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Abstract: A type of Hyers–Ulam stability of the one-dimensional, time independent Schrödinger
equation was recently investigated; the relevant system had a parabolic potential wall. As a continuation,
we proved a type of Hyers–Ulam stability of the time independent Schrödinger equation under the
action of a specific hyperbolic potential well. One of the advantages of this paper is that it proves
a type of Hyers–Ulam stability of the Schrödinger equation under the condition that the potential
function has singularities.
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1. Introduction

About 80 years ago, S. M. Ulam [1] discussed several important unsolved problems in a mathematics
club at the University of Wisconsin. Among them was a question about the Hyers–Ulam stability of
group homomorphisms:

Assume that G1 is a group and G2 is a metric group with the metric d(·, ·). For any given δ > 0,
does there exist a ε > 0 such that if a function h : G1 → G2 satisfies d(h(xy), h(x)h(y)) < ε for all
x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with d(h(x), H(x)) < δ for all x ∈ G1?

In 1941, the following year, D. H. Hyers [2] was able to partially solve the Ulam’s question for
approximately additive functions, assuming that G1 and G2 were Banach spaces. Indeed, he proved
that every solution to the inequality ‖ f (x + y)− f (x)− f (y)‖ ≤ ε (for all x and y) can be approximated
by an exact solution (additive function). In this case, the Cauchy additive functional equation,
f (x + y) = f (x) + f (y), is said to have (or satisfy) the Hyers–Ulam stability.

Meanwhile, Th. M. Rassias [3] attempted to weaken the condition imposed on the upper bound
for the “size” of Cauchy differences as follows:

‖ f (x + y)− f (x)− f (y)‖ ≤ ε
(
‖x‖p + ‖y‖p)

and he proved the Hyers’ theorem, when he assumed that p was a nonnegative real constant but
p 6= 1. In other words, he proved the Hyers–Ulam-Rassias stability of the Cauchy additive functional
equation. Since then, P. Găvruţa [4] published a paper that further generalized the theorem of Rassias,
and these two papers have been enough to attract the attention of many mathematicians (see [5–7]).
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Given an open interval I = (a, b) with −∞ ≤ a < b ≤ +∞ and an n ∈ N, we will define the
Hyers–Ulam stability of the nth-order linear differential equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) = g(x), (1)

where the function y : I → C is assumed to be n times continuously differentiable and the coefficient
functions ai : I → C are continuous, and where the inhomogeneous term g : I → C is also assumed to
be continuous.

The linear differential Equation (1) is said to have (or satisfy) the Hyers–Ulam stability if and only
if the following statement holds true for any given ε > 0: For every n times continuously differentiable
function y : I → C satisfying the differential inequality

∣∣∣an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x)− g(x)
∣∣∣ ≤ ε

for all x ∈ I, the differential Equation (1) has a solution y0 : I → C with

|y(x)− y0(x)| ≤ Kε(x)

for every x ∈ I, where Kε(x) is dependent on x and ε and lim
ε→0

Kε(x) = 0 regardless of values of x.

Now we consider the case when sup
x∈I

lim
ε→0

Kε(x) > 0. As this phenomenon seems slightly different

from the Hyers–Ulam stability in a broad sense, we should say that the differential Equation (1) has a
type of Hyers–Ulam stability. We advise interested readers to refer to [5–7] for a detailed definition of
Hyers–Ulam stability.

As far as we know, M. Obłoza [8,9] was the first person to prove the Hyers–Ulam stability
of differential equations. Indeed, Obłoza dealt with Hyers–Ulam stability of the linear differential
equation y′(x) + f (x)y(x) = g(x). Since then, many mathematicians have become interested in this
subject and they have dealt with it more broadly and in depth (see [3,10–20]).

In a recent paper [21], the one-dimensional, time independent Schrödinger equation

− h̄2

2m
d2ψ(x)

dx2 + V(x)ψ(x) = Eψ(x) (2)

was considered, and a type of Hyers–Ulam stability was investigated; the system under observation
had a parabolic potential wall.

In the present paper, we deal with the one-dimensional, time independent Schrödinger
Equation (2), where ψ : (0, c) → C is the wave function, V is a hyperbolic potential well, h̄ = h

2π is
the reduced Planck constant, m is the mass of the particle, and E is the energy level of the system.
Indeed we investigate a type of Hyers–Ulam stability of the Schrödinger Equation (2) under the action
of hyperbolic potential well with a singularity point at x = 0 and 0 < E < V0.

Finally, we need to mention that we wrote this paper using the ideas and experience of the
papers [16,18,21,22].

2. Preliminaries

The explicit formula for the general solution to the first-order linear differential equation is well
known. We briefly recall that formula in the following lemma.

Lemma 1. Suppose I = (0, c) is an open interval and c > 0 is a fixed real number. Assume moreover that
the functions f , g : I → C are continuous such that every integral below exists. Then each continuously
differentiable function y : I → C is a solution of the first-order linear inhomogeneous differential equation

y′(x) + f (x)y(x) = g(x)
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if and only if y is expressed by the formula

y(x) = exp
(∫ c

x
f (w)dw

)(
y(c)−

∫ c

x
g(s) exp

(
−
∫ c

s
f (w)dw

)
ds
)

,

where y(c) is a complex number.

Using Lemma 1, we can easily prove the generalized Hyers–Ulam stability of the linear,
inhomogeneous differential equation of first order. This theorem is already well known, so readers
interested in reading its proof may refer to the paper [21]. In the following lemma, <(z) denotes the
real part of the complex number z.

Lemma 2. Suppose I = (0, c) is an open interval for a fixed real number c > 0. Assume that the functions
f , g : I → C and ϕ : I → [0, ∞) are continuous such that every integral below exists. If a continuously
differentiable function y : I → C satisfies the differential inequality

∣∣y′(x) + f (x)y(x)− g(x)
∣∣ ≤ ϕ(x)

for all x ∈ I, then there exists a continuously differentiable function y0 : I → C such that y′0(x) + f (x)y0(x) =
g(x) and

|y(x)− y0(x)| ≤ exp
(
<
(∫ c

x
f (w)dw

)) ∫ c

x
ϕ(s) exp

(
−<

(∫ c

s
f (w)dw

))
ds

for all x ∈ I.

3. A Type of Hyers–Ulam Stability

In this section, we assume that the potential function V : (0, ∞) → R is a hyperbolic function
defined by

V(x) = V0 −
h̄2ω1

m
· 1

x
, (3)

where we set ω1 =
√

2m(V0−E)
h̄2 and 0 < E < V0.

For this potential function shown in Figure 1, we investigate a type of Hyers–Ulam stability of
one-dimensional Schrödinger Equation (2) only in finite intervals such as (0, c) because of the condition
in Lemma 2 imposed on the coefficient of the differential equation. Even so, in this paper, there is great
interest in the properties of solutions of the Schrödinger equation. In particular, we have a greater
interest in their behaviors in the vicinity of x = 0.

From now on, suppose that c is a positive real number that satisfies V(c) = V0 − h̄2ω1
cm > E unless

specified otherwise. Using this c, we define the open interval I = (0, c).
The following formulas define the differential operators D1 and D2 according to the potential

function V given in (3):

(D1ψ)(x) = ψ′(x) +
(

ω1 −
1
x

)
ψ(x),

(D2ψ)(x) = ψ′(x) +
(

1
x
−ω1

)
ψ(x)

where ψ : I → C is any continuously differentiable function.
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With those differential operators, we have

− h̄2

2m
((D2 ◦ D1)ψ)(x) = − h̄2

2m

(
ψ′′(x) +

(
2ω1

x
−ω2

1

)
ψ(x)

)

= − h̄2

2m
ψ′′(x) + V(x)ψ(x)− Eψ(x) (x ∈ I)

for any twice continuously differentiable function ψ : I → C, which implies that
∣∣∣∣∣−

h̄2

2m
ψ′′(x) + V(x)ψ(x)− Eψ(x)

∣∣∣∣∣ ≤ ε (x ∈ I)

if and only if

|((D2 ◦ D1)ψ)(x)| ≤ 2m
h̄2 ε (x ∈ I)

which is equivalent to
∣∣∣∣φ′(x) +

(
1
x
−ω1

)
φ(x)

∣∣∣∣ ≤
2m
h̄2 ε (x ∈ I), (4)

where we set φ(x) = (D1ψ)(x).
As we shall see in (6) below, the inequality |ψ(x) − ψ0(x)| ≤ Kε(x) holds true for any x ∈ I

and ε > 0, where Kε(x) is strongly affected by values of x. Hence, the phenomenon observed in the
following theorem is called a type of Hyers–Ulam stability.

Theorem 1. Assume that E and V0 are real numbers with 0 < E < V0 and V : (0, ∞) → R is the
hyperbolic potential function defined by (3). Moreover, suppose that c > 0 is a real number satisfying

V(c) = V0 − h̄2ω1
cm > E and I = (0, c) is an open interval. Given any ε > 0, if a twice continuously

differentiable function ψ : I → C satisfies the inequality
∣∣∣∣∣−

h̄2

2m
d2ψ(x)

dx2 + V(x)ψ(x)− Eψ(x)

∣∣∣∣∣ ≤ ε (5)
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for all x ∈ I, then the one-dimensional time independent Schrödinger Equation (2) has a twice continuously
differentiable solution ψ0 : I → C with

|ψ(x)− ψ0(x)|

≤ 2m
h̄2ω1

εxe−ω1x
(∫ c

x

1
s

eω1sds +
1

ω1

∫ c

x

1
s2 eω1sds−

(
c +

1
ω1

)
e−ω1c

∫ c

x

1
s2 e2ω1sds

) (6)

for all x ∈ I.

Proof. First, we define φ(x) = (D1ψ)(x) = ψ′(x) +
(

ω1 − 1
x

)
ψ(x). On account of (4) and (5),

Lemma 2 may apply to inequality (4) with reference to Table 1:

Table 1. Substitutions.

Lemma 2 In (4)

y(x) φ(x)
f (x) 1

x −ω1
g(x) 0
ϕ(x) 2m

h̄2 ε

Additionally, there exists a continuously differentiable function φ0 : I → C that satisfies

φ′0(x) +
(

1
x
−ω1

)
φ0(x) = 0 (7)

as well as

|φ(x)− φ0(x)| ≤ 2m
h̄2 ε exp

(∫ c

x

(
1
w
−ω1

)
dw
) ∫ c

x
exp

(
−
∫ c

s

(
1
w
−ω1

)
dw
)

ds

=
2m
h̄2 ε

eω1x

x

(
1

ω1

(
x +

1
ω1

)
e−ω1x − 1

ω1

(
c +

1
ω1

)
e−ω1c

) (8)

for all x ∈ I.
Since we defined φ(x) = ψ′(x) +

(
ω1 − 1

x

)
ψ(x), we see by (8) that

∣∣∣∣ψ′(x) +
(

ω1 −
1
x

)
ψ(x)− φ0(x)

∣∣∣∣

≤ 2m
h̄2ω1

ε

(
1 +

1
ω1
· 1

x
−
(

c +
1

ω1

)
e−ω1(c−x)

x

) (9)

for all x ∈ I. Lemma 2 may again apply to inequality (9) with reference to Table 2:

Table 2. Substitutions.

Lemma 2 In (9)

y(x) ψ(x)
f (x) ω1 − 1

x
g(x) φ0(x)
ϕ(x) 2m

h̄2ω1
ε
(

1 + 1
ω1

1
x −

(
c + 1

ω1

)
e−ω1(c−x)

x

)

On account of Lemma 2, there exists a continuously differentiable function ψ0 : I → C that satisfies

ψ′0(x) +
(

ω1 −
1
x

)
ψ0(x) = φ0(x) (10)
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as well as

|ψ(x)− ψ0(x)|

≤ 2m
h̄2ω1

ε exp
(∫ c

x

(
ω1 −

1
w

)
dw
)
·

·
∫ c

x

(
1 +

1
ω1

1
s
−
(

c +
1

ω1

)
e−ω1(c−s)

s

)
exp

(
−
∫ c

s

(
ω1 −

1
w

)
dw
)

ds

=
2m

h̄2ω1
εxe−ω1x

(∫ c

x

1
s

eω1sds +
1

ω1

∫ c

x

1
s2 eω1sds−

(
c +

1
ω1

)
e−ω1c

∫ c

x

1
s2 e2ω1sds

)

for all x ∈ I.
Moreover, by using Lemma 1 and Equation (10), we show that ψ0 has the form

ψ0(x) = exp
(∫ c

x

(
ω1 −

1
w

)
dw
)(

ψ0(c)−
∫ c

x
φ0(s) exp

(
−
∫ c

s

(
ω1 −

1
w

)
dw
)

ds
)

,

where ψ0(c) is assumed to be an arbitrary complex number. Furthermore, twice continuous
differentiability of ψ0 follows from the continuous differentiability of φ0.

By using (7) and (10), we can finally verify that ψ0 : I → C is a solution to the one-dimensional,
time independent Schrödinger Equation (2).

If the value of x is very close to 0, we can calculate as follows:

1
x

eω1x =
1
x
+

∞

∑
n=1

ωn
1

n!
xn−1,

1
x2 eω1x =

1
x2 +

ω1

x
+

∞

∑
n=2

ωn
1

n!
xn−2,

1
x2 e2ω1x =

1
x2 +

2ω1

x
+

∞

∑
n=2

(2ω1)
n

n!
xn−2

and

x
∫ c

x

1
s

eω1sds = x ln c− x ln x + x
∞

∑
n=1

ωn
1

n!n
(cn − xn),

x
∫ c

x

1
s2 eω1sds = 1− x

c
+ ω1x(ln c− ln x) + x

∞

∑
n=2

ωn
1

n!(n− 1)
(
cn−1 − xn−1),

x
∫ c

x

1
s2 e2ω1sds = 1− x

c
+ 2ω1x(ln c− ln x) + x

∞

∑
n=2

(2ω1)
n

n!(n− 1)
(
cn−1 − xn−1).

Hence, we get

x
∫ c

x

1
s

eω1sds = O(x), x
∫ c

x

1
s2 eω1sds = O(1), x

∫ c

x

1
s2 e2ω1sds = O(1)

as x → 0+, where O(·) denotes the Big O notation.
As already mentioned earlier in this section, we have a great interest in the approximation

property (in the vicinity of x = 0) of the solutions of the time independent Schrödinger equation.
Therefore the following corollary will be very interesting to us.

Corollary 1. Assume that E and V0 are real numbers with 0 < E < V0 and V : (0, ∞) → R is the
hyperbolic potential function defined by (3). Moreover, suppose that c > 0 is a real number satisfying

V(c) = V0 − h̄2ω1
cm > E and I = (0, c) is an open interval. Given any ε > 0, if a twice continuously
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differentiable function ψ : I → C satisfies the inequality (5) for any x ∈ I, then the one-dimensional, time
independent Schrödinger Equation (2) has a twice continuously differentiable solution ψ0 : I → C with

|ψ(x)− ψ0(x)| = O(1)

as x→ 0+. In particular, there exists a real constant K > 0 such that

|ψ(x)− ψ0(x)| ≤ Kε

for all sufficiently small values of x > 0.

4. Discussion

The Schrödinger equation is a linear partial differential equation that describes the wave function
of the quantum-mechanical system and this equation plays a key role in quantum mechanics.

The form of the Schrödinger equation looks different depending on the physical situation. The
most general form is the time dependent Schrödinger equation, which describes the state of a system
that evolves with time. Among the predictions of the time dependent Schrödinger equation is that the
wave functions can form standing waves (stationary states). Stationary states are especially important
because their individual states simplify the task of solving the time dependent Schrödinger equation.
The stationary state can be well explained by the time independent Schrödinger equation, which is the
simpler form of the Schrödinger equation.

The above descriptions ensure well that the subject of our paper is of considerable importance.
Before we can prove the “exact” Hyers–Ulam stability of the Schrödinger Equation (2),

wherein a hyperbolic potential function works, we will need to further improve Lemma 2. However,
we do not think it is realistic to significantly improve Lemma 2 in this small paper. Therefore, we think
it is wiser to leave this improvement as an open problem rather than to seek it in this paper.

5. Conclusions

Only when the potential function is exactly expressed in the form of (3) do we cautiously predict
that we will be able to demonstrate a type of Hyers–Ulam stability of the one-dimensional, time
independent Schrödinger equation by using the operator method.

It would be more general to prove the stability of the Schrödinger equation under the action of
the potential function V(x) = α + β

x —where α and β meet only the minimum requirements, and if
possible they are independent of each other—but unfortunately in this paper we did not. From this
point of view, the main result of this paper seems a little awkward. Nevertheless, it is a great advantage
of this paper that we have demonstrated a type of Hyers–Ulam stability of Schrödinger’s equation
under the action of the potential function that has a singularity point.
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