call this sequence generalized
k-distance Tribonacci sequence (the notation “k-distance” is very suitable as it was introduced in the
same meaning, e.g., in papers [31–33]).

In this work, we are interested in the sequence (T(k)
n )n≥0 defined by the recurrence Equation (2),

but with general initial values T(k)
i = ci, for an integer i ∈ [0, k − 1] (where c0, c1, . . . , ck−1 are real

numbers, previously chosen). Let fk(x) = xk − xk−1 − x − 1 be characteristic polynomial of this
sequence. Note that f2(x) = x2− 2x− 1 has roots 1±

√
2 which are the generators of the Pell sequence

(by its “Binet-like” formula)

Pn =
(1 +

√
2)n − (1−

√
2)n

2
√

2
.

In fact, Pn = T(2)
n coincide with the Pell sequence (for the choice of P0 = 0 and P1 = 1),

while, the sequence T(3)
n coincides with the Tribonacci sequence Tn.

As the properties of roots of (F(2)
n )n turned out important for its deeper study, in this paper,

we shall study the behavior (in the algebraic and analytic sense) of the roots of fk(x). More precisely,
our main result is the following:

Theorem 1. For k ≥ 2, let fk(x) = xk − xk−1 − x− 1 be the characteristic polynomial of (T(k)
n ). Then the

following hold

(i) fk(x) has a dominant root, say αk, which is its only positive root, with

1 < αk ≤ 1 +

√
2

k− 1
,

for all k ≥ 2. In particular, αk tends to 1 as k→ ∞.
(ii) fk(x) has a negative root (which is unique) only when k is even.
(iii) All the roots of fk(x) are simple roots.
(iv) (αk)k is a strictly decreasing sequence.
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2. Auxiliary Results

In this section, we shall present two results which will be essential ingredients in the proof of
our results. For clarity, we record some notations. As usual, [a, b] denotes the set {a, a + 1, . . . , b},
for integers a < b. Also, B[0, 1] denotes the closed unit ball (i.e., all complex numbers z such that
|z| ≤ 1) andRg is defined as the set of all complex zeros of the polynomial g(x).

The first tool is the famous Descartes’ sign rule which gives an upper bound on the number of
positive or negative real roots of a polynomial with real coefficients. For the sake of completeness,
we shall state it as a lemma.

Lemma 1 (Descartes’ sign rule). Let f (x) = an1 xn1 + · · · + ank xnk be a polynomial with nonzero real
coefficients and such that n1 > n2 > · · · > nk ≥ 0. Set

ν := #{i ∈ [1, k− 1] : ani ani+1 < 0}.

Then, there exists a non-negative integer r such that #R f = ν− 2r (multiple roots of the same value are
counted separately).

As a corollary, we have that for obtaining information on the number of negative real roots,
we must apply the previous rule for f (−x).

Remark 1. Generally speaking, the previous result says that if the terms of a single-variable polynomial
with real coefficients are ordered by descending variable exponent, then the number of positive roots of the
polynomial is equal to the number of sign differences between consecutive nonzero coefficients, minus an even
non-negative integer.

A fundamental result in the theory of recurrence sequences asserts that:

Lemma 2. Let (un) be a linear recurrence sequence whose characteristic polynomial ψ(x) splits as

ψ(x) = (x− α1)
m1 · · · (x− α`)

m` ,

where the αj’s are distinct complex numbers. Then, there exist uniquely determined non-zero polynomials
g1, . . . , g` ∈ Q({αj}`j=1)[x], with deg gj ≤ mj − 1 (mj is the multiplicity of αj as zero of ψ(x)), for j ∈ [1, `],
such that

un = g1(n)αn
1 + g2(n)αn

2 + · · ·+ g`(n)αn
` , for all n. (3)

The proof of this result can be found in [34], Theorem C.1.
Another useful and very important result is due to Eneström and Kakeya [35,36]:

Lemma 3 (Eneström-Kakeya theorem). Let f (x) = a0 + a1x + · · ·+ anxn be an n-degree polynomial with
real coefficients. If 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all zeros of f (x) lie in B[0, 1].

Now, we are ready to deal with the proof of the theorem.

3. The Proof of the Main Theorem

3.1. Proof of Item (i)

Proof. By Lemma 1, the polynomial fk(x) = xk − xk−1 − x − 1 has only a positive root, say αk.
From now on, by abuse of notation, we shall write f for fk and α for αk. By using that αk = αk−1 + α+ 1,
we obtain that f (x) = (x− α)g(x), where
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g(x) = xk−1 + (α− 1)xk−2 + (α2 − α)xk−3 + · · ·+ (αk−2 − αk−3)x + αk−1 − αk−2 − 1.

We claim that if z is a root of g(x), then |z| ≤ α. In fact, it suffices to prove that all the roots of
h(x) := g(αx) belong to B[0, 1]. This holds by applying Lemma 3 to the polynomial

h(x) = αk−1xk−1 +
k−2

∑
j=1

(αk−1 − αk−2)xk−j−1 + αk−1 − αk−2 − 1,

since αk−1 > αk−1− αk−2 > αk−1− αk−2− 1 = αk−2(α− 1)− 1 > 0 (this last inequality is valid because
αk−2 = (α + 1)/(α(α− 1))).

Now, since α is the only positive root of f (x) and limx→∞ f (x) = +∞, then f (x) ≥ 0, for all x ≥ α

(also, α > 1). Our second claim is that if z is root of f (x) with ρ := |z| ≥ α, then z is a real number.
Indeed, since f (ρ) ≥ 0. then ρk ≥ ρk−1 + ρ + 1. On the other hand, the triangle inequality yields
ρk ≤ ρk−1 + ρ + 1 and so

2ρk = |zk + zk−1 + z + 1| ≤ |z|k + |z|k−1 + |z|+ 1 = |z|k + ρk−1 + ρ + 1 ≤ 2ρk.

Thus |zk + zk−1 + z + 1| = |z|k + |z|k−1 + |z|+ 1 implying that 1, z, zk−1 and zk lie in the same ray.
In particular, there are real numbers t1 and t2 such that 1 + t1(z− 1) = zk−1 and 1 + t2(z− 1) = zk.
Thus (zk − 1)/(z− 1) and (zk−1 − 1)/(z− 1) are real numbers and by subtracting them, we deduce
that so is zk−1. Therefore, z = (zk − t2 − 1)/t2 is also a real number, as desired.

In conclusion, if z is a root of f (x) with |z| ≥ α, then z is a real number with |z| = α.
Thus, z ∈ {−α, α}. However, f (−α) = 0 leads to the absurdity as ak = 1 or αk−1 = −1 (according to k
is even or odd, respectively). Therefore, α is the dominant root of f (x).

To finish the proof of this item, we must prove that

1 < αk ≤ 1 +

√
2

k− 1
.

For that, it is enough to show that f (1) < 0 and f (1 +
√

2/(k− 1)) ≥ 0. In fact, f (1) = −2 and,
since f (x) = xk−1(x− 1)− (x + 1), we have

f

(
1 +

√
2

k− 1

)
=

(
1 +

√
2

k− 1

)k−1

·
√

2
k− 1

−
(

2 +

√
2

k− 1

)

≥
(

1 + (k− 1)

√
2

k− 1

)
·
√

2
k− 1

− 2−
√

2
k− 1

= 0,

where we used the Bernoulli’s inequality: (1 + x)n ≥ 1 + nx for every integer n ≥ 0 an every real
number x > −1 (note that k− 1 ≥ 1).

3.2. Proof of Item (ii)

Proof. By using Lemma 1 and the fact that f (−x) = xk + xk−1 + x − 1 (for k even), then f (x) has
exactly one negative root.

For the case in which k is odd, we have that f (−x) = −xk − xk−1 + x − 1 and so, again by
Lemma 1, we infer that the number of negative roots of f (x) is either 0 or 2. Thus, we need to find
another approach to conclude that there is no z < 0 such that f (z) = 0, when k is odd. To prove
this, it suffices to show that f ′(x) > 0, for x < −1 and f (x) < 0, for all x ∈ (−1, 0). In fact,
f (x) = xk−1(x− 1)− (x + 1) < 0, since x + 1 ∈ (0, 1) while xk−1(x− 1) < 0, for x < 0 (here we used
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that k− 1 is even and so xk−1 > 0). Furthermore, f ′(x) = xk−2(kx − k + 1) is positive, for x < −1,
since xk−2 < 0 (because k − 2 is odd), while kx − k + 1 < −2k + 1 < 0 for x < −1. This finishes
the proof.

3.3. Proof of Item (iii)

Proof. Aiming for a contradiction, suppose that z is a double root of f (x). Then, f (z) = f ′(z) = 0.
Since f ′(x) = kxk−1 − (k− 1)xk−2 − 1, then zk − zk−1 − z− 1 = 0 and kzk−1 − (k− 1)zk−2 − 1 = 0.
Thus,

0 = k(zk − zk−1 − z− 1)− z(kzk−1 − (k− 1)zk−2 − 1) = −zk−1 − (k− 1)z− k

and so

0 = −k(zk−1 + (k− 1)z + k) + (kzk−1 − (k− 1)zk−2 − 1)

= −(k− 1)zk−2 − k(k− 1)z− (k2 + 1).

Hence, we obtain

0 = −z((k− 1)zk−2 + k(k− 1)z + (k2 + 1)) + (k− 1)(zk−1 + (k− 1)z + k)

= −k(k− 1)z2 − 2kz + k(k− 1)

yielding that (k− 1)z2 + 2z− (k− 1) = 0. Therefore, z ∈ {z−, z+}, where

z± =
−1±

√
(k− 1)2 + 1

k− 1
.

Since z± are both real numbers, then if z = z+, we infer that z+ = α. However, α > 1 implying
that −1 +

√
(k− 1)2 + 1 > k− 1 which leads to the absurd that k < 1. In the case in which z = z−,

we use that the negative root of f satisfies z− ∈ (−1, 0) (since k is even and then f (0) = −1 and
f (−1) = 2) and after some manipulations, we arrive again at the absurdity of k < 1. In conclusion,
such a root z does not exist and so, all the roots of f (x) are simple roots.

3.4. Proof of Item (iv)

Proof. We now wish to prove that αk > αk+1. For ease of notation, set α := αk and β := αk+1.
Let us define the polynomial ψk(x) := fk+1(x) + 1 = xk+1 − xk − x. Since ψ′k(x) = ((k + 1)x −
k)xk−1 − 1 > 0 (for x > 1 and k ≥ 2), then ψk : (1, ∞) → R is an increasing function. Note that
ψk(β) = 1 and the relation αk − αk−1 − 1 = α, implies that ψk(α) = α2. Since, by item (i), α, β ∈ (1, ∞),
and ψk(α) = α2 > 1 = ψk(β), then α > β. In conclusion, αk > αk+1 yielding that the sequence (αk)k is
strictly decreasing.

4. Applications of Our Results

In this section, we shall show an application of our results for the distribution of the dominant
root αk depending on k and the determination of its upper bound (of course this is also an upper bound
to the absolute value of all the other roots). For example, by Theorem 1 and Lemma 2, we can write a
k-distance Tribonacci sequence in its asymptotic form

T(k)
n = cαn

k (1 + o(1)) ,

where c is a nonzero constant and o(1) is a function which tends to 0 as n→ ∞. Therefore, the growth
of αk is a crucial step to gain an understanding about the growth of the sequence (T(k)

n )n. This behavior
and its precision is showed in the Table 1, Figures 1 and 2.
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Table 1. The dominant root αk of fk(x) = xk − xk−1 − x − 1 and its upper bound A(k) =

1 +
√

2/(k− 1) for k from 2 to 49.

k αk A(k) k αk A(k) k αk A(k)

2 2.414213562 2.414213562 18 1.163910449 1.342997170 34 1.097462321 1.246182982
3 1.839286755 2.000000000 19 1.156780140 1.333333333 35 1.095189446 1.242535625
4 1.618033989 1.816496581 20 1.150313062 1.324442842 36 1.093031609 1.239045722
5 1.497094049 1.707106781 21 1.144417473 1.316227766 37 1.090979976 1.235702260
6 1.419632763 1.632455532 22 1.139018098 1.308606700 38 1.089026607 1.232495277
7 1.365254707 1.577350269 23 1.134052557 1.301511345 39 1.087164353 1.229415734
8 1.324717957 1.534522484 24 1.129468689 1.294883912 40 1.085386751 1.226455407
9 1.293188036 1.500000000 25 1.125222520 1.288675135 41 1.083687949 1.223606798
10 1.267874775 1.471404521 26 1.121276701 1.282842712 42 1.082062631 1.220863052
11 1.247047862 1.447213595 27 1.117599293 1.277350098 43 1.080505957 1.218217890
12 1.229573607 1.426401433 28 1.114162811 1.272165527 44 1.079013511 1.215665546
13 1.214676212 1.408248290 29 1.110943467 1.267261242 45 1.077581254 1.213200716
14 1.201805729 1.392232270 30 1.107920561 1.262612866 46 1.076205487 1.210818511
15 1.190560750 1.377964473 31 1.105075990 1.258198890 47 1.074882811 1.208514414
16 1.180640991 1.365148372 32 1.102393848 1.254000254 48 1.073610101 1.206284249
17 1.171817047 1.353553391 33 1.099860103 1.250000000 49 1.072384476 1.204124145

Figure 1. The graph of dominant roots αk (colored by blue) of fk(x) = xk − xk−1 − x − 1, its upper
bound A(k) = 1 +

√
2/(k− 1) (colored by green) and absolute value of the other roots of fk(x)

(colored by gray) for k ∈ [2, 260].
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Figure 2. The graph of all roots γ of fk(x) = xk − xk−1 − x− 1 for k ∈ [2, 100]. We performed coloring
points that correspond to the roots γ, in a manner that with increasing values of k decreased the size of
the points, and their color changed gradually from warm colors to cold colors.

5. Conclusions

In this paper, we have been interested in the behavior of the so-called k-distance Tribonacci
sequence which is a kth order recurrence defined by T(k)

n = T(k)
n−1 + T(k)

n−k+1 + T(k)
n−k. There exist many

results in literature which permit transfer the study of the behavior of the sequence to the knowledge of
the analytic and algebraic properties of roots of its characteristic polynomial (in a form of a “Binet-like
formula"). In our case, this polynomial is fk(x) = xk − xk−1 − x− 1. Therefore, in this work, we shall
explicit a complete study of the roots of fk(x). For example, in our main result, we shall prove
(among other things) the existence of a dominant root αk ∈ (1, 2) (together with some more accurate
lower and upper bounds), for all k ≥ 2. Moreover, we shall show that (αk)k≥2 is a strictly decreasing
sequence (which converges to 1 as k→ ∞).
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