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Abstract: This paper presents a lumped perturbation observer-based robust control method using
an extended multiple sliding surface for a system with matched and unmatched uncertainties.
The fundamental methodology is to apply the multiple surfaces to approximate the unknown lumped
perturbations simultaneously influencing on a nonlinear single input–single output (SISO) system.
Subsequently, a robust controller, based on the proposed multi-surface and the approximated values,
is designed to highly improve the control performance of the system. A general stability of the
lumped perturbation observer and closed-loop control system is obtained through the Lyapunov
theory. Results of a numerical simulation of an illustrative example demonstrate the soundness of the
proposed algorithm.

Keywords: sliding mode control; lumped perturbation observer; multiple surfaces; robust control;
unmatched system

1. Introduction

Matched and unmatched uncertain nonlinear models are popular in practical engineering systems.
For many decades, the traditional sliding mode control (SMC) has been an effective methodology
of designing a robust controller to alleviate the influences of the disturbances on matched uncertain
systems [1,2]. However, in practical nonlinear systems, the unmatched uncertainties usually appear on
all channels in which the control input does not present [3,4]. Although the conventional SMCs are very
famous and efficient methods for resisting the external disturbances, it cannot guarantee the stability of
the closed-loop control system in the presence of unmatched uncertainty terms. Moreover, the traditional
SMC technique is also seriously influenced by the “chattering phenomenon”. Hence, there are many
researches with various control approaches introduced to solve these issues. It can be classified into
some main categories.

The first kind of controller method is based on the Riccati difference equation [5], adaptive control [6–11],
fuzzy and linear matrix inequality (LMI)-based control method [12,13] to stabilize the matched/unmatched
uncertain systems. However, the theoretical assumption is not practical, because the unmatched terms
are arbitrary signals, so it may not present a zero steady state value. Thus, these algorithms have been
integrated with adaptive control models [14–16]. A drawback of the adaptive methods is to ignore the
effects of high-frequency dynamics and several nonlinear parts.
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Extended SMCs and disturbance compensations are the most popular method to design efficient
controllers for matched and unmatched uncertain systems. In [17–20], the integral SMCs are presented
to control a nonlinear system with time-invariant uncertainties. Other backstepping algorithms
integrated with SMC are presented in [21–24]. However, a disadvantage of these methods is that they
are affected by a problem so-called “explosion of term”. Furthermore, these controllers are very hard
to apply to practical systems, because it is not easy to compute the differentiation of virtual inputs,
even though these values can be obtained via the analytical algorithms, they may produce a very large
value of control signal.

Another practical approach, the nonlinear disturbance observer-based method, has been developed
to compensate for the influence of unknown unmatched uncertainties and external disturbances [25–27].
Several recent researches introduced variously effective disturbance observer methods integrated
with traditional SMC, or extended SMC techniques to eliminate the chattering problem and improve
the performance [28–31]. A famous study of disturbance estimation and control was presented
in [32,33]. However, in these studies, an assumption is made that external disturbances are constants
or harmonic signals, which is not realistic in practical engineering systems. The uncertainties should
be arbitrary. Other disturbance observer methods to alleviate the effects of unmatched uncertainties
on the nonlinear system are presented in [34–37]. These methods provided a better result of tracking
control performance. However, the disturbance approximation method may lead to the bias estimates
when the unknown unmatched uncertainty is a time variant signal.

Fuzzy control and neural network structures are also another popular trend of the robust control
techniques. This approach has been widely used in practical control systems. The primary concept of
the intelligent control method is to use the ability of learning from the input and output information
integrated with the expert awareness in fuzzy logic to estimate effects of disturbances/uncertainties on
the system [38,39]. The main drawback of this method is that the controllers require very complicated
and intensive computations. In addition, it is difficult to demonstrate the stability of the closed-loop
control system. These problems were solved by a nonlinear disturbance observer-based fuzzy SMC
introduced in [40]. The controller gains are estimated by fuzzy logic. However, in order to design a
suitable disturbance observer and robust control law, a technician has to have a great awareness of the
practical engineering system. Moreover, this method cannot guarantee the chattering alleviation.

The study’s inspiration is to deal with the mentioned drawbacks of the existent methods. Therefore,
this article presents a different control approach based on the multi-surfaces sliding mode algorithm
and lumped perturbation observer (LPO) techniques, to design a highly robust controller for a nonlinear
system with matched and unmatched uncertainties. The main contributions of the study are briefly
described in the following statements:

(1) A novel sliding surface is proposed for an extended nth order single input–single output (SISO)
system with arbitrarily unknown matched/unmatched uncertainties.

(2) An efficient LPO are presented to approximate the true lumped perturbations produced by
arbitrarily unknown uncertainties/disturbances in all channels of a SISO system through the
presented multiple surfaces. Following this, a robust controller is designed, to guarantee a strong
stability of the control system under the variation of disturbance.

(3) The steps of designing the proposed controller and LPO do not require any knowledge of bound
conditions of matched and unmatched uncertainties.

The remainder of this study is arranged as follows. Section 2 presents the problem formulation.
The procedure of designing controller and the lumped perturbation observer is provided in Section 3.
A stability analysis of the control system is given in Section 4. In Section 5, the results of simulation
of an illustrative example are exhibited in detail. The general conclusion of the research is shown in
Section 6.
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2. Problem Formulation

In this section, an nth order SISO nonlinear system model with unknown matched and unmatched
uncertainties is considered by a general function:



.
x1 = x2 + ξ1(x, t)
.
x2 = x3 + ξ2(x, t)

...
.
xi = xi+1 + ξi(x, t) , i = 1, 2, . . . , n− 1

...
.
xn−1 = xn + ξn−1(x, t)
.
xn = g(x, t) + h(x, t)u + ξn(x, t)
y = x1

(1)

where x = [x1, x2, . . . , xn]
T ∈ Rn and u ∈ R represent the variable state and the controller input,

respectively. y ∈ R denotes the output response of the SISO system. The mathematic formulas of g(x, t)
and h(x, t) , 0, ∀t > 0 are continuous functions. The smooth functions ξi(x, t) ∈ R, i = 1, 2, . . . , n− 1,
are unknown unmatched uncertainties, and ξn(x, t) ∈ R is unknown matched uncertainty term.

As previously mentioned, the drawback of traditional SMC techniques is impossible to stabilize
the system with the influences of unmatched uncertainties described by the following example of a
second order system: 

.
x1 = x2 + ξ1(x, t)
.
x2 = g(x, t) + h(x, t)u + ξ2(x, t)
y = x1

(2)

Assumption 1. The perturbations ξ1(x, t), ξ2(x, t)influence on system (2) bounded by ξ∗ =

supt>0

∣∣∣kξ1(x, t) + ξ2(x, t)
∣∣∣, k > 0 is a constant.

The sliding surface and conventional SMC are commonly chosen by:

Γ = x2 + kx1 (3)

u = −h−1(x, t)(g(x, t) + kx2 + αsgn(Γ)) (4)

From Equations (2) to (4), we can see that

Γ
.
Γ = Γ(−αsgn(Γ) + kξ1 + ξ2)

≤ −|Γ|(α− ξ∗) (5)

Thus, the sliding surface Γ will converge to the origin zero if the controller gain α > ξ∗. It can be
seen that once Γ = 0, the Equation (3) is simplified by:

.
x1 + kx1 = ξ1(x, t) (6)

Obviously, the variable state x1 of system (2) will converge to the desired equilibrium point if the
disturbance ξ1(x, t) disappears in the system (ξ1 = 0). However, conversely, if ξ1(x, t) , 0, system (2)
is influenced by an unmatched perturbation. From Equation (6), it is very clear that the state x1 cannot
converge to origin zero although the sliding surface Γ = 0. Thus, it can be obviously seen that the
traditional SMC technique is well resistance with matched uncertainties but extremely sensitive with
unmatched perturbations. Thus, in order to solve this issue, the objective of the research article is to
design a robust controller based on the LPO in such a way that the output state x1, tracks the reference
trajectory, x1d, without knowing the bound conditions of unknown uncertainties.
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3. Main Results

3.1. Robust Controller Design

In this subsection, the general steps of designing multi-surface and a robust sliding controller u
are presented. A novel sliding surface for each of channel of the SISO system is proposed as follows:

Γi(t) =
.
si(t) + λisi(t), i = 1, 2, . . . , n (7)

si(t) = µi

∫ t

0
∆xi(t)dt− βi

∣∣∣∆xi(0)
∣∣∣e−θit (8)

∆xi(t) = xi(t) − xid(t) (9)

where λi,µi, βi,θi ∈ R+ are given constants; xid(t) and ∆xi(t) denote desired trajectories and tracking
errors of channel ith. We can see that if the controller u is derived such that the surfaces, Γi(t), converge to
narrow neighborhoods of the origin zero, then si(t) also converge to the small balls containing zero.
Furthermore, lim

t→∞
(
βi
∣∣∣∆xi(0)

∣∣∣e−θit
)
→ 0 . Thus, the output responses, xi(t), will also converge to the

narrow neighborhoods of xid(t) for all time t > 0. For convenience, we can consider that the term of
xi, xid, ∆xi, si and Γi are represented as the replacement variables of xi(t), xid(t), ∆xi(t), si(t) and Γi(t),
respectively. From Equations (7) and (8).

.
si = µi∆xi + βiθi

∣∣∣∆xi(0)
∣∣∣e−θit (10)

.
Γi = µi

(
∆

.
xi + λi∆xi

)
+

(
λiβiθi − βiθ

2
i

)∣∣∣∆xi(0)
∣∣∣e−θit (11)

The proposed algorithm is described through the mathematical analysis from channel 1st, channel 2nd,
channel 3rd, channel (n − 1)th, and channel nth of the SISO system (1), as the following processes:

Considering i = 1: the first channel of the system (1) is analyzed with the tracking error, ∆x1 = x1−x1d
and its mathematical differentiation, ∆

.
x1 = ∆x2 + x2d + ξ1 − .

x1d. From Equation (11),

.
Γ1 = µ1

(
∆x2 + x2d − .

x1d + λ1∆x1
)
+ d1 (12)

where d1 ∈ R denotes the lumped perturbation of channel 1:

d1 = µ1ξ1 +
(
λ1β1θ1 − β1θ

2
1

)∣∣∣∆x1(0)
∣∣∣e−θ1t (13)

An auxiliary reference trajectory, x2d, is selected by:

x2d =
.
x1d − λ1∆x1 − µ−1

1 d̂1 − k1Γ1 (14)

where d̂1 ∈ R is an estimate of d1, and k1 is a positive constant. Let d̃1 = d1 − d̂1 define the estimate
error. From the Equations (12) and (14),

.
Γ1 = µ1(∆x2 − k1Γ1) + d̃1 (15)

Considering i = 2: the second channel of the system (1) is analyzed by the tracking error
∆x2 = x2 − x2d and its mathematical differentiation:

∆
.
x2 = ∆x3 + x3d + ξ2 −

(
..
x1d − λ1∆

.
x1 − µ−1

1

.

d̂1 − k1
.
Γ1

)
(16)



Mathematics 2020, 8, 1371 5 of 15

From Equations (11) and (16),
.
Γ2 can be re-written by

.
Γ2 = µ2

(
∆x3 + x3d − ..

x1d + λ2∆x2
)
+ d2 (17)

where d2 ∈ R is a lumped perturbation of channel 2, and its value is given by:

d2 = µ2

(
ξ2 + λ1∆

.
x1 + µ−1

1

.

d̂1 + k1
.
Γ1

)
+

(
λ2β2θ2 − β2θ

2
2

)∣∣∣∆x2(0)
∣∣∣e−θ2t (18)

Let d̂2 ∈ R is an estimate of d2; k2 is a positive constant. The auxiliary reference trajectory x3d is
selected as follows:

x3d =
..
x1d − λ2∆x2 − µ−1

2 d̂2 − k2Γ2 (19)

From Equations (17) and (19),
.
Γ2 is obtained by:

.
Γ2 = µ2(∆x3 − k2Γ2) + d̃2 (20)

where d̃2 = d2 − d̂2 is an estimation error.
Considering i = 3: the third channel of the system (1) is considered with the tracking error

∆x3 = x3 − x3d and its mathematical differentiation,

∆
.
x3 = ∆x4 + x4d + ξ3 −

(
...
x 1d − λ2∆

.
x2 − µ−1

2

.

d̂2 − k2
.
Γ2

)
(21)

From Equations (11) and (21),
.
Γ3 can be re-written by

.
Γ3 = µ3(∆x4 + x4d − ...

x 1d + λ3∆x3) + d3 (22)

where d3 ∈ R is a lumped perturbation of channel 3, and its values is given by:

d3 = µ3

(
ξ3 + λ2∆

.
x2 + µ−1

2

.

d̂2 + k2
.
Γ2

)
+

(
λ3β3θ3 − β3θ

2
3

)∣∣∣∆x3(0)
∣∣∣e−θ3t (23)

Let d̂3 ∈ R is an estimate of d3; k3 is a positive constant. The auxiliary reference trajectory x4d is
chosen as follows:

x4d =
...
x 1d − λ3∆x3 − µ−1

3 d̂3 − k3Γ3 (24)

From Equations (22) and (24),
.
Γ3 is obtained by

.
Γ3 = µ3(∆x4 − k3Γ3) + d̃3 (25)

where d̃3 = d3 − d̂3 is an estimation error.
Considering i = 1, 2, . . . , n − 1: the analysis procedure for channel ith is completely similar to the

previously mentioned channels 1, 2 and 3. The results are archived as follows

.
Γi = µi

(
∆xi+1 + x(i+1)d − x(i)1d + λi∆xi

)
+ di (26)

.
Γi = µi(∆xi+1 − kiΓi) + d̃i (27)
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where x(i)1d denote the ith time mathematical differentiation of the real desired trajectory x1d; ki > 0

are constants; di, d̂i, d̃i ∈ R denote the lumped perturbations, its approximations, and estimate errors,

respectively. The terms di, d̃i, and the auxiliary reference trajectories, x(i+1)d, are given as follows:

d̃i = di − d̂i (28)

di = µi

(
ξi + λi−1∆

.
xi−1 + µ−1

i−1

.

d̂i−1 + ki−1
.
Γi−1

)
+

(
λiβiθi − βiθ

2
i

)∣∣∣∆xi(0)
∣∣∣e−θit (29)

x(i+1)d = x(i)1d − λi∆xi − µ−1
i d̂i − kiΓi (30)

Considering i = n: the channel nth of the system (1) is considered and analyzed as follows:
From Equation (11)

.
Γn = µn

( .
xn − .

xnd + λn∆xn
)
+

(
λnβnθn − βnθ

2
n

)∣∣∣∆xn(0)
∣∣∣e−θnt (31)

where
.
xn can be computed from Equations (1) and (29).

.
xn = g(x, t) + h(x, t)u + µ−1

n

(
dn −

(
λnβnθn − βnθ

2
n

)∣∣∣∆xn(0)
∣∣∣e−θnt

)
−

(
λn−1∆

.
xn−1 + µ−1

n−1

.

d̂n−1 + kn−1
.
Γn−1

)
(32)

and the function of
.
xnd is obtained from Equation (30), with i = n− 1 as follows:

.
xnd = x(n)1d − λn−1∆

.
xn−1 − µ−1

n−1

.

d̂n−1 − kn−1
.
Γn−1 (33)

From Equations (31), (32), and (33), the function,
.
Γn, can be re-written by:

.
Γn = µn

(
g(x, t) + h(x, t)u− x(n)1d + λn∆xn

)
+ dn (34)

To stabilize the control system, the controller u is chosen as the following function:

u = −h−1(x, t)
(
g(x, t) − x(n)1d + λn∆xn + knΓn + ks|Γn|sgn(Γn) + µ−1

n d̂n

)
(35)

where kn, ks > 0, d̂n is an estimate of dn. The term sgn(Γn) is given by [41]:

sgn(Γn) =



+1, if Γn > 0
0, if Γn = 0
−1, if Γn < 0

(36)

3.2. Lumped Perturbation Observer (LPO)

The LPO is presented to approximate the true lumped perturbations, di, in all channels of the
system following the several steps:

Considering i = 1, 2, . . . , n − 1: the LPO to approximate the true lumped perturbations produced
by the unmatched uncertainties is presented by:

d̂i = zi1 + li1Γi (37)

.
zi1 = −li1

(
µi

(
∆xi+1 + x(i+1)d − x(i)1d + λi∆xi

)
+ d̂i

)
+ δi

.̂

di (38)

.̂

di = zi2 + li2Γi (39)
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.
zi2 = −li2

(
µi

(
∆xi+1 + x(i+1)d − x(i)1d + λi∆xi

)
+ d̂i

)
(40)

where d̂i and
.̂

di are the approximations of di and
.

di, respectively. zi1 and zi2 denote the auxiliary states;
li1, li2, δi ∈ R+ are constants. The estimation errors are defined as follows


d̃i = di − d̂i
.̃

di =
.

di −
.̂

di

(41)

From Equations (37), (38), (26), and (41), it can be seen that:

.

d̃i = −li1d̃i + δi

.̃

di + (1− δi)
.

di (42)

From Equations (39), (40), (26), and (41)

.
.̃

di = −li2d̃i +
..

di (43)

Considering i = n: the LPO to estimate the lumped perturbation produced by the matched
uncertainty in channel nth is presented by

d̂n = zn1 + ln1Γn (44)

.
zn1 = −ln1

(
µn

(
g(x, t) + h(x, t)u− x(n)1d + λn∆xn

)
+ d̂n

)
+ δn

.̂

dn (45)

.̂

dn = zn2 + ln2Γn (46)

.
zn2 = −ln2

(
µn

(
g(x, t) + h(x, t)u− x(n)1d + λn∆xn

)
+ d̂n

)
(47)

where d̂n and
.̂

dn are approximations of dn and
.

dn respectively. zn1 and zn2 denote the auxiliary states;

ln1, ln2, δn ∈ R+ are constants. The estimation errors d̃n and
.̃

dn are also obtained from Equation (41)
with i = n. From Equations (44), (45), (34), and (41), it can be seen that:

.

d̃n = −ln1d̃n + δn

.̃

dn + (1− δn)
.

dn (48)

From Equations (46), (47), (34) and (41),

.
.̃

dn = −ln2d̃n +
..

dn (49)

Let

5

N N N 实心圆: � • • • • �� ư ườ ớ VY V₩(横竖线双横竖线) W̄ ¯̄xk̄W ˜̃W 特殊符号强行加粗OOOO

L $ $ 9 T, 不需要宏包í

â Ê ω |a或 s| 希腊及特殊字母斜体要宏包@

>? G#H# � N ["s@mTIN]

正下方的下标： sup
θ∈A

Å

Υ

这是灰色的字!_这是灰色的字!_

这是在特殊环境里面定义文本颜色

_ _

这是灰色的字!—

lim
n→∞ sup

k≥n

1
b(k/n)

(log k)3/2

n1/4d = 0.

Pose =




1.000265 0 0 0.000004

0 1.000265 0 −0.000004

0 0 1.000529 904.239197



,

M′(p) =



M(p) − (2)

M(p) − (3)

M (4)


3x + 4y = 5 (5a)

5x − 9y = 13 (5b)

ó

∈ Rn×1 and ν̃ ∈ R2n×1 be the general vectors of the lumped perturbation and approximation
error, respectively, defined by

5

N N N 实心圆: � • • • • �� ư ườ ớ VY V₩(横竖线双横竖线) W̄ ¯̄xk̄W ˜̃W 特殊符号强行加粗OOOO

L $ $ 9 T, 不需要宏包í

â Ê ω |a或 s| 希腊及特殊字母斜体要宏包@

>? G#H# � N ["s@mTIN]

正下方的下标： sup
θ∈A

Å

Υ

这是灰色的字!_这是灰色的字!_

这是在特殊环境里面定义文本颜色

_ _

这是灰色的字!—

lim
n→∞ sup

k≥n

1
b(k/n)

(log k)3/2

n1/4d = 0.

Pose =




1.000265 0 0 0.000004

0 1.000265 0 −0.000004

0 0 1.000529 904.239197



,

M′(p) =



M(p) − (2)

M(p) − (3)

M (4)


3x + 4y = 5 (5a)

5x − 9y = 13 (5b)

ó

=
[

d1 d2 . . . dn
]T

(50)

ν̃ =

[
d̃1

.̃

d1 d̃2
.̃

d2 . . . d̃n

.̃

dn

]T

(51)

Assumption 2. The term di are always jth differentiable functions and meet a condition

‖

5

N N N 实心圆: � • • • • �� ư ườ ớ VY V₩(横竖线双横竖线) W̄ ¯̄xk̄W ˜̃W 特殊符号强行加粗OOOO

L $ $ 9 T, 不需要宏包í

â Ê ω |a或 s| 希腊及特殊字母斜体要宏包@

>? G#H# � N ["s@mTIN]

正下方的下标： sup
θ∈A

Å

Υ

这是灰色的字!_这是灰色的字!_

这是在特殊环境里面定义文本颜色

_ _

这是灰色的字!—

lim
n→∞ sup

k≥n

1
b(k/n)

(log k)3/2

n1/4d = 0.

Pose =




1.000265 0 0 0.000004

0 1.000265 0 −0.000004

0 0 1.000529 904.239197



,

M′(p) =



M(p) − (2)

M(p) − (3)

M (4)


3x + 4y = 5 (5a)

5x − 9y = 13 (5b)

ó

( j)‖ ≤ ϑ, j = 1, 2 (52)
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where ϑ ∈ R+ is an unknown constant.

From Equations (42), (43), and (48)–(51), the dynamic model of the LPO is formed by:

.
ν̃ = Eν̃+ D

.

5

N N N 实心圆: � • • • • �� ư ườ ớ VY V₩(横竖线双横竖线) W̄ ¯̄xk̄W ˜̃W 特殊符号强行加粗OOOO

L $ $ 9 T, 不需要宏包í

â Ê ω |a或 s| 希腊及特殊字母斜体要宏包@

>? G#H# � N ["s@mTIN]

正下方的下标： sup
θ∈A

Å

Υ

这是灰色的字!_这是灰色的字!_

这是在特殊环境里面定义文本颜色
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where E is 2n× 2n matrix; D, C is 2n× n matrices. The values of these matrices are given by:

E =




−l11 δ1 0 0 · · · 0 0
−l12 0 0 0 · · · 0 0

0 0 −l21 δ2 · · · 0 0
0 0 −l22 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −ln1 δn

0 0 0 0 · · · −ln2 0




(54)

D =




(1− δ1) 0 · · · 0
0 0 · · · 0
0 (1− δ2) · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · (1− δn)

0 0 · · · 0




, C =




0 0 · · · 0
1 0 · · · 0
0 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 0
0 0 · · · 1




(55)

4. Stability Analysis

The general stability of the closed-loop control system and LPO is demonstrated through several
steps. From the mathematical expressions (53) to (55), we are always able to select the appropriate
parameters of li1, li2, δi, such that all eigenvalues of E are located in the left-side of the complex plane
(LSP). Thus, it can also be found positive definite matrices P and M in such a way that ETP + PE = −M.

λmin‖̃ν‖2 ≤ ν̃TMν̃ ≤ λmax‖̃ν‖2 (56)

where λmax, λmin denote the maximum and minimum eigenvalues of M. The stability of LPO is
analyzed by a Lyapunov function.

V(̃ν) = ν̃TPν̃ (57)

The mathematical differentiation,
.

V(̃ν), is calculated by:

.
V(̃ν) =

.
ν̃

T
Pν̃+ ν̃TP

.
ν̃

= ν̃T
(
ETP + PE

)
ν̃+ 2ν̃TPD

.
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‖
≤ −λmin‖̃ν‖2 + 2(‖PD‖+ ‖PC‖)‖̃ν‖ϑ
≤ −‖̃ν‖(λmin‖̃ν‖ − 2ϑ(‖PD‖+ ‖PC‖))

(58)

Obviously, after an adequately long time, the error ‖̃ν‖ is bounded by:

‖̃ν‖ ≤ η (59)

where

η =
2ϑ(‖PD‖+ ‖PC‖)

λmin
(60)
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Therefore, the values of d̃1, d̃2, . . . , d̃n are also bounded by:
∣∣∣∣∣d̃i

∣∣∣∣∣ ≤ ‖̃ν‖ ≤ η (61)

* The convergence of a sliding surface, Γn, is analyzed through a Lyapunov function chosen by:

Vn(Γn) =
1
2

Γ2
n (62)

From the Equations (34), (35), and (62),
.

Vn(Γn), is computed and analyzed by:

.
Vn(Γn) = Γn

.
Γn

= Γn

[
−µnknΓn − µnks|Γn|sgn(Γn) + d̃n

]

= −µn(kn + ks)|Γn|2 + d̃nΓn

≤ −|Γn|[µn(kn + ks)|Γn| − η]

(63)

Therefore, the sliding surface, Γn, will converge to a small area bounded by:

|Γn| ≤ η

µn(kn + ks)
(64)

As previously mentioned in Section 3.1, obviously the error, ∆xn, also converges to a small region
surrounding the origin zero, |∆xn| ≤ εn, where εn > 0

* The convergence of sliding surfaces, Γi, (i = 1, 2, . . . , n−1) is analyzed by:

Vi(Γi) =
1
2

Γ2
i (65)

From the Equations (27) and (65),
.

Vi(Γi) is computed and analyzed by

.
Vi(Γi) =

(
µi∆xi+1 + d̃i

)
Γi − µikiΓ2

i

≤
(
µi

∣∣∣∆xi+1
∣∣∣+ η

)
|Γi| − µiki|Γi|2

(66)

† Considering i = n−1 then
∣∣∣∆xi+1

∣∣∣ = |∆xn| ≤ εn, thus, from Equation (66),

.
Vn−1(Γn−1) ≤ (µn−1εn + η)|Γn−1| − µn−1kn−1|Γn−1|2

≤ −|Γn−1|(−(µn−1εn + η) + µn−1kn−1|Γn−1|)
(67)

It is clear that, after a sufficiently long time, the sliding surface Γn−1 will converge to a small area
bounded by:

|Γn−1| ≤
µn−1εn + η

µn−1kn−1
(68)

Thus, the tracking error ∆xn−1 also converge to a small region surrounding zero, |∆xn−1| ≤ εn−1,
where εn−1 > 0.

† Considering i = n−2, then
∣∣∣∆xi+1

∣∣∣ = |∆xn−1| ≤ εn−1, thus, the expression (66) will become

.
Vn−2(Γn−2) ≤ (µn−2εn−1 + η)|Γn−2| − µn−2kn−2|Γn−2|2

≤ −|Γn−2|(−(µn−2εn−1 + η) + µn−2kn−2|Γn−2|) (69)
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The Equation (69) showed that the sliding surface Γn−2 converges to a small area bounded by:

|Γn−2| ≤
µn−2εn−1 + η

µn−2kn−2
(70)

Thus, the error ∆xn−2 will converge to a small region surrounding the origin zero, |∆xn−2| ≤ εn−2,
where εn−2 > 0.

† The process of stability analysis is similarly executed with other channels. In general,
.

Vi(Γi) becomes:
.

Vi(Γi) ≤ −|Γi|(−(µiεi+1 + η) + µiki|Γi|) (71)

Thus, the sliding surfaces Γi will converge to a small region bounded by:

|Γi| ≤
µiεi+1 + η

µiki
, εi+1 > 0, i = 1, 2, . . . , n− 1 (72)

Finally, from the mathematical expressions (64) and (72), obviously the multi-surface Γi, i = 1, 2, . . . , n,
constantly converge to the small regions surrounding the origin zero. Therefore, the output state, xi,
also entirely converge on a small region surrounding the reference trajectories xid, as previously mentioned
in Section 3.1.

5. Simulation Results and Discussions

In this section, the numerical simulation of an illustrative example is performed and compared
with the integral type SMC (I-SMC) in [18] and dynamic surface control method (DSC) in [22] to verify
the effectiveness of the proposed algorithm. The mathematical model of an example is considered
in [35] as follows.

.
x1 = x2 + ξ1(x, t)
.
x2 = −2x1 − x2 + ex1 + u + ξ2(x, t)
y = x1

(73)

where ξ1(x, t) and ξ2(x, t) denote the perturbations/uncertainties given by:

0 < t < 0.5s
{
ξ1(x, t) = 3.5x4

1 + sin 3πt
ξ2(x, t) = −x1 + x2 sin 2πt

(74)

t ≥ 0.5s
{
ξ1(x, t) = 30 + 3.5x4

1 + 20 sin 8πt
ξ2(x, t) = −5x1 + x2 sin 8πt

(75)

The illustrative example is a second order system. Therefore, from the theoretical analysis of the
proposed algorithm in Section 3, the controller u is computed by Equation (35), where the sliding

surfaces Γ1, Γ2 are obtained from Equation (7) to (9), and lumped disturbance estimations d̂1, d̂2

are obtained from Equation (37) to (47) with n = 2. The control objective is to derive a control law
and LPO so that the system output state, x1, closely tracks the desired trajectory x1d = 1 + sin 3πt.
The parameters of the proposed sliding surfaces, Γi and si, (i = 1, 2), and switching controller gain are
given as Table 1:

Table 1. Parameters and controller gains of the proposed controller.

Symbol λ1 λ2 µ1 µ2 β1 β2 θ1 θ2 ks k1 k2

Value 250 1300 0.1 0.5 0.001 0.01 0.001 0.07 20 50 80

The other parameters of the lumped perturbation observer are chosen as l11 = 100, l12 = 400,
l21 = 450, l22 = 200 , δ1 = 50, δ2 = 500. The initial values are given as x1(0) = 2, and x2(0) = 0.
The simulation results are exhibited from Figures 1–8.
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From Figure 1, we can see that the output response, x1, of the proposed controller rapidly tracks
the desired trajectory, x1d, with a minor error, whilst the other controllers as I-SMC and DSC exhibit
a poor performance. The estimation of lumped perturbations in the channel 1 and channel 2 of the

system (73) are shown in Figures 2 and 3. Obviously, the approximate values d̂1 and d̂2 fast tracks the
true value d1 and d2 with a minor error. The trajectories of s1, s2 and Γ1, Γ2 well converge to the small
region surrounding the origin zero, as exhibited in Figures 4–7. In Figure 8, the controller signal u
shows a valid performance, excellently eliminating the chattering effect.
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6. Conclusions

In this article, we presented a lumped perturbation observer-based control method using a
novel extended multiple sliding surface for matched and unmatched uncertain nonlinear systems.
In this proposed approach, the sliding surfaces are generated for all channels of the SISO system to
approximate the lumped perturbations/uncertainties influencing on the engineering system, without
any knowledge of the bound conditions. Following this, an efficient controller combined with the
approximated values was derived to solve the control problem excellently. A general stability was
proven through the Lyapunov theory. The effectiveness of the proposed controller was demonstrated
by an illustrative example. The simulation results show that the proposed method is greatly significant
of improving the control performance of the system.
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