
mathematics

Article

p-Moment Mittag–Leffler Stability of
Riemann–Liouville Fractional Differential Equations
with Random Impulses

Ravi Agarwal 1,2 , Snezhana Hristova 3,*, Donal O’Regan 4 and Peter Kopanov 3

1 Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX 78363, USA;
Ravi.Agarwal@tamuk.edu

2 Florida Institute of Technology, Distinguished University Professor of Mathematics,
Melbourne, FL 32901, USA

3 Department of Applied Mathematics and Modeling, University of Plovdiv “Paisii Hilendarski”,
4000 Plovdiv, Bulgaria; pkopanov@yahoo.com

4 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland;
donal.oregan@nuigalway.ie

* Correspondence: snehri@gmail.com

Received: 20 July 2020; Accepted: 12 August 2020; Published: 17 August 2020
����������
�������

Abstract: Fractional differential equations with impulses arise in modeling real world phenomena
where the state changes instantaneously at some moments. Often, these instantaneous changes
occur at random moments. In this situation the theory of Differential equations has to be combined
with Probability theory to set up the problem correctly and to study the properties of the solutions.
We study the case when the time between two consecutive moments of impulses is exponentially
distributed. In connection with the application of the Riemann–Liouville fractional derivative in the
equation, we define in an appropriate way both the initial condition and the impulsive conditions.
We consider the case when the lower limit of the Riemann–Liouville fractional derivative is fixed
at the initial time. We define the so called p-moment Mittag–Leffler stability in time of the model.
In the case of integer order derivative the introduced type of stability reduces to the p–moment
exponential stability. Sufficient conditions for p–moment Mittag–Leffler stability in time are obtained.
The argument is based on Lyapunov functions with the help of the defined fractional Dini derivative.
The main contributions of the suggested model is connected with the implementation of impulses
occurring at random times and the application of the Riemann–Liouville fractional derivative of
order between 0 and 1. For this model the p-moment Mittag–Leffler stability in time of the model
is defined and studied by Lyapunov functions once one defines in an appropriate way their Dini
fractional derivative.

Keywords: differential equations; Riemann–Liouville fractional derivative; impulses at random
times; p-moment Mittag–Leffler stability in time; Lyapunov functions; fractional Dini derivative

MSC: 34A08; 34F05; 34A08

1. Introduction

Fractional differential equations are considered as a generalization of ordinary differential equations
and many results about different types of fractional differential equations are obtained in the literature [1–3].
However this is not the situation with fractional impulsive differential equations because of the nonlocal
feature. The impulsive effects exist in many evolution processes, when the states change abruptly at certain
moments of time. In the literature many authors consider impulsive differential equations with determined
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impulsive moments [4–6]. Since often in a real world problem impulsive perturbations occur at random
moments, so it requires combining the Theory of Differential Equations and Probability Theory and to set
up a new model [7–9].

Several results were obtained in the literature for stochastic differential equations with jumps [10,11]
and some results on the qualitative properties of equations with random impulses were obtained [12–14].
In the monograph [15], impulsive differential equations with fixed impulses and random amplitude of
jumps were studied and ordinary and delay differential equations with random impulses were studied
in [16–20], but unfortunately there was some inaccurate applications of real variables and random
variables. In [7], the authors set it up appropriately and studied the exponential stability for differential
equations with random impulses by Lyapunov direct method and in [21] ordinary and Caputo fractional
differential equations of impulses at random times are set up and the stability properties are investigated.

Note the case of deterministic impulses at initially given fixed points in Caputo fractional differential
equations was studied in many papers (see the surveys [22,23] and cited therein references). The question
concerning Riemann–Liouville fractional differential equations with deterministic impulses is still at an
early stage of investigation (see, for example, [24]) and there is nothing on random impulses.

In this paper we study nonlinear fractional differential equations subject to impulses occurring at
random moments. We study the case of the Riemann–Liouville (RL) fractional derivative with a fixed
lower limit of the derivative at the initial time. In connection with the presence of the RL derivative,
we define in an appropriate way both the impulsive conditions and the initial condition. In particular
we study the case of exponentially distributed random variables between two consecutive moments of
impulses and we study the p-moment stability of the given equation. This type of stability is deeply
connected with the application of Mittag–Leffler functions with one parameter. Also, the presence of
the RL fractional derivative and its singularity at the initial time leads to excluding this point from
the interval of the stability and we define a new type of stability called the p-moment Mittag–Leffler
stability in time. We study this type of stability by employing Lyapunov functions. The fractional Dini
derivative is defined and it is applied to obtain sufficient conditions for stability.

The main contributions of the paper can be summarized as:

- The case of impulses occurring at random times is studied when the waiting time between two
consecutive impulses is exponentially distributed;

- The statement of the initial value problem with Riemann–Liouville fractional derivatives of order
between 0 and 1 is given in an appropriate way;

- The p-moment Mittag–Leffler stability in time of the model is defined;
- The fractional Dini derivative of the Lyapunov function is defined;
- Sufficient conditions for p-moment Mittag–Leffler stability in time are obtained.

2. Notes on Fractional Calculus

In engineering, the fractional order q is often less than 1, so we restrict our attention to q ∈ (0, 1).
In this paper we will use the following definitions for fractional derivatives and integrals for

scalar functions m : [0, T]→ R with T ≤ ∞:

Definition 1. Riemann–Liouville fractional integral of order q ∈ (0, 1) (Section 1.4.1.1 [25], or [26])) is

0 Iq
t m(t) =

1
Γ(q)

t∫
0

m(s)
(t− s)1−q ds, t ∈ (0, T],

where Γ is the Gamma function.
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Definition 2. Riemann–Liouville (RL) fractional derivative of order q ∈ (0, 1) (Section 1.4.1.1 [25], or [26])) is

RL
0 Dq

t m(t) =
d
dt
(

0 I1−q
t m(t)

)
=

1
Γ (1− q)

d
dt

t∫
0

(t− s)−q m(s)ds, t ∈ (0, T].

Definition 3. Grunwald–Letnikov (GL) fractional derivative is given by (see, for example, 1.4.1.2 [25])

GL
0 Dqm(t) = lim

h→0

1
hq

[ t
h ]

∑
r=0

(−1)r
qCrm(t− rh), t ∈ (0, T],

and the Grunwald–Letnikov fractional Dini derivative by

GL
0 Dq

+m(t) = lim sup
h→0+

1
hq

[ t
h ]

∑
r=0

(−1)r
qCrm(t− rh), t ∈ (0, T], (1)

where qCr =
q(q−1)...(q−r+1)

r! , r ≥ 0 is an integer and [ t
h ] denotes the integer part of the fraction t

h .

Remark 1. In the case of vector functions the RL derivative is taken component-wise, i.e., for the function
x : [0, T] → Rn : x = (x1, x2, . . . , xn) we have RL

0 Dq
t x(t) = (RL

0 Dq
t x1(t),RL

0 Dq
t x2(t), . . . ,RL

0 Dq
t xn(t)).

Similarly are defined 0 Iq
t x(t) and GL

0 Dqm(t) for a vector function x(t).

According to [26] if m(t) ∈ C([0, T],R), m′(t) is integrable in [0, T] and 0 < q < 1 then both the
RL derivative and the GL derivativeH1 coincide, i.e., RL

0 Dqm(t) = GL
0 Dqm(t).

The definitions of the initial condition for fractional differential equations with RL-derivatives are
based on the following result:

Lemma 1 ([27] Lemma 3). Let q ∈ (0, 1), 0 ≤ t0 < T ≤ ∞ and m(t) be a Lebesque measurable scalar
function on [t0, T].

(a) If there exists a.e. a limit limt→t0+[(t− t0)
q−1m(t)] = c, then there also exists a limit

t0 I1−q
t m(t)|t=t0 := lim

t→t0+
t0 I1−q

t m(t) = cΓ(q).

(b) If there exists a.e. a limit t0 I1−q
t m(t)|t=t0 = b and if there exists the limit limt→t0+[(t− t0)

1−qm(t)], then

lim
t→t0+

[(t− t0)
1−qm(t)] =

b
Γ(q)

.

We introduce the class of functions

PC1−q([a, b],Rn) = {x : [a, b]→ R : a I1−q
t x(t)|t=a < ∞, RL

0 Dq
t x(t) exits for t ∈ (a, b]},

where a, b ∈ R+ : a < b.
Note that according to Lemma 1 if the function x ∈ C((a, b],Rn) and the limit limt→a(t− a)1−qx(t) <

∞ then x ∈ PC1−q([a, b],Rn).
The explicit formula for the solution of the linear scalar problem with the RL fractional derivative

is given in the following Proposition:

Proposition 1 (Example 4.1 [27]). The solution of the initial value problem for the the linear RL fractional equation;

RL
a Dq

t x(t) = λx(t) + f (t), a I1−q
t x(t)|t=a = b, (2)
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has the following form (formula 4.1.14 [27])

x(t) =
b

(t− a)1−q Eq,q(λ(t− a)q) +
∫ t

a
(t− s)q−1Eq,q(λ(t− s)q) f (s)ds, (3)

where Eα,β(z) = ∑∞
k=0

zk

Γ(αk+β)
is the Mittag–Leffler function with two parameters and Γ(.) is the Gamma function.

We will consider some special cases of the function f (t) in the linear RL fractional Equation (3).

Corollary 1. The solution of the Cauchy type problem

RL
0 Dq

t x(t) = x(t) +
t1−q

Γ(2− q)
− t

Γ(2)
, 0 I1−q

t x(t)|t=0 = b,

has the following form

x(t) =
b

t1−q Eq,q(tq) + t. (4)

Proof. According to Equation (2.2.32) [28]

∫ t

0
uq−1Eq,q(uq)

[ (t− u)1−q

Γ(2− q)
− t− u

Γ(2)

]
du = t. (5)

Substitute t− u = s then u = 0 => t = s, u = t => t = 0, du = −ds and obtain

∫ t

0
(t− s)q−1Eq,q((t− s)q)

[ s1−q

Γ(2− q)
− s

Γ(2)

]
ds = t. (6)

From Proposition 1 and Equation (3) we have

x(t) =
b

t1−q Eq,q(tq) +
∫ t

0
(t− s)q−1Eq,q((t− s)q)

[ s1−q

Γ(2− q)
− s

Γ(2)

]
ds

=
b

t1−q Eq,q(tq) + t.
(7)

Corollary 2. The solution of the Cauchy type problem

RL
0 Dq

t x(t) = λx(t) +
tp−1

Γ(p)
, 0 I1−q

t x(t)|t=0 = b,

where p > 0 has the following form

x(t) =
b

t1−q Eq,q(λtq) + tq+p−1Eq,q+p(λtq). (8)

Proof. According to Example 2.2.4 [28]

1
Γ(p)

∫ t

0
uq−1(t− u)p−1Eq,q(λuq)du = tq+p−1Eq,q+p(λtq). (9)

Substitute t− u = s and obtain

1
Γ(p)

∫ t

0
(t− s)q−1Eq,q((t− s)q)sp−1ds = tq+p−1Eq,q+p(λtq). (10)
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From Proposition 1 and Equation (3) we have

x(t) =
b

t1−q Eq,q(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)

sp−1

Γ(p)
ds

=
b

t1−q Eq,q(tq) + tq+p−1Eq,q+p(λtq).

(11)

Corollary 3. The solution of the Cauchy type problem

RL
0 Dq

t x(t) = λx(t) + tp−1Eq,p(βtq), 0 I1−q
t x(t)|t=0 = b,

where β 6= λ has the following form

x(t) =
b

t1−q Eq,q(λtq) +
βEq,q+p(βtq)− λEq,q+p(λtq)

β− λ
tq+p−1. (12)

Proof. According to Example 2.2.2 [28]

∫ t

0
sp−1Eq,p(βsq)(t− s)q−1Eq,q(λ(t− s)q)ds =

βEq,q+p(βtq)− λEq,q+p(λtq)

β− λ
tq+p−1. (13)

From Proposition 1 and Equation (3) we have

x(t) =
b

t1−q Eq,q(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)sp−1Eq,p(βsq)ds

=
b

t1−q Eq,q(λtq) +
βEq,q+p(βtq)− λEq,q+p(λtq)

β− λ
tq+p−1.

(14)

We will provide some results for Mittag–Leffler functions which will be used in the main proofs:

tq−1Eq,q(λtq) = RL
0 D1−q

t Eq(λtq).

∫ t

0
(t− s)q−1Eq(sq)ds = Γ(q)tqEq,q+1(tq).

From Theorem 10.1 [29]

1
Γ(q)

∫ t

0
(t− s)q−1sq−1Eq,q(λsq)ds = t2q−1Eq,2q(λtq).

From Theorem 10.3 [29]

RLDq
0(t

q−1Eq,q(λtq)) = λtq−1Eq,q(λtq),

1
Γ(1− q)

∫ t

a
(t− s)−qsq−1Eq,q(λsq)ds = Eq(λtq),

(Eq(t))′ =
1
q

Eq,q(t),

Eq,p(t) =
1

Γ(p)
+ tEq,q+p(t).
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From (1.99) [26] we get ∫ t

0
sp−1Eq,p(λsq)ds = tpEq,p+1(λtq).

3. Preliminary Notes and Results for RL Fractional Differential Equations

Consider the initial value problem (IVP) for the system of fractional differential equations (FrDE)
with a RL fractional derivative for 0 < q < 1,

RL
0 Dqx = f (t, x) for t > 0 with 0 I1−q

t x(t)|t=0 = x0, (15)

where f ∈ C[R+ ×Rn,Rn], and x0 ∈ Rn is the arbitrary initial data.
We will assume the following condition is satisfied

Hypothesis 1. For any initial value x0 ∈ Rn the IVP (15) has an unique solution x(t) = x(t; x0) defined for
t ≥ 0.

Some sufficient conditions for global existence of solutions of (15) are given in [26,27,30].
About the fractional order we will assume:

Hypothesis 2. The number q ∈ (0, 1) is such that for any ε > 0 the equation 1
t1−q = 1

Eq(−εq)ε1−q Eq(−tq) has

only one solution for t > 0, where Eα(z) = ∑∞
k=0

zk

Γ(αk+1) is the Mittag–Leffler function with one parameter.

Example 1. The number q = 0.2 satisfies condition H2 but the number q = 0.9 does not. See, for example
Figures 1 and 2 for ε = 0.5.
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Eq H-t
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Eq H-e
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Figure 1. Graphs of 1
Eq(−εq)ε1−q Eq(−tq) and 1

t1−q with q = 0.2 and ε = 0.5.
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Figure 2. Graphs of 1
Eq(−εq)ε1−q Eq(−tq) and 1

t1−q with q = 0.9 and ε = 0.5.
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Let the increasing sequence of nonnegative points {Tk}∞
k=1 be given with T0 = 0, limk→∞{Tk} = ∞.

As it is explained in [31] there are two basic types of interpretations of impulses in RL fractional
differential equations and two types of impulsive conditions when the RL fractional derivative is used.
In this paper we will use a fixed lower limit of the RL fractional derivative at 0 on the whole interval of
consideration. Also, we will use the integral form of the initial condition and the impulsive conditions.
According to the above we will consider the initial value problem for the RL fractional differential
equations (IFrDE) with fixed points of impulses

RL
0 Dqx(t) = f (t, x(t)) for t ∈ (Tk, Tk+1], k = 0, 1, 2, . . . ,

Tk I1−q
t x(t)|t=Tk = bkx(Tk − 0), for k = 1, 2, . . . ,

0 I1−q
t x(t)|t=0 = x0,

(16)

where x0 ∈ Rn, f : [0, ∞)×Rn → Rn.
We will also study the initial value problem for the scalar linear RL fractional differential equations

with fixed points of impulses

RL
0 Dqu = au(t) + g(t) for t ∈ (Tk, Tk+1], k = 0, 1, 2, . . . ,

Tk I1−q
t u(t)|t=Tk = bku(Tk − 0), for k = 1, 2, . . . ,

0 I1−q
t u(t)|t=0 = u0,

(17)

where u0 ∈ R, g : [0, ∞)→ R, a, bk, k = 1, 2, . . . , are constants.
There is an explicit formula of the solution of (17) given in [31]:

Lemma 2 ([31]). The IVP for the linear scalar RL fractional differential equation with impulses (17) has an
exact solution u ∈ PC1−q([0, ∞),R) given by

u(t) = Bk
Eq,q(a(t− Tk)

q)

(t− Tk)
1−q +

∫ t

Tk

Eq,q(s(t− s)q)

(t− s)1−q

(
g(s) +

k

∑
j=1

hj(s)
)

ds,

for t ∈ (Tk, Tk+1], k = 0, 1, 2, . . . ,

(18)

where B0 = u0,

hk(t) =
q

Γ(1− q)

Tk∫
Tk−1

{
Bk−1

Eq,q((s− Tk−1)
q)

(s− Tk−1)
1−q(t− s)1+q

+
∫ s

Tk−1

Eq,q(a(s− σ)q)

(s− σ)1−q(t− s)1+q

(
g(σ) +

k−1

∑
j=1

hj(σ)
)

dσ
}

ds, t ∈ [Tk, ∞),

k = 1, 2, . . . ,

(19)

and

Bk = bk

{
Bk−1

Eq,q(a(Tk − Tk−1)
q)

(Tk − Tk−1)
1−q

+
∫ tk

Tk−1

Eq,q(a(Tk − s)q)

(tk − s)1−q

(
g(s) +

k−1

∑
j=1

hj(s)
)

ds
}

, for k = 1, 2, 3, . . . .
(20)
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Consider the following linear scalar IVP

RL
0 Dqu = au(t) for t ∈ (Tk, Tk+1], k = 0, 1, 2, . . . ,

Tk I1−q
t u(t)|t=Tk = 0, for k = 1, 2, . . . ,

0 I1−q
t u(t)|t=0 = u0,

(21)

where u0 ∈ R, a ∈ R.
As a special case of Lemma 2 we obtain

Lemma 3. The IVP for the linear scalar RL fractional differential equation with impulses (21) has an exact
solution u ∈ PC1−q([0, ∞),R), given by

u(t) =


u0

Eq,q(atq)

t1−q , t ∈ (0, T1],
qu0

Γ(1−q)

∫ t
T1

Eq,q(a(t−s)q)

(t−s)1−q h1(s)ds, t ∈ (T1, T2],
qu0

Γ(1−q)

∫ t
Tk

Eq,q(a(t−s)q)

(t−s)1−q

(
h1(s) +

q
Γ(1−q) ∑k

j=2 hj(s)
)

ds, t ∈ (Tk, Tk+1], k = 2, 3, . . . .

where

hk(t) =


∫ T1

0
Eq,q(asq)

(t−s)1+qs1−q ds, t > T1,∫ Tk
Tk−1

∫ s
Tk−1

Eq,q(a(s−σ)q)

(t−s)1+q(s−σ)1−q

(
h1(σ) +

q
Γ(1−q) ∑k−1

j=2 hj(σ)
)

dσds, t > Tk, k = 2, 3, . . . .

in the case a < 0 the following estimate

|u(t)| ≤


|u0|

t1−qΓ(q)
, t ∈ (0, T1],

|u0|πCsc[πq]
t1−qΓ(q)Γ(1−q)

, t ∈ (T1, T2],
|u0|πCsc(πq)

t1−qΓ(q)Γ(1−q)
(n− 1)

(
1 + πCsc(πq)

Γ(q)Γ(1−q)

)
, t ∈ (Tn, Tn+1], n = 2, 3, . . .

holds.

Proof. The first part of the claim directly follows from Lemma 2 with g(t) ≡ 0, bk = 0, k = 1, 2, . . . .
Let a < 0. Then Eq,q(atq) ≤ Eq,q(0) = 1

Γ(q) , t ≥ 0 and

h1(t) =
∫ T1

0

Eq,q(asq)

(t− s)1+qs1−q ds ≤ 1
qΓ(q)

Tq−1
1

(t− T1)q , t > T1, (22)

h2(t) ≤
1

Γ(q)

∫ T2

T1

∫ s

T1

1
(t− s)1+q(s− σ)1−q h1(σ)

)
dσds

≤
Tq−1

1
qΓ2(q)

∫ T2

T1

∫ s

T1

1
(t− s)1+q(s− σ)1−q(σ− T1)q

)
dσds

≤
Tq−1

1 πCsc(πq)
qΓ2(q)

∫ T2

T1

1
(t− s)1+q ds ≤

Tq−1
1 πCsc(πq)

q2Γ2(q)(t− T2)q , t > T2,

(23)

h3(t) =
∫ T3

T2

∫ s

T2

Eq,q(a(s− σ)q)

(t− s)1+q(s− σ)1−q

(
h1(σ) +

q
Γ(1− q)

h2(σ)
)

dσds

≤
Tq−1

1 πCsc(πq)
q2Γ2(q)(t− T3)q

(
1 +

πCsc(πq)
Γ(q)Γ(1− q)

)
, t > T3,

(24)
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and by induction we get

hn(t) ≤
Tq−1

1 πCsc(πq)
q2Γ2(q)(t− Tn)q (n− 2)

(
1 +

πCsc(πq)
Γ(q)Γ(1− q)

)
, t > Tn, n = 3, 4, . . . . (25)

From inequalities (22)–(25), the formula for the solution u(t) and the equality
∫ t

Tk

1
(t−s)1−q(s−Tk)

q =

πCsc(πq), t > Tk we obtain the estimate for u(t) in the claim.

4. RL Fractional Differential Equations with Random Impulses

Now we define fractional differential equations with random points of impulses and random
amplitude of impulses. Let the probability space (Ω,F , P) be given. Let {τk}∞

k=1 be a sequence of
independent exponentially distributed random variables with a parameter λ > 0, that are defined on
the sample space Ω. The random variables τk define the time between two consecutive impulses of the
considered impulsive fractional differential equation.

Assume ∑∞
k=1 τk = ∞ with probability 1.

We will assume the following condition is satisfied

Hypothesis 3. The random variables {τk}∞
k=1 are independent exponentially distributed random variables

with a parameter λ.

Define the sequence of random variables {ξk}∞
k=0 such that ξ0 ≡ 0 and ξk = ∑k

i=1 τi, k = 1, 2, . . . .
We note that {ξk}∞

k=0 is an increasing sequence of random variables. The random variable ξn will
be called the waiting time and it gives the arrival time of the n-th impulse.

Let the points tk be arbitrary values of the corresponding random variables τk, k = 1, 2, . . . . Define
the increasing sequence of points Tk = ∑k

i=1 ti, k = 1, 2, 3 . . . that are values of the random variables ξk.
Consider the initial value problem for the system of IFrDE with fixed points of impulses (16).

The solution of the impulsive fractional differential equation with fixed moments of impulses (16)
depends not only on the initial value x0 but also on the moments of impulses Tk, k = 1, 2, . . . , i.e., the
solution depends on the chosen arbitrary values tk of the random variables τk, k = 1, 2, . . . . We denote
the solution of the initial value problem (16) by x(t; x0, {Tk}).

The set of all solutions x(t; x0, {Tk}) of the initial value problem for the impulsive fractional
differential Equation (16) for any values tk of the random variables τk, k = 1, 2, . . . generates a
stochastic process with state space Rn. We denote it by x(t; x0, {τk}) and we will say that it is a solution
of the following initial value problem for the system of impulsive fractional differential equations with
random moments of impulses (RIFrDE)

RL
0 Dqx(t) = f (t, x(t)) for ξk < t < ξk+1, k = 0, 1, . . . ,

ξk I1−q
t x(t)|t=ξk = Ik(x(ξk − 0)), for k = 1, 2, . . . ,

0 I1−q
t x(t)|t=0 = x0,

(26)

where x0 ∈ Rn.

Definition 4. Suppose tk is a value of the random variable τk, k = 1, 2, 3, . . . and Tk = ∑k
i=1 ti, k = 1, 2, . . . .

Then the solution x(t; x0, {Tk}) of the IVP for the IFrDE with fixed points of impulses formally written by

RL
0 Dqx(t) = f (t, x(t)) for Tk < t < Tk+1, k = 0, 1, . . . ,

Tk I1−q
t x(t)|t=Tk = Ik(x(Tk − 0)), for k = 1, 2, . . . ,

0 I1−q
t x(t)|t=0 = x0,

(27)

is called a sample path solution of the IVP for the RIFrDE (26) (here T0 = 0).
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Any sample path solution x(t; x0, {Tk}) ∈ PC1−q[(Tk, Tk+1],Rn), k = 0, 1, 2, . . . .

Definition 5. A stochastic process x(t; x0, {τk}) with an uncountable state space Rn is said to be a solution
of the IVP for the system of RIFrDE (26) if for any values tk of the random variable τk, k = 1, 2, 3, . . . and
Tk = ∑k

i=1 ti, k = 1, 2, . . . the corresponding function x(t; x0, {Tk}) is a sample path solution of the IVP for
RIFrDE (26).

According to Definition 5 and Lemma 3 any solution of the IVP for the scalar linear fractional
differential equation with random moments of impulses:

RL
0 Dqu = −au for t ≥ 0, ξk < t < ξk+1,

ξk I1−q
t u(t)|t=ξk = 0, for k = 1, 2, . . . ,

0 I1−q
t u(t)|t=0 = u0,

(28)

where u0 ∈ R, a > 0, will have a sample path solution satisfying the IVP (21).

Definition 6. The stochastic processes y(t) and u(t) satisfy the inequality y(t) ≤ u(t) for t ∈ J ⊂ R if the
state space of the stochastic processes v(t) = y(t)− u(t) is (−∞, 0].

Consider the events

Sk(t) = {ω ∈ Ω : ξk(ω) < t < ξk+1(ω)}, k = 1, 2, . . . .

Lemma 4 ([7]). The probability that there will be exactly k impulses until time t, t ≥ 0 is given by P(Sk(t)) =
λktk

k! e−λt.

Lemma 5. Let the hypothesis 3 be satisfied.
Then for any positive number ε > 0 the solution u(t; u0, {τk}) of the IVP for the linear RIFrDE (28)

satisfies the inequality

E(|u(t; u0, {τk})|) ≤ |u0|
λ

t1−qΓ(q)
πCsc(πq)
Γ(1− q)

(
1 +

πCsc(πq
Γ(q)Γ(1− q)

)
, t ≥ 0,

where E(.) is the expected value.

Proof. Choose arbitrary values tk of the random variables τk, k = 1, 2, . . . . Define the increasing
sequence of points Tk = ∑k

i=1 ti, k = 1, 2, , 3 . . . that are values of the random variables ξk and consider
the IVP for the linear IFrDE with fixed points of impulses (21). The explicit formula of the sample path
solution of (28) is given in Lemma 3. The set of all solutions u(t; u0, {Tk}) of the IVP (21) for any values
tk of the random variables τk generates a continuous stochastic process u(t; u0, {τk}).
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According to Lemmas 3 and 4, the independence of the random variables τk, k = 1, 2, . . . we see
that the expected value of the solution of the IVP for the scalar linear RIFrDE (21) satisfies

E
(
|u(t; u0, {τk})|

)
=

∞

∑
k=0

E
(
|u(t; T0, u0, {τk})|

∣∣∣Sk(t)
)

P(Sk(t))

≤ |u0|
t1−qΓ(q)

P(S0(t)) +
|u0|πCsc[πq]

t1−qΓ(q)Γ(1− q)
P(S1(t))

+
∞

∑
k=2
|u0|

(
(k− 1)

πCsc(πq)
t1−qΓ2(q)Γ(1− q)

(
1 +

πCsc(πq
Γ(q)Γ(1− q)

))
P(Sk(t))

≤ |u0|
t1−qΓ(q)

e−λt +
|u0|πCsc[πq]

t1−qΓ(q)Γ(1− q)
λte−λt

+ |u0|
πCsc(πq)

t1−qΓ2(q)Γ(1− q)

(
1 +

πCsc(πq
Γ(q)Γ(1− q)

)
e−λt

∞

∑
k=2

(k− 1)
λktk

k!

≤ |u0|
e−λt

t1−qΓ(q)
πCsc(πq)
Γ(1− q)

(
1 +

πCsc(πq
Γ(q)Γ(1− q)

)
λeλt for t ≥ 0.

(29)

5. p-moment Mittag–Leffler Stability in Time for RIFrDE

We will introduce p-moment stability of the RIFrDE (26). This type of stability is deeply connected
with the application of Mittag–Leffler functions with one parameter. Also, the presence of the RL
fractional derivative and its singularity at the initial time leads to excluding this point from the interval
of the stability. We will call the new type of stability the p-moment Mittag–Leffler stability in time.

Definition 7. Let p > 0. Then the RIFrDE (26) is said to be p-moment Mittag–Leffler stable in time if for
any ε > 0 and any initial value x0 ∈ Rn there exists a constant α > 0 such that

E[||x(t; x0, {τk)})||p] < α||x0||pEq(−tq), for all t > ε,

where x(t; x0, {τk}) is the solution of the IVP for the RIFrDE (26).

In this section we will use Lyapunov functions to obtain sufficient conditions for the p-moment
exponential stability of the trivial solution of the nonlinear impulsive random system impulses
occurring at random moments (26).

We now introduce the class Λ of Lyapunov functions which will be used to investigate the stability
properties of the zero solution of the system RIFrDE (16).

Definition 8. Let J ⊂ R+ be a given interval and ∆ ⊂ Rn, 0 ∈ ∆ be a given set. We will say that the
function V(t, x) : J × ∆ → R+, V(t, 0) ≡ 0 belongs to the class Λ(J, ∆) if it is continuous on J × ∆ and
locally Lipschitzian with respect to its second argument.

We will use Lyapunov functions V(t, x) from the class Λ([0, T], ∆) and their fractional Dini
derivatives along trajectories of solutions of the system FrDE (15) defined by:

Dq
(15)V(t, x) = lim sup

h→0+

1
hq

{
V(t, x)−

[ t
h ]

∑
r=1

(−1)r+1
qCrV(t− rh, x− hq f (t, x))

}
, (30)

where qCr = q(q−1)(q−2)...(q−r+1)
r! , t ∈ (0, T), x ∈ ∆, and there exists h1 > 0 such that t− h ∈ [0, T),

x− hq f (t, x) ∈ ∆ for 0 < h ≤ h1.
Note the formula (30) is similar to the Grunwald–Letnikov fractional Dini derivative of a function

given by (1).
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Example 2. Let V ∈ Λ(R,R) be V(t, x) = m(t) x2 where m ∈ C1(R+,R+). Use (30) to obtain the fractional
Dini derivative of V, namely

Dq
(15)V(t, x)

= lim sup
h→0+

1
hq

{
m(t) x2 −

[ t
h ]

∑
r=1

(−1)r+1
qCrm(t− rh)(x− hq f (t, x))2

}

= lim sup
h→0+

1
hq

{
m(t) x2 + (x2 − 2xhq f (t, x) + h2q f 2(t, x))

[ t
h ]

∑
r=1

(−1)r
qCrm(t− rh)

}

= lim sup
h→0+

1
hq

{
m(t)(hq f (t, x))(2x− hq f (t, x)) + x2

[ t
h ]

∑
r=0

(−1)r
qCrm(t− rh)

+ 2xhq f (t, x)
[ t

h ]

∑
r=0

(−1)r+1
qCrm(t− rh)− h2q f 2(t, x))

[ t
h ]

∑
r=0

(−1)r+1
qCrm(t− rh)

}
= 2xm(t) f (t, x) + x2 RL

0 Dq
(

m(t)
)

.

In the special case f (t, x) = xp(t) we obtain

Dq
(15)V(t, x) = x2

(
2m(t)g(t) + RL

0 Dq(m(t)
)

. (31)

Note the fractional Dini derivative depends significantly not only on the order q of the fractional
differential equation but also on the initial time (0 in our case).

Remark 2. We note that if condition (H1) is satisfied then the sample path solution of the IVP for the RIFrDE
(26) exists for all t ≥ 0 provided that the times between two consecutive impulses tk are such that ∑ tk = ∞.

In the case when the Lyapunov function is only continuous we obtain the following sufficient
condition for the studied stability type:

Theorem 1. Let the following conditions be satisfied:

1. Hypotheses 1,2,3 hold.
2. The function V ∈ Λ(R+,Rn) and

(i) for any ε > 0 there exist positive constants a, b > 0 depending on ε such that a||x||p ≤ V(t, x) ≤
b||x||p for t > ε x ∈ Rn;

(ii) there exists a constant m ≥ 0 such that the inequality

Dq
(15)V(t, x) ≤ −mV(t, x), for t ≥ 0, x ∈ Rn

holds;
(iii) there exists a positive constant c > 0 such that for any function x such that t1−qx(t)|t=0 = x0

the limit
t1−qV(t, x(t))|t=0 = c||x0||p (32)

holds.
Then the system of RIFrDE (26) is p-moment Mittag–Leffler stable.

Proof. Let x0 ∈ Rn be an arbitrary initial value and the stochastic process xτ(t) = x(t; x0, {τk}) be a
solution of the initial value problem for the RIFrDE (26).

Let ε > 0 be an arbitrary number and tk be arbitrary values of the random variables τk, k = 1, 2, . . . .
Then Tk = ∑k

i=1 ti, k = 1, 2, . . . are values of the random variables ξk. Thus the corresponding function
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x(t) = x(t; x0, {Tk}) is a sample path solution of the IVP for RIFrDE (26), i.e., x(t) = x(t; x0, {Tk}) is a
solution of the IVP for the IFrDE with fixed points of impulses (16).

Let v(t) = V(t, x(t)). Then for t ∈ (Tk, Tk+1], k = 0, 1, 2, . . . , (here T0 = 0), we obtain

v(t)−
[ t

h ]

∑
r=1

(−1)r+1qCrv(t− rh)

=

{
V(t, x(t))−

[ t
h ]

∑
r=1

(−1)r+1
qCrV(t− rh, x(t)− hq f (t, x(t))

}

+
[ t

h ]

∑
r=1

(−1)r+1
qCr

{
V(t− rh, x(t)− hq f (t, x(t))−V(t− rh, x(t− rh))

}
.

(33)

Since x(t) ∈ PC1−q([Tk, Tk+1],Rn) from (28) we have

RL
0 Dq

+x(t) = GL
0 Dq

+x(t)

= lim sup
h→0+

1
hq

[
x(t)−

[ t
h ]

∑
r=1

(−1)r+1
qCrx(t− rh)

]
= f (t, x(t)),

or
x(t)− hq f (t, x(t)) = Sk(x(t), h) + Λ(hq), (34)

with Λ(hq)
hq → 0 as h→ 0 where Sk(x(t), h) = ∑

[ t
h ]

r=1(−1)r+1
qCrx(t− rh).

Therefore, since V is locally Lipschitzian in its second argument with a Lipschitz constant L > 0
we obtain

[ t
h ]

∑
r=1

(−1)r+1qCr
{

V(t− rh, x(t)− hq f (t, x(t))−V(t− rh, x(t− rh))
}

≤ L||
[ t

h ]

∑
r=1

(−1)r+1
qCr

(
Sk (x(t), h) k + Λ(hq)− x(t− rh)

)
||

≤ L||
[ t

h ]

∑
r=1

(−1)r+1
qCr

[ t
h ]

∑
j=1

(−1)j+1
qCjx(t− jh)

−
[ t

h ]

∑
r=1

(−1)r+1
qCrx(t− rh)||+ L|Λ(hq)|

[ t
h ]

∑
r=1

qCr

= L||
( [ t

h ]

∑
r=0

(−1)r+1
qCr

)( [ t
h ]

∑
j=1

(−1)r+1
qCjx(t− jh)

)
||+ L |Λ(hq)|

[ t
h ]

∑
r=1

qCr.

(35)

Now substitute (35) in (33), divide both sides by hq, take the limit as h → 0+, use (28) and
∑∞

r=0 qCrzr = (1 + z)q if |z| ≤ 1, use condition 2(i) and we have

GL
0 Dq

+v(t) ≤ Dq
(15)V(t, x) + L lim

h→0+

Λ(hq)

hq lim
h→0+

[ t
h ]

∑
r=1

qCr

+ L lim
h→0+

sup
∣∣∣∣∣∣( [ t

h ]

∑
r=0

(−1)r
qCr

)( 1
hq

[ t
h ]

∑
j=1

(−1)r
qCjx(t− jh)

)∣∣∣∣∣∣
≤ −mv(t), t ∈ (Tk, Tk+1].

(36)
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Also,

t1−qv(t)|t=0 = t1−qV(t, x(t))|t=0 ≤ c||x0||p,

(t− Tk)
1−qv(t)|t=Tk = t1−qV(t, x(t))

(t− Tk)
1−q

t1−q |t=Tk

= t1−qV(t, x(t))|t=Tk

(t− Tk)
1−q

t1−q |t=Tk = 0.

(37)

Therefore, from (36), (37) and Lemma 1 it follows that the function v(t) satisfies the linear
impulsive fractional differential inequalities with fixed points of impulses

RL
0 Dq

+v(t) ≤ −m v(t) for Tk < t < Tk+1

Tk I1−q
t v(t)|t=Tk = 0, k = 1, 2, . . . ,

0 I1−q
t v(t)|t=0 = c||x0||p.

(38)

According to Definition 4 the function v(t) is a sample path solution and it generates a stochastic
process v(t; c||x0||p, {τk}) with state space Rn.

From conditions (H2), 2(i), Definition 4, Lemmas 3 and 5 we obtain the inequalities

E(||x(t; x0, {τk})||p) =
1
a

E(a||x(t; x0, {τk})||p)

≤ 1
a

E(V(t, x(t; x0, {τk}))) ≤
1
a

E(v(t; c||x0||p, {τk}))

≤ 1
a

c||x0||p
λ

t1−qΓ(q)
πCsc(πq)
Γ(1− q)

(
1 +

πCsc(πq)
Γ(q)Γ(1− q)

)
≤ K||x0||pEq(−tq), t > ε,

(39)

where K = 1
a c λ

Γ(q)
πCsc(πq)

Γ(1−q)

(
1 + πCsc(πq

Γ(q)Γ(1−q)

)
.

Inequality (39) proves the p-moment exponential stability.

Example 3. Consider the scalar RF fractional differential equation with random impulses

RL
0 D0.2x(t) = f (t, x(t)) for ξk < t < ξk+1, k = 0, 1, . . . ,

ξk I0.8
t x(t)|t=ξk = Ik(x(ξk − 0)), for k = 1, 2, . . . ,

0 I0.8
t x(t)|t=0 = x0,

(40)

where x0 ∈ Rn, f (t, x) = −x
(

1 +
RL
0 D0.2( t

t+1 )
0.8

( t
t+1 )

1−q

)
with

RL
0 D0.2(

t
t + 1

)0.8 = (1.6)t0.6Γ(1.8)
(

2F1[0.8, 1.8, 2.6,−t]− 0.9t 2F1[1.8, 2.8, 3.6,−t]
)

,

where the regularized hypergeometric function 2F1[q, b, c, z] = 1
Γ(b)Γ(c−b)

∫ 1
0 sb−1(1− s)c−b−1(1− sz)−ads.

According to Example 1 the hypothesis 2 is satisfied with c = 1
ε0.8E0.2(−ε0.2)

where ε > 0 is an
arbitrary number.

Let V(t, x) = ( t
t+1 )

0.8x2.
Then for any t > ε we have 1 ≥ t

t+1 ≥
ε

ε+1 and x2 ≥ V(t, x) = ( t
t+1 )

0.8x2 ≥ ( ε
ε+1 )

0.8x2, i.e., condition
2(i) of Theorem 1 is satisfied.

Also,

lim
t→0

t0.8V(t, x(t)) = lim
t→0

t0.8(
t

t + 1
)0.8x2 = lim

t→0
(t0.8x(t))2 lim

t→0

1
(t + 1)0.8 = x2

0,
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i.e., condition 2(iii) of Theorem 1 is satisfied.
According to Example 2 we have

Dq
(15)V(t, x) = 2x(

t
t + 1

)0.8 f (t, x) + x2 RL
0 D0.2(

t
t + 1

)0.8 ≤ −2(
t

t + 1
)0.8x2 = −2V(t, x),

i.e., condition 2(ii) of Theorem 1 is satisfied.
According to Theorem 1 the RIFrDE (40) is p-moment Mittag–Leffler stable, i.e., its solution satisfies

E[||x(t; x0, {τk})||p] < α||x0||pEq(−t0.2), for all t > ε,

with α = λ(1+ε)0.8

ε1.6
πCsc(0.2π)

E0.2(−ε0.2)Γ(0.2)Γ(0.8)

(
1 + πCsc(0.2π)

Γ(0.2)Γ(0.8)

)
= 2 λ(1+ε)0.8

ε1.6E0.2(−ε0.2)
.

6. Conclusions

In this paper the RL fractional differential equation is studied when the impulses occur at random
times and the waiting time between two consecutive times of impulses is exponentially distributed.
We combine the Theory of Differential Equations with Probability Theory to set up the problem and to
study the properties of the solutions. In connection with the application of the RL fractional derivative
in the equation, we define in an appropriate way both the initial condition and the impulsive conditions.
We define p-moment Mittag–Leffler stability in time of the model and obtain some sufficient conditions.
The argument is based on Lyapunov functions with the help of the fractional Dini derivative. In further
work we hope to consider a number of directions:

(i) When the waiting time between two consecutive impulses is generalized to Erlang distribution,
to Log-normal distribution, etc.

(ii) When the model of the RL fractional differential equation is generalized to various other types
of delays.
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