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Abstract: This paper aims to provide a novel construct that is based on data envelopment analysis
(DEA) range adjusted measure (RAM) of efficiency and demonstrate its practical implementation by
evaluating the financial performance of a sample of three upper-class contracting license (Classes 5–7)
Greek construction firms. In a two-step framework, firm efficiency (i.e., composite indicators (CIs)) is
produced firstly by means of RAM using single financial ratios, which are selected by grey relational
analysis (GRA), and then Tobit regression is employed to model the CIs. In light of the results, only
4% of the sampled firms are efficient, and the firm ranking is consistent with the ranking of Grey
Relational Grande (GRG) values produced by GRA. Moreover, the firms with a contracting license of
the highest level (Class 7) appear not to be superior in efficiency to their counterparts that belong to
Classes 5–6.

Keywords: data envelopment analysis; grey relational analysis; composite indicators; construction
firms; Tobit regression

1. Introduction

The managers of any company must measure the financial performance of the firm they manage.
Assessing the performance of modern construction companies is a complex issue from both an
international and local perspective [1]. The financial success of construction firms very much depends
on the location [2], proper management [3], environmental characteristics [4], selected technologies [5],
staff qualification [6], and specific circumstances [7,8]. Besides, at the project level, the influence of
various factors on the project success may be responsible for the production of differently significant
outcomes [9]. The managers can predict the data describing the projects accurately and determine
them at certain intervals, or they should treat them as fuzzy data [10,11].

Management accounting information is mainly used for firm financial performance assessment.
Since the early 1990s, management accounting has attracted studies from operations research that
suggest frameworks or propose model building on methods, such as data envelopment analysis (DEA)
(see Callen [12] and Malmi [13] for surveys). DEA [14] is a multicriteria evaluation method that can
screen the most desirable alternatives (i.e., decision-making units (DMUs), e.g., firms) among large
sets by means of mathematical programming. DEA provides for each DMU a composite score, which
is referred to as efficiency using actual input–output data for a sample of them and this facilitates
the complexity of analysis by evaluating the multicriteria [15]. DEA can be employed in a multiple
input–multiple output setting and, in regard to model building, it avoids the prior assumption on
weights of inputs and outputs; the weights are produced by the optimization process.

Firm assessment of financial performance using DEA deals with the analysis of financial statement
data to distinguish a sample of firms into efficient and inefficient. DEA-based efficiency and inefficiency
reflect good and bad financial conditions, respectively [16].
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The current paper aims to employ a constructive research approach [17] by providing a novel
construct that is based on DEA and demonstrate its practical applicability. Firm performance evaluation
can be accomplished by means of a derived composite indicator (CI) using DEA [18]. The approach
used for the derivation of a CI distinguishes from the conventional DEA in that it looks at the one
side of DEA (i.e., on outputs or inputs only) using a set of single (individual) indicators. The use of
DEA to derive CIs at the firm-level is promising since DEA can aggregate multiple firm performance
dimension, expressed as single financial ratios, into a consolidated performance metric.

Horta et al. [18] recently employed DEA to evaluate construction enterprise performance by
deriving firm CIs. The current study improves upon Horta et al. [18] by firstly employing GRA
for the selection of financial ratios and then using a modified range-adjusted measure (RAM) of
efficiency [19] suggested by Lozano and Gutierrez [20] for the derivation of firm CIs. Recent studies
integrate models based on grey theory with DEA [21,22], and, for the case of robustness, the DEA
results are compared with those of GRA. In a second step, the determinants (i.e., drivers) of firm
overall performance (i.e., DEA-based CIs) are explored using regression techniques (i.e., censored
Tobit regression). The practical applicability of the proposed RAM-Tobit regression modeling is
demonstrated at the project-level for a group of construction projects performance evaluation [23].
In particular, this paper focuses on a sample of three upper-class contracting license (Classes 5–7) Greek
construction firms with the aim to derive DEA-based performance scores (i.e., composite indicators
(CIs)) using selected financial ratios.

GRA is based on grey theory and it is used to derive the relational degree of every attribute for
a set of alternatives in a multicriteria decision-making (MCDM) problem where multiple variables
and their interrelationships need to be taken into account. GRA produces for every alternative one
single-attribute value by considering all multiple-attribute values to facilitate the whole process [24].
It is worth noting that the utilization of GRA in construction is not very widespread in terms of
multicriteria analysis [25]. For other MCDM methods in construction, the interested reader is referred
to the work of Jato-Espino et al. [25].

In this paper, the composite indicator construction is modeled as a decision-making problem
with multi-attributes. Financial ratios are viewed as attributes for construction firms, and firms
as alternatives.

This paper contributes to the existing literature by outlining a procedure that can be used by
firms and consultants to aggregate single firm financial ratios into one CI and identify the drivers of
performance. Firstly, GRA ranks the level of importance of the financial ratios, and then, based on
selected ratios, firm CIs are constructed by means of a no-input RAM by allowing firms to adjust in
the direction of greater output-like values (i.e., single financial ratios) as much as it is feasible in the
DEA context; DEA and GRA results are also compared in terms of firm ranking. In this sense, a useful
performance companion is provided when the goal of firms is the maximization of selected financial
ratios. The incremental contribution of the current research over Tsolas [23] lies in the employment of
a no-input RAM with the aim to pinpoint the drivers of firm performance in terms of DEA-based CIs
and the integration of DEA with GRA. The identification of firm performance drivers will guide future
studies for analyzing financial statement data of Greek construction firms.

The remainder of the paper is organized as follows: Section 2 provides a review on the use of DEA
in management accounting. Moreover, it also reviews firm DEA studies in the construction industry as
well as the relation of DEA with multicriteria methods. Section 3 describes the methods used for the
analysis of data. Section 4 presents the dataset. Section 5 reports and discusses the results. Section 6
provides policy implications. Section 7 concludes.

2. Literature Review

DEA performance assessment in the field of management accounting research deals with the
works of Turner [26] on manufacturing maintenance performance; Banker et al. [27] on nursing services;
Deville [28] on branch banking network assessment; Deville et al. [29] on bank efficiency; Halkos and
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Salamouris [30] on Greek commercial banks; and Rouse et al. [31] on aircraft maintenance (see also
Callen [12] and Malmi [13] for surveys on that subject). It is worth noting that DEA can be integrated
with other MCDM methods for financial performance purposes [32].

In the operations research literature, there are a few DEA works that are deemed as the first
which make use of financial statement data [33–36]. Relevant are also the works by Feroz et al. [37]
who employed the DuPont model in oil and gas, pharmaceuticals and primary metals industries;
Rodriguez-Perez et al. [38] who provided a DEA-based performance assessment of insurance companies;
and Demerjian et al. [39] who used DEA to quantify managerial ability. A recent review can be found
in Harrison and Rouse [40].

In regard to relevant DEA studies in the construction sector, the works at the firm-level are
classified as standard, two-stage, and series two-stage DEA studies. The standard studies focus on the
relative efficiency of DMUs. The two-stage DEA studies aim not only to derive the efficiency metrics
but also to identify the drivers of performance, whereas the series two-stage studies distinguish two
stages with output from the first stage becoming input to the second stage. The works in the first and
second strands can be classified further into studies that are based on production theory and studies
that use DEA models to produce synthetic performance indicators.

In the first strand (i.e., standard DEA studies) lie a lot of relevant works. Pilateris and McCabe [41]
use conventional DEA (e.g., CCR [14] and BCC [42]) models to evaluate contractors. McCabe et al. [43]
and El-Mashaleh et al. [44,45] employ DEA to prequalify and evaluate contractors, respectively.
Sueyoshi and Goto [46] use DEA as a discriminant tool. Horta et al. [47] employ DEA models
with and without weight restrictions, and Horta and Camanho [48] combine DEA with other data
mining techniques.

In the second strand (i.e., two-stage DEA modeling) lies the work by Horta et al. [18] who first
derive DEA-based composite performance indicators by means of an equivalent to CCR model and
then identify the drivers of performance.

In the third strand, i.e., series two-stage DEA modeling, firstly proposed by Seiford and Zhu [49]
lie the DEA studies by Tsolas [50,51] on the evaluation of listed Greek construction enterprises and Hu
and Liu on the Australian [52] and Chinese construction industry [53].

As for the Greek construction industry, DEA firm-level studies are the works by Tsolas [50,51]
and Christopoulos et al. [54]. In the above studies [34,38] DEA is integrated with ratio analysis in a
two-stage framework [50] or employed to provide metrics that stem from models that use financial
ratios and financial statement data separately [54].

Using DEA, the derivation of composite performance metrics is based on the methodological
relation between multicriteria decision analysis (MCDA) and DEA. The connection between the
two approaches is that if all criteria in MCDA can be defined as benefit (i.e., maximizing) or cost
(i.e., minimizing) criteria, outputs and inputs are equivalents of these in DEA terminology. Thus, if a
criterion is defined as minimizing or maximizing, it can be considered in the DEA model as input or
output. The basic function of DEA is to classify the units under evaluation in efficient and inefficient
ones; in MCDA, these can be regarded as non-dominated and dominated alternatives, respectively.
For more on the methodological relation between DEA and MCDA, the interested reader is referred to
previous relevant studies [55–58].

GRA studies in construction are scarce [25]. There are mainly GRA studies at the project level on
pre-evaluation of engineering design [59] and bid evaluation [60].

Two-stage DEA is performed by firstly calculating DEA efficiency ratings and then regressing
them on explanatory variables using Tobit or ordinary least squares (OLS) regression. Simar and
Wilson [61] suggest the use of an integrated with bootstrapping truncated regression rather than Tobit
regression. They bootstrap the efficiency scores to produce bias-corrected efficiency ratings and then
they regress these corrected ratings on explanatory variables using bootstrapped truncated regression.
As to which regression method is the most appropriate to employ in the second stage of analysis is a
subject that is the interest in a lot of studies. Banker and Natarajan [62] argue that the above methods
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are all appropriate. McDonald [63] supports the use of OLS instead of Tobit regression. Moreover, new
methods have been proposed such as fractional regression [64], partial least squares regression [65], or
other efficiency estimators [66]. For a recent review the interested reader is referred to Liu et al. [66].

Banker et al. [67] argue that Simar and Wilson’s [61] procedure precludes statistical noise and
it is inconsistent with the modeling of production functions. In the light of the simulation results of
their study [67] the DEA-OLS and DEA-Tobit procedure dominate the DEA-bootstrapped truncated
regression. The results hold whether explanatory and other variables are independent or correlated,
and whether there is no statistical noise.

The DEA-bootstrapped truncated regression cannot be applied to slack-based models, such as
RAM. To the best of the author’s knowledge, there has not been developed yet a bootstrapping
procedure for slacks-based models along the lines of Simar and Wilson [61]. Therefore, in the current
paper the DEA-Tobit procedure will be employed. Moreover, for the case of robustness the results of
DEA-OLS approach will be also discussed.

Another problem with two-stage DEA modeling is relative to the separation of the space of
the input/output variables used in first stage DEA and the space of the explanatory factors used as
independent variables in the second stage of analysis. Simar and Wilson [61] found that regression
techniques such as Tobit and OLS were inappropriate in the second stage and proposed bootstrapped
truncated regression, despite understanding that this technique may suffer from the same problem.
According to Daraio et al. [68], if the separability condition does not hold, the second stage results
would have drawbacks [69].

The separability assumption of Simar and Wilson [61] is strong [67,70] and it is unlikely to be
satisfied in real applications [67,71]. Despite the strong nature of this assumption the tests presented in
a proceeding research by Daraio et al. [68,71,72] may be employed to confirm the separability condition.
In cases where the separability assumption is rejected, models of conditional efficiency may be used.
For a recent survey on that issue the reader is referred to Henriques et al. [69]. Due to unavailability of
a test code, Benito et al. [73] propose the comparison of outcomes based on the bootstrapped truncated
regression [61] procedure, as well as on the conditional efficiency measures [71]; results produced by
the two methods are considered robust if there is consistency of outcomes, otherwise it may be possible
that the separability condition does not hold. Most of the previous two-stage DEA studies, although
may comment on the reality of the above separability condition, take its fulfillment for granted [73].
Therefore, in the current paper as in most of the previous relevant works separability appears as a
taken-for-granted assumption.

The contribution of the current research is manifold. First, this paper distinguishes from previous
construction industry DEA works that use the same two-stage framework (e.g., [23]) in that it focuses
on financial firm performance. Second, it documents how to derive CIs for financial firm performance
by integrating GRA with a no-input RAM of efficiency. The employment of conventional DEA models,
such as the CCR and the BCC model, may be problematic when financial statement-based ratios are
used due to the presence of negative values, and therefore, by employing the RAM for the derivation
of construction firm Cis, the current study improves upon Horta et al. [18]. Moreover, the GRA and
DEA results, in terms of firm ranking, are also compared. Third, the two-stage modeling adopted
herein involves a DEA model (i.e., RAM) that firstly uses a set of single financial ratios to produce
firm CIs and then the firm CIs produced are regressed on a set of explanatory variables such as size,
geographical location and class of the firm. The latter variable reflects the complexity of firm projects
and characterizes the structure of the Greek construction industry [51], whereas the other two variables
have also been used by other researchers [18]. As regards the class of the firm, the current research
uses a sample that represents about 88 percent of the total population and therefore this sample feature
aids to generalize results.
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3. Methods

3.1. Grey Relational Analysis (GRA)

The calculating process of GRA application is as follows [74]:
Let X0 be the referential sequences with r = 1, . . . , k attributes (i.e., financial ratios) of X1, X2, . . . ,

Xn (j = 1, . . . , n firms). These sequences are the attribute ideal values that are necessary to define a
baseline (i.e., reference point) to evaluate the alternatives. Then,

X0 = x0(1), x0(2), . . . , x0(r), . . . , x0(k) (1)

where k and x0 are the number and the ideal (i.e., target) values of the attributes, respectively.
The problem decision matrix is set using a j = 1, . . . , n series:

X j = x j(1), x j(2), . . . , x j(r), . . . , x j(k), j = 1, . . . , n (2)

The grey relational coefficient (GRC) between the sequences Xj and the referential sequences of
X0 at the rth attribute is derived as

ξ0r(r) =
∆min + p∆max

∆x0r(r) + p∆max
(3)

where
∆x0r(r) =

∣∣∣x0(r)− x j(r)
∣∣∣ (4)

∆max = max
j

max
r

∆0r(r) (5)

∆min = min
j

min
r

∆0r(r) (6)

and p = 0.5.
The original data should be normalized before the GRC calculation according to [74]:
(i) Larger-the-better principle and (ii) smaller-the-better principle using Equations (7) and (8), respectively:

x∗j(r) =
x j(r) −min

r
x j(r)

max
r

x j(r) −min
r

x j(r)
(7)

x∗j(r) =
max

r
x j(r) − x j(r)

max
r

x j(r) −min
r

x j(r)
(8)

where max
r

x j(r) and min
r

x j(r) are the rth attribute maximum and minimum value, respectively.
The grey relational grade (GRG) for the sequences Xj is given as:

Γ0 j =
k∑

r=1

wrξ0r(r) (9)

where wr is the weight of the rth attribute. In the current analysis equal weights are used.

3.2. Range Adjusted Measure (RAM) of Efficiency

Given a group of construction firms n, j = 1, . . . , n, for which of them there is a set of selected
single indicators (i.e., output-like values) that should be maximized and the values of the rth output



Mathematics 2020, 8, 1347 6 of 16

indicators of the jth firm are denoted by yrj, the following RAM Model (10) with no inputs is used to
produce the construction firm inefficiency metric P (see also: [19]):

P = Max 1
k

k∑
r=1

s∗+r
R+

r

s.t.
n∑

j=1
λ jyrj − s+r = yrj0 r = 1, 2, . . . , k

n∑
j=1

λ j = 1

λ j, s+r ≥ 0 ∀ j, r

(10)

where P (0 ≤ P ≤ 1) is a metric of inefficiency, R+
r = max j[yrj]−min j[yrj] ≥ 0 is the range of the r output

indicators and λj is an intensity variable.
The firm under assessment (i.e., firm “0”) is efficient if and only if P = 0 and the slacks s+∗r = 0 ∀r,

where superscript “*” indicates an optimum value for Model (10).
The metric Γ is the efficiency score according to Equation (11):

0 ≤ Γ = 1− P ≤ 1 (11)

RAM of efficiency is expressed with Γ = 1 and if and only s+∗r = 0 ∀r. Firm inefficiency, Γ < 1, is
present when there are non-zero slacks.

The selection of RAM is justified due to the drawbacks of conventional DEA models in ranking
firms according to their efficiency. RAM assesses each DMU (i.e., firm) by reference to all of the DMU
performance (i.e., the R+

r is used for all DMUs) compared to the conventional DEA models that use
different reference sets [75]. RAM is invariant to linear transformations and belongs to a family of
models that are extensions of the additive model [76]. This family of models includes: slacks-based
measure (SBM [77]), Russell model (RM [78]), and enhanced Russell graph measure (ERGM) [79].
From the above models, the SBM has not the invariance property and the ERGM is equivalent to
SBM [80]. In addition, RAM works equally well as RM and ERGM and, moreover, in regard to
translation invariance RAM is superior to RM and ERGM [81]. From the above, the use of RAM is also
justified in the case of negative values in the dataset.

In the current research, the RAM (Model (10)) is employed using financial ratio data of year 2010
for a sample of the Greek construction firms to produce a CI for each firm. If the derived firm CI is
equal to unity, it indicates the most excellent performance and the firm is efficient; when the firm CI
value is less than one the firm is deemed inefficient.

3.3. Tobit Regression

The current study integrates Tobit regression [82] with DEA (see also [83]) to model the CIs
produced by the RAM of efficiency and identify the drivers of performance.

The Tobit model (12) is established when the dependent variable is censored at zero:

P∗j =

 βZ j + ε j P∗j > 0

0 P∗j ≤ 0
(12)

where P j is the dependent variable (i.e., the metric of inefficiency of the jth firm that stems from Model
(10)) measured using a latent variable P∗j for positive values and censored otherwise (P j = P∗j if P∗j > 0
and P j = 0 if P∗j ≤ 0), Z j, β are respectively the vectors of explanatory (independent) variables and
unknown parameters, and ε j is the term for random error. Some factors that may have an effect on
inefficiency are selected as independent variables.
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4. Dataset and Financial Ratio Selection

4.1. Dataset

Greece’s construction activity can be classified into private, public, and joint private-public
structures. The Greek construction firms are categorized into classes (Classes 1–7). This categorization
of licensure grants different rights to firms reflecting the complexity of projects they can undertake [84].

Data on 96 Greek construction firms of three upper-class contracting license (Classes 5–7) are used.
Data refer to the year 2010. Details of the process on firm selection sample are depicted in Table 1.

Table 1. Greek construction enterprises sample selection.

License Class Sampled Firms a Registered Firms b % of Registered Firms c

7th 9 11 81.82%
6th 35 37 94.59%
5th 52 61 85.25%

Total 96 109 88.07%

Sources: a The current research; b Association of Greek Contracting Companies (SATE) (2010); c The current research.

The research sample used covers about 82 percent of the Class 7 firms, about 95 percent of Class
6 firms, and about 85 percent of Class 5 firms. The sample firms cover about 88 percent of the three
upper-class registered firms by the Association of Greek Contracting Companies (SATE [85]).

In this paper DEA is used to evaluate the financial performance of the sampled construction firms.
The single financial ratios chosen aim to capture the multi dimensional firm performance. Based on
the relevant studies [18,41,86], it is evident that the single financial ratios that used for measuring
construction firm performance should reflect: liquidity, profitability, and leverage. Although in a recent
study by Horta et al. [18], gross value added per employee is also used as a productivity indicator, in
the current analysis, productivity is not considered. This is justified by the fact that there is evidence
that construction firms which generate profits support their high productivity level [87]. Therefore,
the DEA model used includes representative financial ratios of liquidity, profitability, and financial
autonomy (see also [18]).

4.2. Financial Ratio Selection

In the DEA context the selected single indicators (i.e., financial ratios) should be correlated as
low as possible. This is because related indicators deliver a huge part of the same information in the
derivation process of the composite indicator. GRA based on GRG values provides clusters of (related)
indicators, except for each cluster’s representative indicators [88–90].

The procedure in order to select the appropriate indicators is as follows:
Previous studies suggest that representative financial ratios of liquidity, profitability, and financial

autonomy should be used (see also: [18]).
The initial indicators used include the following financial ratios: current ratio, quick ratio, gross

margin, net margin, return on equity (ROE), return on assets ROA, debt to equity ratio, and equity to
assets ratio (Table 2).
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Table 2. Financial ratios.

Indicator No. Financial Ratio Category Ideal Value

I1 Current ratio Liquidity Maximum
I2 Quick ratio Liquidity Maximum
I3 Gross margin Profitability Maximum
I4 Net margin Profitability Maximum
I5 Return on equity (ROE) Profitability Maximum
I6 Return on assets (ROA) Profitability Maximum
I7 Debt to equity ratio Financial autonomy Maximum
I8 Equity to assets ratio Financial autonomy Maximum

Using the calculating procedure of GRA as described in Section 3.1 GRGs between every pair of
indicators are calculated. The results are depicted in Table 3.

Table 3. Grey relational matrix.

Reference/Sequences Comparative Sequences

Reference Indicator I1 I2 I3 I4 I5 I6 I7 I8

1 2 6 7 8 11 9 10
I1 - 0.90 0.77 0.46 0.59 0.47 0.54 0.85
I2 0.90 - 0.77 0.45 0.50 0.51 0.53 0.83
I3 0.77 0.77 - 0.48 0.58 0.55 0.57 0.77
I4 0.48 0.47 0.50 - 0.66 0.78 0.73 0.47
I5 0.69 0.67 0.70 0.56 - 0.68 0.71 0.67
I6 0.55 0.54 0.59 0.80 0.82 - 0.92 0.54
I7 0.54 0.53 0.57 0.70 0.51 0.87 - 0.52
I8 0.84 0.83 0.77 0.45 0.86 0.51 0.52 -

Values over 0.75 are in bold.

The ranks for each indicator from the largest to the least GRG are shown in Table 4.

Table 4. Grey relational grade (GRG) rank.

Reference/Sequence Rank Comparative Sequence Rank

Reference 1 2 3 4 5 6 7

I1 I2 I8 I3 I5 I7 I6 I4
I2 I1 I8 I3 I7 I6 I5 I4
I3 I1 I8 I2 I5 I8 I6 I4
I4 I6 I7 I5 I3 I1 I2 I8
I5 I7 I5 I4 I7 I6 I2 I4
I6 I7 I4 I5 I3 I1 I8 I2
I7 I6 I4 I3 I1 I2 I2 I5
I8 I5 I1 I2 I3 I7 I6 I4

Indicators in bold are referred to their values over 0.75 (Table 3).

There are two clusters of financial ratios: I1, I2 and I8 (first cluster); I6, I7 and I4 (second cluster).
In the first cluster I1 appears to be first in sequences most of the times whereas in second cluster I6
appears to be first in sequences. Therefore, I1 and I6 may be considered as the representative indicators
of the first and second cluster, respectively. Moreover, there is evidence that indicators I5 and I1 are
also related.

The selection process starts from an independent indicator which does not belong to the above
two clusters and then indicators that they should correlated as low as possible and belong to the
above clusters are added into the analysis. I5 is regarded as an independent indicator. In regard to
profitability, the focus of the current study is on equity shareholders; thus, I5 is first selected and
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because I6 is correlated with it (Pearson correlation coefficient: 0.91 (Table 5)), I6 is omitted. Since I5
appears to be related with I7, I7 is omitted. The last indicator of the second cluster, I4 is also correlated
with I5 (Pearson correlation coefficient: 0.85 (Table 5)), so I4 is omitted.

Table 5. Pearson correlation coefficients.

Indicator No. I1 I2 I3 I4 I5 I6 I7

I2 0.81
I3 0.39 0.43
I4 0.41 0.41 0.45
I5 0.40 0.43 0.57 0.85
I6 0.42 0.44 0.54 0.88 0.91
I7 0.34 0.34 0.34 0.57 0.52 0.65
I8 0.49 0.43 0.48 0.27 0.42 0.42 0.37

From the first cluster of indicators, as it stems from Table 5, I8 has a lower Pearson correlation
coefficient (0.43) with I2, compared with I1 (0.49) and since I1 is highly correlated with I2 (Pearson
correlation coefficient: 0.81), I1 is omitted and I8, I2 are used in the analysis. Thus, the selected
indicators are: I5 (ROE), I8 (equity to asset ratio), and I2 (quick ratio).

The DMUs assessed in this study correspond to the sampled Greek construction firms, which
characterized by the above three financial ratios that all of which are intended to be maximized.

Table 6 reports the descriptive statistics for variables in the first stage analysis.

Table 6. Construction firm financial ratios: Descriptive statistics.

Descriptive Statistics Quick ratio, Times Return on Equity (ROE), % Equity to Asset Ratio, %

Mean 1.25 0.75 2.60
Standard deviation 1.19 23.17 2.56

Median 0.85 2.03 1.88
Min 0.02 −90.68 −0.09
Max 7.14 71.95 14.03

From Table 6, it is evident that the firms analyzed are relatively homogeneous, as it stems from the
standard deviation for quick ratio and equity to asset ratio. Profitability, as expected, is the indicator
with the greatest variation (see also [18]).

5. Results

5.1. First-step DEA Results

In the light of the first-step DEA results, only 4 out of 96 firms (about 4% of the total) are efficient
(i.e., they have a CI equal to unity) and thus, the RAM of efficiency has a high discriminating power.
The mean efficiency is 0.71 (median efficiency: 0.68) (Table 7) and this finding is in line with the mean
firm efficiency (0.64) presented by Horta et al. [18].
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Table 7. Descriptive statistics of range adjusted measure (RAM) of efficiency ratings, number, and
percentage of efficient firms.

Descriptive Statistics (All Firms), Number
and Percentage of Efficient Firms Efficiency (Γ) GRG

Mean 0.71 0.58
Standard deviation 0.12 0.05

Median 0.68 0.58
Min 0.43 0.40
Max 1.00 0.79

Efficient firms, Number (%) 4 (4%)

For the case of robustness, the DEA efficiency scores are compared with the GRGs produced by
GRA using equal weights for the three finally selected indicators (Table 7). According to Spearman’s
correlation coefficient (0.74) the results of both methods are satisfactory in terms of firm ranking.

5.2. Second-step Tobit Regression Results

The construction firm RAM inefficiencies P are regressed using Tobit model (12) to pinpoint the
effect of the possible drivers of performance listed in Table 8.

Table 8. Explanatory variables: Descriptive statistics.

Descriptive Statistics Size Location Class Dummy

Mean 16.42 0.73 0.09
Standard deviation 1.23 0.45 0.29

Median 16.17 1.00 0.00
Min 14.00 0.00 0.00
Max 20.10 1.00 1.00

Notes: Size = natural logarithm of sales revenue; Location = a dummy variable with values of “1” for firms located
in Attica area and “0” for other areas; Class dummy = a dummy variable with values of “1” for upper class firms
(Class 7) and “0” for other firm classes.

The possible drivers of performance (i.e., explanatory variables) are the firm size, geographic
location [18], and a class dummy variable [51].

Firm size (=natural logarithm of sales revenue) is included as a variable in the analysis to
investigate the presence of economies of scale and test whether large firms are superior in performance
to small firms [18]. Geographic location (i.e., a dummy variable with values of “1” for firms located in
Attica area (i.e., in the city of Athens, the capital of Greece, and close to it) and “0” for other areas is
also included to test whether construction firms located in Attica area are more efficient than the firms
located outside it. Moreover, a class dummy with values of “1” for upper class firms (Class 7) and
“0” for other firm classes is also included to investigate whether there is a difference in performance
between the firms of the highest class (Class 7) and the firms that belong to Classes 5–6 [51].

In light of Tobit regression results, there may be a link of performance with only class dummy
(Table 9). The effect of the class dummy variable is significant in explaining inefficiency. This finding
shows that the Class 7 contracting license firms seem to not be superior in efficiency to their counterparts
that belong to Classes 5–6. It is worth noting that the conclusion drawn from the analysis here is
consistent with that by Tsolas [51] in regard to profitability efficiency of Greek listed firms.
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Table 9. Results of Tobit regression for firm inefficiency.

Variable Coefficient Standard Error T-Value (p-Value)

Constant 0.4883 0.1914 2.55 (0.012)
Size −0.0146 0.0119 −1.23 (0.221)

Location 0.0425 0.0269 1.58 (0.117)
Class dummy 0.1261 0.0498 2.53 (0.013)

Notes: Log Likelihood = 63.107; Dependent variable: P; Explanatory variables: Size = natural logarithm of sales
revenue; Location = a dummy variable with values of “1” for firms located in Attica area and “0” for other areas;
Class dummy = a dummy variable with values of “1” for upper class firms (Class 7) and “0” for other firm classes.

Somewhat surprisingly, the effects of size and location are insignificant in explaining performance.
Therefore, these explanatory variables and the relevant hypotheses, i.e., whether firm size is related to
financial performance and whether the firms located in Attica area outperform the other firms should
be investigated further in a future research.

For the case of robustness, except for Tobit regression the OLS method is also used after
transforming the DEA estimates of efficiency using their natural logarithm values [61]. OLS results are
in line with those of Tobit regression. The OLS results are available upon request from the author.

6. Policy Implications

The implications of the current research are as follows: In the first step, GRA is employed for
the financial ratio selection process and the firms under assessment are classified by means of RAM
into efficient (i.e., best) and inefficient, with a CI that equals to unity or takes values less than unity,
respectively. The GRA based GRGs support the firm ranking provided by RAM scores. In the second
stage, the results show that the Class 7 contracting license firms seem to not be superior in efficiency to
their counterparts that belong to Classes 5–6.

In regard to managerial implications, the RAM of efficiency produces the performance metric of
each one of the sampled firms. The produced scores of RAM of efficiency can serve for firm managers
as they reflect the level of firm overall performance; the derived GRGs can be seen as an alternative
measure of performance. Moreover, among firm-related variables, the firms that belong to upper class
(Class 7) do not have a comparative advantage compared to the firms of other classes.

The implication to consultants is that in a prequalification process they should take into account
this factor. As for construction firms, they should put their efforts towards the delivery of financial
outcomes as they expressed by the selected single financial ratios.

7. Conclusions

The current research employs the RAM-Tobit modeling for the performance evaluation of a sample
of Greek construction firms. The data on selected financial ratios of the sampled firms are used to
demonstrate the practical implementation of the suggested approach.

In the first step of analysis, scores of firm RAM of efficiency are produced using quick ratio,
ROE, and equity to asset ratio as ratios that should be maximized. In the financial ratio selection
process, GRA is employed. The RAM provides for each of the sample firms a CI that reflects the overall
firm performance in liquidity, profitability, and financial autonomy, whereas the produced GRGs can
be seen as an alternative measure of performance. In the light of the RAM results, only 4% of the
sampled firms are efficient, compared to the rest of the firms and the produced GRGs support the
firm ranking provided by RAM results. Moreover, the Class 7 contracting license firms seem to not
be superior in efficiency to their counterparts that belong to Classes 5–6. Since there is no evidence
for difference in performance between the firms with the highest class (Class 7) contracting license
and their counterparts that belong to Classes 5–6, future studies on the financial statement data of
Greek construction firms of the three upper-class contracting license (Classes 5–7) should analyze
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them together and not separately. It may be argued that the results of the study have potential for
generalization in the three upper-class contracting license (Classes 5–7) Greek construction firms.

The analysis performed here involves only static snapshot results to demonstrate the practical
implementation of the proposed framework. These results can be complemented in the future by
analyzing firm time series by means of dynamic DEA. Since the GRA in the current study uses equal
weights for the attributes; this can be seen as a limitation of the study that can be addressed in
future research by using other suitable methods that are able to produce attribute weights. Moreover,
since the separability assumption is very important another avenue for future research would be the
investigation of applicability of conditional efficiency models for the case of construction firms.
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