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Abstract: The singular value decomposition (SVD) is a basic tool for analyzing matrices. Regarding a
general matrix as defining a linear operator and choosing appropriate orthonormal bases for the
domain and co-domain allows the operator to be represented as multiplication by a diagonal matrix.
It is well known that the SVD extends naturally to a compact linear operator mapping one Hilbert
space to another; the resulting representation is known as the singular value expansion (SVE). It is
less well known that a general bounded linear operator defined on Hilbert spaces also has a singular
value expansion. This SVE allows a simple analysis of a variety of questions about the operator,
such as whether it defines a well-posed linear operator equation and how to regularize the equation
when it is not well posed.
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1. Introduction

One of the most powerful ideas in linear algebra is diagonalization, which renders many problems
completely transparent. For example, if A ∈ Rn×n is a symmetric matrix, the spectral theorem implies
that there exists an orthogonal matrix V ∈ Rn×n and a diagonal matrix D ∈ Rn×n such that

A = VDVT (1)

(see, for instance, ([1], Section 7.1)). To say that V is orthogonal means that VTV = I, the n× n identity
matrix, which implies that the columns v1, v2, . . . , vn of V form an orthonormal basis for Rn. If D has
diagonal entries λ1, λ2, . . . , λn, then we can also write

A = VDVT =
n

∑
i=1

λivivT
i .

If A ∈ Rm×n is a general matrix (not assumed to be symmetric or even square), the singular
value decomposition (SVD) allows us to diagonalize the matrix, at the cost of using two different
orthonormal bases. There exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n and a diagonal matrix
S ∈ Rm×n such that

A = USVT

and S = diag(σ1, σ2, . . . , σn), with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 (see ([2], Lectures 4–5) or ([1], Chapter 8)).
This decomposition follows immediately from the spectral theorem for symmetric matrices; in fact,
AT A = VSTSVT is the spectral decomposition of the symmetric matrix AT A.
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Among its other virtues, the SVD reveals the rank of A and bases for the four fundamental
subspaces associated with A. If A has rank r, then exactly r of the singular values σ1, σ2, . . . , σn

are positive, and we can write the SVD in the reduced form

A = ÛŜV̂T =
r

∑
i=1

σiuivT
i ,

where u1, u2, . . . , um ∈ Rm, v1, v2, . . . , vn ∈ Rn are the columns of U, V, respectively,
Û = [u1|u2| · · · |ur], V̂ = [v1|v2| · · · |vr], and Ŝ = diag(σ1, σ2, . . . , σr). The four fundamental subspaces
are represented by orthonormal bases as follows:

col(A) = sp{u1, u2, . . . , ur},
N (AT) = col(A)⊥ = sp{ur+1, ur+2, . . . , um},

N (A) = sp{vr+1, vr+2, . . . , vn},
col(AT) = N (A)⊥ = sp{v1, v2, . . . , vr}.

It is well known that spectral theory is considerably more complicated for linear operators defined
on infinite-dimensional spaces. However, for compact operators, the finite-dimensional theory carries
through almost unchanged. Throughout the rest of this paper, X and Y will denote real Hilbert spaces.
If T : X → Y is linear, then T is called compact if and only if {Txn} has a convergent subsequence in
Y for every bounded sequence {xn} in X (this is equivalent to T’s being continuous when the weak
topology is imposed on X and the norm topology on Y).

The spectral theorem for self-adjoint compact operators (see ([3], Section 4.3) or ([4], Section 8.2))
says that if T : X → X is compact and self-adjoint, then there exists an orthonormal sequence {φk} in
X and a sequence {λk} of nonzero real numbers such that

T =
∞

∑
k=1

λkφk ⊗ φk, (2)

where the outer product φk ⊗ φk : X → X is the bounded linear operator defined by

(φk ⊗ φk)x = 〈φk, x〉X φk for all x ∈ X.

For ease of exposition, we will assume that the sequences {φk} and {λk} are infinite sequences; in the
contrary case, T is a finite-rank operator and the infinite series becomes a finite sum.

For a general (that is, not necessarily self-adjoint) compact operator T : X → Y, we can derive
the singular value expansion (SVE) of T by applying the spectral theorem for self-adjoint compact
operators to T∗T (see [3], Section 4.4). The result is

T =
∞

∑
k=1

σkψk ⊗ φk,

where {φk} is an orthonormal sequence in X, {ψk} is an orthonormal sequence in Y, and σ1 ≥ σ2 ≥ · · ·
are positive numbers converging to zero. Moreover, {φk} is a complete orthonormal set for N (T)⊥

and {ψk} is a complete orthonormal set forR(T).
The SVE of a compact operator has many applications, particularly in analyzing linear operator

equations of the form Tx = y (that is, given y ∈ Y, find or estimate x ∈ X satisfying Tx = y).
When T is compact and not of finite rank, this equation is ill-posed in the sense that the solution x
(if it exists) does not depend continuously on the data y; in this case, the equation is often referred
to as an inverse problem. The singular value expansion of T is useful in analyzing approaches to
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regularizing Tx = y, that is, to computing a stable (approximate) solution to the equation in the
presence of noisy data.

When T : X → Y is not necessarily compact, there still exists a singular value expansion in the
following form.

Theorem 1. Let X and Y be real Hilbert spaces and let T : X → Y be a bounded linear operator. Then there
exist a Borel space (M,A, µ) with a second-countable topology T , isometries V : L2(µ)→ X, U : L2(µ)→ Y,
and an essentially bounded measurable function σ : M→ R such that

T = UmσV†, (3)

where V† is the generalized inverse of V and mσ is the multiplication operator defined by σ:

mσ : L2(µ)→ L2(µ),

mσ f = σ f for all f ∈ L2(µ).

Moreover, σ > 0 a.e.

By Borel space, we mean a measure space (M,A, µ) such that there is a topology T defined on the
set M and A (the collection of measurable subsets of M) is the σ-algebra of Borel sets of T . As noted
in the theorem, the topology is guaranteed to be second-countable, that is, to have a countable base.
Furthermore, note that for an isometry V, V† = V∗.

We will call the representation of Theorem 1 the SVE of T. Pietsch ([5], Section D.3) outlines
a short proof of Theorem 1 based on the polar decomposition. We give a direct proof in the next
section that is analogous to the derivation of the SVD of a matrix A from the spectral decomposition
of AT A. In Section 3, we derive some basic results about this form of the SVE, including its relationship
to the classical SVE of a compact operator and how to recognize from the SVE when R(T) fails to
be closed. We also include a brief discussion of the relationship of the SVE to notions of s-numbers
(the generalization of singular values) that have appeared in the literature. In Section 4, we analyze
the inverse problem Tx = y, including methods for regularizing the equation, using Theorem 1.
The results in Section 4 are not new, but we hope to convince the reader that the analysis based on
Theorem 1 is particularly convenient. We conclude with a brief discussion in Section 5.

2. The SVE of a Bounded Linear Operator

As noted above, the SVD of a matrix A ∈ Rm×n can be derived from the spectral decomposition of
the symmetric matrix AT A ∈ Rn×n. In the same way, the SVE described by Theorem 1 can be derived
from the following spectral theorem for a bounded, self-adjoint linear operator.

Theorem 2. Let T be a bounded and self-adjoint linear operator mapping a real Hilbert space X into itself.
Then there exists a Borel space (M,A, µ) with a second-countable topology T , a unitary operator V : L2(µ)→ X,
and an essentially bounded measurable function θ : M→ R such that

T = VmθV−1,

where mθ is the multiplication operator defined by θ.

This version of the spectral theorem is usually stated in terms of a complex Hilbert space X
and complex L2(µ) (see, for instance, [6] for an accessible exposition), but it can be verified that the
same proof yields this representation when X is a real Hilbert space and L2(µ) denotes the space of
real-valued square-integrable functions.
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To derive Theorem 1 from Theorem 2, we require the following preliminary result.

Lemma 1. ([7], Lemma 2.1) Let (M,A, µ) be a measure space and let θ : M→ [0, ∞) be a measurable function
that is positive a.e. Define

S =
{

f ∈ L2(µ) : θ−1 f ∈ L2(µ)
}

.

Then S is dense in L2(µ).

We can now prove a special case of Theorem 1.

Theorem 3. Let X and Y be real Hilbert spaces and let T : X → Y be a bounded linear operator with
N (T) = {0}. Then there exist a Borel space (M,A, µ) with a second-countable topology T , a unitary operator
V : L2(µ)→ X, an isometry U : L2(µ)→ Y, and an essentially bounded measurable function σ : M→ [0, ∞)

such that
T = UmσV−1.

Moreover, σ > 0 a.e. andR(U) = R(T).

Proof. By Theorem 2, there exist a measure space (M,A, µ), a unitary operator V : L2(µ)→ X, and a
bounded measurable function θ : M→ R such that

T∗T = VmθV−1.

We first show that θ ≥ 0 a.e., which obviously follows if we prove that

〈mθ f , f 〉L2(µ) ≥ 0 for all f ∈ L2(µ).

However, mθ = V−1T∗TV and hence, for any f ∈ L2(µ),

〈mθ f , f 〉L2(µ) =
〈

V−1T∗TV f , f
〉

L2(µ)
= 〈TV f , TV f 〉Y ≥ 0

(using the fact that V−1 = V∗ because V is unitary). Therefore, θ ≥ 0 a.e., as desired, and we can
assume that θ ≥ 0 everywhere.

Now define E = {x ∈ M : θ(x) = 0}. If µ(E) > 0, then χE 6= 0 in L2(µ), where χE is the
characteristic function of the set E; this implies that VχE 6= 0 in X and hence that T∗TVχE 6= 0
(since N (T∗T) = N (T) is trivial). However,

T∗TVχE = VmθχE = V(θχE) = 0

because θ = 0 on E and χE = 0 on M \ E. This contradiction shows that µ(E) must be zero, that is,
θ > 0 a.e. in M.

Therefore, if we define σ =
√

θ and

S =
{

f ∈ L2(µ) : σ−1 f ∈ L2(µ)
}

,

then Lemma 1 applies and we see that S is dense in L2(µ). We define U : S → Y by U = TVmσ−1 .
Since σ−1 f ∈ L2(µ) for all f ∈ S, U is well-defined, and we see that it is linear and densely defined.
We now show that ‖U f ‖Y = ‖ f ‖L2(µ) for all f ∈ S. We have
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‖U f ‖2
Y = 〈U f , U f 〉Y = 〈TVmσ−1 f , TVmσ−1 f 〉Y

=
〈

f , mσ−1 V−1T∗TVmσ−1 f
〉

L2(µ)

= 〈 f , mσ−1 mσ2 mσ−1 f 〉L2(µ)

= 〈 f , f 〉L2(µ) = ‖ f ‖2
L2(µ).

However, now we see that U is bounded and densely defined and hence it extends to a bounded
operator defined on all of L2(µ). We will use U to denote this extension as well (therefore U : L2(µ)→
Y satisfies U|S = TVmσ−1 ). By continuity, we have ‖U f ‖Y = ‖ f ‖L2(µ) for all f ∈ L2(µ) and hence U is
an isometry.

Next, we show that T = UmσV−1. For each x ∈ X, mσV−1x ∈ S because mσ−1 mσV−1x = V−1x ∈
L2(µ). However, then we see that, for each x ∈ X,

UmσV−1x = TVmσ−1 mσV−1x = TVV−1x = Tx.

Therefore, UmσV−1 = T, as desired.
It remains only to show that R(U) = R(T). Let y ∈ R(T). Then there exists {xn} ⊂ X such

that Txn → y, that is, UmσV−1xn → y. It follows that {UmσV−1xn} is a Cauchy sequence and hence,
because U is an isometry, {mσV−1xn} is a Cauchy sequence in L2(µ). Suppose mσV−1xn → f ∈
L2(µ). Then

U f = lim
n→∞

UmσV−1xn = y,

which shows that y ∈ R(U). Since R(U) ⊂ R(T) by definition of U, it follows that R(U) = R(T).
This completes the proof.

Theorem 1 is an immediate corollary of Theorem 3.

Proof of Theorem 1. If we apply Theorem 3 to T|N (T)⊥ , we obtain

T|N (T)⊥ = UmσV−1
1 ,

where U : L2(µ)→ Y is an isometry and V1 : L2(µ)→ N (T)⊥ is unitary. We claim that

T = UmσV†, (4)

where V : L2(µ) → X is defined by V f = V1 f for all f ∈ L2(µ). Since V is obviously an isometry,
proving that (4) holds will complete the proof. By definition, V†x is the minimum-norm least-squares
solution of V f = x. Moreover, sinceN (V) is trivial, V†x is the unique least-squares solution of V f = x,
which is defined by

V†x =

{
V−1

1 x, if x ∈ N (T)⊥,
0, if x ∈ N (T).

However, then
x ∈ N (T)⊥ ⇒ UmσV†x = UmσV−1

1 x = Tx

and
x ∈ N (T) ⇒ UmσV†x = 0 = Tx.

This proves (4), which completes the proof.
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3. Some Properties of the SVE of a Bounded Linear Operator

3.1. Relationship to the SVE of a Compact Operator

Suppose T : X → Y is a compact operator with singular value expansion

T =
∞

∑
n=1

σnψn ⊗ φn.

As noted above, {φn} is a complete orthonormal sequence for N (T)⊥ and {ψn} is a complete
orthonormal sequence forR(T).

Let us define M = Z+, A = P(Z+) (the power set of Z+), and µ to be counting measure (that is,
for an E ⊂ Z+, µ(E) is the cardinality of E). Then L2(µ) is the space of square summable sequences of
real numbers (usually denoted by `2) and, for α = {αk} ∈ L2(µ),

∫
α2 dµ =

∞

∑
k=1

α2
k .

We define V : L2(µ)→ X by

V(αk) =
∞

∑
k=1

αkφk.

Then it is straightforward to verify that V is an isometry and that V† = V∗ is defined by(
V†(x)

)
k = 〈φk, x〉X for all k ∈ Z+. The sequence σ = {σk} is bounded and measurable with respect

to the measure space (M,A, µ) and
mσα = {σkαk}.

Finally, U : L2(µ) → Y is defined to be the extension to all of L2(µ) of TVmσ−1 , which is given,
for α ∈ L2(µ) such that mσ−1 α also lies in L2(µ), by

TVmσ−1 α = T

(
∞

∑
k=1

αk
σk

φk

)
=

∞

∑
k=1

σk
αk
σk

ψk =
∞

∑
k=1

αkψk.

Clearly this formula extends to every α ∈ L2(µ).
Therefore, for each x ∈ X, we have

UmσV−1x =
∞

∑
k=1

(
mσV−1x

)
k

ψk =
∞

∑
k=1

σk 〈φk, x〉X ψk

=

(
∞

∑
k=1

σkψk ⊗ φk

)
x

= Tx.

This shows that T = UmσV−1 and also that UmσV−1 is just another way of writing the usual
singular value expansion of T.

3.2. The SVE of Operators Related to T

Throughout the rest of the paper, we assume that T : X → Y is a bounded linear operator from
one real Hilbert space X to another such space Y, and that T = UmσV† is the SVE of Theorem 1.
The associated Borel space is denoted by (M,A, µ) and the topology of M is denoted by T .
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Since V∗ = V† and V∗V = I hold for any isometry V, we immediately have the following:

T∗ = VmσU†,

T∗T = Vmσ2 V†,

TT∗ = Umσ2U†.

3.3. Inverse Problems and the SVE

It is well known that the equation Tx = y represents a true inverse problem if and only ifR(T)
fails to be closed (see ([3], Section 2.3)). In this case, the solution x (if it exists) does not depend
continuously on the data vector y. One way to state this precisely is to note that the generalized inverse
T† is unbounded if and only ifR(T) fails to be closed. We will study T† below in Section 4; for now,
we prove the following necessary and sufficient condition forR(T) to be closed.

Theorem 4. The range of T is closed if and only if the function σ is bounded away from zero, that is, if and only
if there exists γ > 0 such that σ(t) ≥ γ for almost all t ∈ M.

Proof. It is a standard result thatR(T) is closed if and only if there exists γ > 0 such that

‖Tx‖Y ≥ γ‖x‖X ∀ x ∈ N (T)⊥ (5)

(see ([3], Theorem 2.20)). If there exists γ > 0 such that σ(t) ≥ γ for almost all t ∈ M, then

‖mσ f ‖L2(µ) ≥ γ‖ f ‖L2(µ) ∀ f ∈ L2(µ).

We have ‖V f ‖X = ‖ f ‖L2(µ) for all f ∈ L2(µ); moreover, V defines an isomorphism from L2(µ) to
N (T)⊥. Therefore,

‖Tx‖Y = ‖UmσV†x‖Y = ‖mσ(V†x)‖L2(µ) ≥ γ‖V†x‖L2(µ) = γ‖x‖X ∀x ∈ N (T)⊥.

Conversely, suppose σ is not bounded away from zero. It follows that

Sk = {t ∈ M : σ(t) < 1/k}

has positive measure for each k ∈ Z+. Therefore, with fk = χSk , we have

‖mσ fk‖L2(µ) <
1
k
‖ fk‖L2(µ) ∀ k ∈ Z+

and hence
‖Txk‖Y <

1
k
‖xk‖X ∀ k ∈ Z+,

where xk = V fk. This shows thatR(T) fails to be closed in this case, and the proof is complete.

3.4. s-Numbers

Given the utility of singular values for matrices and compact operators, it is natural to try to
extend the concept to more general operators. This can be done in various ways. The Courant-Fischer
characterization [8,9] of the singular values σ1, σ2, . . . of a compact operator T : X → Y is the following:

σk = min
S⊂X

dim(S)<k

max
x∈S⊥
x 6=0

‖Tx‖Y
‖x‖X

, k = 1, 2, . . . . (6)
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Equation (6) can be taken as the definition of the s-numbers of an arbitrary bounded linear
operator T : X → Y by replacing “min” with “inf” and “max” with “sup.”

Alternatively, the singular values of a compact operator can be characterized [10] as

σk = min
τ:X→Y

rank(τ)<k

‖τ − T‖, (7)

which again extends to arbitrary bounded linear operators T by replacing “min” with “inf”. It can be
shown that (6) and (7) are equivalent for operators on Hilbert space. In fact, Pietsch [11] formulated
a list of five axioms that characterize s-numbers on Hilbert space (in the sense that two definitions,
such as (6) or (7), that satisfy the axioms are equivalent).

The above definitions of s-numbers are limited, in that they may not give much information if the
continuous spectrum of T∗T is nonempty. Fack and Kosaki [12] defined generalized s-numbers
for certain operators in a von Neumann algebra, and their techniques allow for a nonempty
continuous spectrum. In the context of the SVE presented in this paper, it would be natural to
define the set of s-numbers of a bounded linear operator T : X → Y as the essential range of σ

(where T = UmσV†); we refer the reader to the first author’s PhD dissertation [13] for a discussion.
The relationship between these two approaches remains to be investigated.

4. The SVE and Tikhonov Regularization

We believe that Theorem 1 will prove to be useful in a variety of applications. Here we
show that it can be used to give transparent proofs of convergence theorems in the theory of
Tikhonov regularization, the most popular method for addressing inverse problems.

We consider an equation of the form Tx = y. We are given y ∈ Y and wish to compute or estimate
x ∈ X satisfying the equation. The problem is well-posed if there exists a unique solution x for each
y ∈ Y, where x depends continuously on y. Existence fails, at least for some y ∈ Y, ifR(T) is a proper
subspace of Y. However, in that case, it is common to settle for a least-squares solution of the equation,
that is, an x ∈ X that minimizes ‖Tx− y‖2

Y. Uniqueness fails to hold if N (T) is nontrivial, but we
can select a unique (least-squares) solution by choosing the unique solution lying in N (T)⊥, which is
equivalent to choosing the minimum-norm least-squares solution. The interesting case occurs when
R(T) fails to be closed. In that case,

1. Least-squares solutions exists only for y in the dense subspaceR(T)⊕R(T)⊥ of Y;
2. For each y ∈ R(T)⊕R(T)⊥, there exists a unique minimum-norm least-squares solution x ∈

N (T)⊥, but x does not depend continuously on y.

The generalized inverse T† : D(T†) → X, where D(T†) = R(T) ⊕R(T)⊥, is defined by the
condition that T†y is the minimum-norm least-squares solution of Tx = y. It follows from the above
discussion that, whenR(T) fails to be closed, then T† is a densely defined unbounded linear operator.
In this case, the problem Tx = y, even when interpreted as asking for the minimum-norm least-squares
solution, is ill-posed in that the solution does not depend continuously on the data. In this case, we call
Tx = y a (linear) inverse problem.

Many regularization techniques for solving Tx = y approximate T† by a family {Rλ : λ > 0}
of bounded operators. Here λ is called the regularization parameter and it is required that Rλ → T†

pointwise as λ→ 0+. The most popular regularization method is Tikhonov regularization, in which
Rλ = (T∗T + λI)−1T∗. This operator arises from solving

min
x∈X
‖Tx− y‖2

Y + λ‖x‖2
X .

We first show that Rλy→ T†y for all y ∈ D(T†). For convenience, we will write xλ,y = Rλy.
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By definition, T†y ∈ N (T)⊥. Furthermore, xλ,y is defined by the equation

(T∗T + λI)xλ,y = T∗y,

which implies that
xλ,y = λ−1 (T∗y− T∗Txλ,y

)
∈ R(T∗) ⊂ N (T)⊥.

We will write y = projR(T)y, and notice that T∗y = T∗y since y− y ∈ R(T)⊥ = N (T∗). It follows

that xλ,y = (T∗T + λI)−1T∗y = (T∗T + λI)−1T∗y. Moreover, since the least-squares solutions of
Tx = y are precisely the solutions of T∗Tx = T∗y, it also follows that T†y = T†y. These two facts
(that T†y, xλ,y ∈ N (T)⊥ and that T†y, xλ,y, can be defined by y in place of y) make it convenient to use
the singular value expansion as expressed in Theorem 3 (as opposed to the version of Theorem 1).

Suppose that, using the notation of Theorem 3,

T|N (T)⊥ = UmσV−1,

and recall that σ > 0 a.e. in M. Since x = T†y satisfies Tx = y,

UmσV−1T†y = y → T†y = Vmσ−1U†y.

Furthermore,
T∗T + λI = Vmσ2 V−1 + λVV−1 = Vm

[
σ2 + λ

]
V−1

(where we write mθ as m[θ] when it is convenient to do so), and hence

(T∗T + λI)−1 = Vm
[(

σ2 + λ
)−1

]
V−1.

This leads to

xλ,y = (T∗T + λI)−1 T∗y = Vm
[

σ

σ2 + λ

]
U†y.

However, then

T†y− xλ,y = Vmσ−1U†y−Vm
[

σ

σ2 + λ

]
U†y

= Vm
[

1
σ
− σ

σ2 + λ

]
U†y

= Vm
[

λ

σ2 + λ

]
mσ−1U†y.

To show that T†y− xλ,y → 0 as λ→ 0, it suffices to show that

m
[

λ

σ2 + λ

]
mσ−1U†y→ 0 as λ→ 0.

Moreover, since y ∈ R(T) (as opposed to merely belonging to R(T)—this follows from the
fact that y ∈ D(T†) = R(T)⊕R(T)⊥), it follows that f = mσ−1U†y ∈ L2(µ). However, then, since
λ/(σ2 + λ) is bounded on M and goes to 0 pointwise as λ→ 0, it follows that∥∥∥∥m

[
λ

σ2 + λ

]
mσ−1U†y

∥∥∥∥
L2(µ)

=
∫

λ2

(σ2 + λ)2 f
2 → 0 as λ→ 0

by the dominated convergence theorem. This shows that xλ,y → T†y as λ→ 0. Henceforth, we will
write x0,y = T†y.



Mathematics 2020, 8, 1346 10 of 12

We will prove two other results to demonstrate the usefulness of the singular value expansion.
The result that we just defined shows that, for each y ∈ D(T†), xλ,y → x0,y as λ → 0. However,
the result says nothing about the rate of convergence and, in fact, the convergence can be arbitrarily
slow depending on the data y ∈ D(T†) (or, equivalently, on the solution x0,y). For certain x0,y, though,
we can bound the rate of convergence. We will not attempt to prove the most general theorem,
but rather just consider what turns out to be the optimal rate of convergence. We will show that if
x0,y ∈ R(T∗T), then

‖x0,y − xλ,y‖X = O(λ).

From above, we have

x0,y − xλ,y = Vm
[

λ

σ2 + λ

]
mσ−1U†y,

and y = Tx0,y = UmσV−1x0,y. Therefore,

x0,y − xλ,y = Vm
[

λ

σ2 + λ

]
V−1x0,y.

If we now assume that x0,y ∈ R(T∗T), say x0,y = T∗Tv0 = Vmσ2 V−1v0 for some v0 ∈ N (T)⊥,
then we obtain

x0,y − xλ,y = Vm
[

λ

σ2 + λ

]
mσ2 V−1v0 = λVm

[
σ2

σ2 + λ

]
V−1v0.

Since V is an isometry and
∥∥∥m
[

σ2

σ2+λ

]∥∥∥ is bounded by 1 (in general, ‖mθ‖ = ess sup θ), it follows
that ‖x0,y − xλ,y‖X = O(λ), as desired.

We can also prove the following converse result, namely, that if y ∈ D(T†) and ‖x0,y − xλ,y‖X =

O(λ), then x0,y ∈ R(T∗T). We will use the fact, easily verified, that x ∈ R(T∗T) if and only if
mσ−2 V−1x ∈ L2(µ), that is, if and only if V−1x belongs to the domain of the densely defined operator
mσ−2 . Let us write f0 = V−1x0,y; then we must show that

∫ f 2
0

σ4 dµ < ∞.

We have

x0,y − xλ,y = Vm
[

λ

σ2 + λ

]
V−1x0,y = λVm

[
1

σ2 + λ

]
V−1x0,y,

which implies that

‖x0,y − xλ,y‖2
X

λ2 =

∥∥∥∥Vm
[

1
σ2 + λ

]
V−1x0,y

∥∥∥∥2

X
=

∥∥∥∥m
[

1
σ2 + λ

]
f0

∥∥∥∥2

L2(µ)
.

Since ‖x0,y − xλ,y‖X = O(λ) by assumption, there exists a constant C > 0 such that∥∥∥∥m
[

1
σ2 + λ

]
f0

∥∥∥∥2

L2(µ)
≤ C for all λ > 0,

that is, ∫ f 2
0

(σ2 + λ)2 dµ ≤ C for all λ > 0.

Since f 2
0 /(σ2 + λ)2 converges monotonically to f 2

0 /σ4 a.e. in M as λ → 0, it follows from the
monotone convergence theorem that
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∫ f 2
0

σ4 dµ ≤ C < ∞,

as desired.

5. Discussion

The proofs of the last section are offered as an illustration of the power of the singular
value expansion. The reader can compare these proofs to other treatments of the same results that can
be found in the literature on inverse problems. In Groetsch’s monograph [14], the analysis is restricted
to compact operators and Theorem 2.1.1, Corollary 3.1.2, and Theorem 3.2.2 correspond to our results;
Groetsch’s proofs use the singular value expansion (2) for compact operators. The reader will see that
our proofs are direct generalizations of the derivations given there, and also that there is no difficulty
in extending his other conclusions to general bounded linear operators. Groetsch does present his
theory in greater generality, with much of the analysis applying to a certain family of regularization
operators Rλ, as opposed to just the Tikhonov approach. We restricted our presentation to Tikhonov
regularization simply for convenience of exposition; there would be no difficulty in reproducing his
results in the same level of generality.

To extend the results of [14] to general operators, the standard approach is to use the spectral
representation of T∗T in the form

T =
∫

α dEα,

where {Eα} is the spectral resolution of T∗T, and apply the so-called functional calculus, which allows
the representation of functions of T∗T via

f (T∗T) =
∫

f (α) dEα.

It can be shown, for example, that

T† =
∫

α−1 dEα.

A good reference for this approach is the book [15] by Engl, Hanke, and Neubauer,
which (among other things) extends the results of [14] to general bounded linear operators. There is no
intrinsic difficulty in doing so, but it may be argued that the arguments are less intuitive and therefore
harder to follow. For instance, it is necessary to work with integrals of the following types:∫

(· · · ) dEα,
∫

(· · · ) d‖Eαx‖2
X ,
∫

(· · · ) d 〈Eαx, y〉X .

As Halmos stated in his popular expository article [6] on the spectral theorem (one of the
most-downloaded articles from the American Mathematical Monthly),

The result (namely, the spectral theorem for Hermitian matrices, when expressed using a
resolution {Eα} of the identity) is not intuitive in any language; neither Stieltjes integrals with
unorthodox multiplicative properties, nor bounded operator representations of function algebras,
are in the daily toolbox of every working mathematician. In contrast, the formulation of the spectral
theorem given below uses only the relatively elementary concepts of measure theory.

We believe that the singular value expansion for general bounded linear operators, as described
above, offers a similarly intuitive tool that can replace the standard use of the functional calculus in
many contexts.
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