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Abstract: In this paper, we introduce a new family of continuous distributions that is called
the modified Kies family of distributions. The main mathematical properties of the new family
are derived. A special case of the new family has been considered in more detail; namely, the two
parameters modified Kies exponential distribution with bathtub shape, decreasing and increasing
failure rate function. The importance of the new distribution comes from its ability in modeling
positively and negatively skewed real data over some generalized distributions with more than two
parameters. The shape behavior of the hazard rate and the mean residual life functions of the modified
Kies exponential distribution are discussed. We use the method of maximum likelihood to estimate
the distribution parameters based on complete and type-II censored samples. The approximate
confidence intervals are also obtained under the two schemes. A simulation study is conducted
and two real data sets from the engineering field are analyzed to show the flexibility of the new
distribution in modeling real life data.

Keywords: kies distribution; T-X family; order statistics; mean residual life; maximum likelihood
estimation; type-II censoring

1. Introduction

In the last few decades, there have been an increased interest among statisticians to define new
families of distributions by adding extra shape parameter (one or more) to a baseline distribution.
The extra parameters of a good generator can usually give lighter tails and heavier tails, accommodate
symmetric, unimodal, bimodal, right-skewed and left-skewed density function, and increase and
decrease skewness and kurtosis and, more important, yield all types of the hazard function.
Furthermore, the extra parameters can provide great flexibility for modelling data in several areas such
as economics, engineering, reliability and medical sciences, among others. Kumar and Dharmaja [1]
proposed the reduced Kies distribution as a special case of the Kies distribution. Here, we will refer to
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the reduced Kies distribution as the modified Kies (MKi) distribution. The cumulative distribution
function (CDF) of the MKi distribution is specified (for 0 < t < 1) by

F(t) = 1− exp
[
−
(

t
1− t

)a]
.

Its probability density function (PDF) takes the form

f (t) = ata−1 (1− t)−a−1 exp
[
−
(

t
1− t

)a]
,

respectively, where a > 0 is a shape parameter. Kumar and Dharmaja [1] observed that the MKi
distribution perform better than the Weibull distribution and some of its extensions in modelling data.
Kumar and Dharmaja [2] introduced the exponentiated reduced Kies distribution and studied some
properties of the distribution. Dey et al. [3] derived the recurrence relations for the single and product
moments of the MKi distribution under progressive type-II censoring scheme as well as the estimation
of the distribution parameters.

In this paper, we propose a new family of distributions based on the MKi distribution. In fact,
based on the T-X family pioneered by Alzaatreh et al. [4], we construct a new generator so-called the
modified Kies generalized (MKi-G) family. Given a baseline distribution, the MKi-G distribution can be
used effectively for analysis purposes.

If G(x; ξ) is the baseline CDF depending on a parameter vector ξ, then the CDF of the MKi-G
family is defined by

F(x; a, ξ) =
∫ G(x;ξ)

0
ata−1 (1− t)−a−1 exp

[
−
(

t
1− t

)a]
dt

= 1− exp
{
−
[

G(x; ξ)

1− G(x; ξ)

]a}
, x > 0, a > 0. (1)

The corresponding PDF of (1) is given by

f (x; a, ξ) =
ag(x; ξ)G(x; ξ)a−1

[1− G(x; ξ)]a+1 exp
{
−
[

G(x; ξ)

1− G(x; ξ)

]a}
. (2)

The hazard rate (HR) function of the MKi-G family is given by

h (x; a, ξ) =
ag(x; ξ)G(x; ξ)a−1

[1− G(x; ξ)]a+1 .

Henceforth, a random variable with density function (2) is denoted by X ∼MKi-G (a, ξ) .
The main aim of this paper is to introduce and study a new family of distributions which

called the modified Kies-G (MKi-G) family. We discuss some general mathematical properties of
MKi-G family. Although the MKi distribution proposed by [1] has interesting properties, it is not
flexible in modeling real data because it does not contain a scale parameter. An extended model
including a scale parameter has considered by taking the exponential distribution as baseline for
the MKi-G family and generate a two-parameter MKi-exponential (MKiEx) distribution, which has
several desirable properties. The MKiEx distribution has a very flexible PDF, it can be positive skewed,
negative skewed and symmetric, and can allow for greater flexibility of the tails. It is capable of
modeling monotonically decreasing, increasing and bathtub hazard rates. Moreover, it has a closed
form CDF and very easy to handle which make the distribution is candidate to use in different fields
such as life testing, reliability, biomedical studies and survival analysis. Two real data applications
show that the proposed distribution is very competitive to some traditional distributions with scale and
shape parameters like Weibull and gamma distributions. It can also be considered as a good alternative
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to some recently introduced distributions such as the alpha power exponential distribution (APE)
by Mahdavi and Kundu [5], generalized odd log-logistic exponential distribution by Afify et al. [6],
and extended odd Weibull exponential distribution by Afify and Mohamed [7].

The rest of this paper is organized as follows: in Section 2, we obtain some mathematical properties
of the MKi-G family. In Section 3, we introduce the MKiEx distribution. Some mathematical properties
of the hazard rate function of the MKiEx distribution are derived in Section 4. The Asymptotic
distributions of order statistics of the MKiEx distribution are shown in Section 5. In Section 6, we study
the mean residual life of the MKiEx distribution. In Section 7, the maximum likelihood estimates and
the approximate confidence intervals are obtained under complete and type-II censored samples as
well as the simulation study. The analysis of two real data sets are presented in Section 8. The paper is
concluded in Section 9.

2. Properties of the MKi Generator

In this section, we obtain some mathematical properties of the MKi-G family such as
mixture representation, quantiles, moments, moment generating function (MGF), order statistics,
probability weighted moments (PWMs), and Rényi entropy.

2.1. Mixture Representation

Using the exponential series and the power series,

(1− z)−(q+1) =
∞

∑
k=0

(
q + k

k

)
zk, for |z| < 1, (3)

we obtain a useful linear representation for the PDF (2) as

f (x) =
∞

∑
j,k=0

υj,k h(j+1)a+k(x), (4)

where h(j+1)a+k(x) denotes the exponentiated-G (exp-G) PDF with power parameter (j + 1) a + k,
and the coefficient υj,k is given by

υj,k =
a (−1)j

j! [(j + 1) a + k]

(
(j + 1) a + k

k

)
.

Equation (4) gives the MKi-G family PDF as a linear combination of exp-G PDFs and enable us
to derive some mathematical properties of the MKi-G family using this representation. More details
about the exp-G distributions can be explored in Lemonte et al. [8].

Integrating (4), the CDF of X is given by

F (x) =
∞

∑
j,k=0

υj,k H(j+1)a+k(x),

where H(j+1)a+k(x) is the CDF of the exp-G family with power parameter (j + 1) a + k.

2.2. Quantiles, Ordinary and Incomplete Moments

The quantile function (QF) of (1) is given by

xp = QMKi−G(p) = G−1

{
[− log (1− p)]

1
a

1 + [− log (1− p)]
1
a

}
. (5)
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A random sample of size n from (1) can be obtained, based on (5), as Xi = QMKi−G(Ui),
where Ui ∼Uniform(0, 1), i = 1, ..., n.

Henceforth, Y(j+1)a+k denotes a random variable having the exp-G distribution with power
parameter (j + 1) a + k.

The rth moment of the MKi-G family can be derived from (4) as

µ′r = E (Xr) =
∞

∑
j,k=0

υj,k E
(

Yr
(j+1)a+k

)
.

The sth incomplete moment of X can be expressed from (4) as

ϕs (t) =
∞

∑
j,k=0

υj,k

∫ t

−∞
xs h(j+1)a+k(x)dx.

The first incomplete moment, ϕ1 (t), follows from the last equation with s = 1. The main
applications of ϕ1 (t) refers to the mean deviations and the Bonferroni and Lorenz curves (see,
Lorenz [9] and Bonferroni [10]).

2.3. Generating Function

In this section, we provide two formulae for the MGF of X. The first one follows from Equation (4)

MX (t) =
∞

∑
j,k=0

υj,k M(j+1)a+k (t) ,

where M(j+1)a+k (t) is the MGF of the random variable Y(j+1)a+k. Hence, MX (t) can be determined
from the exp-G MGF. The second formula can also be derived from (4) by considering u = G (x; ξ).
Therefore, the MGF can be represented as

MX (t) =
∞

∑
j,k=0

υj,k τ (t, k) ,

where τ (t, k) =
∫ 1

0 exp [t QG (u)] u(j+1)a+k−1du and QG(u) is the QF corresponding to G (x; ξ), i.e.,
QG(u) = G−1(u; ξ).

2.4. Order Statistics

Let X1, . . . , Xn be a random sample from the MKi-G family. The PDF of the ith order statistic, X(i),
is defined by

fX(i)
(x) =

f (x)
B (i, n− i + 1)

n−i

∑
j=0

(−1)j
(

n− i
j

)
Fj+i−1 (x) , (6)

where B(·, ·) is the beta function.
Based on Equation (1), we have

Fj+i−1(x) =
j+i−1

∑
m=0

(−1)m
(

j + i− 1
m

)
exp

{
−m

[
G(x; ξ)

1− G(x; ξ)

]a}
.

Using (2) and the exponential series, we obtain

f (x) Fj+i−1(x) =
j+i−1

∑
m=0

∞

∑
l=0

(−1)m+l

l!
(m + 1)l

(
j + i− 1

m

)
ag(x; ξ)G(x; ξ)(l+1)a−1

[1− G(x; ξ)](l+1)a+1
.
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After a power series expansion (3), we can write

f (x) Fj+i−1(x) =
j+i−1

∑
m=0

∞

∑
l,k=0

(−1)m+l

l!
a (m + 1)l

(
j + i− 1

m

)(
(l + 1) a + k

k

)
×g(x; ξ)G(x; ξ)(l+1)a+k−1. (7)

Substituting (7) in Equation (6), the PDF of X(i) reduces to

fX(i)
(x) =

∞

∑
l,k=0

ωl,k h(l+1)a+k (x) , (8)

where h(l+1)a+k (x) is the exp-G density with power parameter (l + 1) a + k and

ωl,k =
j+i−1

∑
m=0

n−i

∑
j=0

(−1)j+m+l a (m + 1)l

[(l + 1) a + k] l!B (i, n− i + 1)

(
n− i

j

)
×
(

j + i− 1
m

)(
(l + 1) a + k

k

)
.

Based on Equation (8), we can obtain the properties of X(i) from those properties of the random
variable Y(l+1)a+k.

Hence, the qth moments of X(i) follows as

E
(

Xq
(i)

)
=

∞

∑
l,k=0

ωl,k E
(

Yq
(l+1)a+k

)
.

2.5. Probability Weighted Moments

The (s, r)th PWM of X following the MKi-G distribution is defined by

ρs,r = E {XsF(X)r} =
∫ ∞

−∞
xs f (x) Fr(X) dx.

Based on Equation (7), we have

f (x) Fr(x) =
r

∑
m=0

∞

∑
l,k=0

(−1)m+l

l!
a (m + 1)l

(
r
m

)(
(l + 1) a + k

k

)
×g(x; ξ)G(x; ξ)(l+1)a+k−1.

Or

f (x) Fr(x)=
∞

∑
l,k=0

bl,k h(l+1)a+k (x) ,

where

bl,k =
r

∑
m=0

(−1)m+l a (m + 1)l

[(l + 1) a + k] l!

(
r
m

)(
(l + 1) a + k

k

)
.

Then, we can write

ρs,r =
∞

∑
l,k=0

bl,k

∫ ∞

−∞
xsh(l+1)a+k (x) =

∞

∑
l,k=0

bl,k E
(

Ys
(l+1)a+k

)
.
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2.6. Rényi Entropy

The Rényi entropy of a random variable X has applications in some applied areas including
statistics, information theory, engineering and physics, and it is used as a measure of variation of the
uncertainty. The Rényi entropy is defined by

Iθ (X) =
1

1− θ
log
(∫ ∞

−∞
f (x)θ dx

)
, θ > 0 and θ 6= 1.

Using the PDF (2), we obtain

f (x)θ =
aθ g(x; ξ)θG(x; ξ)θ(a−1)

[1− G(x; ξ)]θ(a+1)
exp

{
−θ

[
G(x; ξ)

1− G(x; ξ)

]a}
.

Applying the exponential series to the last term, we can write

f (x)θ = aθ g(x; ξ)θ
∞

∑
l=0

(−1)l θl

l!
G(x; ξ)θ(a−1)+la

[1− G(x; ξ)]θ(a+1)+la
.

Applying the power series (3), the last equation reduces to

f (x)θ = aθ g(x; ξ)θ
∞

∑
l,k=0

(−1)l θl

l!

(
θ (a + 1) + la + k + 1

k

)
G(x; ξ)k+θ(a−1)+la.

Then, the Rényi entropy of the MKi-G family comes out as

Iθ (X) =
1

1− θ
log

[
∞

∑
l,k=0

dl,k

∫ ∞

−∞
g(x; ξ)θG(x; ξ)k+θ(a−1)+ladx

]
,

where

dl,k =
(−1)l aθθl

l!

(
θ (a + 1) + la + k + 1

k

)
.

3. The MKiEx Distribution

Consider the exponential (Ex) distribution with positive scale parameter λ, and CDF given
(for x > 0) by

G (x) = 1− e−λx.

Let a random variable Z have the above Ex distribution with parameter λ. Then, the rth ordinary
and incomplete moments of Z are given, respectively, by µ′r = r!/λr and ϕr(t) = λ−rγ(1 + r, λt) ,
where γ(a, z) =

∫ z
0 ya−1 e−ydy is the the lower incomplete gamma function.

To this end, we define the CDF of the MKiEx model, by inserting the CDF of the Ex distribution
in (1), as

F (x; a, λ) = 1− e−(eλx−1)
a
. (9)

The corresponding PDF of (9) is given by

f (x; a, λ) = aλeλax
(

1− e−λx
)a−1

e−(eλx−1)
a
, (10)

where a > 0 is a shape parameter and λ > 0 is a scale parameter.
The HR function of the MKiEx distribution comes out as

h (x; a, λ) = aλeλax
(

1− e−λx
)a−1

. (11)
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The QF of the MKiEx distribution is obtained by inverting (9) as

xp =
1
λ

log
{

1 + [− log (1− p)]
1
a
}

. (12)

Note that xp can be used to generate MKiEx random variates.

Remark 1. Using (4) and the generalized binomial expansion, the MKiEx density reduces to

f (x) =
∞

∑
m=0

υm g (x; (m + 1) λ) , (13)

where g (x; (m + 1) λ) is the PDF of the Ex distribution with scale parameter (m + 1) λ, and

υm = υm (j, k) =
∞

∑
j,k=0

a (−1)j+m

j! (m + 1)

(
(j + 1) a + k

k

)(
(j + 1) a + k− 1

m

)
.

Equation (13) means that the MKiEx density can be expressed as a linear mixture of Ex densities. Hence,
the properties of the MKiEx distribution can be obtained simply from those of the Ex distribution.

Figures 1 and 2 display some plots of the PDF and HR function, respectively, of the MKiEx
distribution for selected values of a and λ. The plots of Figure 2 indicate that the HR function of
the MKiEx model can be increasing, decreasing and bathtub shaped. One of the advantages of the
MKiEx distribution over the exponential distribution is that the the last one cannot model phenomenon
showing increasing, decreasing and bathtub failure rate shapes and therefore it becomes more flexible
for analyzing lifetime data.
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Figure 1. Plots of the MKiEx PDF with λ = 1 and different values of a.

Remark 2. The rth ordinary and incomplete moments of the MKiEx follows from (13) as

µ′r =
inf

∑
m=0

υm
r!

[(m + 1) λ]r
and ϕr(t) =

inf

∑
m=0

υm
γ(1 + r, (m + 1) λt)

[(m + 1) λ]r
.

The skewness and kurtosis measures can be evaluated from the ordinary moments using
well-known relationships. Figure 3 presents the mean, variance, skewness and kurtosis of the MKiEx
as a function in the shape parameter a with λ = 1. Figure 3 shows that the mean is an increasing



Mathematics 2020, 8, 1345 8 of 24

then decreasing then increasing function in the shape parameter a, while the variance is an increasing
then decreasing function in a. Figure 3 indicates that the MKiEx is a flexible distribution. It can be
symmetric, right skewed and left skewed. Moreover, it can be mesokurtic, platykurtic and leptokurtic.
From Figure 3c,d, it is observed that for small values of a, the skewness and kurtosis increase then
decrease as a increases.
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Figure 2. Plots of the MKiEx HR function with λ = 1 and different values of a.
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4. Some Mathematical Properties for the HR Function of the MKiEx Distribution

The HR function of the MKiEx distribution given via Equation (11) discloses that for small values
of x (i.e., x → 0+), we have that

h(x) ∼ [1− exp(−λx)]a−1,

and hence it is a decreasing function in x provided that a < 1. On the other hand, we have that for
large values of x (i.e., x → ∞),

h(x) ∼ aλ exp(aλx),

and so it is a growing function in x. Therefore, the MKiEx distribution is useful in modeling aging HR
or bathtub-shaped HR. It is worth mentioning that most lifetime distributions with bathtub-shaped
HR have some problems related to increasing number of parameters, algebraic complexity,
and estimation problems. Interestingly, the MKiEx distribution has a bathtub-shaped HR that based
on only two parameters.

Proposition 1. The HR function of MKiEx distribution is an increasing function for a ≥ 1 and is a
bathtub-shaped for a < 1.

Proof. The first derivative of h(x) is

h
′
(x) = aλ2 exp(aλx)(1− exp(−λx))a−2 [a− exp(−λx)] .

Clearly, if a ≥ 1, it then follows that h
′
(x) > 0 for all x and thus h(x) is an increasing function in

x. Now suppose that a < 1, then h
′
(x) = 0 if and only if

x = x0 = − ln(a)
λ

.

Therefore, h
′
(x) < 0 if and only if x < x0 and h

′
(x) > 0 if and only if x > x0. This implies that

h(x) has a minimum value at x = x0, which completes the proof.

5. Asymptotic Distributions of Order Statistics of the MKiEx Distribution

Order statistics are widely used in many different fields of statistical theory and applications.
Suppose that X1, . . . , Xn are, independent and identically distributed random variables from the MKiEx
distribution. The PDF of the ith order statistic, say X(i), for i = 1, ..., n, is given by

fX(i)
(x) =

∞

∑
l,k=0

ηl,k λe−λx
(

1− e−λx
)(l+1)a+k−1

, (14)

where

ηl,k =
∞

∑
m=0

n−i

∑
j=0

(−1)j+m+l a (m + 1)l

l!B (i, n− i + 1)

(
n− i

j

)(
j + i− 1

m

)(
(l + 1) a + k

k

)
.

Certainly, extreme statistics such as Mn = max(X1, . . . , Xn) and mn = min(X1, . . . , Xn) are
members of the class of order statistics. The PDF of these extreme statistics are usually do not
possess a closed form distribution (as in our case) and, therefore, asymptotics to their distributions
are demanding because their applications are wide spread in many interesting areas. The following
proposition provides the asymptotics distributions for the first and largest order statistic functions.
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Proposition 2. Let X1, . . . , Xn be a random sample from MKiEx distribution. We have

(i) The asymptotic distribution of the largest order statistics belongs to the domain of attraction for maxima of
Gumbel type, i.e.,

lim
x→∞

Pr(an(Mn − bn) < x) = exp[− exp(−x)],

where an > 0 and bn are normalizing constants.
(ii) The asymptotic distribution of the smallest order statistics belongs to the domain of attraction for minima of

Weibull type, i.e.,
lim

x→∞
Pr(cn(mn − dn) < x) = 1− exp[−xa],

where cn > 0 and dn are normalizing constants.

Proof. (i) Since F−1(1) = ∞, so we need to check whether the von Mises condition for the
maximum domain of attraction of the Gumbel distribution are satisfied or not, see for example
Embrechts et al. ([11], Equation (3.25), p. 140) or Theorem (8.3.3) (iii) of Arnold et al. [12]. Specifically,
we need to show that

lim
x→∞

d
dx

[
1

h(x)

]
= 0,

or equivalently, we have to show that

lim
x→∞

S(x)F
′′
(x)

f 2(x)
= −1. (15)

Since f (x) = h(x)S(x), it then follows that

F
′′
(x) = h(x)S

′
(x) + S(x)h

′
(x),

where

h
′
(x) = λh(x)

{
a− exp(−λx)
[1− exp(−λx)]

}
.

On substituting these quantities into Equation (15), we have

S(x)F
′′
(x)

f 2(x)
= −1 +

h
′
(x)

h2(x)

= −1 +
[

a− exp(−λx)
a [1− exp(−λx)]a exp(aλx)

]
.

(16)

Clearly the second term in Equation (16) goes to 0, as x → ∞, and hence the result follows.
The normalizing constants can be chosen using Theorem (8.3.4) (iii) of [12]. Additionally, since the
von Mises condition is satisfied for the current problem, it follows Theorem (8.3.4) (iii) of [12] that
an = [n f (bn)]−1 and bn = F−1(1 − n−1). For (ii), observe that for sufficiently small values of x
(x → 0+), we have that F(x) ∼ 1− exp(−(λx)a)). Since F−1(0+) = 0 < ∞ and

lim
t→0+

F(xt)/F(t) = xa,

it follows from Theorem (8.3.6) (ii) in [12] that the limiting distribution is G̃(x) = 1− exp (−xa),
where the normalized constants can be calculated from Theorem (8.3.6) (ii) of [12] by taking dn =

F−1(0+) = 0 and cn = F−1(1/n).

6. Mean Residual Life

There is an additional important reliability measure which assess the mean remaining life
expectancy of a component(individual) last to the time t. This measure is referred to as the mean
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residual life (MRL) function. The usefulness of the ML function lies in characterizing the entire residual
failure time behind the time t contrary to the HR function which describes the failure in a small interval
beyond t.

Mathematically speaking, the MRL function for a random variable X at time t is determined as
the expected value of the conditional random variable of X− t|X > t as given below

µ(t) = E(X− t|X > t) =
∫ ∞

0

S(x + t)
S(t)

dx =
1

S(t)

∫ ∞

t
S(x)dx. (17)

Observe that µ(0) = E(X). It is observed that there is an interesting relation between HR function
and MRL function as given below

h(t) =
µ′(t)
µ(t)

+
1

µ(t)
, (18)

where µ′(t) is the first derivative of µ(t). Note that Equation (18) can be obtained by differentiating
Equation (17) with respect to t. Apparently, Equation (18) indicates that the lifetime distribution can be
uniquely defined using µ(t) and h(t) functions. Further, the inverse of the MRL and HR function are
approximately equivalent when

lim
t→∞

d ln(µ(t)
dt

= 0.

Explicit and approximate expressions for µ(t) are given in the following section.

6.1. MRL of the MKiEx Distribution

The first incomplete moments of the MKiEx model is

ϕ1(t) =
∞

∑
m=0

υm
γ(2, (m + 1) λt)

(m + 1) λ
. (19)

The MRL of X is defined by

µ (t) = [1− ϕ1 (t)] /S(t)− t, (20)

where ϕ1 (t) is given by (19) and S(t) = 1− F (x) is the survival function of the MKiEx distribution.
The MRL of X follows, by inserting ϕ1(t) in (20), as

µ (t) =
1

S(t)

∞

∑
m=0

υm
γ(2, (m + 1) λt)

(m + 1) λ
− t. (21)

The computation of µ(t) via Equation (21) is unattractive. Alternatively, we provide an
asymptotic tractable approximation to µ(t) for sufficiently large value of t ( t → ∞). We have
the following proposition.

Proposition 3. For sufficiently large value of t, i.e., as t→ ∞, we have that

µ(t) ∼ exp(−aλt)
aλ

. (22)
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Proof. We have that

µ(t) =

∫ ∞
0 S(x + t)

S(t)
dx

=
∫ ∞

0

exp
{
− [exp(λ(x + t)− 1]a

}
exp

{
− [exp(λ t− 1]a

} dx

=
∫ ∞

0
exp

{
[exp(λ t)− 1]a − [exp(λ(x + t)− 1]a

}
dx

=
∫ ∞

0
exp {r(x; t)} dx,

where r(x; t) = [exp(λ t)− 1]a − [exp(λ(x + t)− 1]a . As t → ∞, we have that r(x; t) ∼
exp(aλ t) [1− exp(aλ x)] . Since exp(aλx)− 1 ∼ aλx for small x (x → 0+), it then follows that

µ(t) ∼
∫ 1

0
exp [−aλ exp(aλ t) x] dx

+
∫ ∞

1
exp [− exp(aλ t) (exp(aλ x)− 1)] dx.

(23)

On substituting u = exp(aλx) − 1 and letting c(t) = exp(aλt) and k = exp(aλ) − 1,
Equation (23) becomes

µ(t) =
1− exp [−aλc(t)]

aλc(t)
+

1
aλ

∫ ∞

k

exp (−c(t) u)
u + 1

du

=
d(t)

aλc(t)
+

1
aλ

I(t),

where d(t) = 1− exp [−aλc(t)] and I(t) =
∫ ∞

k
exp(−c(t) u)

u+1 du. Observe that

I(t) ≤ 1
k

∫ inf

k
exp (−c(t) u) du =

1
k

exp(−kc(t))
c(t)

,

and c(t)→ inf for large values of t, (t→ ∞). Accordingly,

0 ≤ lim
t→inf

I(t) ≤ 1
k

lim
t→∞

exp(−kc(t))
c(t)

→ 0, as t→ ∞.

Since limt→∞ d(t) = 1, it then follows that d(t)/aλc(t) ∼ a−1λ−1 exp(−aλt) as t → ∞.
Consequently, we have that µ(t) ∼ a−1λ−1 exp(−aλt).

Table 1 reports some values for the MRL function using asymptotic approximation in (22)
as well as numerical integration for different choices of the parameters a and λ and several time
points. It is noted that the two approximation methods are close and consistent when the time point
increases; that is, the values obtained from Equation (22) become near of the values computed from
numerical integration.

A useful approximation for the mean of the MKiEx distribution is µ = µ(0) ∼ 1/(aλ), where a is
a shape parameter. The mean of the MKiEx distribution is determined by λ. This can be extended to be
a log-linear regression model by making λi = exp(θ′zi), where θ = (θ1, . . . , θp)

′
is a parameter vector

of length p and zi = (zi1, . . . , zip)
′

is the vector of covariates or risk factors, i = 1, . . . , n. Specifically,
the log-linear model can be written as

log(E(Yi|zi)) = α + ξ′zi, i = 1, . . . , n,
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where E is the expectation operator, Y is the MKiEx random variable, α = − log(a), and ξ = −θ′.
This would allow a variety of useful analyses, including a conventional nonlinear regression analysis.
While the current paper aims to study the current distribution in terms of mathematical and statistical
properties, we will consider the class of log-linear models relating to the proposed distribution in a
future article.

Table 1. MRL for some parameter values.

(λ, a) t Equation (21) Equation (22)

(0.5, 0.5) 0.5 1.7328 3.5300
1 1.7029 3.1152
3 1.3031 1.8895
5 0.9025 1.1460

(0.5, 2) 0.5 0.7833 0.6065
1 0.4875 0.3679
3 0.0600 0.0498
5 0.0073 0.0067

(2, 0.5) 0.5 0.3802 0.6065
1 0.2731 0.3679
3 0.0475 0.0498
5 0.0067 0.0067

(2, 2) 0.5 0.0436 0.0338
1 0.0052 0.0046
3 0.0000 0.0000
5 0.0000 0.0000

6.2. MRL Shapes and Changing Points

In spite of MKiEx distribution has increasing or bathtub-shaped HR, we only focus on studying the
changing points of the bathtub-shaped HR. Several researchers have discussed the connection between
the HR and MRL functions. For instance, Gupta and Akman [13,14] proved that if a component
has bathtub-shaped HR function, then its matching MRL function is upside-down bathtub, given
that h(0+). Mi [15] has proved that for the bathtub-shaped failure rate with a single inflection point
0 ≤ t∗ < ∞, the MRL function has a unimodal shaped with a single turning point µ∗ such that µ∗ ≤ t∗;
that is, the changing point of the MRL of a bathtub-shaped lifetime distribution go a head of that of
the HR. For details on general results between the relation of MRL and HR functions, the reader is
referred to Tang et al. [16]. We have the following proposition.

Proposition 4. Let X ∼MKi-G(a,λ) with a < 1. The MRL of X has the upside-down bathtub shape.

Proof. Since for a, λ > 0 and x > 0, we have that 1 + aλx ≤ exp(aλx). Therefore, it follows that

µr = r
∫ ∞

0
xr−1S(x)dx

= r
∫ ∞

0
xr−1 exp

{
− [exp(λx)− 1]a

}
dx

≤ r
∫ ∞

0
exp [−(λx)a] dx,

=
r
a

∫ ∞

0
u

r
a−1 exp(−λau)du =

rΓ( r
a )

aλr < inf,

where the last equality followed on using integration by substitution along with the gamma function.
Since µ(0+) = µ1 ≤ (aλ)−1Γ(a−1) < inf and h(0+) = inf ( a < 1), it then follows that h(0+) ≥
1/µ(0+) and, therefore, the result holds.

We have the following proposition.
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Proposition 5. The asymptotic behaviors of the HR function and the reciprocal of the MRL are equivalent as
t→ inf, i.e.,

lim
t→∞

h(t) = lim
t→∞

1
µ(t)

.

Proof. If we prove that

lim
t→∞

d ln(µ(t)
dt

= 0,

then we are finished. Observe that

d ln(µ(t)
dt

=
µ′(t)
µ(t)

= h(t)− 1
µ(t).

Upon using Equation (22) as t→ ∞, we have that h(t) = (aλ)−1 exp(−aλt) = 1/µ(t) and, hence,
the result follows.

Here, we illustrate the relation between the MRL and HR functions for the Mkies distribution by
using diagrams of the MRL and HR functions simultaneously. Figure 4b exhibits that the HR function
has a bathtub-shaped with a unique turning point, that occurs at t∗ = 6.06. The the matching style
of the MRL is given in Figure 4a, which demonstrates a unimodal shaped. The diagram signifies
that the changing point of the MRL µ∗ = 1.52 take place before that of the HR. The HR function
given in Figure 4d shows the bathtub-shaped with inflection point happen at t∗ = 0.75 and, again,
the matching MRL inflection point is µ∗ = 0.25, which occurs before t∗ = 0.75, Figure 4c Similarly,
the HR in Figure 4f exhibits a bathtub-shaped HR with the inflection point of the HR occurs at t∗ = 1.16,
whereas the inflection point of the corresponding MRL given in Figure 4e occurs at µ∗ = 0.3.
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Figure 4. Plots of MRL and HR functions along with their changing points: (a) µ∗ = (1.52, 22.56);
(b) t∗ = (6.06, .03); (c) µ∗ = (0.25, 1.78); (d) t∗ = (0.75, 0.42); (e) µ∗ = (0.3, 2.53); (f) t∗ = (1.16, 0.33).

7. Parameters Estimation and Simulations

This section is devoted to investigate the maximum likelihood estimators (MLEs) of the parameters
under complete and type-II censored samples. The approximate confidence intervals for the unknown
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parameters are also derived from the Fisher information matrix from complete and type-II censored
samples. Furthermore, a simulation study is performed to study the behavior of the estimates.

7.1. Maximum Likelihood Estimation under Complete Sample

Let x1, · · · , xn be a random sample of size n from the PDF in (3), then the log-likelihood function
is given by

`1(Θ) = n log(aλ) + aλ
n

∑
i=1

xi −
n

∑
i=1

(eλxi − 1)a + (a− 1)
n

∑
i=1

log(1− e−λxi ),

where Θ = (a, λ)
′
. The MLEs of a and λ can be obtained by solving the following two

non-linear equations

∂`1(Θ)

∂a
=

n
a
+ λ

n

∑
i=1

xi −
n

∑
i=1

(eλxi − 1)a log(eλxi − 1) +
n

∑
i=1

log(1− e−λxi ) = 0 (24)

and
∂`1(Θ)

∂λ
=

n
λ
+ a

n

∑
i=1

xi − a
n

∑
i=1

xieλxi (eλxi − 1)a−1 + (a− 1)
n

∑
i=1

xi(eλxi − 1)−1 = 0. (25)

It is to be noted that Equations (24) and (25) cannot be solved explicitly, therefore, a numerical
techniques can be used to obtain the MLEs of a and λ denoted by â and λ̂.

Using large sample approximation, the joint distribution of â and λ̂ is asymptotically normally
distributed with mean Θ and covariance matrix I−1(Θ). Practically, we use I−1(Θ̂) to estimate I−1(Θ),
where I(Θ̂) is the observed information matrix and

I−1(Θ̂) =

(
− ∂2`1(Θ)

∂a2 − ∂2`1(Θ)
∂a∂λ

− ∂2`1(Θ)
∂λ∂a − ∂2`1(Θ)

∂λ2

)−1 ∣∣∣∣∣
(a,λ)=(â,λ̂)

=

(
var(â) cov(â, λ̂)

cov(λ̂, â) var(λ̂)

)
,

where
∂2`1(Θ)

∂a2 = − n
a2 −

n

∑
i=1

(eλxi − 1)a log2(eλxi − 1),

∂2`1(Θ)

∂λ2 = − n
λ2 − a

n

∑
i=1

x2
i eλxi (eλxi − 1)a−1[(a− 1)(1− e−λxi )−1 + 1]− (a− 1)

n

∑
i=1

x2
i (e

λxi − 1)−2eλxi

and
∂2`1(Θ)

∂a∂λ
=

n

∑
i=1

xi −
n

∑
i=1

xieλxi (eλxi − 1)a−1[1 + a log(eλxi − 1)] +
n

∑
i=1

xi(eλxi − 1)−1.

Now, the 100(1 − τ)% approximate confidence intervals of the parameters a and λ can be
obtained as

â± zτ/2

√
var(â)

and
λ̂± zτ/2

√
var(λ̂),

where zτ/2 is the upper (τ/2)th percentile of the standard normal distribution.
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7.2. Maximum Likelihood Estimation under Type-II Censored Sample

Let x1, · · · , xn be a random sample of size n, in type-II censoring scheme we observe only the first
r order statistics. In this case, the likelihood function takes the form

L(Θ) = C
r

∏
i=1

f (xi:r:n)[1− F(xr:r:n)]
n−r, x1:r:n ≤ x2:r:n ≤ · · · ≤ xr:r:n, (26)

where C is a constant does not depend on the parameters and x1:r:n, x2:r:n, . . . , xr:r:n is the censored
data. From (26), the log-likelihood function without the constant term can be written as follows

`2(Θ) = r log(aλ) + aλ
r

∑
i=1

xi −
r

∑
i=1

(eλxi − 1)a + (a− 1)
r

∑
i=1

log(1− e−λxi )− (n− r)(eλxr − 1)a,

where xi = xi:r:n, i = 1, 2, . . . , r, for simplicity of notation and xr is the time of the rth failure.
Similarly, the MLEs of a and λ are the solution of the following two equations

∂`2(Θ)

∂a
=

r
a
+ λ

r

∑
i=1

xi −
r

∑
i=1

(eλxi − 1)a log(eλxi − 1) +
r

∑
i=1

log(1− e−λxi ) (27)

− (n− r)(eλxr − 1)a log(eλxr − 1) = 0

and

∂`2(Θ)

∂λ
=

r
λ
+ a

r

∑
i=1

xi − a
r

∑
i=1

xieλxi (eλxi − 1)a−1 + (a− 1)
r

∑
i=1

xi(eλxi − 1)−1 (28)

− a(n− r)xreλxr (eλxr − 1)a−1 = 0.

Again Equations (27) and (28) cannot be solved explicitly and a numerical techniques is needed
to obtain the MLEs of a and λ. To obtain the approximate confidence intervals as mentioned in the
previous subsection, the elements of the observed information matrix can be obtained as follow

∂2`2(Θ)

∂a2 = − r
a2 −

r

∑
i=1

(eλxi − 1)a log2(eλxi − 1)− (n− r)(eλxr − 1)a log2(eλxr − 1),

∂2`2(Θ)

∂λ2 = − r
λ2 − a

r

∑
i=1

x2
i eλxi (eλxi − 1)a−1[1 + (a− 1)(1− e−λxi )−1]− (a− 1)

r

∑
i=1

x2
i eλxi

(eλxi − 1)2

− a(n− r)x2
r eλxr (eλxr − 1)a−1[1 + (a− 1)(1− e−λxr )−1]

and

∂2`2(Θ)

∂a∂λ
=

r

∑
i=1

xi −
r

∑
i=1

xieλxi (eλxi − 1)a−1[1 + a log(eλxi − 1)] +
r

∑
i=1

xi(eλxi − 1)−1

− (n− r)xreλxr (eλxr − 1)a−1[1 + a log(eλxr − 1)].

Now, the same approach in the previous subsection is used to derive the approximate 100(1− τ)%
confidence intervals of the parameters a and λ.

7.3. Simulation Results

In this subsection a simulation study is conducted to evaluate the performance of the MLEs of
the parameters a and λ of the MKiEx distribution in terms of their mean square errors (MSEs) and
confidence interval length (CIL) under complete and type-II censored samples. Equation (12) is used
to generate the MKiEx variates. We consider the values 20, 40, 60, 100, 200 and 300 for n and the values
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of r are chosen to be 75% of n. We choose different values for the parameters a and λ, we consider
a = (0.5, 1.5, 2.5, 5) and λ = (0.5, 2.5, 5) and replicate the process 1000 times. In each setting we obtain
the average values (AVs) of the estimates and the corresponding MSEs, where

AV =
1000

∑
k=1

θ̂m,k

1000
and MSE =

1000

∑
k=1

(θ̂m,k − θm)2

1000
, m = 1, 2, 3 and θ = (a, λ).

We are also obtain the CIL and the corresponding coverage probabilities of the parameters a
and λ. These results are displayed in Tables 2–4.

From Tables 2–4, it is observed that the MSEs decrease as the sample size increases in all the cases
under the complete sample. Furthermore, the AVs of estimates tend to the true parameter values
as the sample size increase. Furthermore, in the case of type-II censored sample as the number of
failures r increases the MSEs decrease in all the cases as well as the estimates tend to the true values
of the parameters. These results indicate that the MLEs of the parameters a and λ under the two
schemes are asymptotically unbiased and consistent. As expected, the estimates under complete
sample perform better than those under type-II sample in terms of MSEs. Moreover, the CIL decrease
as the sample increases under the two schemes in all the cases. Furthermore, the CIL in the case of
complete sample are smaller than those under type-II censored sample. This is because the complete
sample has the larger number of observations. The simulation results show that the MKiEx distribution
has a good results and very flexible to use in life testing experiment and one may use another types of
censoring schemes.

Table 2. The AVs of estimates and corresponding MSEs (in parentheses) in the first row and the CIL
and corresponding coverage probability (in parentheses) in the second row.

Parameters Complete Sample Type-II Censored Sample

λ a λ a λ a

n = 20, r = 15

0.5 0.5 0.5414 (0.0295) 0.5415 (0.0184) 0.5921 (0.0703) 0.5619 (0.0252)
0.5541 (92.000) 0.4490 (95.000) 0.7742 (93.900) 0.5079 (95.100)

2.5 0.5064 (0.0013) 2.6781 (0.3152) 0.5107 (0.0017) 2.7869 (0.5744)
0.1296 (92.300) 1.9173 (94.900) 0.1413 (89.800) 2.4719 (95.600)

5 0.5022 (0.0003) 5.3863 (1.2185) 0.5039 (0.0004) 5.5717 (2.1836)
0.0642 (92.200) 3.7935 (95.500) 0.0697 (91.800) 4.9314 (95.700)

2.5 0.5 2.6949 (0.6558) 0.5372 (0.0163) 2.9613 (1.6375) 0.5591 (0.0225)
2.7653 (94.500) 0.4457 (95.900) 3.8570 (93.700) 0.5053 (96.600)

2.5 2.5174 (0.0298) 2.6801 (0.3074) 2.5405 (0.0407) 2.8037 (0.5939)
0.6441 (92.800) 1.9180 (95.300) 0.7001 (90.700) 2.4872 (95.800)

5 2.5087 (0.0075) 5.3876 (1.3604) 2.5178 (0.0097) 5.5798 (2.2017)
0.3222 (93.500) 3.7944 (93.700) 0.3488 (90.700) 4.9485 (94.300)

5 0.5 5.3826 (2.2964) 0.5395 (0.0169) 5.8447 (6.4747) 0.5598 (0.0254)
5.5062 (92.700) 0.4492 (94.100) 7.5949 (92.900) 0.5066 (94.800)

2.5 5.0256 (0.1147) 2.6812 (0.2855) 5.0609 (0.1516) 2.7823 (0.5399)
1.2801 (93.200) 1.9225 (96.100) 1.3989 (91.200) 2.4669 (95.400)

5 5.0168 (0.0301) 5.4014 (1.3143) 5.0297 (0.0368) 5.5681 (2.2238)
0.6405 (92.600) 3.8080 (94.400) 0.6982 (90.800) 4.9366 (95.000)
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Table 2. Cont.

n = 40, r = 30

0.5 0.5 0.5232 (0.0116) 0.5170 (0.0072) 0.5477 (0.0266) 0.5274 (0.0098)
0.3804 (93.700) 0.3046 (94.200) 0.5174 (94.600) 0.3369 (94.500)

2.5 0.5025 (0.0006) 2.6062 (0.1276) 0.5045 (0.0008) 2.6569 (0.2204)
0.0915 (93.300) 1.3157 (95.500) 0.1005 (93.000) 1.6654 (96.400)

5 0.5010 (0.0001) 5.1950 (0.4652) 0.5016 (0.0002) 5.2585 (0.8101)
0.0460 (93.900) 2.5789 (95.600) 0.0505 (93.000) 3.2946 (96.400)

2.5 0.5 2.6279 (0.3048) 0.5139 (0.0070) 2.7359 (0.6370) 0.5234 (0.0092)
1.9189 (94.400) 0.3033 (94.000) 2.6024 (93.600) 0.3344 (93.400)

2.5 2.5104 (0.0142) 2.5840 (0.1272) 2.5187 (0.0187) 2.6161 (0.1838)
0.4611 (95.500) 1.3070 (95.500) 0.5083 (94.000) 1.6399 (96.100)

5 2.5054 (0.0035) 5.1348 (0.4378) 2.5120 (0.0043) 5.2660 (0.8327)
0.2329 (94.600) 2.5423 (96.100) 0.2528 (93.200) 3.2983 (95.700)

5 0.5 5.1425 (1.0370) 0.5230 (0.0068) 5.3810 (2.2305) 0.5339 (0.0096)
3.7066 (92.700) 0.3074 (95.300) 5.0082 (92.900) 0.3407 (96.000)

2.5 5.0159 (0.0564) 2.6100 (0.1350) 5.0410 (0.0750) 2.6684 (0.2216)
0.9128 (94.000) 1.3171 (94.500) 0.9996 (92.800) 1.6730 (94.600)

5 5.0078 (0.0143) 5.1640 (0.4642) 5.0169 (0.0185) 5.2713 (0.8868)
0.4630 (93.700) 2.5571 (95.100) 0.5052 (92.100) 3.2997 (94.700)

Table 3. The AVs of estimates and corresponding MSEs (in parentheses) in the first row and the CIL
and corresponding coverage probability (in parentheses) in the second row.

Parameters Complete Sample Type- Censored Sample

λ a λ a λ a

n = 60, r = 45

0.5 0.5 0.5129 (0.0067) 0.5120 (0.0045) 0.5323 (0.0145) 0.5206 (0.0060)
0.3037 (94.300) 0.2460 (95.100) 0.4108 (94.300) 0.2711 (94.100)

2.5 0.5010 (0.0004) 2.5666 (0.0825) 0.5026 (0.0005) 2.6035 (0.1401)
0.0752 (94.800) 1.0562 (93.500) 0.0827 (94.600) 1.3317 (94.100)

5 0.5006 (0.0001) 5.1208 (0.2938) 0.5011 (0.0001) 5.1751 (0.4973)
0.0379 (94.800) 2.0692 (96.300) 0.0415 (93.900) 2.6456 (95.900)

2.5 0.5 2.5511 (0.1602) 0.5110 (0.0040) 2.6234 (0.3520) 0.5167 (0.0049)
1.5134 (93.400) 0.2462 (95.400) 2.0341 (92.900) 0.2693 (94.900)

2.5 2.5065 (0.0097) 2.5526 (0.0739) 2.5148 (0.0118) 2.5924 (0.1223)
0.3776 (93.700) 1.0499 (95.800) 0.4148 (94.100) 1.3266 (95.200)

5 2.5011 (0.0024) 5.1057 (0.2941) 2.5039 (0.0029) 5.1657 (0.5125)
0.1899 (94.700) 2.0619 (95.300) 0.2079 (94.400) 2.6400 (95.000)

5 0.5 5.1999 (0.6874) 0.5056 (0.0043) 5.3485 (1.4232) 0.5115 (0.0053)
3.1074 (95.500) 0.2441 (93.500) 4.1981 (94.600) 0.2668 (94.500)

2.5 5.0028 (0.0373) 2.5601 (0.0779) 5.0159 (0.0461) 2.5900 (0.1248)
0.7516 (94.700) 1.0543 (95.000) 0.8283 (94.600) 1.3252 (95.6000)

5 5.0056 (0.0096) 5.1044 (0.3008) 5.0128 (0.0117) 5.1703 (0.4920)
0.3802 (93.600) 2.0615 (94.500) 0.4157 (93.000) 2.6432 (94.900)
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Table 3. Cont.

n = 100, r = 75

0.5 0.5 0.5072 (0.0035) 0.5047 (0.0023) 0.5164 (0.0072) 0.5084 (0.0027)
0.2335 (95.300) 0.1885 (95.300) 0.3128 (95.400) 0.2052 (95.700)

2.5 0.4995 (0.0002) 2.5484 (0.0438) 0.5004 (0.0003) 2.5713 (0.0739)
0.0581 (95.500) 0.8116 (95.100) 0.0640 (95.600) 1.0192 (95.800)

5 0.5004 (0.0001) 5.0596 (0.1714) 0.5010 (0.0001) 5.1219 (0.2896)
0.0296 (94.400) 1.5784 (94.500) 0.0323 (94.700) 2.0275 (95.000)

2.5 0.5 2.5382 (0.0958) 0.5058 (0.0024) 2.5832 (0.1802) 0.5095 (0.0029)
1.1676 (94.000) 0.1888 (95.000) 1.5638 (95.100) 0.2055 (94.800)

2.5 2.5056 (0.0057) 2.5355 (0.0425) 2.5119 (0.0071) 2.5653 (0.0746)
0.2930 (94.700) 0.8070 (96.600) 0.3224 (94.600) 1.0168 (94.900)

5 2.5020 (0.0015) 5.0713 (0.1702) 2.5043 (0.0018) 5.1205 (0.2789)
0.1475 (94.500) 1.5824 (94.900) 0.1613 (93.200) 2.0267 (96.500)

5 0.5 5.0905 (0.3954) 0.5048 (0.0024) 5.1742 (0.7711) 0.5080 (0.0029)
2.3448 (94.600) 0.1885 (94.600) 3.1400 (93.600) 0.2050 (94.500)

2.5 5.0001 (0.0226) 2.5260 (0.0418) 5.0100 (0.0287) 2.5499 (0.0702)
0.5868 (94.500) 0.8042 (95.300) 0.6467 (93.200) 1.0104 (96.000)

5 5.0044 (0.0056) 5.0709 (0.1730) 5.0090 (0.0073) 5.1196 (0.2801)
0.2950 (94.200) 1.5821 (94.400) 0.3226 (94.100) 2.0267 (95.700)

Table 4. The AVs of estimates and corresponding MSEs (in parentheses) in the first row and the CIL
and corresponding coverage probability (in parentheses) in the second row.

Parameters Complete Sample Type-II Censored Sample

λ a λ a λ a

n = 200, r = 150

0.5 0.5 0.5021 (0.0018) 0.5035 (0.0011) 0.5063 (0.0033) 0.5053 (0.0014)
0.1631 (94.400) 0.1329 (96.200) 0.2171 (94.900) 0.1441 (95.900)

2.5 0.5009 (0.0001) 2.5085 (0.0214) 0.5012 (0.0001) 2.5149 (0.0325)
0.0417 (95.200) 0.5649 (95.400) 0.0461 (95.400) 0.7047 (95.500)

5 0.499 (0.00003) 5.0218 (0.0778) 0.500 (0.00004) 5.0434 (0.1348)
0.0210 (94.400) 1.1074 (95.700) 0.0230 (94.700) 1.4114 (95.300)

2.5 0.5 2.5184 (0.0424) 0.5042 (0.0012) 2.5449 (0.0804) 0.5063 (0.0014)
0.8175 (95.100) 0.1330 (95.300) 1.0894 (95.200) 0.1444 (94.700)

2.5 2.5006 (0.0029) 2.5186 (0.0216) 2.5014 (0.0036) 2.5222 (0.0323)
0.2074 (94.100) 0.5671 (94.600) 0.2296 (93.800) 0.7066 (96.100)

5 2.4992 (0.0007) 5.0459 (0.0824) 2.5000 (0.0008) 5.0646 (0.1519)
0.1043 (95.300) 1.1130 (94.500) 0.1146 (95.400) 1.4174 (93.800)

5 0.5 5.0349 (0.1784) 0.5046 (0.0012) 5.0851 (0.3217) 0.5067 (0.0015)
1.6336 (94.800) 0.1331 (95.500) 2.1758 (95.200) 0.1445 (95.700)

2.5 5.0075 (0.0112) 2.5060 (0.0196) 5.0090 (0.0136) 2.5084 (0.0311)
0.4173 (95.100) 0.5646 (95.300) 0.4623 (95.200) 0.7026 (95.200)

5 5.0011 (0.0029) 5.0461 (0.0860) 5.0028 (0.0035) 5.0628 (0.1351)
0.2088 (93.800) 1.1131 (95.200) 0.2293 (94.900) 1.4169 (95.700)
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Table 4. Cont.

n = 300, r = 225

0.5 0.5 0.5009 (0.0011) 0.5042 (0.0008) 0.5018 (0.0019) 0.5047 (0.0009)
0.1327 (94.900) 0.1087 (94.400) 0.1756 (95.700) 0.1175 (94.500)

2.5 0.5002 (0.0001) 2.5119 (0.0140) 0.5005 (0.0001) 2.5201 (0.0223)
0.0339 (95.200) 0.4613 (94.900) 0.0375 (95.300) 0.5764 (95.300)

5 0.501 (0.00002) 5.0083 (0.0541) 0.503 (0.00002) 5.0406 (0.0979)
0.0172 (93.900) 0.9024 (95.300) 0.0188 (93.800) 1.1518 (93.600)

2.5 0.5 2.5116 (0.0287) 0.5027 (0.0008) 2.5238 (0.0504) 0.5037 (0.0009)
0.6662 (95.700) 0.1084 (95.700) 0.8849 (95.800) 0.1173 (95.100)

2.5 2.5024 (0.0019) 2.5078 (0.0143) 2.5043 (0.0023) 2.5152 (0.0217)
0.1700 (95.600) 0.4608 (94.600) 0.1879 (95.300) 0.5754 (94.100)

5 2.4998 (0.0004) 5.0359 (0.0559) 2.5006 (0.0006) 5.0517 (0.0906)
0.0853 (94.800) 0.9064 (94.800) 0.0936 (95.200) 1.1543 (95.500)

5 0.5 5.0226 (0.1168) 0.5016 (0.0008) 5.0568 (0.2087) 0.5031 (0.0010)
1.3335 (95.000) 0.1081 (94.400) 1.7751 (95.500) 0.1172 (94.300)

2.5 5.0030 (0.0079) 2.5114 (0.0156) 5.0060 (0.0098) 2.5171 (0.0240)
0.3394 (94.500) 0.4615 (93.000) 0.3755 (93.200) 0.5758 (93.700)

5 5.0007 (0.0020) 5.0225 (0.0568) 5.0014 (0.0024) 5.0306 (0.0879)
0.1711 (94.000) 0.9043 (94.400) 0.1880 (94.200) 1.1494 (94.400)

8. Data Analysis

In this section, the MKiEx distribution is fitted to two real data sets and compared with
other some competitive models. The fitted distributions are compared using some goodness-of-fit
measures such as A − IC (Akaike information), CA − IC (consistent Akaike information), B − IC
(Bayesian information), and HQ − IC (Hannan-Quinn information) criterions. We also consider
the maximized log-likelihood under the model (−2̂̀) along with W∗ (Cramér-von Mises) and A∗

(Anderson-Darling) statistics.
The first data set is reported by Murthy et al. [17], and it represents failure times for a particular

windshield device (84 observations). These data were studied by Afify et al. [18]. The second data set
is reported by Xu et al. [19], and it contains 40 observations about time-to-failure (103h) of turbocharger
of one type of engine. These data were studied by Afify et al. [20] and Cordeior et al. [21].

The new MKiEx model is compared with some competing models, such as the Marshall-Olkin
exponential (MOEx) (Marshall and Olkin, [22]), Weibull (W), APEx, Kumaraswamy exponential (KEx),
gamma (Ga), beta exponential (BEx) (Nadarajah and Kotz, [23]), exponentiated exponential (EEx)
(Gupta and Kundu, [24]) and Ex distributions, whose PDFs (for x > 0) are:

MOEx: f (x) = α λ [1− (1− α) exp(−λx)]−2 exp (−λx), α, λ > 0.

W: f (x) = βλβ xβ−1exp
[
− (λx)β

]
, β, λ > 0.

APEx: f (x) =
log (α) λ

(α− 1)
α1−exp(−λx) exp(−λx), α > 0, α 6= 1, λ > 0.

KEx: f (x) = abλ exp(−λx) [1− exp (−λx)]a−1 {1− [1− exp(−λx)]a
}b−1 , a, b, λ > 0.

Ga: f (x) =
b−a

Γ (a)
xa−1 exp (−x/b) , a, b > 0.

BEx: f (x) =
λ

B(a, b)
[1− exp(−λx)]a−1 exp(−bλx), a, b, λ > 0.

EEx: f (x) = α λ [1− exp(−λx)]α−1 exp(−λx), α, λ > 0.
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Tables 5 and 6 report the numerical values of analytical measures for the competing distributions
to both analyzed data sets. The maximum likelihood estimates and associated standard errors of the
parameters are listed in Tables 7 and 8.

In Tables 5 and 6, we compare the fits of the MKiEx distribution with the W, MOEx APEx, KEx,
Ga, BEx, EEx and Ex models. The values in Tables 5 and 6 illustrate that the MKiEx distribution has
close fit for both data sets, among the competing models. The histogram of the two data sets and the
fitted MKiEx PDF are displayed in Figure 5. Further, the PP plots of the first and second data sets are
displayed in Figure 6.

Table 5. Numerical values of the analytical measures for data set I.

Model −2̂̀ A − IC CA − IC HQ − IC B − IC W∗ A∗

MKiEx 255.772 259.772 259.920 261.726 264.634 0.06972 0.56030
MOEx 256.504 260.504 260.652 262.458 265.366 0.06646 0.51737
W 260.106 264.106 264.254 266.061 268.968 0.06013 0.59718
APEx 263.358 267.358 267.506 269.3124 272.212 0.07299 0.72287
KEx 262.442 268.442 268.742 271.374 275.735 0.06812 0.68505
Ga 273.874 277.874 278.022 279.828 282.735 0.15655 1.33817
BEx 273.889 279.889 280.189 282.821 287.182 0.15669 1.33911
EEx 279.681 283.681 283.829 285.635 288.543 0.21063 1.69461
Ex 325.754 327.754 327.803 328.731 330.185 0.16088 1.36725

Table 6. Numerical values of the analytical measures for data set II.

Model −2̂̀ A − IC CA − IC HQ − IC B − IC W∗ A∗

MKiEx 162.539 166.539 166.863 167.760 169.916 0.05347 0.41127
W 164.951 168.951 172.328 170.172 172.328 0.07699 0.57304
MOEx 167.205 171.205 171.529 172.426 174.582 0.08601 0.61795
APEx 177.984 181.984 182.308 183.205 185.362 0.23411 1.52728
KEx 167.025 173.025 173.6913 174.857 178.091 0.10205 0.73648
Ga 174.821 178.821 179.145 180.042 182.198 0.20526 1.36163
BEx 174.834 180.834 181.501 182.666 185.901 0.20544 1.36264
EEx 180.285 184.285 184.609 185.507 187.663 0.27574 1.76008
Ex 226.639 228.639 228.744 229.249 230.3274 0.20652 1.36890

Table 7. Parameter estimates and standard errors for data set I.

Model Estimates (Standard Errors)

MKiEx (a,λ) 1.7837 (0.1629) 0.2367 (0.0107)

MOEx (α,λ) 35.1070 (15.1651) 1.4285 (0.1494)

W (λ, β) 0.3492 (0.01677) 2.3743 (0.2096)

APEx (α,λ) 841.2509 (954.4471) 0.9522 (0.0791)

KEx (a,b,λ) 2.5583 (0.2905) 50.8582 (53.7323) 0.0851 (0.0478)

Ga (a,b) 3.4922 (0.5152) 1.3655 (0.2166)

BEx (a,b,λ) 3.4929 (0.5155) 34.9964 (58.0101) 0.0377 (0.0603)

EEx (α,λ) 3.5605 (0.6109) 0.7579 (0.0769)

Ex (λ) 0.3910 (0.0427)
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Table 8. Parameter estimates and standard errors for data set II.

Model Estimates (Standard Errors)

MKiEx (α,λ) 2.9281 (0.3978) 0.0994 (0.0040)

W (λ, β) 0.1445 (0.0061) 3.8725 (0.5176)

MOEx (α,λ) 285.7258 (240.3562) 0.8837 (0.1202)

APEx (α,λ) 211835.1 (11866.59) 0.4791 (0.0310)

KEx (a,b,λ) 4.4517 (0.8353) 123.7773 (170.078) 0.0602 (0.0317)

Ga (a,b) 7.7227 (1.6909) 1.2351 (0.2794)

BEx (a,b,λ) 7.7268 (1.6926) 54.6596 (56.1356) 0.0213 (0.0203)

EEx (α,λ) 9.5142 (2.8959) 0.4498 (0.0578)

Ex (λ) 0.1599 (0.0253)
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Figure 5. Fitted densities for data I (left) and data II (right).
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Figure 6. PP plots for data I (left) and data II (right).

9. Conclusions

In this paper, we have introduced a new family of distributions called the the modified Kies family
of distributions. Some mathematical properties of the proposed family are derived. We introduced a
new two-parameter distribution by taking the the exponential distribution as baseline for the modified
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Kies family. The new distribution is called modified Kies exponential distribution. The modified
Kies exponential distribution has one scale and one shape parameters. Its density function can take
different shapes based on its shape parameter. Furthermore, the modified Kies exponential distribution
failure rate function can be monotonically increasing, decreasing and bathtub shaped. The shape
behavior of the hazard rate function and the Mean residual life are also discussed. We considered the
maximum likelihood methods to estimate the parameters based on complete and type-II censored
samples. An extensive simulation study is conducted to compare the performance of the estimates
under the two schemes. The simulation results reveal that the maximum likelihood under the two
schemes are asymptotically unbiased and consistent. Two real data analyses show that the modified
Kies exponential distribution performs better than other distributions. This analysis proved that the
modified Kies exponential distribution can be used effectively to model both positive and negative
skewed data sets which are considered in the paper.
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