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Abstract: The discrete wavelet transform (DWT) is unable to represent the directional features of an 

image. Similarly, a fixed embedding strength is not able to establish an ideal balance between 

imperceptibility and robustness of a watermarked image. In this work, we propose an adaptive 

embedding strength watermarking algorithm based on shearlets’ capture directional features (S-

AES). We improve the watermarking algorithm in the domain of DWT using non-subsampled 

shearlet transform (NSST). The improvement is made in terms of coping with anti-geometric 

attacks. The embedding strength is optimized by artificial bee colony (ABC) to achieve higher 

robustness under the premise of satisfying imperceptibility. The principle components (PC) of the 

watermark are embedded into the host image to overcome the false positive problem. The 

simulation results show that the proposed algorithm has better imperceptibility and strong 

robustness against multi-attacks, especially those of high intensity. 

Keywords: non-subsampled shearlet transform; artificial bee colony; principle components; false 

positive problem 

 

1. Introduction 

With the development of the Internet, the amount of image data being transmitted has 

significantly increased. These images are easily copied, modified, subsequently infringing the 

copyright of the author. Digital image watermarking [1,2] is a technique to protect images’ 

ownership. Watermarking with strong robustness is embedded into the image to protect the 

ownership of the image. The research on robust watermarking has achieved good research results. 

Most algorithms presented in the literature have the ability to resist common attacks effectively. In 

addition, these algorithms also have resistance against geometric attacks, such as rotation and 

translation attacks. However, the extracted watermarking becomes worse with the increase in the 

attacks’ intensity in many existing algorithms. Therefore, making significant improvements in the 

resistance provided by robust watermarking against high intensity attacks is an important research 

problem. 

The embedding strength of the digital watermarking algorithm is closely related to robustness 

and imperceptibility. The larger the value of embedding strength, the better the robustness and the 

worse the imperceptibility. On the other hand, a smaller value of embedding strength leads to better 

imperceptibility and worsens robustness [3,4]. Therefore, the appropriate embedding strength must 

be selected appropriately to maximize the robustness of the algorithm to enable resistance against 

high intensity attacks. In recent years, researchers optimized embedding strength on the basis of the 

genetic algorithm (GA) [5], particle swarm optimization (PSO) [6], and artificial bee colony (ABC) [7]. 
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Cui [8] uses the differential evolution algorithm to optimize the embedding strength, which involves 

normalized correlation (NC) of the watermarked image and the extracted watermark for improving 

the robustness. Ansari [9] uses artificial bee colony (ABC) to optimize the embedding strength. The 

proposed methods use peak signal-to-noise ratio (PSNR) of the watermarked image and the average 

NC value of the extracted watermarking after different types of attacks. The algorithm fully considers 

the impact of embedding strength on imperceptibility and robustness. 

Existing watermarking algorithms are generally divided into two groups, namely, spatial 

domain algorithms and transform domain algorithms. The spatial domain algorithms realize the 

embedding of watermarking by modifying the pixel values of the image. On the other hand, the 

transform domain algorithms consider the embedding position of watermarking by performing DCT 

(discrete cosine transform) [10], DFT (discrete Fourier transform) [11], and DWT (discrete wavelet 

transform) [12,13] of the original image. The transform domain algorithms have stronger robustness 

than the spatial domain algorithms [14]. Currently, the research on robust watermarking mainly 

focuses on the transform domain. The research community has made efforts to improve the 

robustness of the watermarking algorithm by selecting the appropriate embedding positions. Sharma 

in [15] adopts the redundant wavelet transform (RDWT) with translation invariance to select the 

embedding position for improving the robustness of the algorithm. The watermarking algorithm 

performs 2-level DWT of the original image proposed by Ansari [9]. The proposed method performs 

resistance against compression and noise attacks. However, the DWT does not have the ability to 

represent the multidirectional features of the image effectively, due to the limitation of the types of 

directional filtering. This limits the resistance ability of the watermarking algorithm based on DWT 

to geometric attacks. The shearlet transform proposed by Gao [16] has multiscale and 

multidirectional characteristics, and has the ability to capture the directional features of the image 

effectively. Similarly, Mardanpour [17] proposed a watermarking algorithm based on shearlet 

transform to achieve stronger robustness against geometric attacks. 

The singular values of matrix have good stability and are beneficial in enhancing the robustness 

of the watermarking algorithms. Therefore, the singular value decomposition (SVD) and the 

frequency domain transformations are usually combined in watermarking algorithms [18]. The 

process of embedding the singular values of the watermark into the host image improves the 

algorithms’ robustness [19,20]. However, the singular value matrix is unable to represent the unique 

features of the image, thus leading to the false positive problem. The false positive problem is the 

extraction of a wrong watermark, which was never embedded into the host image, from the 

watermarked image. Vali [21] embeds a digital signature which is calculated by the watermark’s edge 

information of the watermarked image. This algorithm solves the false positive problem, however, it 

adds verification steps. Makbol [22], Ali [23] and Lakrissi [24] solve the false positive problem by 

embedding the principle components or the entire watermark into the image. The principal 

components can be obtained by SVD. The principal components can represent the unique features of 

the watermark to make the algorithms free from the false positive problem. Ansari [9] embeds the 

watermark’s principal components into the singular value matrix of the host image to solve the false 

positive problem. In this algorithm, the image matrix is reconstructed directly after the watermark is 

embedded. 

As presented in the literature, the multiscale and multidirectional characteristics of shearlet 

transform makes up for the deficiency posed by DWT transform, and the embedding strength is 

accomplished by using a suitable optimization algorithm to achieve robustness. Therefore, in this 

work, an adaptive embedding strength watermarking algorithm based on shearlets’ capture 

directional features (S-AES) is proposed. The multi-resolution characteristics of DWT and multi-

directional characteristics of shearlet transform increases the resistance ability against common 

attacks and geometric attacks and optimize the embedding strength by ABC. As compared to other 

algorithms presented in [8,9,17], S-AES makes up for the lack of resistance ability of DWT against 

geometric attacks, and also overcomes the problem of shearlet transform to filter attacks. Moreover, 

S-AES fully considers the watermarking characteristics of imperceptibility and robustness, and uses 

an optimized algorithm to search for the embedding strength that meets the requirements of the 
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watermarking algorithm. Therefore, S-AES achieves maximum robustness against various attacks 

under the premise of satisfying the imperceptibility. S-AES also has the ability to resist many kinds 

of attacks, especially strong intensity attacks. The main contributions of this work are as follows: 

1. The watermarking algorithm in the domain of DWT is improved by using shearlet transform. 

The embedding position is selected on the basis of DWT and NSST to improve the robustness. 

2. The ABC algorithm and the improved optimized function is used to optimize the embedding 

strength to achieve higher robustness. 

3. The principle components of the watermark are embedded into the host image to solve the false 

positive problem of singular value decomposition. 

The rest of this paper is organized as follows: 

In Section 2, we present the preliminaries of this work. In Section 3, we present the proposed 

watermark embedding and extracting algorithm. In Section 4, we present the experimental results 

and analysis. Finally, in Section 5, we conclude our work. 

2. Preliminaries 

2.1. Discrete Wavelet Transform (DWT) 

DWT is a multiresolution analysis tool [25,26]. DWT decomposes an image into three high 

frequency sub-bands which are low-high (HL), high-low (LH) and high-high (HH) and one low 

frequency sub-band low-low (LL). Among these bands, LL contains most of the information 

presented by the original image. The other three sub-bands, i.e., HL, LH, HH, represent the texture 

features and the edge information of the image. Figure 1 presents the two-level DWT decomposition 

of “Lena” [27]. 

 

Figure 1. Schematic pictures of two-level discrete wavelet decomposition (DWT). 

The low frequency sub-band has good stability to resist different types of attacks because it 

contains most of the information of the image. S-AES selects low frequency sub-band of two-level 

DWT decomposition as the embedding position of the watermark. 

2.2. Non-Subsampled Shearlet Transform (NSST) 

Shearlet transform is a multiscale analysis technique [28]. It has better multiresolution 

capabilities and stronger directional characteristics as compared to wavelet transform to represent 

the features of images or high-dimensional signals effectively. The non-subsampled shearlet 

transform is a discretization of shearlet transform. First, the image is multiscale decomposed by non-

subsampled pyramid filter (NSPF). Then, each scale sub-band image is multidirectional decomposed 

by shear filter (SF) [29]. Figure 2 presents the implementation of non-subsampled shearlet transform. 
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Figure 2. Schematic pictures of non-subsampled shearlet transform (NSST). 

Here, � represents the original image. ��
� and ��

� are the high frequency and low frequency 

images after the first decomposition, respectively. Similarly, ��
�  and ��

�  represent the high 

frequency and the low frequency images after the second decomposition of the low frequency image, 

respectively. ��
� is detail sub-band by directional decomposition of ��

�. NSST decomposes an image 

into different directional sub-bands. Figure 3 presents the NSST decomposition of a zone plate. 

  
(a) (b) 

    
(c) 

    

    
(d) 

Figure 3. Schematic pictures of NSST decomposition. (a) Zone plate. (b) Low frequency sub-band. (c) 

Four different directional sub-bands. (d) Eight different directional sub-bands. 

DWT does not possess the capability to represent the directional features of an image effectively. 

Contrarily, NSST is able to effectively capture the multidirectional features. Therefore, S-AES 

performs DWT and NSST on the image, and then selects the sub-band with the richest directional 

features as the embedding position to improve robustness. 

2.3. Singular Value Decomposition (SVD) 

Singular value decomposition is one of the useful numerical analysis tools in linear algebra, 

which can decompose an image into three matrices. For matrix A of size � ×  �, singular value 

decomposition is defined as Equation (1): 

� = ���� (1) 
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where �, �, and � are the real matrix of size � × �, represent the left singular matrix, the right 

singular matrix, and the singular matrix, respectively. �  is a diagonal matrix, and the diagonal 

elements of � represent the image luminance. Matrix � and � represent the horizontal and vertical 

details of the image. 

The singular values of the watermark are embedded into the host image to improve the 

resistance against various attacks because of its good stability. However, the matrices �  and � 

contain the images’ important information that the singular values are unable to represent. The 

watermarking algorithm using singular values will have the false position problem [30]. The 

principle components (PC) of the watermark are defined as Equation (2) [15]: 

�� = � × � (2) 

The principal components represent the unique features of the image. Therefore, the principle 

components of the watermark are embedded into the host image to solve the false positive problem 

and improve the security in S-AES. 

2.4. Artificial Bee Colony (ABC) 

Artificial bee colony [15] is a global optimization algorithm proposed by Karaboga in 2005. This 

algorithm estimates the optimal value by maximizing or minimizing the objective function. ABC is 

widely used for its various advantages, such as fast convergence speed, less control parameters, and 

easy implementation. S-AES designs a reasonable objective function and uses ABC to find out the 

embedding strength. 

3. The Proposed Scheme 

In order to achieve higher robustness under the premise of meeting imperceptibility, an adaptive 

embedding strength watermarking algorithm based on shearlets’ capture directional features (S-AES) 

is proposed. DWT and NSST are adopted to select the embedding position. ABC is used to optimize 

the embedding strength. Embedding the principle components of the watermark into the host image 

solves the false positive problem caused by SVD. 

3.1. The Watermark Embedding Scheme 

The watermark embedding process is presented in Figure 4. This process comprises seven steps, 

which are presented below. 

Image IY, ICb, ICr ILL, IHL… Subband0,1,2,3

SubbandmaxSubband

Water

U, S, V

Uw, Sw, VwPCw=Uw×SwPCmark

Um, Sm, Vm Subbandmark
Watermarked

Image
ImageYCbCr

Image Processing

Watermark Processing

Inverse Transform

YCbCr
Transform

2-level 
DWT(IY) NSST(ILL)

Entropy

Arnold
Transform

SVD
(Subband)

Embed SVD(Water)

RGB
Transform

Inverse Arnold,
 DWT, NSST

Inverse
SVD

SVD(PCmark)

 

Figure 4. Schematic pictures of the watermark embedding scheme. 

Step 1 The color image of size � × � is transformed from RGB color space to YCbCr color space, 

which extracts ��, ���, ��� of the image, as demonstrated in Equation (3) [31]: 
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�
�

��
��

�  =  �
0.29890 0.58660 0.11450

−0.16874 −0.33126 0.50000
0.50000 −0.41869 −0.81310

� �
�
�
�

�  +  �
0

0.5
0.5

� (3) 

According to human visual system, the human eyes are not sensitive to luminance components 

[32]. In order to guarantee better imperceptibility, S-AES embeds the watermark to luminance 

component ��. 

Step 2 Apply two-level DWT on �� to obtain low frequency sub-band ���  as the embedding 

position. The low frequency sub-band contains most of the information to resist against different 

types of attacks to guarantee robustness. 

Step 3 Apply NSST on low frequency sub-band ���  to obtain four different directional sub-

bands. Calculate the entropy of these sub-bands, which is referred to as Equation (4): 

�(�)  =  � ����
1

�(��)
� =  − � �(��) ��� �(��)

�

� � �
 (4) 

where � represents the number of gray levels and �(��) represents the probability of gray level �� 

of the image. The larger the values of entropy, the richer the directional features of the sub-band. The 

sub-band ����������  with the maximum entropy is selected to embed the watermark to ensure 

better imperceptibility against attacks. 

Step 4 Apply �  times Arnold transform on directional sub-band ����������  to obtain 

�������, which is referred to as Equation (5): 

�
�′
�′

�  =  �
1 1
1 2

� �
�
�� (��� �), �, ��(0,1, … , � −  1) (5) 

where, (�, �)  represents the original coordinates of the pixel and (�′, �′)  represents the new 

coordinates of the transformed pixel. The size of directional sub-band is � ×  � . Arnold 

transformation breaks the spatial continuity between image pixels, which is conducive to the security 

of the algorithm. 

Step 5 Apply SVD on scrambled directional sub-band ������� referred to as Equation (6): 

���(�������) =  ���� (6) 

Apply SVD on watermark image �����, and extract principle components of the watermark 

�������, as demonstrated in Equations (7) and (8): 

���(�����) =  ������������������
�  (7) 

�������  =  ������  ×  ������ (8) 

The principle components, which represent the unique features of the image, are embedded into 

the host image to avoid the false positive problem in the S-AES algorithm. 

Step 6 Embed the PC of the watermark into the singular matrix of the host image, as 

demonstrated in Equation (9): 

������  =  � +  ��������  (9) 

where � is embedding strength which is optimized by ABC. Please note that it is necessary to apply 

SVD on ������  to maintain good stability of the singular matrix because ������  is no longer a 

diagonal matrix. 

���(������)  =   ���������������
�  (10) 

In [3], the authors perform inverse SVD using the singular matrix embedded with PC (e.g., 

s������), which leads to the worse ability of anti-geometric attacks, such as rotation. 

Step 7 Apply inverse SVD to obtain the directional sub-band �����������  containing the 

watermark, as demonstrated in Equation (11): 

�����������  =  � × ����� × �� (11) 
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Apply � times inverse Arnold transform, inverse NSST and inverse DWT on �����������  to 

obtain ������. Merge ������ with ���, ���, then transform YCbCr to RGB to obtain the watermarked 

color image, i.e., ����������������, as demonstrated in Equation (12) [31]: 

�
�
�
�

� = �
1 0 0.14020
1 −0.34414 −0.71414
1 1.77200 0

� �
�

��
��

� − �
0

0.5
0.5

� (12) 

3.2. The Watermark Extracting Scheme 

The watermark extracting process is presented in Figure 5. It contains three steps. 

Watermarked
Image

IYmark' ILLmark' Subbandmark'
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Image IY ILL Subband

S

PC'ExtractWater

WatermarkedImage Processing
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SVD(Subband)



 

Figure 5. Schematic pictures of the watermark extracting scheme. 

Step 1 The watermarked image ���������������� is transformed RGB to YCbCr color space 

to extract luminance component ������′. Apply DWT and NSST on ������′ to obtain the directional 

sub-band containing the watermark denoted as �����������′. Perform the same transformations on 

the original image to obtain the directional sub-band �������. 

Step 2 Apply � times Arnold transform on directional sub-bands �����������′ and �������, 

and then apply SVD on �����������′ and ������� to obtain the singular matrices �����′ and �. 

Extract the embedding information as in Equation (13): 

����� = �����  ×  �����  ×  �����
�  (13) 

Step 3 Extract the principle components of the watermark as in Equation (14): 

��� = (����� −  �)/� (14) 

Then extract the watermark using the side information using the following Equation (15): 

������������ =  ���  × ������
�  (15) 

3.3. Optimization of Embedding Strength 

Most of the algorithms presented in the literature consider the fixed value of embedding 

strength. However, different images have different characteristics in terms of color, texture, and some 

other characteristics. The fixed embedding strength is unable to realize the good imperceptibility and 

robustness on various kinds of images. S-AES considers the characteristics of the host image and the 

watermark to optimize the embedding strength using ABC. 

Normalized correlation (NC) is used to evaluate the robustness, and peak signal-to-noise ratio 

(PSNR) is used to evaluate imperceptibility, as demonstrated in Equations (16) and (17) [33]: 
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�� =
∑ ∑ �(�, �)  ×  �′(�, �)�

���
�
���

�∑ ∑ �(�, �)�
���

�
��� �∑ ∑ �′(�, �)�

���
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���

 
(16) 

����(�, ��) = 10 �����

255�

1
� × �

∑ ∑ [�(�, �) − �′(�, �)]��
���

�
���

(��) (17) 

where � and �′ represent the original watermark and the extracted watermark, respectively. � 

and �′ represent the host image and the watermarked image, respectively. 

It makes sense to satisfy imperceptibility for the watermarking algorithms. The main idea of S-

AES is to achieve higher robustness for multiple attacks under the premise of satisfying 

imperceptibility. N times different types and intensity attacks are applied to the watermarked image 

when the PSNR is above the threshold. The robustness of S-AES is maximized by maximizing the 

proposed objective function presented in Equation (18), where W is the original watermark, and W’ 

represents the extracted watermark. 

�

���� > �ℎ���ℎ���

��� = � ��(�, ��′)/�

�

���

 (18) 

The embedding strength optimization process is presented in Figure 6. The values of parameters 

are presented in Table 1. 

Initialize the population and parameters

Start

Embed watermark to the  host image

PSNR>threshold

Attack 1，Attack 2，……，Attack N

Extract watermark from attacked image

Computes the value of objective function

Termination SatisfiedOutput 

Update bees’ position to maximize the 

fitness function
End

Yes

No

Yse

No

 

Figure 6. Schematic pictures of embedding strength optimization. 

Table 1. Parameters values of embedding strength optimization. 

Parameters Values 

Size of swarm 20 

Maximum iterations 20 

Limit 10 

Initialization range [0.005, 0.1] 

Employed bees 50% of size of swarm 

Onlooker bees 50% of size of swarm 

Scout bees Variable 

Attacks Crop, filter, noise, compression, rotation, sharpen and translation. 
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4. Results and Analysis 

The experiments of S-AES are performed in MATLABR2017b, and they involve 10 host images 

and 2 watermark images that were selected from the standard image data-base. The size of each host 

image is 512 × 512, while that of the watermarked images is 128 × 128, as presented in Figure 7. The 

threshold value is 38 dB in this experiment. Figure 8 illustrates the convergence graph for the 10 host 

images embedding with the “UPC” watermark in Figure 7. 

      

(a) (b) (c) (d) (e) (f) 

    

  

(g) (h) (i) (j) (k) (l) 

Figure 7. The host images and watermark images. (a) Lena. (b) Pepper. (c) Airplane. (d) Tiffany. (e) 

Baboon. (f) Sailboat. (g) Flower. (h) Goldhill. (i) Soccer. (j) Girl. (k) UPC. (l) Logo. 

 

Figure 8. Convergence graph for the 10 host images embedding with the “UPC” watermark. 

It is evident from Figure 8 that all 10 host images converge after 16 executed iterations. 

4.1. Imperceptibility Analysis 

The imperceptibility results are presented in Table 2. 

Table 2. Peak signal-to-noise ratio (PSNR) values of S-AES. 

PSNR 

(dB) 
Lena Pepper Airplane Tiffany Baboon Sailboat Flower Goldhill Soccer Girl 

UPC 38.0088 38.0307 38.0023 38.0001 38.0073 38.0021 38.0073 38.0187 38.0001 38.0190 

Logo 38.0135 38.0041 38.0031 38.0048 38.000 38.0117 38.0003 38.0015 38.0087 38.0091 

According to the human visual system [34], the watermark has good imperceptibility when 

PSNR > 35 dB. As presented in Table 2, the PSNR values are about 38 dB, indicating that S-AES has 

good imperceptibility. 
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4.2. Robustness Analysis 

NC and the bit error ratio (BER) are used to evaluate the robustness of the proposed algorithm. 

The larger value of NC results in better robustness. The BER is an indicator to measure the difference 

between the extracted watermark and the original watermark. Its mathematical definition is 

presented in Equation (19) [35]. 

��� =
�

� × �
 (19) 

where B is the number of erroneous bits in the extracted watermark, and P×Q represents the total 

number of bits in the extracted watermark. The lower value of the BER shows greater robustness of 

the proposed algorithm. 

4.2.1. Robustness Results 

The extracted “UPC” and “Logo” watermarks from the host images ‘”Lena” and “Pepper” under 

crop, filer, and rotation attacks are presented in Table 3. 

Table 3. Extracted “UPC” and “Logo” watermarks from “Lena” and “Pepper” under different 

attacks. 

Attacks Lena Logo Pepper UPC 

Centre crop 

256 × 256 

 

 

 

 

Average filter 

(3,3) 

 

 

 

 

Pepper and 

salt noise  

0.1 

 

 

 

 

Rescale  

0.25 
 

 
 

 

Rotation  

45° 

 

 

 

 

Translation 80 

 

 

 

 

In Table 3, we can see that the extracted watermarks are slightly different from the original 

watermarks, and can represent the copyright information clearly. This indicates that S-AES has 

strong robustness under different attacks. 
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To illustrate the robustness of the algorithm accurately, the NC values are shown in Table 4. 

Table 4. The normalized correlation (NC) values of the extracted watermarks under different types 

and parameters attacks. 

Attacks Parameters 
Lena Pepper 

UPC Logo UPC Logo 

Contrast adjustment 20% 0.9971 0.9989 0.9964 0.9960 

Crop 

128 × 128 0.9990 0.9972 0.9986 0.9967 

256 × 256 0.9987 0.9976 0.9978 0.9925 

384 × 384 0.9982 0.9970 0.9620 0.9562 

Centre crop 

128 × 128 0.9992 0.9973 0.9986 0.9969 

256 × 256 0.9987 0.9990 0.9986 0.9961 

384 × 384 0.9782 0.9978 0.9981 0.9939 

Gaussian filter 

(2,2) 0.9986 0.9970 0.9985 0.9939 

(3,3) 0.9986 0.9971 0.9986 0.9957 

(5,5) 0.9986 0.9971 0.9986 0.9957 

Gaussian noise 

0.01 0.9987 0.9971 0.9986 0.9969 

0.1 0.9868 0.9990 0.9960 0.9971 

0.3 0.9607 0.9972 0.9729 0.9952 

JPEG 2000 compression 

5:1 0.9986 0.9971 0.9986 0.9968 

10:1 0.9986 0.9971 0.9986 0.9968 

20:1 0.9986 0.9971 0.9986 0.9969 

JPEG compression 

20% 0.9986 0.9971 0.9986 0.9968 

40% 0.9986 0.9971 0.9986 0.9968 

60% 0.9986 0.9971 0.9986 0.9968 

80% 0.9986 0.9971 0.9986 0.9968 

100% 0.9986 0.9971 0.9985 0.9967 

Average filter 

(2,2) 0.9986 0.9970 0.9985 0.9939 

(3,3) 0.9985 0.9946 0.9963 0.9871 

(5,5) 0.9740 0.9680 0.9537 0.9430 

Median filter 

(2,2) 0.9986 0.9971 0.9986 0.9947 

(3,3) 0.9986 0.9970 0.9985 0.9943 

(5,5) 0.9884 0.9832 0.9880 0.9791 

Motion blur θ = 4, l = 7 0.9986 0.9954 0.9950 0.9862 

Pepper and salt noise 

0.01 0.9986 0.9971 0.9986 0.9969 

0.1 0.9990 0.9976 0.9985 0.9970 

0.3 0.9797 0.9986 0.9848 0.9969 

Rescale 

256 × 256 0.9986 0.9971 0.9985 0.9947 

128 × 128 0.9752 0.9695 0.9712 0.9591 

1024 × 1024 0.9986 0.9971 0.9986 0.9968 

2048 × 2048 0.9986 0.9971 0.9986 0.9968 

Rotation 

5° 0.9976 0.9972 0.9974 0.9959 

−5° 0.9987 0.9971 0.9944 0.9936 

45° 0.9964 0.9970 0.9950 0.9970 

90° 0.9700 0.9990 0.9875 0.9769 

180° 0.9986 0.9971 0.9985 0.9968 

270° 0.9678 0.9990 0.9875 0.9767 

Sharpen 0.8 0.9900 0.9923 0.9900 0.9845 

Speckle noise 
0.01 0.9986 0.9971 0.9986 0.9969 

0.1 0.9992 0.9976 0.9985 0.9970 
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0.3 0.9905 0.9990 0.9936 0.9971 

Translation 

20 0.9772 0.9979 0.9986 0.9960 

40 0.9787 0.9983 0.9985 0.9934 

80 0.9820 0.9990 0.9960 0.9868 

160 0.9935 0.9976 0.9848 0.9744 

Weiner filter 

(2,2) 0.9986 0.9971 0.9986 0.9964 

(3,3) 0.9986 0.9971 0.9986 0.9952 

(5,5) 0.9979 0.9942 0.9971 0.9896 

Histogram equalization  0.9994 0.9987 0.9979 0.9965 

The BERs of the extracted watermark under different types and parameter attacks are shown in 

Table 5. 

Table 5. The bit error ratio (BER) of the extracted watermarks under different types and parameters 

attacks. 

Attacks Parameters 
Lena Pepper 

UPC Logo UPC Logo 

Contrast adjustment 20% 0.0043 0.0012 0.0052 0.0046 

Crop 

128 × 128 0.0015 0.0031 0.0020 0.0038 

256 × 256 0.0020 0.0027 0.0032 0.0085 

384 × 384 0.0027 0.0034 0.0544 0.0504 

Centre crop 

128 × 128 0.0012 0.0031 0.0020 0.0034 

256 × 256 0.0214 0.0012 0.0020 0.0044 

384 × 384 0.0313 0.0025 0.0027 0.0070 

Gaussian filter 

(2,2) 0.0020 0.0034 0.0023 0.0069 

(3,3) 0.0020 0.0033 0.0020 0.0048 

(5,5) 0.0020 0.0033 0.0020 0.0049 

Gaussian noise 

0.01 0.0020 0.0033 0.0021 0.0037 

0.1 0.0190 0.0011 0.0095 0.0033 

0.3 0.0570 0.0029 0.0346 0.0041 

JPEG 2000 compression 

5:1 0.0020 0.0033 0.0021 0.0037 

12:1 0.0020 0.0033 0.0020 0.0036 

20:1 0.0020 0.0033 0.0020 0.0035 

JPEG compression 

20% 0.0020 0.0033 0.0020 0.0037 

40% 0.0020 0.0033 0.0020 0.0037 

60% 0.0020 0.0033 0.0020 0.0037 

80% 0.0020 0.0033 0.0021 0.0037 

100% 0.0020 0.0033 0.0021 0.0037 

Average filter 

(2,2) 0.0020 0.0034 0.0023 0.0069 

(3,3) 0.0021 0.0062 0.0054 0.0147 

(5,5) 0.0375 0.0367 0.0663 0.0657 

Median filter 

(2,2) 0.0020 0.0033 0.0021 0.0060 

(3,3) 0.0020 0.0034 0.0022 0.0065 

(5,5) 0.0167 0.0191 0.0173 0.0239 

Motion blur θ = 4,l = 7 0.0021 0.0052 0.0073 0.0157 

Pepper and salt noise 

0.01 0.0020 0.0033 0.0021 0.0035 

0.1 0.0017 0.0027 0.0023 0.0033 

0.3 0.0295 0.0013 0.0204 0.0034 

Rescale 
256 × 256 0.0020 0.0033 0.0021 0.0060 

128 × 128 0.0358 0.0350 0.0416 0.0472 
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1024 × 1024 0.0020 0.0033 0.0020 0.0037 

2048 × 2048 0.0020 0.0033 0.0020 0.0037 

Rotation 

5° 0.0035 0.0032 0.0037 0.0046 

−5° 0.0020 0.0033 0.0082 0.0072 

45° 0.0052 0.0034 0.0073 0.0034 

90° 0.0430 0.0011 0.0181 0.0262 

180° 0.0020 0.0033 0.0023 0.0036 

270° 0.0433 0.0012 0.0181 0.0265 

Sharpen 0.8 0.0146 0.0087 0.0146 0.0178 

Speckle noise 

0.01 0.0020 0.0033 0.0021 0.0037 

0.1 0.0011 0.0030 0.0020 0.0034 

0.3 0.0133 0.0010 0.0095 0.0033 

Translation 

20 0.0327 0.0024 0.0020 0.0045 

40 0.0307 0.0020 0.0022 0.0075 

80 0.0245 0.0011 0.0058 0.0151 

160 0.0095 0.0027 0.0220 0.0295 

Weiner filter 

(2,2) 0.0020 0.0033 0.0020 0.0041 

(3,3) 0.0020 0.0033 0.0020 0.0055 

(5,5) 0.0030 0.0066 0.0043 0.0118 

Histogram equalization − 0.0009 0.0015 0.0031 0.0040 

According to the information presented in Tables 4 and 5, the NC value of the extracted 

watermark decreases and the BER increases with the increase in the intensity of the attack. The 

robustness of “Lena” is stronger than “Pepper” in most cases under the same attack. The NC values 

of the watermarks are mostly around 0.99 and the BERs are mostly around 0.01. The NC value is 

above 0.95 and the BER is below 0.05 even under high intensity attacks. The NC values of S-AES are 

always above 0.99 under crop, Gaussian filter, compression, and speckle noise attacks. However, they 

drop to 0.95 under an average filter attack with the parameter of (5,5). This is because S-AES uses 

NSST to capture the texture and directional features of the image. However, the watermark can be 

extracted successfully, indicating that S-AES has the capability to resist average filter attacks. 

4.2.2. Comparative Analysis 

Optimization of Embedding Strength Comparison 

We embed ”UPC” into “Lena” using the embedding strength optimized by the proposed 

method and the method presented in [9]. We then perform eight types of attacks on watermarked 

images. The comparison of NC values is presented in Figure 9. 

  
(a) (b) 
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(e) (f) 

  
(g) (h) 

Figure 9. Comparison of NC values under different attacks. (a) Rotation. (b) Average filter. (c) 

Gaussian noise. (d) Rescale. (e) Median filter. (f) Crop. (g) Translation. (h) Pepper and salt noise. 

It is evident from Figure 9 that the robustness is stronger using the embedding strength 

optimized by the proposed objective function than [9]. Notably, the NC values decrease more slightly 

as compared to [9] when the attack intensity increases. Therefore, the proposed algorithm is more 

robust. 

Comparison of Robustness 

In order to test the stronger robustness of S-AES, the NC values of the extracted watermark are 

compared with [9] under attacks with the same parameters. In addition, we also perform comparison 

with [13,15,17,21,22]. The results are presented in Table 6. 

Table 6. Comparison of NC values under attacks with the same parameters. 

Attacks Parameters S-AES 
Ansari 

[9] 

Vali 

[21] 

Makbol 

[22] 

Sharma 

[15] 

Mandanpour 

[17] 

Wang 

[13] 

Contrast 

adjustment 
20% 0.9940 0.5806 - - - - - 

Crop 
128 × 128 0.9986 - - 0.9801 - 0.9400 - 

256 × 256 0.9966 - 0.9686 - 0.9659 - - 

Center Crop 128 ×128 0.9970 - - 0.9200 - - - 

Gaussian filter 
[3,3] 0.9986 0.9898 0.9832 0.9874 0.9959 0.9900 0.9959 

[5,5] 0.9986 - 0.9899 - 0.9958 0.9900 - 

0.001 0.9986 0.9105 0.9838 0.9810 0.9965 0.9900 0.9983 
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Gaussian 

noise 

0.01 0.9986 - 0.9304 0.9712 0.9914 0.9800 - 

0.5 0.9400 - 0.8181 - 0.9082 - - 

JPEG 2000 

compression 

5:1 0.9986 - - - 0.9963 - - 

12:1 0.9986 0.9393 - - - - - 

20:1 0.9986 - - - 0.9959 - - 

JPEG 

compression 

10% 0.9986 - 0.9733 - 0.9954 0.9900 - 

30% 0.9986 - 0.9241 0.9930 0.9957 0.9900 0.9982 

50% 0.9986 0.9706 0.9938 0.9811 0.9960 0.9900 - 

90% 0.9986 - 0.9740 - 0.9962 0.9900 - 

Average filter 

[2,2] 0.9986 - - - 0.9955 - 0.9030 

[3,3] 0.9984 0.8353 0.9496 0.9796 0.9948 0.9700 - 

[5,5] 0.9714 - - - 0.9917 0.9000 - 

Median filter 

[2,2] 0.9986 - - 0.9802 0.9958 0.9900 - 

[3,3] 0.9986 0.9357 0.9716 0.9800 0.9955 0.9800 0.9971 

[5,5] 0.9856 - 0.9603 - 0.9945 0.9600 - 

Motion blur θ = 4，l = 7 0.9984 0.9575 - - - 0.7700 - 

Pepper and 

salt noise 

0.01 0.9986 - 0.9688 0.9841 0.9916 0.9900 0.9868 

0.1 0.9969 - 0.8924 0.9220 0.9832 0.9600 - 

0.3 0.9632 - 0.8227 0.9353 - - - 

Rescale 

0.5 times 0.9986 - 0.9470 0.9808 0.9948 0.9800 - 

0.25 times 0.9986 0.9803 0.8289 0.9680 0.9903 0.8900 0.9977 

2 times 0.9986 - 0.9705 - - 0.9900 - 

4 times 0.9986 0.9941 - - 0.9961 - - 

Rotation 
45° 0.9932 - 0.9851 0.9779 - 0.9600 0.3928 

−50° 0.9818 - 0.9820 - - 0.9200 - 

Speckle noise 

0.001 0.9986 0.9803 0.9953 - 0.9964 0.9900 - 

0.01 0.9986 - 0.9666 0.9903 0.9899 0.9900 0.9955 

0.1 0.9979 - 0.9210 0.9578 0.9813 0.9700 - 

Translation 

[10,10] 0.9985 - 0.9715 - 0.9895 0.9900 - 

[20,20] 0.9746 - - 0.9380 0.9814 0.9800 - 

[10,20] 0.9984 - - - 0.9894 - - 

[20,35] 0.9855 - - - 0.9853 - - 

[50,50] 0.9985 - 0.9880 - 0.9728 0.9500 - 

Weiner filter 

[2,2] 0.9986 - - - 0.9960 - - 

[3,3] 0.9986 0.9695 0.9940 0.9901 0.9953 - - 

[5,5] 0.9967 - 0.9533 - 0.9943 - - 

Histogram 

equalization 
- 0.9974 - 0.9721 0.9532 0.9725 0.9800 0.8176 

In Table 6, we can see that the NC values of S-AES are larger than [9] under the same attacks. S-

AES has stronger robustness than other algorithms for compression and geometric attacks, such as 

crop and rescale. In most cases, S-AES has stronger robustness than other algorithms under 

translation attacks. The NC values of S-AES are slightly lower than [15] under the filter attack a larger 

window size. This is because S-AES uses NSST to select the embedding position. 

Under the attacks with the same parameters, we compare the BER of S-AES with methods 

presented in [13,14,18,35]. The results are presented in Table 7. 

Table 7. Comparison of the BER under attacks with the same parameters. 

Attacks Parameters S-AES Ma [35] Wang [13] Islam [14] Liu [18] 

Crop 10% 0.0015 - - - 0.0052 

Center crop 10% 0.0012 - - - 0.0160 
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Gaussian filter [3,3] 0.0020 - 0.0087 0.0039 0.0246 

JPEG compression 

20% 0.0020 0.0065 - - - 

30% 0.0020 0.0065 0.0007 0.0098 - 

50% 0.0020 0.0052 - 0.0059 - 

90% 0.0020 - - - 0.0024 

Average filter [3,3] 0.0021 - 0.1187 0.0664 0.0248 

Median filter [3,3] 0.0020 0.0104 0.0097 - 0.0125 

Pepper and salt noise 0.01 0.0020 - 0.0093 0.0488 - 

Rescale 
256 × 256 0.0020 0.0658 0.0068 - 0.0466 

1024 × 1024 0.0020 0.0052 - - - 

Rotation 

5° 0.0035 0.0091 - 0.0352 - 

15° 0.0059 0.0078 - - 0.1354 

25° 0.0061 0.0117 - - 0.0936 

35° 0.0046 0.0195 - - - 

45° 0.0052 0.0216 0.7780 - - 

Speckle noise 0.01 0.0020 0.0191 0.0131 - - 

Histogram equalization - 0.0009 - 0.3524 0.0156 - 

It is evident from the comparison of the BER presented in Table 7 that the S-AES algorithm has 

better robustness. 

We compared the NC values of the extracted watermark with [15,24] under multiple attacks. 

The results are shown in Table 8. 

Table 8. Comparison of NC values under multiple attacks. 

Multiple attacks S-AES 
Sharma 

[15] 

Lakrissi 

[24] 

Pepper and salt noise (0.2) + JPEG compression (30%) 0.9907 0.9868 - 

Histogram equalization + Rotation (5°) 0.9861 0.9626 - 

Sharpen + Gaussian filter ([3,3]) 0.9966 - 1 

Gaussian noise (0.2) + crop (25%) 0.9719 0.9613 - 

Sharpen + Average filter ([5,5]) 0.9956 0.9940 - 

Rescale (0.5) + JPEG compression (50%) 0.9986 - 0.9816 

Gaussian noise (0.01) + JPEG compression (50%) 0.9987 - 0.9633 

Weiner filter ([5,5]) + Translation (10) 0.9983 0.9899 - 

Average filter ([5,5]) + Rotation (5°) 0.9985 0.9910 - 

Pepper and salt noise (0.2) + Gaussian noise (0.2) 0.9653 0.9678 - 

Gaussian noise (0.01) + Gaussian filter ([3,3]) + JPEG 

compression (50%) 
0.9986 - 0.9800 

Pepper and salt noise (0.01) + contrast adjustment (20%) + 

JPEG compression (50%) 
0.9984 - 0.8798 

According to Table 8, most of the NC values of S-AES are larger than those in [15] and [24]. 

Therefore, S-AES has the ability to resist multiple attacks effectively. 

The aforementioned experimental results show that S-AES has the capacity to resist not only 

single attacks but also multiple attacks. Furthermore, S-AES has stronger robustness compared with 

the existing algorithms. 
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4.3. False Positive Problem 

In order to test the false positive problem, the watermarked image “Lena” is embedded with the 

“UPC” watermark used as a disputed image. “Logo” is used as a false watermark. The extracted 

results are presented in Figure 10. 

 
  

(a) (b) (c) 

Figure 10. Result of the false positive problem. (a) Disputed image. (b) False watermark. (c) Extracted 

watermark. 

Figure 10 shows that the watermark cannot be extracted successfully using side information of 

the false watermark. This indicates that S-AES overcomes the false positive problem. 

According to the aforementioned experiments, S-AES has good imperceptibility and strong 

robustness for single attacks and multiple attacks. It also overcomes the false positive problem. 

5. Conclusions 

In this work, we propose an adaptive embedding strength watermarking algorithm based on 

shearlets’ capture directional features (S-AES). The multiscale and multidirectional characteristics of 

NSST are used to improve the watermarking algorithms in the domain of DWT. This enables the 

algorithm to resist common attacks and geometric attacks effectively. S-AES fully considers the 

watermarking characteristics of imperceptibility and robustness and optimizes the embedding 

strength using the proposed objective function, achieving maximum robustness under the premise 

of satisfying imperceptibility. As compared with other algorithms, S-AES has a greater ability to resist 

high intensity attacks. We embedded the principle components enclosing the unique features of the 

watermark into the host image to overcome the false positive problem. Even if someone provides a 

wrong singular matrix obtained from a false watermark, it cannot extract the watermark successfully 

using side information of the false watermark. The robustness of S-AES decreases slightly under 

average and median filter attacks with a larger window size. This can be improved in the future. In 

addition, S-AES can also be extended to the field of video watermarking. 
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