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Abstract: A filter-based recursive tracker design approach is presented for the problem of unknown
control directions of pure-feedback systems with completely unknown non-affine nonlinearities.
In the controller design procedure, the first-order filters for error surfaces, a control input, and state
variables are employed to design nonadaptive virtual and actual control laws independent of adaptive
function approximators. In addition, for the unknown control direction problem, the filtering signals
are incorporated with Nussbaum functions. Different from existing adaptive approximation-based
control schemes in the presence of unknown control directions, the proposed approach does not
require any adaptive technique regardless of completely unknown nonlinear functions. Therefore,
a simplified tracking structure can be constructed. Using the Lyapunov stability analysis, it is shown
that the tracking error is reduced within an adjustable neighborhood of the origin while ensuring all
the closed-loop signals are bounded.

Keywords: filter-based tracking control; unknown control directions; unknown non-affine nonlinearities

1. Introduction

In the past few decades, the control of nonlinear systems has attracted considerable attention due
to its theoretic interest and various applications [1]. Especially since systematic and recursive designs
such as the backstepping technique [2] and the dynamic surface control technique [3] were developed,
adaptive recursive control designs have been actively studied for several uncertain nonlinear
systems in strict-feedback form [4–23] and in pure-feedback form [24–35], where pure-feedback
systems have the non-affine property of state variables to be used as virtual controls. In practice,
pure-feedback systems can represent the mathematical models of many engineering applications
such as continuous stirred tank reactors [2], piezoelectric actuators [36], PMSM servo systems [37],
rolling mills [38], hypersonic vehicles [39], and so on. Additionally, since general nonlinear systems
can be converted into the systems in triangular form under some conditions [40], pure-feedback
systems can be used in broad applications. Among the existing recursive control designs, the adaptive
function approximation methodologies based on neural networks or fuzzy systems were utilized
in [8–35] to compensate for the effects of completely unknown nonlinearities in the recursive design
procedure. However, these adaptive controllers suffered from the following intrinsic features of
neural networks and fuzzy approximators: (i) The high approximation accuracy is achieved when
the optimal structure of basis functions and the sufficiently large number of optimal weights
are chosen, but it is hard to find the optimal structure a priori because nonlinear functions are
completely unknown. (ii) The large number of optimal weights leads to more differential equations,
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called adaptation laws, to be solved to update estimated weights. In order to overcome these
restrictions, a filter-based tracking control strategy for uncertain nonlinear systems was firstly presented
in [41]. The major contribution of this strategy is to replace adaptive function approximators with
nonadaptive filter-based approximators where the filter-based approximator is defined as the linear
combination of states, a control input, and their filtered signals. Thus, the aforementioned problems
(i) and (ii) of adaptive function approximators can be overcome by the strategy of [41]. Despite these
advantages of [41], the unknown control direction problem has not been solved in the filter-based
control framework. Since the filter-based approximators presented in [41] should be designed by using
the exact information of control directions, the existing Nussbaum function approaches in the existing
adaptive function-approximation-based control designs [13–21,33–35] cannot be straightforwardly
applied to the filter-based control problem in the presence of unknown control directions. Furthermore,
the closed-loop stability analysis considering filtering errors and Nussbaum function technique should
be newly developed in the filter-based tracking framework.

Motivated by this observation, this paper investigates a filter-based tracker design problem of
uncertain pure-feedback nonlinear systems with unknown control directions. The first-order filters
for error surfaces, a control input, and state variables are employed to design nonadaptive virtual
and actual control laws without using adaptive neural networks or fuzzy logic systems. To consider
the unknown control direction problem in the filter-based tracking framework, the difference signal
between the error surface and its filtered signal that is incorporated with a Nussbaum function at
each design step is used for designing virtual and actual controllers. The filter-based tracking strategy
using Nussbaum functions is developed to provide a new solution to the unknown control direction
problem of pure-feedback nonlinear systems with completely unknown nonlinearities. Using the
Lyapunov stability theory, the semi-global uniform ultimate boundedness of the closed-loop signals
and the convergence of the tracking error to an adjustable neighborhood of the origin are guaranteed.

The major contributions of the proposed theoretical approach are emphasized as follows:

(i) Different from the existing control schemes using the adaptive function approximation technique
for uncertain lower-triangular nonlinear systems with unknown control directions [13–21,33–35],
we present a new nonadaptive control strategy using first-order filtered signals of error surfaces,
a control input, and state variables. Therefore, the proposed control approach does not require
the calculation of the differential equations for tuning adaptive parameters. Accordingly,
a simplified tracking control structure is established in the presence of unknown non-affine
nonlinearities and unknown control directions.

(ii) Contrary to the previous filter-based control approach [41], the proposed control scheme can
handle the unknown control direction problem in the filter-based control framework. A new
design approach that incorporates Nussbaum functions and filtered signals and its stability
analysis are presented.

The rest of this paper is organized as follows. In Section 2, a filter-based tracking control problem
for uncertain pure-feedback systems with unknown control directions is formulated. The filter-based
tracker design and the closed-loop stability analysis strategy are given in Section 3. Sections 4 and 5
provide simulation results and some conclusions, respectively.

2. Problem Formulation

Consider the following uncertain pure-feedback systems:

ẋk(t) = pk(x̄k(t), xk+1(t)) + dk(t), k = 1, . . . , n− 1,
ẋn(t) = pn(x̄n(t), u(t)) + dn(t),

(1)

where xk(t) and xn(t) are state variables, x̄k(t) = [x1(t), . . . , xk(t)]> ∈ Rk, x̄n(t) = [x1(t), . . . , xn(t)]> ∈
Rn, u(t) ∈ R is the control input, pk(x̄k(t), xk+1(t)) : Ri+1 7→ R and pn(x̄n(t), u(t)) : Rn+1 7→ R are
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unknown C1 non-affine nonlinear functions, and dk(t) and dn(t) are unknown bounded time-varying
disturbances. Here, n denotes the order of System (1).

Assumption 1 ([23]). The reference signal r(t) ∈ R denoting the target signal is available for feedback.
In addition, r(t) and its time derivatives ṙ(t) and r̈(t) are bounded.

Assumption 2 ([42]). Define bi(x̄i+1(t)) = ∂pi(x̄i+1(t))/∂xi+1(t) where i = 1, . . . , n and xn+1(t) = u(t).
There exist unknown constants bi such that 0 < bi ≤ |bi(x̄i+1(t))|. The signs of bi(x̄i+1(t)) representing
the control directions are unknown.

Definition 1 ([43]). A function Θ(θ(t)) is called a Nussbaum-type function if the following equalities hold:

lim sup
h→+∞

1
h

∫ h

0
Θ(θ(t))dθ = ∞,

lim inf
h→+∞

1
h

∫ h

0
Θ(θ(t))dθ = −∞.

A Nussbaum function Θ(θ(t)) = θ2(t) cos(θ(t)) is adopted in this paper.

Problem 1. Our problem is to design a filter-based controller u(t) for System (1) in a nonadaptive framework
so that the state variable x1(t) follows the reference signal r(t) while all the signals in the closed-loop system are
bounded.

3. Filter-Based Tracking Control Design for the Problem of Unknown Control Directions

3.1. Controller Design

In this section, we focus on the design of the filter-based control scheme for (1). A recursive
control design based on the backstepping technique [2] is presented using the following
coordinate transformation:

η1(t) = x1(t)− r(t),
ηk+1(t) = xk+1(t)− ψk(t),

(2)

where k = 1, . . . , n− 1, η1(t), and ηk+1(t) are error surfaces and ψk(t) are virtual control laws.
Step 1: Consider the first error η1(t). Then, its time derivative using (1) is:

η̇1(t) = p1(x1(t), x2(t)) + d1(t)− ṙ(t) = b∗1 x2(t) + q1(x1(t), x2(t), t) (3)

where b∗1 = sign(b1(t))b1 and q1(x1(t), x2(t), t) = p1(x1(t), x2(t)) − b∗1 x2(t) + d1(t) − ṙ(t).
For notation conciseness, q1(x1(t), x2(t), t) will be described as q1(t). By rearranging (3), we have:

q1(t) = η̇1(t)− b∗1 x2(t).

Then, the filtered signal q1, f (t) of q1(t) is obtained as:

q1, f (t) = η̇1, f (t)− b∗1 x2, f (t) (4)

where η1, f (t) and x2, f (t) are signals provided by the first-order low-pass filters as follows:

τ1η̇1, f (t) + η1, f (t) = η1(t), η1, f (0) = η1(0), (5)

τ1 ẋ2, f (t) + x2, f (t) = x2(t), x2, f (0) = x2(0), (6)
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where τ1 > 0 is the small time constant of the filters. Using (5), it holds that η̇1, f (t) = (η1(t) −
η1, f (t))/τ1. Then, (4) becomes:

q1, f (t) =
η1(t)− η1, f (t)

τ1
− b∗1 x2, f (t). (7)

From (2) and (7), η̇1(t) is represented by:

η̇1(t) = b∗1(η2(t) + ψ1(t)) + q1, f (t) + q̃1(t) = b∗1(η2(t) + ψ1(t)− x2, f (t)) +
η̃1(t)

τ1
+ q̃1(t) (8)

where η̃1(t) = η1(t)− η1, f (t) and q̃1(t) = q1(t)− q1, f (t).
We choose a virtual control law ψ1(t) as:

ψ1(t) = x2, f (t) + Θ(θ1(t))
(

γ1η1(t) +
η̃1(t)

τ1

)
, (9)

θ̇1(t) = γ1η2
1(t) +

η1(t)η̃1(t)
τ1

, (10)

where γ1 > 0 is the control gain and θ1(0) = 0. Applying (9) to (8) gives:

η̇1(t) = b∗1 η2(t) + b∗1 Θ(θ1(t))
(

γ1η1(t) +
η̃1(t)

τ1

)
+

η̃1(t)
τ1

+ q̃1(t). (11)

A Lyapunov function candidate V1(t) = (1/2)η2
1(t) is considered. Using (10) and (11), the time

derivative of V1(t) is:

V̇1(t) = η1(t)b∗1 η2(t) + b∗1 Θ(θ1(t))η1(t)
(

γ1η1(t) +
η̃1(t)

τ1

)
+ η1(t)η̃1(t)

τ1
+ η1(t)q̃1(t)

= η1(t)b∗1 η2(t) + (b∗1 Θ(θ1(t)) + 1)θ̇1(t)− γ1η2
1(t) + η1(t)q̃1(t).

(12)

Remark 1. In the existing adaptive approximation-based control schemes [8–35], an unknown nonlinearity
is approximated by a neural network or fuzzy logic system. For example, an unknown nonlinear function q
is represented by q = W∗>S + ε where W∗ is an optimal weight vector, S is a basis function vector, and ε is
a reconstruction error. However, since W∗ is unknown, a variable Ŵ is employed to estimate W∗ and is updated
on-line along a first-order differential equation called an adaptation law. Then, an estimated nonlinear function
q̂ = Ŵ>S is defined and used to compensate for q. In contrast, the proposed approach employs a filter-based
function approximator q f defined as the linear combination of the filtered signals of the state variables and
the control input. Even though the structure of q f is non-adaptive, its approximation ability is rigorously
analyzed in the proof of Theorem 1.

Step j (j = 2, . . . , n− 1): The time derivative of ηj(t) is given by:

η̇j(t) = pj(x̄j(t), xj+1(t)) + dj(t)− ψ̇j−1(t) = b∗j xj+1(t) + qj(x̄j(t), xj+1(t), t) (13)

where b∗j = sign(bj(t))bj and qj(x̄j(t), xj+1(t), t) = pj(x̄j(t), xj+1(t)) − b∗j xj+1(t) + dj(t) − ψ̇j−1(t).
For notation conciseness, qj(x̄j(t), xj+1(t), t) will be described as qj(t).

Then, qj(t) can be rewritten as:

qj(t) = η̇j(t)− b∗j xj+1(t).

The filtered signal qj, f (t) of qj(t) is given by:

qj, f (t) = η̇j, f (t)− b∗j xj+1, f (t)
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where ηj, f (t) and xj+1, f (t) are output signals of the first-order filters:

τjη̇j, f (t) + ηj, f (t) = ηj(t), ηj, f (0) = ηj(0), (14)

τj ẋj+1, f (t) + xj+1, f (t) = xj+1(t), xj+1, f (0) = xj+1(0), (15)

where τj > 0 is the small time constant.
Using (14), we can define qj, f (t) as follows:

qj, f (t) =
ηj(t)− ηj, f (t)

τj
− b∗j xj+1, f (t). (16)

Using (2) and (16), we have:

η̇j(t) = b∗j (ηj+1(t) + ψj(t)− xj+1, f (t)) +
η̃j(t)

τj
+ q̃j(t)

where η̃j(t) = ηj(t)− ηj, f (t) and q̃j(t) = qj(t)− qj, f (t).
Then, a virtual control law ψj(t) is chosen as:

ψj(t) = xj+1, f (t) + Θ(θj(t))
(

γjηj(t) +
η̃j(t)

τj
+ δjη

2
j−1(t)ηj(t)

)
, (17)

θ̇j(t) = γjη
2
j (t) +

ηj(t)η̃j(t)
τj

+ δjη
2
j−1(t)η

2
j (t), (18)

where γj > 0 is the control gain, δj > 0 is a design parameter, and θj(0) = 0. From (2) and (17),
η̇j(t) becomes:

η̇j(t) = b∗j ηj+1(t) + b∗j Θ(θj(t))
(

γjηj(t) +
η̃j(t)

τj
+ δjη

2
j−1(t)ηj(t)

)
+

η̃j(t)
τj

+ q̃j(t). (19)

A Lyapunov function candidate Vj(t) = (1/2)η2
j (t) is considered. Then, V̇j(t) becomes:

V̇j(t) = ηj(t)b∗j ηj+1(t) + (b∗j Θ(θj(t)) + 1)θ̇j(t)− δjη
2
j−1(t)η

2
j (t)− γjη

2
j (t) + ηj(t)q̃j(t). (20)

Step n: The time derivative of ηn(t) is:

η̇n(t) = b∗nu(t) + dn(t) + qn(x̄n(t), u(t), t)

where b∗n = sign(bn(t))bn and qn(x̄n(t), u(t), t) = pn(x̄n(t), u(t)) − b∗nu(t) + dn(t) − ψ̇n−1(t).
For notation conciseness, qn(x̄n(t), u(t), t) will be described as qn(t).

Proceeding similarly, we can define a filtered signal qn, f (t) of qn(t) as follows:

qn, f (t) =
ηn(t)− ηn, f (t)

τn
− b∗nu f (t) (21)

where τn > 0 is the small time constant and ηn, f (t) and u f (t) are signals provided by
the following filters:

τnη̇n, f (t) + ηn, f (t) = ηn(t), ηn, f (0) = ηn(0), (22)

τnu̇ f (t) + u f (t) = u(t), u f (0) = u(0). (23)
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An actual control law u(t) is chosen as:

u(t) = u f (t) + Θ(θn(t))
(

γnηn(t) +
η̃n(t)

τn
+ δnη2

n−1(t)ηn(t)
)

, (24)

θ̇n(t) = γnη2
n(t) +

ηn(t)η̃n(t)
τn

+ δnη2
n−1(t)η

2
n(t), (25)

where η̃n(t) = ηn(t)− ηn, f (t), γn and δn are positive design parameters, and θn(0) = 0.
A Lyapunov function candidate Vn(t) = (1/2)η2

n(t) is considered. Then, applying (24),
V̇n(t) becomes:

V̇n(t) = (b∗nΘ(θn(t)) + 1)θ̇n(t)− γnη2
n(t)− δnη2

n−1(t)η
2
n(t) + ηn(t)q̃n(t) (26)

where q̃n(t) = qn(t)− qn, f (t).

Remark 2. The proposed filter-based controller includes the virtual and actual controllers (9), (17), and (24)
with the first-order filters (5), (6), (14), (15), (22), and (23). Contrary to the previous controllers based
on the adaptive function approximation for lower-triangular nonlinear systems with unknown control directions
[13–21,33–35], the proposed tracking system does not use any adaptive function approximators using neural
networks or fuzzy systems. For the detailed comparison, the neural network-based control scheme reported
in [33] is given as follows:

ψk(t) = Θ(θk(t))[γkzk(t) + Ŵ>k (t)Sk(νk(t))],
u(t) = Θ(θn(t))[γnzn(t) + Ŵ>n (t)Sn(νn(t))],
θ̇i(t) = γiz2

i (t) + zi(t)Ŵ>i (t)Si(νi(t)),
˙̂Wi(t) = Γi[Si(νi(t))zi(t)− σiŴi(t)],

(27)

where k = 1, . . . , n− 1, i = 1, . . . , n, z1(t) = x1(t)− r(t) and zk+1(t) = xk+1(t)− ψk(t) are error surfaces,
ψk(t) are the virtual control laws, Θ(θi(t)) are Nussbaum functions, γi and σi are positive design parameters, Γi
are positive definite matrices denoting the adaptation gains, and Ŵi(t) and Si(νi(t)) are the estimated weighting
vectors and the nonlinear basis function vectors, respectively, of the employed adaptive function approximators.
In (27), it should be stressed that multiple neural networks Ŵ>i (t)Si(νi(t)) are required to implement u(t).
Thus, the adaptation law to update Ŵi(t) should be solved numerically, which can increase the computational
complexity of u(t). On the contrary, the proposed controller is nonadaptive as illustrated in Figure 1 where
the tuning law blocks are used to update the parameters of Nussbaum functions. Accordingly, the proposed
tracking system has a simpler structure than existing adaptive controllers [13–20,33–35]. The simple control
structure is significant for the implementation of the control algorithm in the real-world embedded system.
Because the embedded board is subject to the limited computational resources, it is difficult to implement complex
control algorithms in one sampling time. Especially, when multi-thread programming is used to do other tasks
(e.g., network communication with other embedded boards or sensors), the complex computation of the control
law may provide the operating delay of the whole process. Owing to the simplicity of the proposed algorithm,
the computational burden of the embedded control system for implementing the proposed control algorithm
in practical applications can be reduced. This helps to reduce the operating delay of the embedded control system.

Remark 3. In the previous filter-based control design methodology [41], the control directions were assumed
to be known and positive. Then, the filter-based function approximators were designed as gi, f (t) =

(xi(t)− xi, f (t))/τ0 − xi+1, f (t) in the virtual and actual control laws where i = 1, . . . , n, xn+1, f (t) = u f (t),
and τ0 is a time constant. However, the term −xi+1, f (t) in gi, f (t) was derived based on known signs
of control coefficients. That is, the filter-based approximator gi, f (t) depends on the exact information of
the control directions. Thus, the existing adaptive approximation-based control studies using Nussbaum
functions [13–20,33–35] cannot be straightforwardly applied to the unknown control direction problem in the
filter-based control design. Thus, we incorporate the difference signals η̃i(t), i = 1, . . . , n, between the error
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surfaces and their filtered signals with Nussbaum functions in the controller design procedure and design
the term δk+1η2

k (t)ηk+1(t), k = 1, . . . , n− 1, in (17) and (24). In this way, the unknown control direction
problem can be solved in the filter-based nonadaptive control framework.
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Figure 1. Block diagram of the proposed filter-based nonadaptive tracking system.

3.2. Stability Analysis

In this section, the closed-loop stability is analyzed for the proposed filter-based controller.
For notation conciseness, we omit the time variable t in all signals used in Section 3.1. From the
coordinate transformation (2) and the virtual control laws (9) and (17), the state variables xi, i = 1, . . . , n,
can be represented by:

x1(η1, r) = η1 + r,
x2(η1, η2, θ1, η1, f , x2, f ) = η2 + ψ1(η1, θ1, η1, f , x2, f ),
xj+1(ηj−1, ηj, ηj+1, θj, ηj, f , xj+1, f ) = ηj+1 + ψj(ηj−1, ηj, θj, ηj, f , xj+1, f ),

(28)

where j = 2, . . . , n− 1. Then, using (28), the unknown non-affine nonlinear functions qi, i = 1, . . . , n,
are defined as follows:

q1(η̄2, θ1, η1, f , x2, f , d1, r, ṙ) = p1(x1, x2)− b∗1 x2 + d1 − ṙ,
q2(η̄3, θ̄2, η̄2, f , x̄3, f , q̃1, d̄2, r) = p2(x̄2, x3)− b∗2 x3 + d2 − ψ̇1(η̄2, x̄2, θ1, η1, f , x2, f , q̃1),
qj(η̄j+1, θ̄j, η̄j, f , x̄j+1, f , q̃j−2, q̃j−1, d̄j, r) = pj(x̄j, xj+1)− b∗j xj+1 + dj

−ψ̇j−1(η̄j, x̄j, θj−1, ηj−1, f , xj, f , q̃j−1), j = 3, . . . , n− 1
qn(η̄n, θ̄n, η̄n, f , x̄n+1, f , q̃n−2, q̃n−1, d̄n, r) = pn(x̄n, u)− b∗nu + dn

−ψ̇n−1(η̄n, x̄n, θn−1, ηn−1, f , xn, f , q̃n−1),

(29)
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where, for i = 1, . . . , n, η̄i = [η1, . . . , ηi]
>, θ̄i = [θ1, . . . , θi]

>, η̄i, f = [η1, f , . . . , ηi, f ]
>, x̄i+1, f =

[x2, f , . . . , xi+1, f ]
>; xn+1, f = u f , d̄i = [d1, . . . , di]

>, and:

ψ̇1 = ẋ2, f +
∂Θ(θ1)

∂θ1
θ̇1(γ1η1 +

η̃1

τ1
) + Θ(θ1)(γ1η̇1 +

˙̃η1

τ1
),

ψ̇l = ẋl+1, f +
∂Θ(θl)

∂θl
θ̇l(γlηl +

η̃l
τl

+ δlη
2
l−1ηl) + Θ(θl)(γl η̇l +

˙̃ηl
τl

+ 2δlηl−1η̇l−1ηl + δlη
2
l−1η̇l)

with l = 2, . . . , n− 1.
From (29), the dynamic equations of the filtering errors q̃i are obtained as:

˙̃q1 = − q̃1
τ1
+ Ξ1(η̄3, θ̄2, η̄2, f , x2, f , ¯̃q2, d̄2, ḋ1, ¯̈r),

˙̃qj = −
q̃j
τj
+ Ξj(η̄j+2, θ̄j+1, η̄j+1, f , x̄j+1, f , ¯̃qj+1, q̇j, d̄j+1, ¯̈r),

˙̃qn = − q̃n
τn

+ Ξn(η̄n, θ̄n, η̄n, f , x̄n+1, f , ¯̃qn, d̄n, ḋn−1, ¯̈r),

(30)

where j = 2, . . . , n− 1, ¯̃qi = [q̃1, . . . , q̃i]
>; i = 1, . . . , n, ¯̈r = [r, ṙ, r̈]>, and:

Ξ1 = q̇1 =
2

∑
m=1

∂q1

∂ηm
η̇m +

∂q1

∂θ1
θ̇1 +

∂q1

∂η1, f
η̇1, f +

∂q1

∂x2, f
ẋ2, f +

∂q1

∂d1
ḋ1 +

∂q1

∂r
ṙ +

∂q1

∂ṙ
r̈,

Ξj = q̇j =
j+1

∑
m=1

∂qj

∂ηm
η̇m +

j

∑
m=1

[
∂qj

∂θm
θ̇m +

∂qj

∂ηm, f
η̇m, f +

∂qj

∂xm+1, f
ẋm+1, f +

∂qj

∂dm
ḋm

]
+

∂qj

∂q̃j−2
˙̃qj−2 +

∂qj

∂q̃j−1
˙̃qj−1 +

∂qj

∂r
ṙ,

Ξn = q̇n =
n

∑
m=1

∂qn

∂ηm
η̇m +

n

∑
m=1

[
∂qn

∂θm
θ̇m +

∂qn

∂ηm, f
η̇m, f +

∂qn

∂xm+1, f
ẋm+1, f +

∂qn

∂dm
ḋm

]
+

∂qn

∂q̃n−2
˙̃qn−2 +

∂qn

∂q̃n−1
˙̃qn−1 +

∂qn

∂r
ṙ.

Now, a total Lyapunov function candidate V is defined as:

V =
n

∑
m=1

(
Vm +

1
2

q̃2
m

)
. (31)

Remark 4. In the control design, qi is approximated by qi, f = (ηi − ηi, f )/τi − b∗i xi+1, f using the filtered
signals ηi, f and xi+1, f , as defined in (16). Thus, the filtering errors q̃i = qi − qi, f in V are considered for
the stability analysis of the closed-loop system.

Theorem 1. Consider the uncertain pure-feedback systems (1) with unknown control directions controlled
by the filter-based control laws (7), (16), and (21). Then, for any initial conditions satisfying V(0) ≤ ε

with any positive constant ε, the semi-global uniform ultimate boundedness of all the closed-loop signals and
the exponential convergence of the tracking error η1 to an adjustable neighborhood of the origin are ensured.

Proof. From (12), (20), (26), and (30), we have:

V̇ = ∑n
m=1

[
− γmη2

m −
q̃2

m
τm

+ (b∗mΘ(θm) + 1)θ̇m + ηm q̃m + q̃mΞm

]
+∑n−1

m=1

[
− δm+1η2

mη2
m+1 + ηmb∗mηm+1

]
.

(32)
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Consider the sets Gm, m = 1, . . . , n, and Gr such that Gm = {∑m
j=1 η2

j + q̃2
j ≤ 2ε} and Gr =

{r2 + ṙ2 + r̈2 ≤ εr}, respectively, where εr > 0 is a constant. Since Gm and Gr are compact in R2m and
R3, respectively, Gm × Gr is compact in R2m+3. Then, in order to show that |Ξm| has a maximum value
on Gm × Gr, the following procedure is presented step by step.

(P1) From x1 = η1 + r, |x1| ≤ Cx,1 is satisfied on G1 × Gr where Cx,1 > 0 is a constant. Note that
η1 is bounded on G1, and thus, η1, f is also bounded on G1, which implies that η̃1 is bounded. From the
boundedness of η1 and η̃1 and the differential equation (10), θ1 is bounded. From x2 = η2 + ψ1, (9),
and (7), b∗1 x2 can be represented by:

b∗1 x2 = b∗1 η2 + b∗1 x2, f + b∗1 Θ(θ1)

(
γ1η1 +

η̃1
τ1

)
= b∗1 η2 +

η̃1
τ1
− q1, f + b∗1 Θ(θ1)

(
γ1η1 +

η̃1
τ1

)
.

(33)

Since −q1, f = q̃1 − q1 and p1 + d1 − ṙ = b∗1 x2 + q1, we have:

p1 = b∗1 η2 +
η̃1

τ1
+ q̃1 + b∗1 Θ(θ1)

(
γ1η1 +

η̃1

τ1

)
− d1 + ṙ.

Applying the mean value theorem [44] to p1 and using Assumption 2, we have p1 = p1(x1, 0) +
b1(x1, λ1x2)x2 with a constant 0 < λ1 < 1. Thus, we have:

b1(x1, λ1x2)x2 = B1(η1, η2, η1, f , θ1, q̃1, x1, d1, ṙ)

where B1 = b∗1 η2 + η̃1/τ1 + q̃1 + b∗1 Θ(θ1)(γ1η1 + η̃1/τ1)− d1 + ṙ− p1(x1, 0). Using the boundedness
of x1, η1, θ1, and q̃1 on G1 × Gr and the boundedness of η2 on G2, there exists a constant CB,1 such that
|B1| ≤ CB,1 on G2 × Gr. From Assumption 2, it holds that b1|x2| ≤ |b1x2| = |B1|, and thus, we get
|x2| ≤ Cx,2 , CB,1/b1. From the boundedness of x2 on G2 × Gr, x2, f is also bounded. Using the
boundedness of x2, f on G2 × Gr and the boundedness of η3 on G3, it can be shown that there exists
a constant CΞ,1 > 0 such that |Ξ1| ≤ CΞ,1 on G3 × Gr.

(P2) Since ηj−1 and ηj are bounded on Gj with j = 2, . . . , n− 1, the boundedness of θj is guaranteed
from (18). Similar to (33), b∗j xj+1 along (2) and (17) can be rewritten by:

b∗j xj+1 = b∗j ηj+1 +
η̃j

τj
− qj, f + b∗j Θ(θj)

(
γjηj +

η̃j

τj
+ δjη

2
j−1ηj

)
.

Then, it becomes:

pj = b∗j ηj+1 +
η̃j

τj
+ q̃j + ψ̇j−1 + b∗j Θ(θj)

(
γjηj +

η̃j

τj
+ δjη

2
j−1ηj

)
− dj.

By applying the mean value theorem [44] and Assumption 2 to pj, it holds that pj = pj(x̄j, 0) +
bj(x̄j, λjxj+1)xj+1 with a constant 0 < λj < 1. Therefore, it holds that:

bj(x̄j, λjxj+1)xj+1 = Bj(ηj−3, ηj−2, ηj−1, ηj, ηj+1, ηj−2, f , ηj−1, f , ηj, f , xj, f ,
θj−2, θj−1, θj, q̃j−2, q̃j−1, q̃j, x̄j, dj)

where Bj = b∗j ηj+1 + η̃j/τj + q̃j + ψ̇j−1 + b∗j Θ(θj)(γjηj + η̃j/τj + δjη
2
j−1ηj) − dj − pj(x̄j, 0).

From the recursive procedure, since x̄j is bounded on Gj × Gr and η̄j+1 is bounded on Gj+1,
we obtain a constant CB,j satisfying |Bj| ≤ CB,j on Gj+1 × Gr. Then, Assumption 2 leads to
bj|xj+1| ≤ |bjxj+1| = |Bj|, and thus, |xj+1| ≤ Cx,j+1 , CB,j/bj is obtained where Cx,j+1 is a constant.
Owing to the boundedness of xj+1, xj+1, f is also bounded on Gj+1 × Gr. Using the boundedness of
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xj+1, f and the fact that ηj+2 is bounded on Gj+2, there exists a constant CΞ,j > 0 such that |Ξj| ≤ CΞ,j
on Gj+2 × Gr.

(P3) The boundedness of ηn−1 and ηn yields the boundedness of θn on Gn. We can rewrite b∗nu as:

b∗nu =
η̃n

τn
− qn, f + b∗nΘ(θn)

(
γnηn +

η̃n

τn
+ δnη2

n−1ηn

)
.

Similar to previous steps, we have:

bn(x̄n, λnu)u = Bn(ηn−3, ηn−2, ηn−1, ηn, ηn−2, f , ηn−1, f , ηn, f ,
θn−2, θn−1, θn, q̃n−2, q̃n−1, q̃n, x̄n)

where Bn = η̃n/τn + q̃n + ψ̇n−1 + b∗nΘ(θn)(γnηn + η̃n/τn + δnη2
n−1ηn)− dn− pn(x̄n, 0) and 0 < λn < 1

is a constant. On Gn, η̄n, θn, q̃n, and x̄n are bounded. Thus, |Bn| ≤ CB,n is satisfied on Gn × Gr where
CB,n is a constant. Thus, it holds that |u| ≤ Cu , CB,n/bn where Cu > 0 is a constant. From the
boundedness of u, we can obtain the boundedness of u f on Gn ×Gr. As a result, |Ξn| ≤ CΞ,n is ensured
on Gn × Gr where CΞ,n > 0 is a constant.

Now, using the inequalities:

ηmb∗mηm+1 ≤ δm+1η2
mη2

m+1 +
(b∗m)2

4δm+1
,

ηm q̃m ≤
1
2

η2
m +

1
2

q̃2
m,

q̃mΞm ≤
Ξ2

m
2ρ

q̃2
m +

ρ

2
,

with a positive constant ρ, (32) becomes:

V̇ =
n

∑
m=1

[
−
(

γm −
1
2

)
η2

m −
(

1
τm
− Ξ2

m
2ρ
− 1

2

)
q̃2

m + (b∗mΘ(θm) + 1)θ̇m

]
+ C1

where C1 = nρ/2 + ∑n−1
m=1(b

∗
m)

2 /(4δm+1).
Choosing the design parameters γm = (1/2) + γ∗/2 and 1/τm = 1/2 + C2

Ξ,m/(2ρ) + γ∗/2 with
a constant γ∗ > 0, we have:

V̇ ≤ −γ∗V + C1 +
n

∑
m=1

[
−
(

1− Ξ2
m

C2
Ξ,m

)C2
Ξ,m

2ρ
q̃2

m + (b∗mΘ(θm) + 1)θ̇m

]
.

From (P1)–(P3), |Ξi| ≤ CΞ,i on V = ε and θi, i = 1, . . . , n, are bounded on V = ε. From the boundedness
of θi, Θ(θi) = θ2

i cos(θi) is bounded on V = ε. In addition, the boundedness of ηi and θi yields
the boundedness of θ̇i on V = ε where i = 1, . . . , n. Accordingly, there exist constants Cθ,i such that
(b∗i Θ(θi) + 1)θ̇i ≤ Cθ,i. Then, the inequality:

V̇ ≤ −γ∗V + C

holds on V = ε where C = C1 + ∑n
i=1 Cθ,i. Thus, V̇ < 0 on V = ε when γ∗ > C/ε. This implies

that V(t) ≤ ε for all t ≥ 0 if V(0) ≤ ε. Therefore, we can conclude that all the closed-loop signals
are semi-globally uniformly ultimately bounded. In addition, integrating the above inequality over
[0, t] yields V(t) ≤ C/γ∗ + (ε− (C/γ∗))e−γ∗t. Here, (1/2)η2

1 ≤ V, and thus, the tracking error η1

converges to a neighborhood of the origin described by S = {η1| |η1| ≤
√

2C/γ∗}.

Remark 5. From the proof of Theorem 1, the control gains and the time constants are chosen as γi = 1/2 +

γ∗/2 and 1/τi = 1/2 + C2
Ξ,i/(2ρ) + γ∗/2, respectively, where CΞ,i are unknown constants. However, since ρ
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is a constant, which can be adjusted arbitrarily, the effect of CΞ,i can be reduced by increasing ρ. Therefore,
we can choose τi as desired constants. The choice of the time constants is a general issue in the dynamic surface
control approaches (see [3,6,12,18,26,29,31] and the references therein).

Remark 6. The design parameters of the proposed filter-based tracker can be selected for reducing the compact
set S in the proof of Theorem 1. The guidelines for the design parameters are as follows: (1) increasing γi,
i = 1, . . . , n, and δk+1, k = 1, . . . , n− 1, helps to increase γ∗, which subsequently reduces the bound

√
2C/γ∗,

and (2) reducing the time constants τi of the employed filters helps to increase γ∗, which also reduces the bound√
2C/γ∗.

Remark 7. For the stability analysis using the dynamics (30) of the filtering errors q̃i, i = 1, . . . , n,
the nonlinear functions pi are required to be continuously differentiable. Thus, the presented filter-based
function approximation technique cannot be applied to approximate unknown non-smooth nonlinearities. That is,
the proposed approach focuses on the control problem of the system (1) with unknown C1 non-affine nonlinear
functions.

4. Simulation Results

To demonstrate the effectiveness of the proposed theoretical algorithm, a numerical example
and a modified Chua’s circuit system are simulated. For both simulations, the proposed filter-based
nonadaptive control scheme is compared with the controller reported in [33] whose controller structure
is given in (27), and an integral absolute error (IAE) index is used for the evaluation.

Example 1. The uncertain nonlinear system is considered as:

ẋ1 = −2x2 + 0.2x2
1,

ẋ2 = 1.5(sin2(x2) + 1)x3 + 0.5 sin(x1)x2,
ẋ3 = 3u + 0.2 tanh(u3) + 0.8x2x3 + 0.2 sin(t).

(34)

The initial values of the state variables, the parameters of Nussbaum functions, and the reference signal
are set to x̄3(0) = [0.3, 0.5,−0.5]>, θi(0) = 0, and r(t) = 0.3 sin(0.5t) + 0.7 sin(t) for i = 1, 2, 3,
respectively. For the simulation, we choose the design parameters as τi = 0.025, γ1 = 4, γ2 = 2, γ3 = 1.5,
and δ2 = δ3 = 0.01 where i = 1, 2, 3.

The tracking result and error are compared in Figure 2a,b, respectively. As shown in this figure,
the tracking performance of the proposed controller is better than the previous controller using adaptive
function approximators. Since the weights of the adaptive approximators should be updated on-line,
the convergence speed of the tracking error of the controller [33] is slower than that of the proposed
nonadaptive controller. Besides, the fluctuation of the tracking error in the transient response
is mitigated by replacing the adaptive function approximator with the filter-based nonadaptive
approximator. The IAE index values during 30 s are 0.8357 for the proposed controller and 2.1412 for
the controller of [33]. Figure 3a,b depicts the control input and the outputs of the Nussbaum functions,
respectively. The boundedness of u and Θ(θi), i = 1, 2, 3, is shown. From these figures, we can
conclude that the proposed approach presented in the filter-based control framework is effective for
dealing with the problem of unknown control directions.
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Figure 2. Comparison of the tracking result and error for Example 1: (a) x1 and r; (b) η1.

Example 2. Chua’s circuit system has been widely investigated to describe prototypical electronic systems [45].
In this example, we consider the modified Chua circuit system [46] with an unknown sign of a control coefficient
described by:

ẋ1 = v1(x2 − 1
7 (2x3

1 − x1)),
ẋ2 = x1 − x2 + x3,
ẋ3 = −v2x2 + u,

(35)

where v1 and v2 are unknown and nonzero system parameters, x1 and x2 are the voltages across two
capacitors whose units are V, x3 is the current through the inductor whose unit is A, and u is a voltage
source added in series with the inductor whose unit is mV. We assume that the sign of the control coefficient
v1 is unknown. For the simulation, we set v1 = 1, v2 = 10/7, x̄3(0) = [−0.3,−0.5, 0]>, θ1(0) = 0,
and r(t) = 0.5 cos(0.5t) + 0.7 sin(t). The design parameters are selected as τi = 0.025, γ1 = 8.5, γ2 = 3.5,
γ3 = 1, and δ2 = δ3 = 0.01 where i = 1, 2, 3. Figure 4 displays the tracking result and error of the proposed
controller and the adaptive function approximation-based controller [33]. In Figure 4b, the IAE index values of
the tracking error during 30 s are 0.5058 for the proposed controller and 0.9270 for the controller [33]. From this
figure, one can see that the tracking error under the proposed control scheme converges to the vicinity of zero
in a few seconds, whereas the previous control scheme takes more time to converge. The control input and
the output of the Nussbaum function are depicted in Figure 5a,b, respectively.
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Figure 3. The control input and the Nussbaum functions’ outputs for Example 1: (a) u; (b) Θ(θi),
i = 1, 2, 3.
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Figure 4. Tracking result and error for Example 2: (a) x1 and r; (b) η1.
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Figure 5. The control input and the Nussbaum function’s output for Example 2: (a) u; (b) Θ(θ1).
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5. Conclusions

This paper presented a filter-based nonadaptive tracking design for the unknown control direction
problem of uncertain pure-feedback nonlinear systems. Different from the existing adaptive recursive
control designs, the major contribution of the proposed strategy is to achieve a simplified tracking
control without using any adaptive approximators in the presence of unknown control directions.
The control scheme using filtered signals of error surfaces, a control input, and state variables was
constructed to achieve the semi-global practical tracking. The stability of the closed-loop system
was thoroughly analyzed using the Lyapunov stability theorem, and simulation comparisons were
provided to verify the effectiveness of the proposed control result. In our future study, we will analyze
the control performance along with various Nussbaum-type functions and extend the filter-based
approximation approach to the event-triggered control of network systems. Additionally, the potential
application of the proposed controller includes vehicle vibration control in the stochastic wind field [47]
and the traction power collector system subjected to unknown irregularities [48].
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