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Abstract: Financial markets have been characterized in recent years by their uncertainty and
volatility. The price of assets is always changing so that the decisions made by consumers, producers,
and governments about different products is not still accurate. In this situation, it is necessary to
generate models that allow the incorporation of the knowledge and expectations of the markets and
thus include in the results obtained not only the historical information, but also the present and
future information. The present article introduces a new extension of the ordered weighted averaging
(OWA) operator called the Bonferroni probabilistic ordered weighted average (B-POWA) operator.
This operator is designed to unify in a single formulation the interrelation of the values given in a
data set by the Bonferroni means and a weighted and probabilistic vector that models the attitudinal
character, expectations, and knowledge of the decision-maker of a problem. The paper also studies
the main characteristics and some families of the B-POWA operator. An illustrative example is also
proposed to analyze the mathematical process of the operator. Finally, an application to corn price
estimation designed to calculate the error between the price of an agricultural commodity using the
B-POWA operator and a leading global market company is presented. The results show that the
proposed operator exhibits a better general performance than the traditional methods.

Keywords: price forecasting; OWA operator; corn price; Bonferroni means; probabilistic operators

1. Introduction

Price analysis and prediction for agricultural commodities is a key element for decision-
and policy-making [1], e.g., farmers require price analysis to accurately trade their stock [2],
and governmental institutions rely on accurate price estimations to guarantee the favorable operation
of the economy [3]. Therefore, the estimation of prices for the construction of different scenarios must
be a corporate strategy when making short- and long-term plans [4], and when creating policies
to promote appropriate programs for the development of the agricultural economy, food security,
and coverage costs [5]. However, market volatility and fluctuations [6], along with the dynamic and
systemic nature of the analyzed phenomena, make price analysis and prediction a highly complex
task [5].
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Among the diverse agricultural commodities in contemporary markets, corn is one of the most
important. This agricultural commodity is present in multiple products and ranks as the third most
cultivated product after wheat and rice [7]. According to the Food and Agriculture Organization of
the United Nations (FAO) [8], corn’s main purposes are human consumption and livestock nutrition.
Other usages of this commodity are, e.g., biofuel production, plastics and medicines [9], and it is a
basic ingredient in the production of more than 4000 items, including syrups, oils, flours, starches,
juices, soft drinks, paints, toothpaste, paper, and cosmetics.

Accurate price analyses and forecasting is a long-pursued objective [10]. The latest developments
in information technologies have created interesting approaches for the analysis and prediction of
agricultural prices [11], including machine and deep learning models [3], multiple linear regression
analyses [12], the vector error correction model and multi-output support vector regression [5],
autoregressive integrated moving averages, partial least squares and artificial neural networks [13],
and autoregressive integrated moving averages and Elman neural networks [14], among others.
Some disadvantages of the traditional statistical techniques for price estimation include, e.g., the need
for historical information and the inability to consider the expectations and knowledge of experts and
decision-makers [15]. With this information, the research question of the paper is: how accurate is
the forecasting price of an agricultural product based on aggregation operators? We hypothesize that
using aggregation operations that include the knowledge and expectations of the decision-makers or
experts in the problem can improve the accuracy of forecasting instead of traditional formulations
based only on historical data.

The rapid advancements produced in recent decades in computer science and intelligent and
expert systems [16] have proven to be effective when analyzing data from different sources and
producing unified information. One of these advancements is the ordered weighted average (OWA)
operator developed by Yager in 1988 [17] being f the most cited paper about aggregation operators [18].
The main idea of this operator is to aggregate information using a weighting vector and reordering
mechanism according to different criteria and the attitudinal character of the decision-maker. Since the
appearance of the OWA operator, many extensions have been proposed, including logarithmic averaging
operators [19–21], moving averages [22–24] and Bonferroni means [25,26]. These developments
have been applied to diverse fields, such as decision sciences [27,28], finance [29,30], and policy
decision-making [31,32]. Moreover, multiple extensions have been developed using the Bonferroni
OWA operator, which have been diversified with distance measures applied to problems in personnel
selection [33,34], induced variables applied to forecast and business risk management [35,36] and
extensions with central tendency measures such as variance and covariance [37,38].

The aim of this paper is to introduce an extension of the OWA operator that combines Bonferroni
means [39] and probabilistic vectors [40,41], named the Bonferroni probabilistic ordered weighted
average (B-POWA) operator. The contribution of this new operator is that in one formulation the
interrelation of the arguments can be used with the use of the Bonferroni means and also includes
probabilistic uncertainty theory with the use of the weighting vector and probabilistic vector; with these
three components it is possible to add different qualitative information to the formulation, and with
that new present possible scenarios based on the expectations of the decision-maker. The design also
includes the reordering step of the OWA operator. Additionally, the main characteristics and properties
of the newly introduced operator are studied and presented. The novelty of this paper is in two ways:
the first one is the presentation of a new aggregation operator that combines Bonferroni means, OWA
operators and probabilities, and the second is the solution of forecasting agricultural commodities by
the presentation of a step-by-step process; with these it is possible to replicate the methodology to
different problems that have similar elements and attributes.

The remainder of the paper proceeds as follows. Section 2 presents the preliminaries and
foundations of the B-POWA operator. Section 3 introduces the B-POWA operator and its main
characteristics and properties. Section 4 presents a mathematical example of the operator. Section 5
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presents price forecasting using the B-POWA operator. Finally, Section 6 summarizes and concludes
the paper.

2. Preliminaries

In this section, the basic definitions are presented for the development of the paper, including the
ordered weighted average (OWA) operators, Bonferroni operators, and some of their extensions.

The Bonferroni mean, since its creation by [39], has had different applications, such as multiple
significance tests applied in medicine [42], genetic differentiations of two or more collections of
samples [43], wear behavior in parts with micromechanical properties and characteristics [44],
and multicriteria decision-making [36], among other areas of knowledge.

The great diversity of the problems at hand forces decision-makers to look for new methods
that allow them to broaden their expectations and model them in different scenarios. Bonferroni [39]
proposed an operator for multiple aggregate criteria that uses the product of the means of two criteria
ai and aj, thereby capturing the interrelation between the arguments. This operation is performed to
implement satisfaction criteria [27]. By rearranging the terms [26], it can also be formulated in the
following way:

B(a1, a2, . . . , an) =
(∑n

k=1
ar

k

( 1
1− n

∑n

j=1;j,k
aq

j

)) 1
r+q

, (1)

where r and q are parameters such that r, q ≥ 0 and the arguments a ≥ 0.
There are several ways to add information for decision-making; one such method is the ordered

weighted average (OWA) [17]. The advantage of this methodology is that by rearranging the weights
and criteria, it is possible to obtain results according to the expectations of the decision-maker, which can
overvalue or undervalue the results.

Using Bonferroni Means (BM), numerous applications have been developed, as highlighted by
the OWA operator extension presented by [26] and called the Bonferroni OWA operator.

Definition 1. Let W be an OWA weighting vector of dimension n − 1 with components wi ∈ [0, 1] when∑
i wi = 1. Then, we can define this aggregation as OWAW

(
Vi

)
=

(∑n−1
j=1 wiaπk(j)

)
, where aπk(j) is the largest

element in the n− 1 tuple Vi = (a1, . . . , ai−1, ai+1, . . . , an). The Bonferroni OWA is a mean-type aggregation
operator. It can be defined by using the following expression.

B−OWA(a1, . . . , an) =

 1
n

∑
i

ar
i OWAW

(
Vi

)
1

r+q

, (2)

where
(
Vi

)
is the vector of all aj except ai.

Definition 2. An OWA operator of dimension n is a mapping OWA : Rn
→ R associated with a weight vector

W of dimension n such that
∑n

j=1 wj = 1 and wj ∈ [0, 1] according to the following formula:

OWA(a1, a2, . . . , an) =
∑n

j=1
wjbj, (3)

where bj is the jth major element of the ai collection.

Note that if wi =
1

n−1 for all i, OWAW

(
Vi

)
=

(
1

n−1
∑n

j=1;j,i aq
j

)
, and Equation (2) becomes the

classical Bonferroni mean.
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Definition 3. A probabilistic ordered weighted average (POWA) operator is a POWA merger: POWA : Rn
→ R

of dimension n has a weighting vector W associated with
∑n

j=1 wj = 1 and wj ∈ [0, 1]. The formulation is
as follows:

POWA (a1, . . . , an) =
∑n

j=1
Vjbj, (4)

where bj is the jth largest of the ai, each argument ai has an associated probability Vi with
∑n

i=1 Vi = 1 and
vi ∈ [0, 1], vj = βwj + (1−β)vj with β ∈ [0, 1] and vj is the probability vi ordered according to bj.

3. The Bonferroni POWA Operator and Its Extensions

The objective of this paper is to present an extension of the OWA operator called the Bonferroni
probabilistic ordered weighted average (B-POWA) operator. This operator makes it possible to sort
information within a maximum and a minimum, unifying by means of vectors of weights Wi considered
by the degree of importance for decision-makers, and the probability pi in the same formulation. It can
be defined as follows:

Proposition 1. B-POWA is a probabilistic mean-type aggregation operator associated with wj in the vector
W with

∑n
j=1 wj = 1 and wj ∈ [0, 1] and a probability pi of the vector P with

∑n
i=1 pi = 1 and pi ∈ [0, 1].

Let Lwj be an aggregation vector of the weighting factor and the probabilities for ai , aj such that Lwj =

β

(
wjb

q
j

)
+ (1−β)

(
pjb

q
j

)
, where pj is the probability ordered according to bj, according to the jth largest of the

ai. The values r and q are the degrees of the multiple averages that the double mean generalizes by adjusting the
confidence level of each of the intervals ai and aj. The B-POWA is defined by using the following expression.

B− POWA =
( 1

n

∑n

i=1

∑n−1

j=1
ar

i Lwj

) 1
r+q

, (5)

where Lwj is the vector of all aj except ai.

In addition to the OWA aggregation and the probabilities of the arguments, this new operator
allows multiple comparisons between the inputs and captures their interrelation. Thus, when β = 0,
we have the aggregation of the probabilities of the arguments ai , aj, and with β = 1, the operator
excludes the comparison argument. The above formulation of Proposition 1 can also be expressed
as follows:

Let W be the weight vector wj of dimension n with components wj ∈ [0, 1] when
∑n

j=1 wj = 1.

Therefore, we can define this aggregation as OWAw (Vi) =
∑n−1

j=1 Wja
q
πi(j)

, where aq
πi(j)

is the jth element

of the tuple Vi. In the part corresponding to the probabilities, we have PAwj , which is the aggregation

of the probabilities of the arguments ordered according to bj and with aj , ai being PAwj =
∑n−1

j=1 pjb
q
j ,

where
∑n

i=1 pi = 1 and pi ∈ [0, 1].

B− POWA (a1, a2, . . . , an) = β

( 1
n

∑n

i=1
ar

i OWAW
(
Vi

)) 1
r+q

+ (1−β)
( 1

n

∑n

i=1
ar

i PAwj

) 1
r+q

, (6)

where
(
Vi

)
is the tuple of all aj , ai as (a1, . . . , ai−1, ai+1, . . . , an).

Note that when β = 0, Bonferroni Probabilistic (B-PO) is strictly obtained, and its formulation is
as follows:

B− PO(a1, a2, . . . , an) =
( 1

n

∑
i
ar

i PAwj

) 1
r+q

, (7)

where PAwj is the aggregation of the probabilities of the arguments ordered by bj and with aj , ai,

where PAwj =
∑n−1

j=1 pjbj, and where
∑n

i=1 pi = 1 and pi ∈ [0, 1]. The values r and q are the degrees of
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the multiple averages that the double mean generalizes by adjusting the confidence level of each of the
intervals ai and aj.

Additionally, if β = 1, the B-OWA operator is strictly obtained. Now, with respect to the value
of ai, if all ai = 0,B − POWA (0, . . . , 0) = 0 is obtained. When ai = 1, then B − POWA (1, . . . , 1) =

β
(

1
n
∑

i OWAW

(
Vi

)) 1
r+q + (1−β)

(
1
n
∑

i PAwj

) 1
r+q . Here, one should consider that Vi is the tuple of the

aj , ai and will, therefore, have a value of one, giving the property of idempotence to the operator,
BON− POWA (1, . . . , 1) = 1.

Another property that the B-POWA operator has is monotonicity. If one has ci ≥ ai, and if
one considers B − POWA (a1, a2, . . . , an) and B − POWA (c1, c2, . . . , cn), then given this, under this
property of the operator, OWAW (a1, a2, . . . , ai−1, ai+1, . . . , an) ≤ OWAW(c1, c2, . . . , ci−1, ci+1, . . . , cn),
and therefore, B− POWA (a1, a2, . . . , an) ≤ B− POWA (c1, c2, . . . , cn).

In addition, from the previous situation, considering the delimitation if a∗ =

Maxi[ai], B − POWA (a1, a2, . . . , an) ≤ B − POWA (a∗, . . . , a∗) = a∗ and, if a∗ = Mini[ai],
then B − POWA (a1, a2, . . . , an) ≥ B − POWA (a∗, . . . , a∗) = a∗. Therefore, Mini[ai] ≤ B −
POWA (a1, a2, . . . , an) ≤ Maxi[ai]. From this, it is necessary that the operator B − POWA provides a
media class as an aggregation operator.

Special Cases of the B-POWA Operator

Some special cases are presented according to the values that W takes. Consider the situation
where W = W∗; here, for k = 2 to n − 1, w1 = 1 and wk = 0, thus obtaining a B-POWA with the
maximum of

(
Vi

)
:

B− POWAW∗ (a1, a2, . . . , an) = β

( 1
n

∑n

i=1
ar

i Max
(
Vi

)) 1
r+q

+ (1−β)
( 1

n

∑n

i=1
ar

i PAwj

) 1
r+q

, (8)

Now, Max
(
Vi

)
corresponds to the largest element of a with i , j. Additionally, let aind(j) be

the j-th largest element of ai, so for i , ind(1), one must have Max
(
Vi

)
= aind(1), and therefore,

Max
(
Vi

)
= aind(1) = Maxi[ai]. Now, for i = ind(1), then Max

(
Vi

)
= aind(2). With values r = q = 1,

substituting in Equation (8),

B-POWAW∗(a1, a2, . . . , an) = β
(

1
n
∑n

i=1 aind(j)

(
aind(1)

)
+ aind(1)

(
aind(2)

)) 1
2 +

(1−β)
(

1
n
∑n

i=1 aiPAwj

) 1
2 = β

(
1
n

(
aind(1)

∑n
i=1 aind(j) + aind(2)

)) 1
2 +

(1−β)
(

1
n
∑n

i=1 aiPAwj

) 1
2 ,

(9)

B− POWAW∗ (a1, a2, . . . , an) = β
(
aind(1)

(
1
n
∑n

i=1 aind(j) − (aind(1) − aind(2))
)) 1

2 +

(1−β)
(

1
n
∑n

i=1 aiPAwj

) 1
2 ,

(10)

B− POWAW∗(a1, a2, . . . , an) ≈ β(Maxi[ai]∗average(a1, a2, . . . , an))
1
2 +

(1−β)
(

1
n
∑n

i=1 aiPAwj

) 1
2 .

(11)

In the case of W = W∗ with wn−1 = 1 and wk = 0 for k = 1 to n− 2, there is a minimum B-POWA,

B− POWAW∗ (a1, a2, . . . , an) = β

( 1
n

∑n

i=1
ar

i Min
(
Vi

)) 1
r+q

+ (1−β)
( 1

n

∑n

i=1
ar

i PAwj

) 1
r+q

, (12)

where Min
(
Vi

)
is the smallest element of a with i , j. Additionally, let aind(j) be the j-th smallest element

of ai, so for i , ind(n) one must have Min
(
Vi

)
= aind(n), and therefore, Min

(
Vi

)
= aind(n) = Mini[ai].
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Now, for i = ind(n) then the Min
(
Vi

)
= aind(n−1). Following the algebraic operations of the previous

case, with values r = q = 1, one obtains:

B− POWAW∗ (a1, a2, . . . , an) ≈ β (Mini[ai]∗average(a1, a2, . . . , an))
1
2 +

(1−β)
(

1
n
∑n

i=1 aiPAwj

) 1
2 .

(13)

To determine the weight vector, there are different approaches developed in the literature [45,46].
Some measures to consider are the dispersion, the balance operator, the divergence of W and the degree
of orness. These are defined as follows:

Dispersion is the measure of the degree to which w takes into account the information in the
arguments during aggregation [45]. This measure of dispersion uses the Shannon information concept,
i.e., the more dispersed w is, the more information about the individual criteria is being used in the
aggregation process [17], and it is defined as:

H(W) = −
∑n

i=1
wi ln wi, (14)

for the B-POWA, the entropy is

H(W) = β

−
 1

n

∑n

i=1
ln wi


∑n

j = 1
i , j

wj ln wj



1
r+q

+ (1−β)
( 1

n

∑n

i=1
ar

i PAwj

) 1
r+q

. (15)

The degree of orness is associated with the weighting function [17] and characterizes the degree
to which the aggregation is like an orness operation [45] it is defined as

orness(W) =
1

n− 1

∑n

i=1
(n− i)wi, (16)

the degree of orness for the B-POWA is obtained from:

orness(W) = β

 1
n

∑n

i=1

( n− i
n− 1

)
∑n

j = 1
i , j

(
n− j
n− 1

)
wj




1
r+q

+ (1−β)
( 1

n

∑n

i=1
ar

i PAwj

) 1
r+q

. (17)

Thus, the divergence of W is obtained. The degree of divergence allows a useful measure to be
obtained when the dispersion or attitudinal character is incomplete [47,48]:

Div(W) = β

 1
n
∑n

i=1

(
n−i
n−1 − orness(W)

)2


∑n

j = 1
i , j

( n−j
n−1 − orness(W)

)2
wj




1
r+q

+

(1−β)
(

1
n
∑n

i=1 ar
i PAwj

) 1
r+q .

(18)

The balance operator allows for the measurement of its degree of balance between favoring the
higher-valued elements or lower-valued elements [49], i.e., it measures the balance of the weights
against the orness or the andness [50] for the B-POWA results from:

Bal(W) = β

 1
n

∑n

i=1

(n + 1− 2i

n− 1

)
∑n

j = 1
i , j

(n + 1− 2j

n− 1

)
wj




1
r+q

+ (1−β)
( 1

n

∑n

i=1
ar

i PAwj

) 1
r+q

. (19)
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Therefore, if q = 0, then B-POWA would be:

B− POWAr,0 (a1, a2, . . . , an) = β
(

1
n
∑n

i=1 ar
i OWAW

(
Vi

)) 1
r+0 +

(1−β)
(

1
n
∑n

i=1 ar
i PAwj

) 1
r+0 = β

(
1
n
∑n

i=1 ar
i

) 1
r + (1−β)

(
1
n
∑n

i=1 ar
i

) 1
r

=
(

1
n
∑n

i=1 ar
i

) 1
r (β+ 1−β) =

(
1
n
∑n

i=1 ar
i

) 1
r

(20)

If r = 1 and q = 0, substituting in Equation (13), B-POWA is reduced to an average:

B− POWA1,0 (a1, a2, . . . , an) =
1
n

∑n

i=1
ai. (21)

If r = 2 and q = 0, then the B-POWA is reduced to a quadratic mean, which is obtained by
substituting in Equation (13) as follows:

B− POWA2,0 (a1, a2, . . . , an) =
( 1

n

∑n

i=1
a2

i

) 1
2
=

√
1
n

∑n

i=1
a2

i . (22)

If r → +∞ and q = 0, substituting in Equation (13), the B-POWA is reduced to the MAX operator,
that is, the maximum value in the arguments ai:

lim
r →+∞

B−POWAr,0 (a1, a2, . . . , an) =
( 1

n

∑n

i=1
ar

i

) 1
r
=

( 1
n

∑n

i=1
a∞i

) 1
∞

=
1
n

∑n

i=1
a
∞

∞

i = max{ai}. (23)

If r → 0 and q = 0, substituting in Equation (13), B-POWA is reduced to the geometric mean:

lim
r → 0

B− POWAr,0 (a1, a2, . . . , an) =
(

1
n
∑n

i=1 ar
i

) 1
r =

[(∏n
i=1 ar

i

) 1
n

] 1
r

=
(∏n

i=1 ai
) r

nr =(∏n
i=1 ai

) 1
n .

(24)

If r = q = 1, substituting in Equation (7), the reduced expression for the B-POWA from Equation (6)
is obtained:

B− POWA = 1
n

(
β
(∑n

i=1 aiOWAW
(
Vi

)) 1
2 + (1−β)

(∑n
i=1 ar

i PAwj

) 1
2

)
=(

1
n
∑n

i=1
∑n−1

j=1 aiLwj

) 1
2 .

(25)

In addition, it is important to note that this extension reflects a solution to the subjective probability
that includes degrees of importance that can be assigned to the data during processing by capturing
continuous aggregations and multiple relationships. These problems are caused by the unavailability
of sufficient information to establish an objective probability, even if the most important beliefs [40],
criteria, and circumstances are available when the meaning of the information is more relevant than its
own measurement [51]. In this sense, the aggregate and continuously related subjective probabilities
are represented in Equation (6), where the values of β and (1−β) are the degree of importance of the
aggregation operator.

4. Mathematical Example

To understand the application of this new operator, the following example is proposed:
A company needs to manufacture a new product upon request for one of its largest customers.

Manufacturing requires an agricultural input that can be acquired in four different areas of the country.
However, suppliers have stated that they cannot ensure a compliant delivery since it depends on
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climatic factors and pests, and there is no method that improves the yield of the crop. The company
will assume the loss of noncompliant agricultural input in lots of 100 tons.

Thus, there are five possible states of nature in which a greater number of acceptable tons can
result in a lower yield in the tonnage that can be used by the company. Each of these scenarios has an
associated probability, as well as an assessment given by experts.

Step 1: The payment table is constructed and indicates the number of acceptable tons that each zone
supplier delivers according to the varied states of nature. The information is as follows
(See Table 1):

Table 1. Tons of each supplier.

S1 S2 S3 S4 S5

P1 90 85 80 78 60
P2 70 68 62 55 50
P3 80 75 70 70 60
P4 60 65 50 48 40

Step 2: Based on the assessment given by experts, as well as known information from previous
events, weight vectors are determined Wi = {0.3, 0.25, 0.15, 0.2, 0.1} and probability
Pi = {0.1, 0.2, 0.4, 0.2, 0.1} for the states of nature S = {S_1, S_2, S_3, S_4, S_5}, respectively. For
this example, the degrees of the multiple averages r and q are considered equal to 1.

Step 3: Vectors Vi are established that allow us to calculate the OWAW for aj , ai, that is, the PriSj

pairs. A case applied to Provider 1 in all vectors can be seen in Appendix A.1.
Step 4: With the vectors Vi for all suppliers, we proceed to calculate the value of OWAW

(
Vi

)
from the

exclusive alternatives of ai multiplied by the weight vector W (see Appendix A.2).
Step 5: The previous results are multiplied by the payment to each supplier in a state of nature

(
PriSj

)
and the sum is divided by the number of arguments and raised to the quotient between 1 and
the sum of r and q. For Provider 1, see Appendix A.3.

Note that the above corresponds to a B-OWA that is constitutive of the B-POWA.

Step 6: To complete the calculation of the B-POWA, it is necessary to determine the value of the
added probability PAWj , obtained from the multiplication of the vector Vi by the probability pj
ordered according to bj. For the case being shown, see Appendix A.4.

Step 7: The results of the aggregate probability are multiplied by the payment to each supplier in a

state of nature
(
PriSj

)
, and the sum is divided by the number of arguments raised to the ratio

of 1/(r + q). In the situation of Provider 1, see Appendix A.5.

The B-PO denotation was previously given in this document and is a constituent part of
the B-POWA.

Step 8: Consider for example that the decision-maker has set a value of β = 0.6. With this parameter
and the information of the B-OWA and the B-PO, it is possible to calculate the B-POWA.

For the proposed example, the calculation of the B-POWA for Provider 1 and the total for others,
see Appendix A.6.

Step 9: With the above information, the suppliers can be ranked in descending order, where the
first position corresponds to the most preferred alternative in the decision to purchase the
agricultural input. The order is as follows:

Pr1 > Pr3 > Pr2 > Pr4
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5. B-POWA Application in Forecasting the Price of Corn

Corn is one of the most important agricultural products in the world. According to the FAO [10],
it is mainly used for consumption by humans and as livestock feed. The Agri-food and Fisheries
Information Service (SIAP) adds other uses, such as biofuel production, and it is an ingredient in the
production of more than 4000 items.

The corn price varies over time due to different factors, such as quality, delivery times, interest
rates, location, and seasonality; for this reason, knowledge of the behavior of future prices is vital for
market participants [52].

The Chicago Mercantile Exchange (CME) issues information on the cash price and different
futures contracts for commodities each day. Futures contracts use an estimated price depending on the
conditions of the market on the day of purchase, but the price is always changing and is significantly
volatile until the expiration date; for this reason, the use of different models to forecast the price with a
lower error is a benefit of all market participants [53].

In this context, different investigations have been carried out using statistical models for
price estimation that provide accurate information for decision-makers [54]. In 1990, Pindyck and
Rotemberg [55] made material price forecasts using simple linear regression; [5] used the self-regressive
vector methodology (VAR). On the other hand, Lieberman and Phillips [56] apply time series; however,
Clinton and Lewis [15] comment that these techniques only take into account historical information
without considering the information and expectations of experts.

This paper presents a new formulation to estimate the price of corn that considers the probability
of an event occurring and the considerations of experts. The application of the formula is developed
below. The data shown in Step 1 are the spot prices of futures, taking into account the maturity periods
(March, May, July, September, and December).

Step 1: The payment table is constructed for the expensive period prices (See Table 2).

Table 2. Payment table 1.

S1 S2 S3 S4 S5

P1 Sep’ 19 336 374 367 369 470
P2 Jul’ 19 336 336 374 367 369

P3 May’ 19 392 336 336 374 367
P4 Mar’ 19 367 392 336 336 374

1 The information was obtained in 15 August 2018 through the Chicago Mercantile Exchange (CME) webpage.

Step 2: Based on the assessment given by experts, as well as known information from previous
events, weight vectors are determined Wi = {0.15, 0.05, 0.05, 0.2, 0.55} and probability
Pi = {0.1, 0.2, 0.2, 0.05, 0.45} for the states of nature S = {S1, S2, S3, S4, S5}, respectively.

Step 3: Vectors Vi are established that allow us to calculate OWAW for aj , ai.

(Pr1S1) = {374, 367, 369, 470}, (Pr1S2) = {336, 367, 369, 470},
(Pr1S3) = {336, 374, 369, 470}, (Pr1S4) = {336, 374, 367, 470}
(Pr1S5) = {336, 374, 367, 369}, (Pr2S1) = {336, 374, 367, 369}
(Pr2S2) = {336, 374, 367, 369}, (Pr2S3) = {336, 336, 367, 369}
(Pr2S4) = {336, 336, 374, 369}, (Pr2S5) = {336, 336, 374, 367}
(Pr3S1) = {336, 336, 374, 367}, (Pr3S2) = {392, 336, 374, 367}
(Pr3S3) = {392, 336, 374, 367}, (Pr3S4) = {392, 336, 336, 367}
(Pr3S5) = {392, 336, 336, 374}, (Pr4S1) = {392, 336, 336, 374}
(Pr4S2) = {367, 336, 336, 374}, (Pr4S3) = {367, 392, 336, 374}
(Pr4S4) = {367, 392, 336, 374}, (Pr4S5) = {367, 392, 336, 336}
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Step 4: With the vectors Vi for all proceeds, we proceed to calculate the value of OWAW

(
Vi

)
from the

exclusive alternatives of ai multiplied by the weight vector W, as follows (See Table 3):

Table 3. Results of the ordered weighted averaging (OWA).

OWAw(PiSj)

S1 S2 S3 S4 S5

P1 369 401 401 346 161
P2 312 345 343 289 159
P3 310 352 352 294 167
P4 309 345 348 297 159

Step 5: The previous results are multiplied by the payment of each price in a state of nature
(
PriSj

)
,

and the sum is divided by the number of arguments and raised to the quotient between 1 and
the sum of r and q (See Table 4).

Table 4. Results of the Bonferroni ordered weighted average (B-OWA).

B-OWAw(PiSj)

P1 353
P2 320
P3 325
P4 324

Step 6: To complete the calculation of the B-POWA, it is necessary to determine the value of the
added probability PAWj , obtained from the multiplication of the vector Vi by the probability pj
ordered according to bj (See Table 5).

Table 5. Data to calculate the Bonferroni Probabilistic Operator (B-PO).

PAwj

S1 S2 S3 S4 S5

P1 378 337 338 393 200
P2 326 293 285 341 194
P3 318 290 290 339 192
P4 331 289 300 351 199

Step 7: The results of the aggregate probability are multiplied by the payment of each price in a state

of nature
(
PriSj

)
, and the sum is divided by the number of arguments raised to the ratio of

1/(r + q) (See Table 6).

Table 6. B-PO Results.

B-POwj

P1 351
P2 320
P3 322
P4 325

Step 8: Consider for example that the decision-maker has set a value of β = 0.6. With this parameter
and the information of the B-OWA and the B-PO, it is possible to calculate the B-POWA.
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In the result obtained in Table 7, it can be seen that with the new B-POWA formulation, which
accounts for different information offered by the decision-maker, the forecast error has been reduced,
comparing the spot price with the future published by the CME and the amount calculated with the
formulation proposed in this paper. All the periods show reduced errors.

Table 7. Results of the Bonferroni probabilistic ordered weighted average (B-POWA).

B-POWA(PjSj) Future CME Spot CME vs. Spot B-POWA vs. Spot

P1 352 399 369 30 17
P2 320 401 336 65 16
P3 324 393 349 44 25
P4 324 392 354 38 30

It is important to note that the results obtained in the present application are highly influenced
by the values obtained by the experts/decision-makers with the weighting and probability vectors.
This is one of the main limitations of this kind of methodology, which uses information provided by
the users and is therefore subjective, as is their contribution. These types of operators are characterized
as presenting different scenarios based on the profile of the decision-maker; for example, in finance
it is common that some people will not buy some assets if they find it risky. However, others will
buy them—the decision is not based on the results that the specific asset will have but instead of the
aversion of risk that the investor has. The same is applied to this type of problem; imagine a farmer
who wants to know the future price of corn to decide whether to sow corn or not. With traditional
formulations, the historical information will provide the answer but maybe because of the volatility of
the price the farmer, by the values of the weighting and probability vector, farmer can make different
scenarios based on various factors that he believes will impact the price such as weather, storage,
competition, government policy, planting support and many more to obtain a result based on their
expectations and finally make a decision on whether to plant corn or not.

As can be seen with the results obtained in Table 7, the B-POWA operator can be used to make new
scenarios in uncertainty through the use of a vector Vi that intercorrelate the arguments and also use a
weighting vector and probability vector that include the expectation and attitude of the decision-maker
to the problem. These two characteristics are important because many real world problems can be
addressed with these type of operators, as has been seen through behavioral economics [57] and
behavioral finance [58], as the decisions that are made in different sectors are not only based on
historical and statistical data but should include some qualitative information that the decision-maker
has and that is the main attribute of the B-POWA operator.

Among the main benefits of using the probabilistic uncertainty theory to forecast the price of
agricultural models is that there are some elements that affect the price that is related to probabilities,
such as the case of the weather, i.e., the news about it is based on the probability of being a rainy, cloudy
or sunny season. In this kind of case, the probabilities adjust better to the expectations of the future.
It is important to note that other uncertainty theories can be used depending on the case that wants to
be analyzed, such as the case of rough numbers that have been used in different problems such as the
evaluation of logistic providers [59], healthcare waste disposal locations [60], location selection for a
construction [61], and many more.

6. Conclusions

Uncertainty in financial markets has been characterized by the irrationality of decision-makers and
the sudden changes in situations that were considered stable [62], with agricultural products not being
the exception. Thus, questions regarding what to sow and how much to sow become more complex.
It is derived from the fact that at the beginning of planting, the price is one figure, and when the harvest
is made, it becomes a very different figure. In this sense, it is necessary to use different techniques and
models that can be adapted to the volatility of the prices and uncertainty of the market [63,64]—such
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tools can be the aggregation operators, and this field has been expanded through different techniques
and applications [18].

The objective of the present paper is to present the Bonferroni probabilistic ordered weighted
average (B-POWA) operator and its application to decision-making based on price estimations for
agricultural commodities. Some characteristics, special cases and extensions are also studied in the
paper. Furthermore, a mathematical example is provided to visualize the characteristic properties
of the proposed operator. Finally, methodological applications to the price estimation of corn that
compares the performance of the B-POWA operator and other traditional methods is addressed.

Accurate price analyses and forecasting results are vital in the agricultural sector, and the ability to
obtain them has implications on fair trade for farmers and the creation and establishment of economic
policies for nations. On the long list of commodities traded in global markets, corn is one of the
most important due to its several usages and relevance in human and livestock nutrition. Therefore,
an accurate forecasting of corn prices would have positive effects for diverse stakeholders. However,
this task is highly complex because of the intrinsically uncertain nature and volatility of the markets.
Thus, the creation of different tools is highly recommended.

The characteristic mechanism of the B-POWA operator, derived from intelligent and expert
systems [65], makes it an interesting tool for the assessment of price forecasting. The results of the
application of the mechanism of price estimation, considering probabilistic information, along with the
expectations of diverse experts, reveal that it performs better than traditional methods. The proposed
operator shows diverse arrangements for the selected periods of time and contrasting information on
the given states of nature. These results help the decision-maker understand the complexity of the
market and adopt alternatives that offer less risk to a company in maximizing its profits. The main
advantage that the use of the B-POWA operator has over the traditional OWA or POWA operator is
that, with the incorporation of the Bonferroni method, it is possible to make an interrelation between
the arguments of the means in the same formulation by using vectors Vi instead of the value of the
argument that the OWA and POWA operators use. Additionally, it is important to note that this
operator can be used for different problems in finance and economics, where some of the results
are related to the probabilities of events/elements that occur, such as the sales, costs, exchange rate,
inflation, market share and other related cases.

Further research is required to address some of the limitations of the present study,
e.g., the inclusion of other extensions for the further representation of complex phenomena such
as induced vectors (when the arguments are arranged based on induced values instead of the
value of the argument) [66], logarithmic functions (to reduce skewness towards large values) [21],
heavy weighting vectors (when the weighting vector is not equal to 1) [67], geometric operators
(when the problem to be analyzed uses numbers that are multiplied together) [68], linguistic OWA
operators (when the arguments are linguistic variables and not numbers) [69] and others related to the
decision-making process. The inclusion of these tools supports the general purpose of this research,
namely, to shed light on the development of new approaches for the accurate assessment of pricing
models and reliable forecasting by the fusion of several sources of information

Additionally, the problems can be addressed by including more elements of the fuzzy logic
approach to avoid the unnecessary rigidities; such is the case of fuzzy sets [70], fuzzy numbers [71],
and many more of the extensions of different techniques based on fuzzy logic theory [72]. The use of
different uncertainty theories is important to include and propose solutions to new real problems in
different fields like economics, finance, and engineering [73].
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Appendix A

Appendix A.1 Calculation of PriS j Pairs for Provider 1

(Pr1S1) = {85, 80, 78, 60}, (Pr1S2) = {90, 80, 78, 60}, (Pr1S3) = {90, 85, 78, 60},
(Pr1S4) = {90, 85, 80, 60}, (Pr1S5) = {90, 85, 80, 78}

Appendix A.2 Calculation of OWAW for Pr1S j for Provider 1

OWAw(Pr1S1) = (0.25 ∗ 85) + (0.15 ∗ 80) + (0.2 ∗ 78) + (0.1 ∗ 60) = 54.85
OWAw(Pr1S2) = (0.3 ∗ 90) + (0.15 ∗ 80) + (0.2 ∗ 78) + (0.1 ∗ 60) = 60.6
OWAw(Pr1S2) = (0.3 ∗ 90) + (0.15 ∗ 80) + (0.2 ∗ 78) + (0.1 ∗ 60) = 60.6

OWAw(Pr1S3) = (0.3 ∗ 90) + (0.25 ∗ 85) + (0.2 ∗ 78) + (0.1 ∗ 60) = 69.85
OWAw(Pr1S4) = (0.3 ∗ 90) + (0.25 ∗ 85) + (0.15 ∗ 80) + (0.1 ∗ 60) = 66.25
OWAw(Pr1S5) = (0.3 ∗ 90) + (0.25 ∗ 85) + (0.15 ∗ 80) + (0.2 ∗ 78) = 75.85

Appendix A.3 Calculation of B-OWA Operator for Provider 1

BON−OWA(Pr1S1, . . . , Pr1S5)

=
(
(90∗54.85)+(85∗60.6)+(80∗69.85)+(78∗66.25)+(60∗75.85)

5

) 1
2

BON−OWA(Pr1S1, . . . , Pr1S5) =
(

25394
5

) 1
2 = 71.26

Appendix A.4 Calculation of PAW for Provider 1

PAW(Pr1S1) = (0.2 ∗ 85) + (0.4 ∗ 80) + (0.2 ∗ 78) + (0.1 ∗ 60) = 70.6
PAW(Pr1S2) = (0.1 ∗ 90) + (0.4 ∗ 80) + (0.2 ∗ 78) + (0.1 ∗ 60) = 62.6
PAW(Pr1S3) = (0.1 ∗ 90) + (0.2 ∗ 85) + (0.2 ∗ 78) + (0.1 ∗ 60) = 47.6
PAW(Pr1S4) = (0.1 ∗ 90) + (0.2 ∗ 85) + (0.4 ∗ 80) + (0.1 ∗ 60) = 64

PAW(Pr1S5) = (0.1 ∗ 90) + (0.2 ∗ 85) + (0.4 ∗ 80) + (0.2 ∗ 78) = 73.6

Appendix A.5 Calculation of the B-PO Operator for Provider 1

BON− PO(Pr1S1, . . . , Pr1S5) =
(
(90∗70.6)+(85∗62.6)+(80∗47.6)+(78∗64)+(60∗73.6)

5

) 1
2

BON− PO(Pr1S1, . . . , Pr1S5) =
(

24891
5

) 1
2 = 70.55

Appendix A.6 Calculation of B-POWA Operator for Provider 1

BON− POWA(Pr1S1, . . . , Pr1S5) = (0.6 ∗ 71.26) + ((1− 0.6) ∗ 70.55) = 70.98

BON-POWA(Pr2S1, . . . , Pr2S5) = 54.98

BON-POWA(Pr3S1, . . . , Pr3S5) = 63.9

BON-POWA(Pr4S1, . . . , Pr4S5) = 47.45
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