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Abstract: A decentralized adaptive resilient output-feedback stabilization strategy is presented for
a class of uncertain interconnected nonlinear systems with unknown time-varying measurement
sensitivities. In the concerned problem, the main difficulty is to achieve the decentralization of
interconnected output nonlinearities unmatched to the control input by using only local output
information corrupted by measurement sensitivity, namely the exact output information cannot
be used to design the decentralized output-feedback control scheme. Thus, a decentralized
output-feedback stabilizer design using only the corrupted output of each subsystem is developed
where the adaptive control technique is employed to compensate for the effects of unknown
measurement sensitivities. The stability of the resulting decentralized control scheme is analyzed
based on the Lyapunov stability theorem.

Keywords: decentralized adaptive control; unknown corrupted measurement outputs; output-feedback;
interconnected nonlinear systems

1. Introduction

For the implementation of control systems, sensors play a crucial role in measuring the state
variables of physical systems, and thus, the measurement precision of the sensor affects the control
performance [1]. However, due manufacturing reasons or the practical limitations of sensors,
the measured state variables can be inaccurate in the practical environment [2,3]. Therefore, a main issue
is to design stable controllers regardless of the inaccurate measurement of sensors. In [4–12], there were
attempts to control single linear or nonlinear systems with uncertain measurement sensitivity.
Output-feedback control approaches were proposed via the feedback domination approach [6–10],
and a sampled data output-feedback stabilizer was developed in [11]. In [12], the output-feedback
controller using the dual-domination approach was designed for nonlinear systems with unknown
time-varying measurement sensitivity. However, these control approaches require the knowledge
about the bounds of the partial derivatives of unknown output functions [6–11] and the bounds of
unknown time-varying measurement sensitivity [12].

The decentralized control problem of interconnected nonlinear systems has been regarded as
an interesting issue because of the benefits of decentralized controllers over standard centralized
controllers such as the simplicity and computational efficiency by using the information on the
subsystem itself (see [13–18] and the references therein). Among them, the adaptive recursive
control techniques such as backstepping [19] and dynamic surface control [20] have been employed
to handle unknown interaction nonlinearities unmatched to local control inputs [21–26]. In [27],
a decentralized output-feedback domination design approach was investigated for uncertain
nonlinear large-scale systems. In [28,29], decentralized adaptive control strategies were established
for a class of interconnected nonlinear systems with completely unknown actuator failures.
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A decentralized adaptive controller was developed for interconnected nonlinear systems with
stochastic disturbance [30]. An adaptive decentralized control method using barrier Lyapunov
functions was proposed for uncertain large-scale nonlinear systems subject to full state constraints [31].
However, the existing results [21–31] did not consider the measurement sensitivity problem. Namely,
the decentralization of the control structure is based on the accurate state-feedback information.
The main design difficulty in considering measurement sensitivity comes from the difference between
the interconnected state information of systems and the local state information used for the feedback
control. Different from the state information in the interaction nonlinearities, the state information
for the local control design is corrupted by measurement sensitivity. Thus, contrary to [21–31],
the local controller using corrupted state variables should be designed for each subsystem. Because of
this difficulty, there are few results to deal with the imprecise sensor measurement problem in the
decentralized control field. In [32], a decentralized output-feedback small-gain controller using the
cyclic-small-gain theorem was proposed to deal with the corruption of the output information owing
to sensor noise. However, the previous control scheme [32] necessitates the known bound of the
sensor noise.

The aim of this paper is to present a decentralized resilient output-feedback control strategy of
uncertain interconnected nonlinear systems with unknown time-varying measurement sensitivities.
The bounds for the measurement sensitivities are assumed to be unknown. Unmeasurable local state
variables are estimated by high-gain observers using local output signals corrupted by unknown
measurement sensitivities. Then, a local adaptive dynamic surface output-feedback controller for
each subsystem is recursively designed using the corrupted output information where the adaptation
structure is employed to compensate for unknown measurement sensitivity. In the proposed control
scheme, the decentralization of interconnections among uncorrupted output signals is achieved by
designing the local controller using the corrupted output information. Based on the Lyapunov stability
theorem, it is ensured that all of the closed-loop signals are uniformly ultimately bounded and the
local stabilization errors converge to an adjustable neighborhood of the origin in the presence of the
measurement sensitivities.

The main contributions of this work are two-fold:

(i) Compared with [21–31], the decentralized control problem in the presence of unknown
measurement sensitivities is considered in this paper. The local adaptive resilient output-feedback
control design using the corrupted output information is presented for each subsystem.

(ii) Compared with the existing result [32], the proposed decentralized resilient control methodology
ensures the robustness on unknown time-varying measurement sensitivities, without using any
bounding information of the measurement sensitivities. The adaptive control strategy is proposed
to compensate for unknown bounding effects of measurement sensitivities.

The rest of the paper is organized as follows. A decentralized adaptive resilient output-feedback
stabilization problem of uncertain interconnected nonlinear systems with unknown measurement
sensitivities is formulated in Section 2. Local adaptive resilient output-feedback control designs and
their stability analysis strategy are discussed in Section 3. Section 4 presents the simulation results.
In Section 5, some conclusions are given.

2. Problem Statement

Consider interconnected nonlinear systems consisting of subsystems with unknown measurement
sensitivities. The ith subsystem is represented by:

ẋi,j = xi,j+1 + ψi,j(t, x̄i, xi, ui),
ẋi,ni = ui + ψi,ni (t, x̄i, xi, ui),
yi = φi(t)xi,1,

(1)
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where i = 1, . . . , N, j = 1, . . . , ni − 1, xi = [xi,1 , . . . , xi,ni ]
> ∈ Rni , ui ∈ R, and yi ∈ R are the

system state vector, the control input, and the system output of the ith subsystem, respectively,
x̄i = [x1,1, . . . , xi−1,1, xi+1,1, . . . , xN,1]

> denotes interconnected state variables among subsystems, ψi,j :
R+×RN−1×Rni ×R→ R are nonlinear functions of the ith subsystem, and φi(t) denotes an unknown
parameter denoting the time-varying measurement sensitivity of the ith subsystem. When φi(t) = 1,
the system (1) describes ideal interconnected nonlinear systems without measurement sensitivities
that are considered in [21–31].

Assumption 1 ([6]). The system outputs yi corrupted by measurement sensitivities are only measurable
for feedback.

Assumption 2 ([12]). For interconnected nonlinear functions ψi,m(t, x̄i, xi, ui), there exist constants ki,m ≥ 0
such that:

|ψi,m(t, x̄i, xi, ui)| ≤ ki,m(|x1,1|+ . . . + |xN,1|+ |xi,2|+ . . . + |xi,m|) (2)

for m = 1, . . . , ni.

Remark 1. Assumption 2 was firstly introduced in [33] and was used for the control
design in several works (see [7,9,11,12] and the references therein). For example,
consider the nonlinear functions ψ1,2 =

x1,1
(1−cx1,2)2+x2

1,2
+ x2,1 sin(x2,1 + u3

1t) and

ψ2,3 = x1,1 cos(x3
2,1 + u2) + ln(1 + (x2

2,2)
c), where c ≥ 1 is constant. Then, Assumption 2

can be satisfied as follows: |ψ1,2| ≤
∣∣∣∣ 1
(1−cx1,2)2+x2

1,2

∣∣∣∣|x1,1|+ |x2,1| ≤ (1 + 2c)|x1,1|+ |x2,1| and

|ψ2,3| ≤ |x1,1|+ (2c− 1)
2c−1

2c |x2,2| ≤ |x1,1|+ (2c− 1)|x2,2| [34].

Assumption 3. φi(t) and φ̇i(t) of each subsystem are bounded as 0 < φ
i
≤ |φi(t)| ≤ φ̄i and |φ̇i(t)| ≤ ¯̇φi

where φ
i
, φ̄i, and ¯̇φi are unknown positive constants and the sign of φi(t) is known. Without loss of generality,

we assume that φi(t) > 0.

Problem 1. The problem of this paper is to construct local adaptive control laws ui using only the corrupted
output yi for stabilizing the interconnected nonlinear system (1) with the unknown time-varying measurement
sensitivity φi(t).

Remark 2. (i) In [32], a decentralized output feedback control problem was investigated for interconnected
nonlinear systems with known bounds of imprecise sensor measurement. On the contrary, the proposed adaptive
output feedback control strategy deals with the completely unknown bound problem of unknown measurement
sensitivities. That is, the bounds φ

i
, φ̄i, and ¯̇φi for the unknown measurement sensitivities are unknown.

(ii) Assumption 2 implies that the nonlinear functions ψi,m are bounded as the linear combination of
state variables. According to the amplitude of uncertain nonlinear functions, the constant ki,m can be adjusted
to satisfy Assumption 2. Thus, the proposed control approach can achieve good control performance under
Assumption 2.

(iii) In view of the controllability, Assumption 3 is reasonable for the decentralized output feedback control
problem because the measurement sensitivity cannot be zero (i.e., 0 < φ

i
≤ |φi(t)|) and the measurement

sensitivity and its derivative should be finite (i.e., |φi(t)| ≤ φ̄i and |φ̇i(t)| ≤ ¯̇φi). In addition, under
Assumption 3, the high frequency of the measurement sensitivity φi(t) can be allowed.
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3. Decentralized Adaptive Control Via Corrupted Output Measurement

3.1. Local High-Gain Observer Design

A local high-gain observer using the output yi is presented to estimate the state variables
as follows:

˙̂xi,j = x̂i,j+1 + Dj
i bi,j(yi − x̂i,1),

˙̂xi,ni = ui + Dni
i bi,ni (yi − x̂i,1),

(3)

where i = 1, . . . , N, j = 1, . . . , ni − 1, Di ≥ 1 denotes an observer gain and bi,j > 0 are Hurwitz
polynomial coefficients of the ith observer.

Let us define the observer errors as:

si,m =
xi,m − x̂i,m

Dm−1
i

(4)

with i = 1, . . . , N and m = 1, . . . , ni.
By differentiating (4) and substituting (1) and (3), the observer error dynamics is given by:

ṡi = Di Asi si + DiBsi (xi,1 − yi) + Ψi(t, x̄i, xi, ui) (5)

where si = [si,1, . . . , si,ni ]
>, Bsi = [bi,1, . . . , bi,ni ]

>, Ψi = [ψi,1, ψi,2/Di, . . . , ψi,ni /Dni−1
i ]>, and:

Asi =


−bi,1 1 · · · 0

...
...

. . .
...

−bi,ni−1 0 · · · 1
−bi,ni 0 · · · 0

 ∈ Rni×ni .

Here, Asi is Hurwitz owing to Hurwitz polynomial coefficients bi,1, . . . , bi,ni . Thus, there exists a
symmetric positive definite matrix Psi ∈ Rni×ni such that:

A>si
Psi + Psi Asi ≤ −Ini (6)

where Ini ∈ Rni×ni is an identity matrix.
The Lyapunov candidate function is defined as Vsi = s>i Psi si. From (5) and (6), differentiating Vsi

with respect to time yields:

V̇si ≤− Di‖si‖2 + 2Dis>i Psi Bsi (xi,1 − yi) + 2s>i Psi Ψi. (7)

Using Assumption 2, we have:

‖Ψi‖ ≤
ni

∑
j=1

|ψi,j|

Dj−1
i

≤
N

∑
l=1

ni

∑
j=1

ki,j

Dj−1
i

|xl,1|+
ni

∑
m=2

ni

∑
j=m

ki,j

Dj−1
i

|xi,m|

≤
N

∑
l=1

ni

∑
j=1

ki,j|xl,1|+
ni

∑
m=2

ni

∑
j=m

ki,j
|xi,m|
Dm−1

i

. (8)
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Therefore, using (4) and (8), we have:

2s>i Psi Ψi ≤ 2‖si‖‖Psi‖
N

∑
l=1

ni

∑
j=1

ki,j|xl,1|+ 2‖si‖‖Psi‖
ni

∑
m=2

ni

∑
j=m

ki,j

(
|si,m|+

|x̂i,m|
Dm−1

i

)
. (9)

Using Young’s inequality, the terms of (9) can be represented by:

2‖si‖‖Psi‖
N

∑
l=1

ni

∑
j=1

ki,j|xl,1| ≤
ni

∑
j=1

ki,j

(
N‖Psi‖

2‖si‖2 +
N

∑
l=1

x2
l,1

)
, (10)

2‖si‖‖Psi‖
ni

∑
m=2

ni

∑
j=m

ki,j
|x̂i,m|
Dm−1

i

≤
ni

∑
m=2

ni

∑
j=m

ki,j

(
‖Psi‖

2‖si‖2 +
x̂2

i,m

D2m−2
i

)
. (11)

Substituting (10) and (11) into (9) yields:

2s>i Psi Ψi ≤ ωi,1‖si‖2 +
N

∑
l=1

ni

∑
j=1

ki,jx2
l,1 +

ni

∑
m=2

ni

∑
j=m

ki,j
x̂2

i,m

D2m−2
i

(12)

where ωi,1 = ∑ni
j=1 ki,jN‖Psi‖2 + ∑ni

m=2 ∑ni
j=m ki,j‖Psi‖2+ 2 ∑ni

m=2 ∑ni
j=m ki,j‖Psi‖.

Using xi,1 − yi = (1− φi(t))xi,1, we have:

|2Dis>i Psi Bsi (xi,1 − yi)| ≤
Di
2
‖si‖2 + 2Di‖Psi‖

2‖Bsi‖
2(1− φi)

2x2
i,1. (13)

By substituting (12) and (13) into (7), the following inequality holds:

V̇si ≤ −
(

Di
2
−ωi,1

)
‖si‖2 +

N

∑
l=1

ni

∑
j=1

ki,jx2
l,1 + ωi,2(1− φi)

2x2
i,1 +

ni

∑
m=2

ni

∑
j=m

ki,j
x̂2

i,m

D2m−2
i

(14)

where ωi,2 = 2Di‖Psi‖2‖Bsi‖2.

3.2. Local Adaptive Output-Feedback Controller Design

The decentralized adaptive output-feedback control design using the dynamic surface design
technique is proposed in the presence of unknown measurement sensitivity. For the local control
design, the error surfaces are defined as:

zi,1 = yi,
zi,j = x̂i,j − ν̄i,j,
ξi,j = ν̄i,j − νi,j,

(15)

where i = 1, . . . , N, j = 2, . . . , ni, zi,1 and zi,j are error surfaces, ξi,j are boundary layer errors, νi,j are
virtual control laws, and ν̄i,j are the output signal of the first-order low-pass filter defined as:

κi,j ˙̄νi,j + ν̄i,j = νi,j, ν̄i,j(0) = νi,j(0) (16)

with a time constant κi,j.
Step 1: From yi = φi(t)xi,1, (1), (4), and (15), the time derivative of zi,1 is:

żi,1 = φ̇ixi,1 + φi(xi,2 + ψi,1)

= φ̇ixi,1 + φi(Disi,2 + zi,2 + ξi,2 + νi,2 + ψi,1). (17)
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Select a Lyapunov candidate function Vi,1 = Vsi +(1/2φi)z2
i,1. The time derivative of Vi,1 along (17)

and xi,1 = zi,1/φi is:

V̇i,1 =
zi,1

φi
[φ̇ixi,1 + φi(Disi,2 + zi,2 + ξi,2 + νi,2 + ψi,1)]−

φ̇i

2φ2
i

z2
i,1 + V̇si (18)

≤ zi,1(Disi,2 + zi,2 + ξi,2 + νi,2) +
φ̇i

2φ2
i

z2
i,1 −

(
Di
2
−ωi,1

)
‖si‖2 + zi,1ψi,1

+ ωi,2
(1− φi)

2

φ2
i

z2
i,1 +

N

∑
l=1

ni

∑
j=1

ki,j
z2

l,1

φ2
l
+

ni

∑
m=2

ni

∑
j=m

ki,j
x̂2

i,m

D2m−2
i

. (19)

Using Assumption 2 and zl,1 = φl xl,1, it holds that:

zi,1ψi,1 ≤
N

∑
l=1

ki,1|xl,1‖zi,1| =
N

∑
l=1

ki,1
|zl,1|

φl
|zi,1| ≤ ki,1

(
Nz2

i,1 +
N

∑
l=1

z2
l,1

4φ2
l

)
. (20)

Based on (20), it becomes:

V̇i,1 ≤ zi,1(Disi,2 + zi,2 + ξi,2 + νi,2) + Π∗i z2
i,1 −

(
Di
2
−ωi,1

)
‖si‖2

+
N

∑
l=1

ki,1
z2

l,1

4φ2
l
+

N

∑
l=1

ni

∑
j=1

ki,j
z2

l,1

φ2
l
+ Hi(x̂i) (21)

where Π∗i = ki,1N + φ̇i/(2φ2
i ) + ωi,2((1− φi)

2/φ2
i ) and Hi(x̂i) = ∑ni

m=2 ∑ni
j=m ki,j(x̂2

i,m/D2m−2
i ) with

x̂i = [x̂i,2, . . . , x̂i,ni ]
>.

From Assumption 3, there exists a constant Π̄∗i such that |Π∗i | ≤ Π̄∗i where
Π̄∗i = ki,1N + ¯̇φi/(2φ2

i
) + ωi,2(1 + φ̄i)

2/φ2
i
. In addition, we have:

N

∑
l=1

ki,1
z2

l,1

4φ2
l
≤

N

∑
l=1

ki,1
z2

l,1

4φ2
l

, (22)

N

∑
l=1

ni

∑
j=1

ki,j
z2

l,1

φ2
l
≤

N

∑
l=1

ni

∑
j=1

ki,j
z2

l,1

φ2
l

. (23)

Substituting (22) and (23) into (21) yields:

V̇i,1 ≤ −
(

Di
2
−ωi,1

)
‖si‖2 + Π̄∗i z2

i,1 + zi,1(Disi,2 + zi,2 + ξi,2 + νi,2)

+
N

∑
l=1

(
ki,1

4φ2
l

+
ni

∑
j=1

ki,j

φ2
l

)
z2

l,1 + Hi(x̂i). (24)

Choose the virtual control law νi,2 with an adaptive parameter Π̂i as:

νi,2 = −αi,1zi,1 − Π̂izi,1, (25)
˙̂Πi = ρi(z2

i,1 − σiΠ̂i), (26)

where αi,1 > 0 is a control gain, ρi > 0 is an adaptation gain, Π̂i is an estimate of the unknown constant
Πi to be defined later, Π̂i(0) ≥ 0, and σi > 0 is a constant for the σ-modification [35].

Substituting (25) and (26) into (24) yields:

V̇i,1 ≤ −
(

Di
2
−ωi,1

)
‖si‖2 − αi,1z2

i,1 + (Π̄∗i − Π̂i)z2
i,1 + Dizi,1si,2
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+ zi,1zi,2 + zi,1ξi,2 +
N

∑
l=1

(
ki,1

4φ2
l

+
ni

∑
j=1

ki,j

φ2
l

)
z2

l,1 + Hi(x̂i). (27)

Step p (2 ≤ p ≤ ni − 1): From (3) and (15), the time derivative of zi,p is described by:

żi,p = zi,p+1 + ξi,p+1 + νi,p+1 + Dp
i bi,p(yi − x̂i,1)− ˙̄νi,p. (28)

A Lyapunov function is considered as Vi,p = Vi,p−1 + (1/2)z2
i,p. Then, the time derivative of Vi,p

is obtained as:

V̇i,p ≤ zi,p(zi,p+1 + ξi,p+1 + νi,p+1 + Dp
i bi,p(yi − x̂i,1)− ˙̄νi,p) + V̇i,p−1. (29)

The virtual control law νi,p+1 using (16) is selected as:

νi,p+1 = −αi,pzi,p − Dp
i bi,p(yi − x̂i,1) +

νi,p − ν̄i,p

κi,p
(30)

where αi,p > 0 are design constants. Substituting (30) into (29) and using (27), we have:

V̇i,p ≤ −
(

Di
2
−ωi,1

)
‖si‖2 + (Π̄∗i − Π̂i)z2

i,1 −
p

∑
j=1

αi,jz2
i,j + Dizi,1si,2

+
p

∑
j=1

(zi,jzi,j+1 + zi,jξi,j+1) +
N

∑
l=1

(
ki,1

4φ2
l

+
ni

∑
j=1

ki,j

φ2
l

)
z2

l,1 + Hi(x̂i). (31)

Step ni: Similar to (28), the following result holds:

żi,ni = ui + Dni
i bi,ni (yi − x̂i,1)− ˙̄νi,ni . (32)

A Lyapunov candidate function is considered as Vi,ni = Vi,ni−1 + (1/2)z2
i,ni

. Based on (31), the
time derivative of Vi,ni is given by:

V̇i,ni ≤ −
(

Di
2
−ωi,1

)
‖si‖2 + (Π̄∗i − Π̂i)z2

i,1 −
ni−1

∑
j=1

αi,jz2
i,j + Dizi,1si,2

+
ni−1

∑
j=1

(zi,jzi,j+1 + zi,jξi,j+1) + zi,ni (ui + Dni
i bi,ni (yi − x̂i,1)− ˙̄νi,ni )

+
N

∑
l=1

(
ki,1

4φ2
l

+
ni

∑
j=1

ki,j

φ2
l

)
z2

l,1 + Hi(x̂i). (33)

To deal with the nonlinearity Hi(x̂i) derived from the observer error dynamics, we add and
subtract 2 tanh2 (zi,ni /δi)Hi(x̂i) into (33) with a design constant δi > 0. Then, it holds that:

V̇i,ni ≤ −
(

Di
2
−ωi,1

)
‖si‖2 + (Π̄∗i − Π̂i)z2

i,1 −
ni−1

∑
j=1

αi,jz2
i,j + Dizi,1si,2 +

ni−1

∑
j=1

(zi,jzi,j+1 + zi,jξi,j+1)

+ zi,ni

(
ui + Dni

i bi,ni (yi − x̂i,1)− ˙̄νi,ni +
2

zi,ni

tanh2
(

zi,ni

δi

)
Hi(x̂i)

)
+

(
1− 2 tanh2

(
zi,ni

δi

))
Hi(x̂i) +

N

∑
l=1

(
ki,1

4φ2
l

+
ni

∑
j=1

ki,j

φ2
l

)
z2

l,1 (34)
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where the term (2/zi,ni ) tanh2(zi,ni /δi)Hi(x̂i) is a well-defined nonlinear function owing to the
following property: limzi,ni

→0(1/zi,ni ) tanh2(zi,ni /δi) = 0 [36].
The local actual control law ui is designed as:

ui =


−αi,ni zi,ni −

(
2

zi,ni

)
tanh2

(
zi,ni
δi

)
Hi(x̂i)− Dni

i bi,ni (yi − x̂i,1) +
νi,ni
−ν̄i,ni

κi,ni
, zi,ni 6= 0,

−Dni
i bi,ni (yi − x̂i,1) +

νi,ni
−ν̄i,ni

κi,ni
, zi,ni = 0,

(35)

where αi,ni > 0 is a design parameter. Using (35) and the inequalities Dizi,1si,2 ≤ Diz2
i,1 + (Di/4)s2

i,2 ≤
Diz2

i,1 + (Di/4)‖si‖2, zi,jzi,j+1 ≤ z2
i,j/2 + z2

i,j+1/2, and zi,jξi,j+1 ≤ z2
i,j/2 + ξ2

i,j+1 /2 yields:

V̇i,ni ≤ −
(

Di
4
−ωi,1

)
‖si‖2 + (Π̄∗i − Π̂i)z2

i,1 − (αi,1 − Di − 1)z2
i,1 −

ni−1

∑
j=2

(
αi,j −

3
2

)
z2

i,j

−
(

αi,ni −
1
2

)
z2

i,ni
+

(
1− 2 tanh2

(
zi,ni

δi

))
Hi(x̂i) +

N

∑
l=1

(
ki,1

4φ2
l

+
ni

∑
j=1

ki,j

φ2
l

)
z2

l,1

+
ni−1

∑
j=1

1
2

ξ2
i,j+1. (36)

where the term −(αi,ni − 1/2)z2
i,ni

becomes zero when zi,ni = 0, and thus, applying (35) to (34) can be
described by the inequality (36) for two cases zi,ni 6= 0 and zi,ni = 0.

Consider V = ∑N
i=1 Vi,ni . Using the following property:

N

∑
i=1

N

∑
l=1

(
ki,1

4φ2
l

+
ni

∑
j=1

ki,j

φ2
l

)
z2

l,1 =
N

∑
i=1

N

∑
l=1

(
kl,1

4φ2
i

+
ni

∑
j=1

kl,j

φ2
i

)
z2

i,1

and (36), the time derivative of V is:

V̇ ≤
N

∑
i=1

[
−
(

Di
4
−ωi,1

)
‖si‖2 + (Πi − Π̂i)z2

i,1 − (αi,1 − Di − 1)z2
i,1 −

ni−1

∑
j=2

(
αi,j −

3
2

)
z2

i,j

−
(

αi,ni −
1
2

)
z2

i,ni
+

(
1− 2 tanh2

(
zi,ni

δi

))
Hi(x̂i) +

ni−1

∑
j=1

1
2

ξ2
i,j+1

]
(37)

where Πi = Π̄∗i + ∑N
l=1
(
(kl,1/(4φ2

i
)) + ∑ni

j=1 kl,j(1/φ2
i
)
)
.

Remark 3. Contrary to [21–31], the proposed local control scheme using the observer (3) and the
controller (26), (25), (30), and (35) only uses the local output signal yi corrupted by the time-varying
measurement sensitivity φi(t). Nevertheless, the decentralization of interconnections among uncorrupted output
signals is achieved by compensating for the effect of unknown measurement sensitivity via the adaptive recursive
technique, and the stability of the total closed-loop systems is successfully analyzed in the following section.

3.3. Stability Analysis

In this section, the stability of the closed-loop system is analyzed in the presence of unknown
measurement sensitivity. From (26) and Π̂i(0) ≥ 0, it holds that Π̂i ≥ 0 for all t ≥ 0. Then, using (15)
and (16), the time derivative of ξi,j is represented by:

ξ̇i,j = −
ξi,j

κi,j
+ Bi,j, (38)
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where i = 1, . . . , N, j = 2, . . . , ni, and Bi,j = −ν̇i,j satisfying:

|Bi,2| ≤ Φi,2(z̄i, zi,1, si,2, ξi,2, φ̄, φ̇i, Π̂i)

= (αi,1 + Π̂i)|żi,1|+ | ˙̂Πi‖zi,1|,
|Bi,m+1| ≤ Φi,m+1(s̄i,2, z̄i, z̄i,m+1, ξ̄i,m+1, φ̄, φ̇i, Π̂i)

= αi,m|(zi,m+1 + ξi,m+1 − αi,mzi,m)|+
|ξ̇i,m|
κi,m

+ Dm
i bi,m

[
Di|(si,2 − bi,1si,1)|

+ Dibi,1

(
1
φi

+ 1
)
|zi,1|+ ki,1

N

∑
l=1

|zl,1|
φl

+
|φ̇i|
φ2

i
|zi,1|+

φi + 1
φi
|żi,1|

]
,

|żi,1| ≤
|φ̇i|
φi
|zi,1|+ φi|(Disi,2 + zi,2 + ξi,2 − (αi,1 + Π̂i)zi,1)|+ φiki,1

N

∑
l=1

|zl,1|
φl

,

with m = 2, . . . , ni − 1, s̄i,2 = [si,1, si,2]
>, z̄i = [z1,1, . . . , zi−1,1, zi+1,1, . . . , zN,1]

>,
z̄i,m+1 = [zi,1, . . . , zi,m+1]

>, ξ̄i,m+1 = [ξi,2, . . . , ξi,m+1]
>, and φ̄ = [φ1, . . . , φN ]

>.
Define a total Lyapunov candidate function as:

V̄ = V +
N

∑
i=1

( ni

∑
j=2

1
2

ξ2
i,j +

1
2ρi

Π̃2
i

)
(39)

where Π̃i = Πi − Π̂i.

Theorem 1. Consider the interconnected nonlinear systems (1). The decentralized adaptive output-feedback
control scheme (3), (26), (25), (30), and (35) ensures that for all initial conditions satisfying V̄(0) ≤ r with
any constant r > 0, all signals of the total closed-loop system are semi-globally uniformly ultimately bounded,
and the local stabilization errors converge to a neighborhood of the origin, which can be adjusted by selecting
design parameters.

Proof. From (37), (38), and the adaptation law (26), the time derivative of V̄ is obtained as:

˙̄V ≤
N

∑
i=1

[
−
(

Di
4
−ωi,1

)
‖si‖2 − (αi,1 − Di − 1)z2

i,1 −
ni−1

∑
j=2

(
αi,j −

3
2

)
z2

i,j −
(

αi,ni −
1
2

)
z2

i,ni

+

(
1− 2 tanh2

(
zi,ni

δi

))
Hi(x̂i)−

ni

∑
j=2

(
1

κi,j
− 1

2

)
ξ2

i,j +
ni

∑
j=2

ξi,jBi,j + σiΠ̃iΠ̂i

]
. (40)

Using σiΠ̃iΠ̂i = σiΠ̃i(Πi − Π̃i) = −σiΠ̃2
i + σiΠ̃iΠi ≤ −(σi/2)Π̃2

i + (σi/2)Π2
i , (40) becomes:

˙̄V ≤
N

∑
i=1

[
−
(

Di
4
−ωi,1

)
‖si‖2 − (αi,1 − Di − 1)z2

i,1 −
ni−1

∑
j=2

(
αi,j −

3
2

)
z2

i,j −
(

αi,ni −
1
2

)
z2

i,ni

+

(
1− 2 tanh2

(
zi,ni

δi

))
Hi(x̂i)−

ni

∑
j=2

(
1

κi,j
− 1

2

)
ξ2

i,j +
ni

∑
j=2
|ξi,j|Φi,j −

σi
2

Π̃2
i +

σi
2

Π2
i

]
. (41)

To deal with the term (1 − 2 tanh2(zi,ni /δi))Hi(x̂i), we define the compact set Ξi as
Ξi := {zi,ni | |zi,ni | ≤ 0.8814δi} for i = 1, . . . , N. The stability analysis is considered as two cases
according to the inclusion of zi,ni in the compact set Ξi.
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Case I (zi,ni /∈ Ξi): Because of zi,ni /∈ Ξi, it holds that 1− 2 tanh2(zi,ni /δi) ≤ 0 [37]. Owing to
Hi(x̂i) ≥ 0, (41) becomes:

˙̄V ≤
N

∑
i=1

[
−
(

Di
4
−ωi,1

)
‖si‖2 − (αi,1 − Di − 1)z2

i,1 −
ni−1

∑
j=2

(
αi,j −

3
2

)
z2

i,j −
(

αi,ni −
1
2

)
z2

i,ni

−
ni

∑
j=2

(
1

κi,j
− 1

2

)
ξ2

i,j +
ni

∑
j=2
|ξi,j|Φi,j −

σi
2

Π̃2
i +

σi
2

Π2
i

]
. (42)

We define the compact sets Ωi,j := {2s>i Psi si + (1/φi)z2
i,1 +∑

j
m=2(z

2
i,m + ξ2

i,m) + Π̃2
i /ρi ≤ 2r} ∈ Rni+2j

where i = 1, . . . , N, j = 2, . . . , ni, and r is a constant satisfying V̄(0) ≤ r. Then, we know that there
exist constants MΦ,i,j > 0 satisfying Φi,j ≤ MΦ,i,j on the compact sets Ωi,j under Assumption 3.

Using the inequality |ξi,j|Φi,j ≤ ξ2
i,jΦ

2
i,j/(2ιi,j) + ιi,j/2 with positive constants ιi,j, ˙̄V is obtained as:

˙̄V ≤
N

∑
i=1

[
−
(

Di
4
−ωi,1

)
‖si‖2 − (αi,1 − Di − 1)z2

i,1 −
ni−1

∑
j=2

(
αi,j −

3
2

)
z2

i,j −
(

αi,ni −
1
2

)
z2

i,ni

−
ni

∑
j=2

(
1

κi,j
− 1

2

)
ξ2

i,j +
ni

∑
j=2

ξ2
i,jΦ

2
i,j

2ιi,j
− σi

2
Π̃2

i

]
+ ∆ (43)

where ∆ = ∑N
i=1[(σi/2)Π2

i + ∑ni
j=2 ιi,j/2]. By choosing the design parameters as Di = 4(ωi,1 + D∗i ),

αi,1 = Di + 1 + α∗i,1, αi,j = 3/2 + α∗i,j, αi,ni = 1/2 + α∗i,ni
, and 1/κi,j = M2

Φ,i,j/(2ιi,j) + 1/2 + κ∗i,j with
positive constants D∗i , α∗i,1, α∗i,j, α∗i,ni

, and κ∗i,j, the following inequality holds:

˙̄V ≤
N

∑
i=1

[
− D∗i ‖si‖2 −

ni

∑
j=1

α∗i,jz
2
i,j −

ni

∑
j=2

κ∗i,jξ
2
i,j −

σi
2

Π̃2
i −

ni

∑
j=2

(
1−

Φ2
i,j

M2
Φ,i,j

) ξ2
i,j M

2
Φ,i,j

2ιi,j

]
+ ∆. (44)

Owing to Φi,j ≤ MΦ,i,j on V̄ = r, (44) becomes:

˙̄V ≤ −ΛV̄ + ∆ (45)

where Λ = min{D∗i /λmax(Psi ), 2φ
i
α∗i,1, 2α∗i,m, 2κ∗i,m, ρiσi} for i = 1, . . . , N and m = 2, . . . , ni. Here,

λmax(Psi ) denotes the maximum eigenvalue of Psi . When Λ > ∆/r, it holds that ˙̄V < 0 on V̄ = r. Thus,
if V̄(0) ≤ r, then V̄(t) ≤ r for all t > 0. That is, V̄ ≤ r is an invariant set. The solution of (44) can be
represented by:

0 ≤ V̄(t) ≤ ∆
Λ

+

(
V̄(0)− ∆

Λ

)
e−Λt, ∀t ≥ 0. (46)

From (46), as time increases, V̄(t) is bounded by ∆/Λ. Therefore, all the closed-loop signals
are semi-globally uniformly ultimately bounded. The control error vector z = [z̄>1,n1

, . . . , z̄>N,nN
]>

exponentially converges to a compact set Z := {z|‖z‖ ≤ (2φ̄∗∆/Λ)1/2} with φ̄∗ = max{φ̄1, . . . , φ̄N},
and Z can be reduced by selecting design parameters.

Case II (zi,ni ∈ Ξi): Since zi,ni is bounded as |zi,ni | ≤ 0.8814δi, a Lyapunov function candidate
V̄ can be rewritten as V̄ = ∑N

i=1[s
>
i Psi si + 1/(2φi)z2

i,1 + ∑ni−1
j=2 (1/2)z2

i,j +∑ni
j=2(1/2)ξ2

i,j + 1/(2ρi)Π̃i].
Then, the time derivative of V̄ is obtained as:

˙̄V ≤
N

∑
i=1

[
−
(

Di
4
−ωi,1

)
‖si‖2 − (αi,1 − Di − 1)z2

i,1 −
ni−1

∑
j=2

(
αi,j −

3
2

)
z2

i,j +
1
2

z2
i,ni

+ Hi(x̂i)



Mathematics 2020, 8, 1340 11 of 21

−
ni

∑
j=2

(
1

κi,j
− 1

2

)
ξ2

i,j +
ni

∑
j=2
|ξi,j|Φi,j −

σi
2

Π̃2
i +

σi
2

Π2
i

]
. (47)

Consider the compact sets Ωi,m, m = 2, . . . , ni − 1, defined in Case I and a compact set
Zi := {2s>i Psi si + (1/φi)z2

i,1 + ∑ni−1
j=2 z2

i,j + ∑ni
j=2 ξ2

i,j + Π̃2
i /ρi ≤ 2r} ∈ R3ni−1. Then, Φi,m and Φi,ni are

bounded as Φi,m ≤ MΦ,i,m on the compact set Ωi,m and Φi,ni ≤ MΦ,i,ni on the compact set Zi × Ξi,
respectively, where MΦ,i,m > 0 and MΦ,i,ni > 0 are constants. x̂i,2 and x̂i,j can be represented by:

x̂i,2 = zi,2 + ξi,2 − (αi,1 + Π̂i)zi,1

x̂i,j = zi,j + ξi,j − αi,j−1zi,j−1 − Dj−1
i bi,j−1si,1

− Dj−1
i bi,j−1

(
1− 1

φi

)
zi,1 −

ξi,j−1

κi,j−1

where i = 1, . . . , N and j = 3, . . . , ni. Then, there exist constants Mx̂,i,m and
Mx̂,i,ni such that |x̂i,m| ≤ Mx̂,i,m on the compact set Ωi,m and |x̂i,ni | ≤ Mx̂,i,ni on the compact set Zi × Ξi
where m = 2, . . . , ni − 1.

Using |ξi,j|Φi,j ≤ ξ2
i,jΦ

2
i,j/(2ιi,j) + ιi,j/2 with constants ιi,j > 0 and |zi,ni | ≤ 0.8814δi, we have:

˙̄V ≤
N

∑
i=1

[
−
(

Di
4
−ωi,1

)
‖si‖2 − (αi,1 − Di − 1)z2

i,1 −
ni−1

∑
j=2

(
αi,j −

3
2

)
z2

i,j + Hi(x̂i)

−
ni

∑
j=2

(
1

κi,j
− 1

2

)
ξ2

i,j +
ni

∑
j=2

ξ2
i,jΦ

2
i,j

2ιi,j
− σi

2
Π̃2

i +
σi
2

Π2
i +

ni

∑
j=2

ιi,j

2
+

1
2
(0.8814δi)

2
]

. (48)

By choosing Di = 4(ωi,1 +D∗i ), αi,1 = Di + 1 + α∗i,1, αi,j = 3/2 + α∗i,j,
and 1/κi,j = M2

Φ,i,j/(2ιi,j) + 1/2 + κ∗i,j with positive constants D∗i , α∗i,1, α∗i,j, α∗i,ni
, and κ∗i,j, we have:

˙̄V ≤
N

∑
i=1

[
− D∗i ‖si‖2 −

ni−1

∑
j=1

α∗i,jz
2
i,j −

ni

∑
j=2

κ∗i,jξ
2
i,j −

σi
2

Π̃2
i −

ni

∑
j=2

(
1−

Φ2
i,j

M2
Φ,i,j

) ξ2
i,j M

2
Φ,i,j

2ιi,j

+ Hi(x̂i) +
σi
2

Π2
i +

ni

∑
j=2

ιi,j

2
+

1
2
(0.8814δi)

2
]

. (49)

Because of Φi,m ≤ MΦ,i,m, Φi,ni ≤ MΦ,i,ni , |x̂i,m| ≤ Mx̂,i,m, and |x̂i,ni | ≤ Mx̂,i,ni on
V̄ = r, (49) becomes:

˙̄V ≤ −Λ̄V̄ + ∆̄ (50)

where Λ̄ = min{D∗i /λmax(Psi ), 2φ
i
α∗i,1, 2α∗i,j, 2κ∗i,m, ρiσi} for i = 1, . . . , N, j = 2, . . . , ni − 1,

and m = 2, . . . , ni and ∆̄ = ∑N
i=1[(σi/2)Π2

i + ∑ni
j=2(ιi,j/2) + (1/2)(0.8814δi)

2 +

∑ni
m=2 ∑ni

j=m ki,j(M2
x̂,i,m/D2m−2)]. Therefore, by a similar procedure to (46), the semi-global uniform

ultimate boundedness of the closed-loop signals and the exponential convergence of z to an adjustable
compact set D = {z|‖z‖ ≤ (2φ̄∗∆̄/Λ̄)1/2} are ensured.

From the two cases, the boundedness of all closed-loop signals and the convergence of the
stabilization errors are ensured.

Remark 4. In the proof of Theorem 1, the boundedness of the term Φi,j on the compact sets Ωi,j comes from
the property of the dynamic surface design [20] where the compact sets Ωi,j are subsets of the compact set
V̄ ≤ r. In Theorem 1, it is proven that all signals are semi-globally uniformly ultimately bounded for all initial
conditions satisfying V̄(0) ≤ r with any constant r > 0 where V̄(0) denotes the initial errors of the closed-loop
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system and r, which can increase or decrease by arbitrarily choosing the initial conditions, denotes the bound of
the initial errors of the closed-loop system. That is, the condition V̄(0) ≤ r meaning the boundedness of initial
errors causes the “semi-global” concept, and thus, the boundedness of the term Φi,j on V̄ = r is satisfied. This is
the fundamental property in the stability analysis of the dynamic surface control system [20].

Remark 5. In the proof of Theorem 1, we know that the stabilization error converges to the compact set Z in
Case I and the compact set D in Case II. These compact sets can be reduced by adjusting the design parameters,
and thus, the stabilization error converges to an adjustable neighborhood of the origin. The guidelines for
selecting the design parameters of the proposed decentralized control scheme are as follows: (i) bi,m, i = 1, . . . , N,
m = 1, . . . , ni are chosen such that the matrix Asi is Hurwitz. (ii) By choosing the small time constants κi,j
with i = 1, . . . , N and j = 2, . . . , ni and increasing Di, αi,1, and αi,j, the convergence regions

√
2φ̄∗∆/Λ

and
√

2φ̄∗∆̄/Λ̄ can be reduced. (iii) Reducing ιi,j and δi leads to decreasing ∆ and ∆̄. Then,
√

2φ̄∗∆/Λ and√
2φ̄∗∆̄/Λ̄ can be reduced by decreasing ∆ and ∆̄, respectively. (iv) The tuning speed of Π̂i can be increased by

increasing ρi and fixing σi as a small constant.

Remark 6. In [38], an adaptive output-feedback control method was presented to deal with the unknown sensor
sensitivity of nonlinear systems. However, single nonlinear systems were only considered in [38], and thus, the
control method presented in [38] cannot be applied to the decentralized control problem in the presence of the
nonlinear interaction among subsystems with unknown sensor sensitivities. In this paper, the interconnected
nonlinearities of the system (1) depend on the state variables x1,1, x2,1, . . . , xN,1 of subsystems, and these state
variables are corrupted by measurement sensitivities φi. Thus, the exact information of the interconnected state
variables x1,1, x2,1, . . . , xN,1 is not available for the decentralized control design. Accordingly, the decentralized
control design strategy using the corrupted local output yi is established in this paper. This is a main difference
between this paper and [38].

4. Simulation Results

In this section, simulation examples containing a practical example are used to illustrate the
effectiveness of the proposed control scheme. Furthermore, to examine the compensation ability of the
unknown measurement sensitivities of the proposed approach, the simulation results of the proposed
decentralized controller are compared with those of the decentralized controller presented in [27].

Example 1. Consider the following interconnected nonlinear systems with unknown measurement sensitivities:

ẋi,j = xi,j+1 + ψi,j(t, x̄i, xi, ui), j = 1, 2
ẋi,ni = ui + ψi,ni (t, x̄i, xi, ui),
yi = φi(t)xi,1,

(51)

where i = 1, 2, ni = 3, ψ1,1 = 0.7 sin(x2
1,1)x2,1 + 0.3x1,1, ψ1,2 = −1.3 ln(1 + x2

1,1) + sin(t + u2
1)x1,2,

ψ1,3 =
x1,1

(1−2x1,3)2+x2
1,3

sin(x2
2,1t), ψ2,1 = 0.3 cos(2 + u2)x2,1 + sin(t)x1,1, ψ2,2 = sin(x2

1,1)
x2,1

(1−x2,2)2+x2
2,2

,

and ψ2,3 = x1,1 + sin(3t) ln(1 + x4
2,2). Assumption 2 holds with |ψ1,1| ≤ 0.7(|x1,1|+ |x2,1|),

|ψ1,2| ≤ 1.3(|x1,1|+ |x1,2|), |ψ1,3| ≤ 5|x1,1|, |ψ2,1| ≤ |x1,1| + |x2,1|, |ψ2,2| ≤ 2|x2,1|,
and |ψ2,3| ≤ 3(|x1,1|+ |x2,2|). The unknown measurement sensitivities φ1(t) = 1 + 0.28 cos(12t)
and φ2(t) = 1 + 0.48 sin(10t) are assumed to influence systems (51). The local high-gain observers and local
adaptive controllers of the proposed approach are constructed as:

˙̂xi,1 = x̂i,2 + Dibi,1(yi − x̂i,1),
˙̂xi,2 = x̂i,3 + D2

i bi,2(yi − x̂i,1),
˙̂xi,3 = ui + D3

i bi,3(yi − x̂i,1),
(52)
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and:

νi,2 = −αi,1zi,1 − Π̂izi,1,
νi,3 = −αi,2zi,2 − D2

i bi,2(yi − x̂i,1) +
νi,2−ν̄i,2

κi,2
,

ui = −αi,3zi,3 − D3
i bi,3(yi − x̂i,1) +

νi,3−ν̄i,3
κi,3

−
( 2

zi,3

)
tanh2 ( zi,3

δi

)(
(ki,2 + ki,3)

x̂2
i,2

D2
i
+ ki,3

x̂2
i,3

D4
i

)
,

˙̂Πi = ρi(z2
i,1 − σiΠ̂i),

(53)

where i = 1, 2, and the design parameters are chosen as Di = 3, bi,1 = 3, bi,2 = 3, bi,3 = 1, αi,1 = 5, α1,2 = 4.5,
α2,2 = 6.5, αi,3 = 7.5, κi,j = 0.01, j = 2, 3, δi = 1, ρi = 50, and σi = 0.00001. The initial conditions are set
to x1(0) = [−0.4, 0.4, 0]>, x2(0) = [−0.3, 0.3,−0.1]>, x̂1(0) = [0, 0, 0]>, x̂2(0) = [0, 0, 0]>, Π̂1(0) = 0,
and Π̂2(0) = 0.

The simulation results are displayed in Figures 1–5. Figure 1 compares the local stabilization
results of the proposed local control system with those of the local control system of [27]. By the
output-feedback corrupted by the unknown measurement sensitivities, the proposed control system
can achieve robust stabilization, but the local states of the control system [27] do not stabilize.
This implies that the effects of the unknown measurement sensitivities can be compensated by the
proposed decentralized control approach. The state estimation results for each subsystem are shown
in Figures 2 and 3 where all state variables are estimated by the local observers. The local control
inputs of each subsystem are compared in Figure 4. The estimated parameters of the proposed
approach are displayed in Figure 5. These figures show that the proposed decentralized adaptive
output-feedback control scheme ensures satisfactory stabilization performance in the presence of
unknown measurement sensitivities while all signals of the closed-loop system (51)–(53) are bounded.
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Figure 1. Comparison of the stabilization results of System (51): (a) the state variables of the first
subsystem; (b) the state variables of the second subsystem.
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Figure 2. Comparison of the estimation results x1,j and x̂1,j, j = 1, 2, 3, for the first subsystem of
System (51): (a) the proposed decentralized control scheme; (b) the decentralized control scheme [27].
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Figure 3. Comparison of the estimation results x2,j and x̂2,j, j = 1, 2, 3, for the second subsystem of
System (51): (a) the proposed decentralized control scheme; (b) the decentralized control scheme [27].
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Figure 4. Comparison of control inputs ui, i = 1, 2 for System (51): (a) u1; (b) u2.
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Figure 5. Parameter estimates Π̂i, i = 1, 2 for System (51).

Example 2. In this example, we consider the tripled inverted pendulum connected by springs, as shown in
Figure 6. Because the inverted pendulum system is an inherently unstable system, one of its basic research topics
is the balance and posture control. These inverted pendulum systems have been applied to various technical
real-world applications such as bipedal walking robots [39], a two-wheeled vehicle [40], and an exoskeleton
robot [41]. The proposed decentralized control design via the output feedback corrupted by sensor sensitivities
can provide a basic research result for the practical experiments of these technical real-world applications. Thus,
the mathematical model of the tripled inverted pendulum is considered as a simulation example in this paper.
The motion equations of the pendulums are given by [42]:

θ̈1 = u1 +
g
lm

sin θ1 +
K1l2

p

m1l2
m
(sin θ2 cos θ2 − sin θ1 cos θ1),

θ̈2 = u2 +
g
lm

sin θ2 +
K1l2

p

m2l2
m
(sin θ1 cos θ1 − sin θ2 cos θ2)

+
K2l2

p

m2l2
m
(sin θ3 cos θ3 − sin θ2 cos θ2),

θ̈3 = u3 +
g
lm

sin θ3 +
K2l2

p

m3l2
m
(sin θ2 cos θ2 − sin θ3 cos θ3)

(54)

where θi and mi are the angle and the end mass of the ith pendulum, g is the gravitational acceleration, lm
is the length of each rod, lp is the distance between the pivot and the center of gravity of the rod, K1 and K2

are the spring constants, and ui is the control input torque with i = 1, 2, 3. The system parameters are set to
m1 = 0.2 kg, m2 = 0.4 kg, m3 = 0.3 kg, g = 9.8 m/s2, lm = 9 m, lp = 3 m, K1 = 1, and K2 = 1.2. By the
transformation of coordinates xi,1 = θi and xi,2 = θ̇i, the interconnected system (54) is rewritten as follows:

ẋi,1 = xi,2 + ψi,1(t, x̄i, xi, ui),
ẋi,2 = ui + ψi,2(t, x̄i, xi, ui),
yi = φi(t)xi,1

(55)

where i = 1, 2, 3, ψi,1 = 0, ψ1,2 = (g/lm) sin x1,1 + (K1l2
p/(m1l2

m))(sin x2,1 cos x2,1 −
sin x1,1 cos x1,1), ψ2,2 = (g/lm) sin x2,1 + (K1l2

p/(m2l2
m))(sin x1,1 cos x1,1 − sin x2,1 cos x2,1)+

(K2l2
p/(m2l2

m))(sin x3,1 cos x3,1 − sin x2,1 cos x2,1), and ψ3,2 = (g/lm) sin x3,1 +

(K2l2
p/(m3l2

m))(sin x2,1 cos x2,1 − sin x3,1 cos x3,1). Assumption 2 holds with |ψ1,2| ≤ (g/lm +

K1l2
p/(m1l2

m))(|x1,1| + |x2,1|), |ψ2,2| ≤ (g/lm + K1l2
p/(m2l2

m) + K2l2
p/(m2l2

m))(|x1,1| + |x2,1| + |x3,1|),
and |ψ3,2| ≤ (g/lm + K2l2

p/(m3l2
m))(|x2,1| + |x3,1|). The measurement sensitivities are assumed to be
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φ1(t) = 1 + 0.44(sin(3t) + sin(t)), φ2(t) = 1 + 0.31(cos(3t) + cos(t)), and φ3(t) = 1 + 0.57 sin(t).
The local high-gain observers and local controllers of the proposed approach are given by:

˙̂xi,1 = x̂i,2 + Dibi,1(yi − x̂i,1),
˙̂xi,2 = ui + D2

i bi,2(yi − x̂i,1),
(56)

and:

νi,2 = −αi,1zi,1 − Π̂izi,1,
ui = −αi,2zi,2 − D2

i bi,2(yi − x̂i,1) +
νi,2−ν̄i,2

κi,2

−
( 2

zi,2

)
tanh2 ( zi,2

δi

)
ki,2

x̂2
i,2

D2
i

,
˙̂Πi = ρi(z2

i,1 − σiΠ̂i),

(57)

where i = 1, 2, 3, and the design parameters are chosen as Di = 2, bi,1 = 2, bi,2 = 1, αi,1 = 4, αi,2 = 1.5,
κi,2 = 0.01, δi = 1, ρi = 50, and σi = 0.00001. The simulation results shown in Figures 7–14 are obtained
under the initial conditions x1(0) = [0.7, 0]>, x2(0) = [−0.5, 0.4]>, x3(0) = [0.8,−0.3]>, x̂1(0) = [0, 0]>,
x̂2(0) = [0, 0]>, x̂3(0) = [0, 0]>, Π̂1(0) = 0, Π̂2(0) = 0, and Π̂3(0) = 0. Under unknown measurement
sensitivities φi, the local stabilization results of the proposed decentralized control system and the previous
decentralized control system [27] are compared in Figures 7–9. While the existing decentralized stabilization
method [27] cannot compensate for unknown measurement sensitivities, which leads to the unstable result of
controlled state variables, the proposed decentralized control approach can achieve the robust stabilization against
unknown measurement sensitivities. Figures 10–12 show the local state estimation results of each subsystem.
Figure 13 compares the local control inputs. Figure 14 depicts the adaptive parameters of the proposed control
approach. From these figures, the stabilization of the tripled inverted pendulum systems (55) connected by springs
is successfully achieved by the proposed approach in the presence of the unknown time-varying measurement
sensitivities and their unknown bounds.

Figure 6. Tripled inverted pendulums connected by springs.
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Figure 7. Comparison of the stabilization results for the first subsystem of tripled inverted pendulum
systems (55).
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Figure 8. Comparison of stabilization results for the second subsystem of tripled inverted pendulum
systems (55).
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Figure 9. Comparison of stabilization results for the third subsystem of tripled inverted pendulum
systems (55).
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Figure 10. Comparison of estimation results x1,j and x̂1,j, j = 1, 2, for the first subsystem of System (55):
(a) the proposed decentralized control scheme; (b) the decentralized control scheme [27].
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Figure 11. Comparison of estimation results x2,j and x̂2,j, j = 1, 2, for the second subsystem of
System (55): (a) the proposed decentralized control scheme; (b) the decentralized control scheme [27].
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Figure 12. Comparison of estimation results x3,j and x̂3,j, j = 1, 2, for the third subsystem of System (55):
(a) the proposed decentralized control scheme; (b) the decentralized control scheme [27].
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Figure 13. Comparison of control inputs ui, i = 1, 2, 3 for System (55).
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Figure 14. Parameter estimates Π̂i, i = 1, 2, 3, for tripled inverted pendulum systems (55).

5. Conclusions

This article addressed the decentralized adaptive stabilization problem for a class of uncertain
nonlinear interconnected systems by the output-feedback corrupted by unknown measurement
sensitivities. A local adaptive control strategy was established to compensate for the effects
of the unknown bounds of the measurement sensitivities. In the Lyapunov stability sense,
the stability of the proposed decentralized adaptive control system was successfully analyzed.
Finally, simulation comparisons were provided to show the compensation ability of the unknown
measurement sensitivities of the proposed approach.
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